
HashiCorp Certified Terraform Associate 2023

Instructed by Zeal Vora

You can join our Discord community for any queries / discussions. You can also connect with
other students going through the same course in Discord (Optional)

Discord Link: http://kplabs.in/chat

Group Page: #terraform-associate

 knowledge portal

Our Community

http://kplabs.in/chat

PPT Release Date = 3rd August 2023

We regularly release new version of PPT when we update this course.

Please check regularly that you are using the latest version.

The Latest Version Details are mentioned in the PPT Lecture in Section 1.

 knowledge portal

PPT Version

IAC Tools
 DevOps = Developers

Exploring Toolsets

 knowledge portal

There are various types of tools that can allow you to deploy infrastructure as code :

- Terraform
- CloudFormation
- Heat
- Ansible
- SaltStack
- Chef, Puppet and others

Configuration Management vs Infrastructure Orchestration

 knowledge portal

Ansible, Chef, Puppet are configuration management tools which means that they are
primarily designed to install and manage software on existing servers.

Terraform, CloudFormation are the infrastructure orchestration tools which basically
means they can provision the servers and infrastructure by themselves.

Configuration Management tools can do some degree of infrastructure provisioning, but
the focus here is that some tools are going to be better fit for certain type of tasks.

IAC & Configuration Management = Friends

 New E2

 Terraform
 first_server.tf

 AWS

 Create new EC2 Instance

 EC2 Running

Install & Configure Application

Ansible

Completed

Which tool to choose ?

 knowledge portal

Question remains on how to choose right IAC tool for the organization

i) Is your infrastructure going to be vendor specific in longer term ? Example AWS.

ii) Are you planning to have multi-cloud / hybrid cloud based infrastructure ?

iii) How well does it integrate with configuration management tools ?

iv) Price and Support

Terraform

 knowledge portal

i) Supports multiple platforms, has hundreds of providers.

ii) Simple configuration language and faster learning curve.

iii) Easy integration with configuration management tools like Ansible.

iv) Easily extensible with the help of plugins.

v) Free !!!

Installing Terraform
Terraform in detail

Overview of Installation Process

 knowledge portal

Terraform installation is very simple.

You have a single binary file, download and use it.

 terraform

 Download

Supported Platforms

 knowledge portal

Terraform works on multiple platforms, these includes:

● Windows
● macOS
● Linux
● FreeBSD
● OpenBSD
● Solaris

Terraform Installation - Mac & Linux

 knowledge portal

There are two primary steps required to install terraform in Mac and Linux

1) Download the Terraform Binary File.

2) Move it in the right path.

Choosing IDE For Terraform
Terraform in detail

 Terraform Code in NotePad!

 knowledge portal

You can write Terraform code in Notepad and it will not have any impact.

Downsides:

● Slower Development
● Limited Features

Need of a Better Software

 knowledge portal

There is a need of a better application that allows us to develop code faster.

What are the Options!

 knowledge portal

There are many popular source code editors available in the market.

 Source Code Editors

Editor for This Course

 knowledge portal

We are going to make use of Visual Studio Code as primary editor in this course.

Advantages:
1. Supports Windows, Mac, Linux
2. Supports Wide variety of programming languages.
3. Many Extensions.

 knowledge portal

 Visual Studio Code Extensions

 Understanding the Basics

Extensions are add-ons that allow you to customize and enhance your
experience in Visual Studio by adding new features or integrating existing tools

They offer wide range of functionality related to colors, auto-complete, report
spelling errors etc.

 Terraform Extension

HashiCorp also provides extension for Terraform for Visual Studio Code.

Setting up the Lab
 Let’s start Rolling !

Let’s Start

 knowledge portal

i) Create a new AWS Account.

ii) Begin the course

Registering an AWS Account

 knowledge portal

 Authentication and Authorization

 Understanding the Basics

Before we start working on managing environments through Terraform, the first
important step is related to Authentication and Authorization.

 Terraform AWS Cloud

Create new Server

Dude, Authenticate First

 Basics of Authentication and Authorization

Authentication is the process of verifying who a user is.

Authorization is the process of verifying what they have access to

Example:

Alice is a user in AWS with no access to any service.

 Learning for Todays’ Video

Terraform needs access credentials with relevant permissions to create and
manage the environments.

 Terraform

username password

Bob pwd928#

Done

Create new Server

 Access Credentials

Depending on the provider, the type of access credentials would change.

Provider Access Credentials

AWS Access Keys and Secret Keys

GitHub Tokens

Kubernetes Kubeconfig file, Credentials Config

Digital Ocean Tokens

 First Virtual Machine Through Terraform

 Revising the Basics of EC2

EC2 stands for Elastic Compute Cloud.

In-short, it's a name for a virtual server that you launch in AWS.

 VM EC2 Instance

 Available Regions

Cloud providers offers multiple regions in which we can create our resource.

You need to decide the region in which Terraform would create the resource.

 Virtual Machine Configuration

 A Virtual Machine would have it’s own set of configurations.

● CPU
● Memory
● Storage
● Operating System

While creating VM through Terraform, you will need to define these.

 Providers and Resources

 Basics of Providers

Terraform supports multiple providers.

Depending on what type of infrastructure we want to launch, we have to use
appropriate providers accordingly.

 Learning 1 - Provider Plugins
A provider is a plugin that lets Terraform manage an external API.

When we run terraform init, plugins required for the provider are automatically
downloaded and saved locally to a .terraform directory.

 Learning 2 - Resource

Resource block describes one or more infrastructure objects

Example:

● resource aws_instance
● resource aws_alb
● resource iam_user
● resource digitalocean_droplet

 Learning 3 - Resource Blocks

A resource block declares a resource of a given type ("aws_instance") with a
given local name ("myec2").

Resource type and Name together serve as an identifier for a given resource
and so must be unique.

EC2 Instance Number 1 EC2 Instance Number 2

 Point to Note

You can only use the resource that are supported by a specific provider.

In the below example, provider of Azure is used with resource of aws_instance

 Important Question

The core concepts, standard syntax remains similar across all providers.

If you learn the basics, you should be able to work with all providers easily.

 Issues and Bugs with Providers

A provider that is maintained by HashiCorp does not mean it has no bugs.

It can happen that there are inconsistencies from your output and things
mentioned in documentation. You can raise issue at Provider page.

Relax and Have a Meme Before Proceeding

 knowledge portal

 Provider Tiers

 Provider Maintainers

There are 3 primary type of provider tiers in Terraform.

Provider Tiers Description

Official Owned and Maintained by HashiCorp.

Partner Owned and Maintained by Technology Company that
maintains direct partnership with HashiCorp.

Community Owned and Maintained by Individual Contributors.

 Provider Namespace
Namespaces are used to help users identify the organization or publisher
responsible for the integration

Tier Description

Official hashicorp

Partner Third-party organization
e.g. mongodb/mongodbatlas

Community Maintainer’s individual or organization account, e.g.
DeviaVir/gsuite

 Important Learning
Terraform requires explicit source information for any providers that are not
HashiCorp-maintained, using a new syntax in the required_providers nested
block inside the terraform configuration block

HashiCorp Maintained

Non-HashiCorp Maintained

 Terraform Destroy

 Learning to Destroy Resources

If you keep the infrastructure running, you will get charged for it.

Hence it is important for us to also know on how we can delete the infrastructure
resources created via terraform.

Terraform

 Approach 1 - Destroy ALL

terraform destroy allows us to destroy all the resource that are created within the
folder.

Terraform

terraform destroy

 Approach 2 - Destroy Some

terraform destroy with -target flag allows us to destroy specific resource.

Terraform

terraform destroy - target aws_instance.myec2

 Terraform Destroy with Target
The -target option can be used to focus Terraform's attention on only a subset of
resources.

Combination of : Resource Type + Local Resource Name

Resource Type Local Resource Name

aws_instance myec2

github_repository example

Desired & Current State
 Terraform in detail

Desired State

 knowledge portal

Terraform's primary function is to create, modify, and destroy infrastructure resources to
match the desired state described in a Terraform configuration

 EC2 - t2.micro

Current State

 knowledge portal

Current state is the actual state of a resource that is currently deployed.

 t2.medium

Important Pointer

 knowledge portal

Terraform tries to ensure that the deployed infrastructure is based on the desired state.

If there is a difference between the two, terraform plan presents a description of the
changes necessary to achieve the desired state.

Provider Versioning
Terraform in detail

Provider Architecture

 knowledge portal

 New Server Terraform Digital Ocean
 Provider

 do_droplet.tf

Infrastructure
Provisioning

(API interactions)

Digital Ocean

Overview of Provider Versioning

 knowledge portal

Provider plugins are released separately from Terraform itself.

They have different set of version numbers.

.

 Version 1
 Version 2

Explicitly Setting Provider Version

During terraform init, if version argument is not specified, the most recent provider will be
downloaded during initialization.

For production use, you should constrain the acceptable provider versions via configuration, to
ensure that new versions with breaking changes will not be automatically installed.

Arguments for Specifying provider

 knowledge portal

There are multiple ways for specifying the version of a provider.

Version Number Arguments Description

 >=1.0 Greater than equal to the version

 <=1.0 Less than equal to the version

 ~>2.0 Any version in the 2.X range.

>=2.10,<=2.30 Any version between 2.10 and 2.30

Dependency Lock File

Terraform dependency lock file allows us to lock to a specific version of the provider.

If a particular provider already has a selection recorded in the lock file, Terraform will always
re-select that version for installation, even if a newer version has become available.

You can override that behavior by adding the -upgrade option when you run terraform init,

 Terraform Refresh

 Understanding the Challenge

Terraform can create an infrastructure based on configuration you specified.

It can happen that the infrastructure gets modified manually.

t2.micro
EC2:

type: t2.micro
storage: 20
sg: default

State File

 Understanding the Challenge

The terraform refresh command will check the latest state of your infrastructure
and update the state file accordingly.

t2.large
EC2:

type: t2.large
storage: 20
sg: default

State File

terraform refresh
Scan real infra

 Points to Note

You shouldn't typically need to use this command, because Terraform
automatically performs the same refreshing actions as a part of creating a plan
in both the terraform plan and terraform apply commands.

 Understanding the Usage

The terraform refresh command is deprecated in newer version of terraform.

The -refresh-only option for terraform plan and terraform apply was introduced in
Terraform v0.15.4.

 AWS Provider - Authentication Configuration

 Understanding the Basics

At this stage, we have been manually hardcoding the access / secret keys within
the provider block.

Although a working solution, but it is not optimal from security point of view.

 Better Way

We want our code to run successfully without hardcoding the secrets in the
provider block.

 Better Approach
The AWS Provider can source credentials and other settings from the shared
configuration and credentials files.

 Default Configurations
If shared files lines are not added to provider block, by default, Terraform will
locate these files at $HOME/.aws/config and $HOME/.aws/credentials on Linux
and macOS.

"%USERPROFILE%\.aws\config" and "%USERPROFILE%\.aws\credentials" on
Windows.

 AWS CLI
AWS CLI allows customers to manage AWS resources directly from CLI.

When you configure Access/Secret keys in AWS CLI, the location in which these
credentials are stored is the same default location that Terraform searches the
credentials from.

 AWS Platform awscli

 Create EC2 Instance

Lecture Format - Terraform Course

Terraform in detail

Overview of the Format

 knowledge portal

We tend to use a different folder for each practical that we do in the course.

This allows us to be more systematic and allows easier revisit in-case required.

Lecture Name Folder Names

Create First EC2 Instance folder1

Tainting resource folder2

Conditional Expression folder3

Find the appropriate code from GitHub

 knowledge portal

Code in GitHub is arranged according to sections that are matched to the domains in the course.

Every section in GitHub has easy Readme file for quick navigation.

Destroy Resource After Practical

 knowledge portal

We know how to destroy resources by now

terraform destroy

After you have completed your practical, make sure you destroy the resource before moving to
the next practical.

This is easier if you are maintaining separate folder for each practical.

Relax and Have a Meme Before Proceeding

 knowledge portal

 Cross-Resource Attribute References

 Typical Challenge

It can happen that in a single terraform file, you are defining two different
resources.

However Resource 2 might be dependent on some value of Resource 1.

Elastic IP Address
Allow 443 from Elastic IP

 Understanding The Workflow

Elastic IP

52.72.30.50
Allow 443 from 52.72.30.50

 Basics of Attributes

Each resource has its associated set of attributes.

Attributes are the fields in a resource that hold the values that end up in state.

Attributes Values

ID i-abcd

public_ip 52.74.32.50

private_ip 172.31.10.50

private_dns ip-172-31-10-50-.ec2.internal

 Cross Referencing Resource Attribute

Terraform allows us to reference the attribute of one resource to be used in a
different resource.

Attribute Value

public_ip 52.72.52.72

Elastic IP

 Output Values

 Understanding the Basics

Output values make information about your infrastructure available on the
command line, and can expose information for other Terraform configurations to
use.

 Terraform

Create EC2

Fetch Info of EC2IP Of EC2: 172.32.10.50

Create EC2 and give me
it’s Public IP

 Sample Example
Use-Case:

Create a Elastic IP (Public IP) resource in AWS and output the value of the EIP.

 Point to Note
Output values defined in Project A can be referenced from code in Project B as
well.

Project A

Project B

Output Values

Ip = 54.146.20.28

TF Code

Fetch

Terraform Variables
Terraform in detail

Static = Work

 knowledge portal

Repeated static values can create more work in the future.

 116.75.30.50

 116.75.30.50

 116.75.30.50

 116.75.30.50

 116.75.30.50

 116.75.30.50

 Project A Project B

Variables are good

 knowledge portal

We can have a central source from which we can import the values from.

 source

 116.75.30.50

128.30.50.90

 var.source

 var.source

 var.source

Variables are good

 knowledge portal

We can have a central source from which we can import the values from.

 var.source

 var.source

 var.source

 vpn_ip

 116.75.30.50

128.30.50.90

Approaches to Variable Assignment

Terraform in detail

Multiple Approaches to Variable Assignment

 knowledge portal

Variables in Terraform can be assigned values in multiple ways.

Some of these include:

● Environment variables
● Command Line Flags
● From a File
● Variable Defaults

Data Types for Variables
Terraform in detail

Overview of Type Constraints

 knowledge portal

The type argument in a variable block allows you to restrict the type of value that will be accepted
as the value for a variable

variable "image_id" {

 type = string

}

If no type constraint is set then a value of any type is accepted.

Example Use-Case

 knowledge portal

Every employee in Medium Corp is assigned a Identification Number.

Any resource that employee creates should be created with the name of the identification number
only.

variables.tf terraform.tfvars

variable “instance_name” {} instance_name=”john-123”

Example Use-Case

 knowledge portal

Every employee in Medium Corp is assigned a Identification Number.

Any EC2 instance that employee creates should be created using the identification number only.

variables.tf terraform.tfvars

variable “instance_name” {
 type=number
 }

instance_name=”john-123”

 Overview of Data Types

 knowledge portal

Type Keywords Description

string Sequence of Unicode characters representing some text, like "hello".

list Sequential list of values identified by their position. Starts with 0
[“mumbai” ,”singapore”, ”usa”]

map a group of values identified by named labels, like
 {name = "Mabel", age = 52}.

number Example: 200

Count Parameter
Terraform in detail

Overview of Count Parameter

 knowledge portal

The count parameter on resources can simplify configurations and let you scale resources by
simply incrementing a number.

Let’s assume, you need to create two EC2 instances. One of the common approach is to define
two separate resource blocks for aws_instance.

Overview of Count Parameter

 knowledge portal

With count parameter, we can simply specify the count value and the resource can be scaled
accordingly.

Count Index

 knowledge portal

In resource blocks where count is set, an additional count object is available in expressions, so you
can modify the configuration of each instance.

This object has one attribute:

count.index — The distinct index number (starting with 0) corresponding to this instance.

Understanding Challenge with Count

 knowledge portal

With the below code, terraform will create 5 IAM users. But the problem is that all will have the
same name.

Understanding Challenge with Count

 knowledge portal

count.index allows us to fetch the index of each iteration in the loop.

Understanding Challenge with Default Count Index

 knowledge portal

Having a username like loadbalancer0, loadbalancer1 might not always be suitable.

Better names like dev-loadbalancer, stage-loadbalancer, prod-loadbalancer is better.

count.index can help in such scenario as well.

Conditional Expression

Terraform in detail

Overview of Conditional Expression

 knowledge portal

A conditional expression uses the value of a bool expression to select one of two values.

Syntax of Conditional expression:

condition ? true_val : false_val

If condition is true then the result is true_val. If condition is false then the result is false_val.

Example of Conditional Expression

 knowledge portal

Let’s assume that there are two resource blocks as part of terraform configuration.

Depending on the variable value, one of the resource blocks will run.

 is- test

true

false variable

Local Values

 Terraform in detail

Overview of Local Values

 knowledge portal

A local value assigns a name to an expression, allowing it to be used multiple times within a
module without repeating it.

Local Values Support for Expression

 knowledge portal

Local Values can be used for multiple different use-cases like having a conditional expression.

Important Pointers for Local Values

 knowledge portal

Local values can be helpful to avoid repeating the same values or expressions multiple times in a
configuration.

If overused they can also make a configuration hard to read by future maintainers by hiding the
actual values used

Use local values only in moderation, in situations where a single value or result is used in many
places and that value is likely to be changed in future.

Terraform Functions

 Terraform in detail

Overview of Terraform Functions

 knowledge portal

The Terraform language includes a number of built-in functions that you can use to transform
and combine values.

The general syntax for function calls is a function name followed by comma-separated arguments
in parentheses:

function (argument1, argument2)

Example:

> max(5, 12, 9)

12

List of Available Functions

 knowledge portal

The Terraform language does not support user-defined functions, and so only the functions built
in to the language are available for use

● Numeric
● String
● Collection
● Encoding
● Filesystem
● Date and Time
● Hash and Crypto
● IP Network
● Type Conversion

Data Sources
Terraform in detail

Overview of Data Sources

Data sources allow data to be fetched or computed for use elsewhere in Terraform configuration.

 Mumbai Region Singapore Region Tokyo Region

 ami-1234 ami-5678 ami-9012

EC2 Instance

Data Source Code

 knowledge portal

● Defined under the data block.
● Reads from a specific data source (aws_ami) and exports results under “app_ami”

Debugging Terraform
Terraform in detail

Overview of Debugging Terraform

 knowledge portal

Terraform has detailed logs which can be enabled by setting the TF_LOG environment variable
to any value.

You can set TF_LOG to one of the log levels TRACE, DEBUG, INFO, WARN or ERROR to
change the verbosity of the logs

Important Pointers

 knowledge portal

TRACE is the most verbose and it is the default if TF_LOG is set to something other than a log
level name.

To persist logged output you can set TF_LOG_PATH in order to force the log to always be
appended to a specific file when logging is enabled.

Lecture Format - Terraform Course

Terraform in detail

Overview of the Format

 knowledge portal

We tend to use a different folder for each practical that we do in the course.

This allows us to be more systematic and allows easier revisit in-case required.

Lecture Name Folder Names

Create First EC2 Instance folder1

Tainting resource folder2

Conditional Expression folder3

Find the appropriate code from GitHub

 knowledge portal

Code in GitHub is arranged according to sections that are matched to the domains in the course.

Every section in GitHub has easy Readme file for quick navigation.

Destroy Resource After Practical

 knowledge portal

We know how to destroy resources by now

terraform destroy

After you have completed your practical, make sure you destroy the resource before moving to
the next practical.

This is easier if you are maintaining separate folder for each practical.

Relax and Have a Meme Before Proceeding

 knowledge portal

Terraform Format
Terraform in detail

Importance of Readability

 knowledge portal

Anyone who is into programming knows the importance of formatting the code for readability.

The terraform fmt command is used to rewrite Terraform configuration files to take care of the
overall formatting.

 knowledge portal

Before fmt

After fmt

Terraform Validate
Terraform in detail

Overview of Terraform Validate

 knowledge portal

Terraform Validate primarily checks whether a configuration is syntactically valid.

It can check various aspects including unsupported arguments, undeclared variables and others.

Load Order & Semantics
Terraform in detail

Understanding Semantics

 knowledge portal

Terraform generally loads all the configuration files within the directory specified in
alphabetical order.

The files loaded must end in either .tf or .tf.json to specify the format that is in use.

 web.tf app.tf providers.tf sg.tf

terraform-kplabs

Dynamic Block
Terraform In Depth

Understanding the Challenge

 knowledge portal

In many of the use-cases, there are repeatable nested blocks that needs to be defined.

This can lead to a long code and it can be difficult to manage in a longer time.

Dynamic Blocks

 knowledge portal

Dynamic Block allows us to dynamically construct repeatable nested blocks which is supported
inside resource, data, provider, and provisioner blocks:

Iterators

 knowledge portal

The iterator argument (optional) sets the name of a temporary variable that represents the
current element of the complex value

If omitted, the name of the variable defaults to the label of the dynamic block ("ingress" in the
example above).

 Terraform Taint

 Understanding the Use-Case
You have created a new resource via Terraform.

Users have made a lot of manual changes (both infrastructure and inside the
server)

Two ways to deal with this: Import Changes to Terraform / Delete & Recreate
the resource

Terraform Managed Resource

Lots of manual changes

 Recreating the Resource

The -replace option with terraform apply to force Terraform to replace an object
even though there are no configuration changes that would require it.

terraform apply -replace="aws_instance.web"

Destroy

Create

 Points to Note

Similar kind of functionality was achieved using terraform taint command in older
versions of Terraform.

For Terraform v0.15.2 and later, HashiCorp recommend using the -replace
option with terraform apply

 Splat Expression

Terraform Expressions

Overview of Spalat Expression

Splat Expression allows us to get a list of all the attributes.

 knowledge portal

 Terraform Graph

Terraform In Detail

Overview of Graph
The terraform graph command is used to generate a visual representation of either a
configuration or execution plan

The output of terraform graph is in the DOT format, which can easily be converted to
an image.

 knowledge portal

 Saving Terraform Plan to a File

Terraform In Detail

Terraform Plan File

The generated terraform plan can be saved to a specific path.

This plan can then be used with terraform apply to be certain that only the changes
shown in this plan are applied.

Example:

terraform plan -out=path

 knowledge portal

Terraform Output
Terraform in detail

Terraform Output

 knowledge portal

The terraform output command is used to extract the value of an output variable from the state
file.

Terraform Settings
Terraform in detail

Overview of Terraform Settings

 knowledge portal

The special terraform configuration block type is used to configure some behaviors of
Terraform itself, such as requiring a minimum Terraform version to apply your configuration.

Terraform settings are gathered together into terraform blocks:

Setting 1 - Terraform Version

 knowledge portal

The required_version setting accepts a version constraint string, which specifies which versions
of Terraform can be used with your configuration.

If the running version of Terraform doesn't match the constraints specified, Terraform will
produce an error and exit without taking any further actions.

Setting 2 - Provider Version

 knowledge portal

The required_providers block specifies all of the providers required by the current module,
mapping each local provider name to a source address and a version constraint.

Dealing with Larger Infrastructure
Terraform in detail

 Challenges with Larger Infrastructure

When you have a larger infrastructure, you will face issue related to API limits for a provider.

 5 EC2

 3 RDS

 100 SG Rules

 VPC Infra

infra.tf

terraform plan

Update state of each resource.

 Dealing With Larger Infrastructure

Switch to smaller configuration were each can be applied independently.

 5 EC2

 3 RDS

 100 SG Rules

 VPC Infra

infra.tf

terraform plan

 5 EC2

 3 RDS

 100 SG Rules

 VPC Infra

ec2.tf

rds.tf

sg.tf

vpc.tf

terraform plan

 Slow Down, My Man

We can prevent terraform from querying the current state during operations like terraform plan.

This can be achieved with the -refresh=false flag

 Specify the Target

The -target=resource flag can be used to target a specific resource.

Generally used as a means to operate on isolated portions of very large configurations

terraform plan -target=ec2

Zipmap
 Terraform Function

Overview of Zipmap

 knowledge portal

The zipmap function constructs a map from a list of keys and a corresponding list of
values.

pineapple

orange

strawberry

yellow

orange

red

pineapple=yellow

orange=orange

strawberry=red

List of Keys List of Values

zipmap

Sample Output of Zipmap Function

 knowledge portal

Simple Use-Case

 knowledge portal

You are creating multiple IAM users.

You need output which contains direct mapping of IAM names and ARNs

Comments in Terraform Code
Commenting the Code!

Overview of Comments

 knowledge portal

A comment is a text note added to source code to provide explanatory information,
usually about the function of the code

Comments in Terraform

 knowledge portal

The Terraform language supports three different syntaxes for comments:

Type Description

begins a single-line comment, ending at the end of the line.

// also begins a single-line comment, as an alternative to #.

/* and */ are start and end delimiters for a comment that might span over multiple lines.

 Resource Behavior and Meta-Argument

 Understanding the Basics

A resource block declares that you want a particular infrastructure object to exist
with the given settings

 How Terraform Applies a Configuration

Create resources that exist in the configuration but are not associated with a real
infrastructure object in the state.

Destroy resources that exist in the state but no longer exist in the configuration.

Update in-place resources whose arguments have changed.

Destroy and re-create resources whose arguments have changed but which
cannot be updated in-place due to remote API limitations.

 Understanding the Limitations

What happens if we want to change the default behavior?

Example: Some modification happened in Real Infrastructure object that is not
part of Terraform but you want to ignore those changes during terraform apply.

Name HelloWorld

Env Production

 Solution - Using Meta Arguments
Terraform allows us to include meta-argument within the resource block which
allows some details of this standard resource behavior to be customized on a
per-resource basis.

Inside resource block

 Different Meta-Arguments

Meta-Argument Description

depends_on Handle hidden resource or module dependencies that Terraform cannot
automatically infer.

count Accepts a whole number, and creates that many instances of the resource

for_each Accepts a map or a set of strings, and creates an instance for each item in that
map or set.

lifecycle Allows modification of the resource lifecycle.

provider Specifies which provider configuration to use for a resource, overriding
Terraform's default behavior of selecting one based on the resource type name

 Meta Argument - LifeCycle

 Basics of Lifecycle Meta-Argument
Some details of the default resource behavior can be customized using the
special nested lifecycle block within a resource block body:

 Arguments Available
There are four argument available within lifecycle block.

Arguments Description

create_before_destroy New replacement object is created first, and the prior object is destroyed
after the replacement is created.

prevent_destroy Terraform to reject with an error any plan that would destroy the
infrastructure object associated with the resource

ignore_changes Ignore certain changes to the live resource that does not match the
configuration.

replace_triggered_by Replaces the resource when any of the referenced items change

 Replace Triggered By
Replaces the resource when any of the referenced items change.

 Create Before Destroy Argument

 Understanding the Default Behavior
By default, when Terraform must change a resource argument that cannot be
updated in-place due to remote API limitations, Terraform will instead destroy the
existing object and then create a new replacement object with the new
configured arguments.

Changed AMI

Destroy First

Create Second

 Create Before Destroy Argument
The create_before_destroy meta-argument changes this behavior so that the
new replacement object is created first, and the prior object is destroyed after
the replacement is created.

Changed AMI

Destroy Second

Create First

 Join us in our Adventure

Be Awesome

 kplabs.in/chat

 kplabs.in/linkedin

 LifeCycle - Prevent Destroy Argument

 Prevent Destroy Argument
This meta-argument, when set to true, will cause Terraform to reject with an
error any plan that would destroy the infrastructure object associated with the
resource, as long as the argument remains present in the configuration.

 Points to Note

This can be used as a measure of safety against the accidental replacement of
objects that may be costly to reproduce, such as database instances.

Since this argument must be present in configuration for the protection to apply,
note that this setting does not prevent the remote object from being destroyed if
the resource block were removed from configuration entirely.

 LifeCycle - Ignore Changes Argument

 Ignore Changes
In cases where settings of a remote object is modified by processes outside of
Terraform, the Terraform would attempt to "fix" on the next run.

In order to change this behavior and ignore the manually applied change, we
can make use of ignore_changes argument under lifecycle.

 Points to Note

Instead of a list, the special keyword all may be used to instruct Terraform to
ignore all attributes, which means that Terraform can create and destroy the
remote object but will never propose updates to it.

Challenges with Count
Meta-Argument

Revising the Basics

 knowledge portal

Resource are identified by the index value from the list.

Resource Address Infrastructure

aws_iam_user.iam[0] user-01

aws_iam_user.iam[1] user-02

aws_iam_user.iam[2] user-03

Challenge - 1

 knowledge portal

If the order of elements of index is changed, this can impact all of the other resources.

Resource Address Infrastructure

aws_iam_user.iam.[0] user-01

aws_iam_user.iam.[1] user-02

aws_iam_user.iam.[2] user-03

Important Note

 knowledge portal

If your resources are almost identical, count is appropriate.

If distinctive values are needed in the arguments, usage of for_each is recommended.

Data Type - SET
Let’s Revise Programming

Basics of List

 knowledge portal

● Lists are used to store multiple items in a single variable.
● List items are ordered, changeable, and allow duplicate values.
● List items are indexed, the first item has index [0], the second item has index [1] etc.

Understanding SET

 knowledge portal

● SET is used to store multiple items in a single variable.

● SET items are unordered and no duplicates allowed.

Allowed

Not-Allowed

toset Function

 knowledge portal

toset function will convert the list of values to SET

for_each
Meta-Argument

Basics of For Each

 knowledge portal

for_each makes use of map/set as an index value of the created resource.

Resource Address Infrastructure

aws_iam_user.iam[user-01] user-01

aws_iam_user.iam[user-02] user-02

aws_iam_user.iam[user-03] user-03

Replication Count Challenge

 knowledge portal

If a new element is added, it will not affect the other resources.

Resource Address Infrastructure

aws_iam_user.iam[user-01] user-01

aws_iam_user.iam[user-02] user-02

aws_iam_user.iam[user-03] user-03

aws_iam_user.iam[user-0] user-0

The each object

 knowledge portal

In blocks where for_each is set, an additional each object is available.

This object has two attributes:

Each object Description

each.key The map key (or set member) corresponding to this instance.

each.value The map value corresponding to this instance

Relax and Have a Meme Before Proceeding

 knowledge portal

Provisioners
 Interesting Part is here

Provisioners are interesting

 knowledge portal

Till now we have been working only on creation and destruction of infrastructure scenarios.

Let’s take an example:

We created a web-server EC2 instance with Terraform.

Problem: It is only an EC2 instance, it does not have any software installed.

What if we want a complete end to end solution ?

Welcome to Terraform Provisioners

 knowledge portal

Provisioners are used to execute scripts on a local or remote machine as part of resource creation
or destruction.

Let’s take an example:

On creation of Web-Server, execute a script which installs Nginx web-server.

 Create EC2 Install Nginx

Types of Provisioners
 Interesting Part is here

 Provisioners are interesting

 knowledge portal

Terraform has capability to turn provisioners both at the time of resource creation as well as
destruction.

There are two main types of provisioners:

 local-exec remote-exec

Local Exec Provisioners

 knowledge portal

local-exec provisioners allow us to invoke local executable after resource is created

Let’s take an example:

resource "aws_instance" "web" {

 # …

 provisioner "local-exec" {

 command = "echo ${aws_instance.web.private_ip} >> private_ips.txt"

 }

}

Remote Exec Provisioners

 knowledge portal

Remote-exec provisioners allow to invoke scripts directly on the remote server.

Let’s take an example:

resource "aws_instance" "web" {

 # …

 provisioner "remote-exec" {

 …………………………...

 }

}

Provisioner Types

 Terraform in detail

Overview of Provisioner Types

 knowledge portal

There are two primary types of provisioners:

Types of Provisioners Description

Creation-Time Provisioner Creation-time provisioners are only run during creation,
not during updating or any other lifecycle

If a creation-time provisioner fails, the resource is
marked as tainted.

Destroy-Time Provisioner Destroy provisioners are run before the resource is
destroyed.

Destroy Time Provisioner

 knowledge portal

If when = destroy is specified, the provisioner will run when the resource it is defined within is
destroyed.

local-exec
Provisioners Time!

 Provisioners are interesting

 knowledge portal

local-exec provisioners allows us to invoke a local executable after the resource is created.

One of the most used approach of local-exec is to run ansible-playbooks on the created server
after the resource is created.

provisioner "local-exec" {

 command = "echo ${aws_instance.web.private_ip} >> private_ips.txt"

 }

Failure Behavior - Provisioners
Terraform in detail

Provisioner - Failure Behaviour

By default, provisioners that fail will also cause the terraform apply itself to fail.

The on_failure setting can be used to change this. The allowed values are:

Allowed Values Description

continue Ignore the error and continue with creation or destruction.

fail Raise an error and stop applying (the default behavior). If this is a
creation provisioner, taint the resource.

DRY Principle
Software Engineering

Understanding DRY Approach

 knowledge portal

In software engineering, don't repeat yourself (DRY) is a principle of software development
aimed at reducing repetition of software patterns.

In the earlier lecture, we were making static content into variables so that there can be single
source of information.

We are repeating resource code

 knowledge portal

We do repeat multiple times various terraform resources for multiple projects.

Sample EC2 Resource

resource "aws_instance" "myweb" {

 ami = "ami-bf5540df"

 instance_type = "t2.micro"

 security_groups = ["default"]

 }

Centralized Structure

 knowledge portal

We can centralize the terraform resources and can call out from TF files whenever required.

resource "aws_instance" "myweb" {

 ami = "ami-bf5540df"

 instance_type = "t2.micro"

 security_groups = ["default"]

 }

 module “source”

 source

Challenges with Modules
Software Engineering

Challenges

 knowledge portal

One common need on infrastructure management is to build environments like staging,
production with similar setup but keeping environment variables different.

 Staging

 Production

instance_type = t2.micro

instance_type = m4.large

Challenges

 knowledge portal

When we use modules directly, the resources will be replica of code in the module.

resource "aws_instance" "myweb" {

 ami = "ami-bf5540df"

 instance_type = "t2.micro"

 security_groups = ["default"]

 }

 Development

 source
 Staging

t2.micro

t2.small

 Production m4.large

Using Locals with Modules
 Terraform Function

Understanding the Challenge

 knowledge portal

Using variables in Modules can also allow users to override the values which you might
not want.

resource "aws_instance" "myweb" {

 ami = "ami-bf5540df"

 instance_type = var.instance_type

 }

 Development

 source
 Staging

instance_type = m5.xlarge

 Production

instance_type = m5.2xlarge

instance_type = t2.medium

Setting the Context

 knowledge portal

There can be many repetitive values in modules and this can make your code difficult to
maintain.

You can centralize these using variables but users will be able to override it.

Hardcoded Port Variable Port

Using Locals

 knowledge portal

Instead of variables, you can make use of locals to assign the values.

You can centralize these using variables but users will be able to override it.

Module Outputs
Output the Data

Revising Output Values

 knowledge portal

Output values make information about your infrastructure available on the command
line, and can expose information for other Terraform configurations to use.

Accessing Child Module Outputs

 knowledge portal

In a parent module, outputs of child modules are available in expressions as
module.<MODULE NAME>.<OUTPUT NAME>

Terraform Registry
Terraform in detail

Overview of Terraform Registry

 knowledge portal

The Terraform Registry is a repository of modules written by the Terraform community.

The registry can help you get started with Terraform more quickly

Module Location

 knowledge portal

If we intend to use a module, we need to define the path where the module files are present.

The module files can be stored in multiple locations, some of these include:

● Local Path
● GitHub
● Terraform Registry
● S3 Bucket
● HTTP URLs

Verified Modules in Terraform Registry

 knowledge portal

Within Terraform Registry, you can find verified modules that are maintained by various third
party vendors.

These modules are available for various resources like AWS VPC, RDS, ELB and others.

Verified Modules in Terraform Registry

 knowledge portal

Verified modules are reviewed by HashiCorp and actively maintained by contributors to stay
up-to-date and compatible with both Terraform and their respective providers.

The blue verification badge appears next to modules that are verified.

Module verification is currently a manual process restricted to a small group of trusted
HashiCorp partners.

 Using Registry Module in Terraform

 knowledge portal

To use Terraform Registry module within the code, we can make use of the source argument that
contains the module path.

Below code references to the EC2 Instance module within terraform registry.

module "ec2-instance" {

 source = "terraform-aws-modules/ec2-instance/aws"

 version = "2.13.0"

 # insert the 10 required variables here

}

Publishing Modules
Publish Modules to Terraform Registry

 Overview of Publishing Modules

 knowledge portal

Anyone can publish and share modules on the Terraform Registry.

Published modules support versioning, automatically generate documentation, allow
browsing version histories, show examples and READMEs, and more.

Requirements for Publishing Module

 knowledge portal

Requirement Description

GitHub The module must be on GitHub and must be a public repo. This is only a
requirement for the public registry.

Named Module repositories must use this three-part name format
terraform-<PROVIDER>-<NAME>

Repository
description

The GitHub repository description is used to populate the short description of
the module.

Standard module
structure

The module must adhere to the standard module structure.

x.y.z tags for releases The registry uses tags to identify module versions. Release tag names must
be a semantic version, which can optionally be prefixed with a v. For

example, v1.0.4 and 0.9.2

Standard Module Structure

 knowledge portal

The standard module structure is a file and directory layout that is recommend for
reusable modules distributed in separate repositories

Terraform Workspace
 Interesting topics

Understanding WorkSpaces

 knowledge portal

Terraform allows us to have multiple workspaces, with each of the workspace we can have
different set of environment variables associated

 Staging

 Production

instance_type = t2.micro

instance_type = m4.large

 Project A

Team Collaboration
Terraform in detail

Local Changes are not always good

 knowledge portal

Currently we have been working with terraform code locally.

Terraform Code

 ………
 ………

Centralized Management

 knowledge portal

Terraform Code

 ………
 ………

 Central Repository

Terraform Code

 ………
 ………

Relax and Have a Meme Before Proceeding

 knowledge portal

Terraform Module Sources

Terraform in detail

Supported Module Sources

 knowledge portal

The source argument in a module block tells Terraform where to find the source code for the
desired child module.

● Local paths
● Terraform Registry
● GitHub
● Bitbucket
● Generic Git, Mercurial repositories
● HTTP URLs
● S3 buckets
● GCS buckets

Local Path

 knowledge portal

A local path must begin with either ./ or ../ to indicate that a local path is intended.

Git Module Source

 knowledge portal

Arbitrary Git repositories can be used by prefixing the address with the special git::
prefix.

After this prefix, any valid Git URL can be specified to select one of the protocols
supported by Git.

.

Referencing to a Branch

 knowledge portal

By default, Terraform will clone and use the default branch (referenced by HEAD) in
the selected repository.

You can override this using the ref argument:

.
The value of the ref argument can be any reference that would be accepted by the git
checkout command, including branch and tag names.

Terraform & GitIgnore
Terraform in detail

Overview of gitignore

 knowledge portal

The .gitignore file is a text file that tells Git which files or folders to ignore in a project.

.gitignore

conf/

*.artifacts

credentials

Terraform and .gitignore

 knowledge portal

Depending on the environments, it is recommended to avoid committing certain files to GIT.

Files to Ignore Description

.terraform This file will be recreated when terraform init is run.

terraform.tfvars Likely to contain sensitive data like usernames/passwords and secrets.

terraform.tfstate Should be stored in the remote side.

crash.log If terraform crashes, the logs are stored to a file named crash.log

Terraform Backend
Terraform in detail

Basics of Backends

 knowledge portal

Backends primarily determine where Terraform stores its state.

By default, Terraform implicitly uses a backend called local to store state as a local file on disk.

demo.tf
terraform.tfstate

Challenge with Local Backend

 knowledge portal

Nowadays Terraform project is handled and collaborated by an entire team.

Storing the state file in the local laptop will not allow collaboration.

Ideal Architecture

 knowledge portal

Following describes one of the recommended architectures:

1. The Terraform Code is stored in Git Repository.
2. The State file is stored in a Central backend.

 Central Git Repo

Central Backend

terraform.tfstate

TF files

Project Collaborators

Backends Supported in Terraform

 knowledge portal

Terraform supports multiple backends that allows remote service related operations.

Some of the popular backends include:

● S3
● Consul
● Azurerm
● Kubernetes
● HTTP
● ETCD

Important Note

 knowledge portal

Accessing state in a remote service generally requires some kind of access credentials

Some backends act like plain "remote disks" for state files; others support locking the state while
operations are being performed, which helps prevent conflicts and inconsistencies.

Terraform User S3 Bucket

Store State File

Authenticate First

State Locking
Let’s Lock the State

Understanding State Lock

 knowledge portal

Whenever you are performing write operation, terraform would lock the state file.

This is very important as otherwise during your ongoing terraform apply operations, if others
also try for the same, it can corrupt your state file.

Basic Working

 knowledge portal

 State File

terraform apply

terraform destroy

User 1

User 2

Hold on Dude! State is locked

Important Note

 knowledge portal

State locking happens automatically on all operations that could write state. You won't see any
message that it is happening

If state locking fails, Terraform will not continue

Not all backends support locking. The documentation for each backend includes details on
whether it supports locking or not.

Force Unlocking State

 knowledge portal

Terraform has a force-unlock command to manually unlock the state if unlocking failed.

If you unlock the state when someone else is holding the lock it could cause multiple writers.

Force unlock should only be used to unlock your own lock in the situation where automatic
unlocking failed.

State Locking in S3 Backend
Back to Providers

State Locking in S3

 knowledge portal

By default, S3 does not support State Locking functionality.

You need to make use of DynamoDB table to achieve state locking functionality.

S3 Bucket

DynamoDBState Lock

terraform.tfstate

Terraform State Management
 Advanced State Management

Overview of State Modification

 knowledge portal

As your Terraform usage becomes more advanced, there are some cases where you may need to
modify the Terraform state.

It is important to never modify the state file directly. Instead, make use of terraform state
command.

Overview of State Modification

 knowledge portal

There are multiple sub-commands that can be used with terraform state, these include:

State Sub Command Description

list List resources within terraform state file.

mv Moves item with terraform state.

pull Manually download and output the state from remote state.

push Manually upload a local state file to remote state.

rm Remove items from the Terraform state

show Show the attributes of a single resource in the state.

Sub Command - List

 knowledge portal

The terraform state list command is used to list resources within a Terraform state.

Sub Command - Move

 knowledge portal

The terraform state mv command is used to move items in a Terraform state.

This command is used in many cases in which you want to rename an existing resource without
destroying and recreating it.

Due to the destructive nature of this command, this command will output a backup copy of the
state prior to saving any changes

Overall Syntax:

terraform state mv [options] SOURCE DESTINATION

Sub Command - Pull

 knowledge portal

The terraform state pull command is used to manually download and output the state from
remote state.

This is useful for reading values out of state (potentially pairing this command with something
like jq).

Sub Command - Push

 knowledge portal

The terraform state push command is used to manually upload a local state file to remote state.

This command should rarely be used.

Sub Command - Remove

 knowledge portal

The terraform state rm command is used to remove items from the Terraform state.

Items removed from the Terraform state are not physically destroyed.

Items removed from the Terraform state are only no longer managed by Terraform

For example, if you remove an AWS instance from the state, the AWS instance will continue
running, but terraform plan will no longer see that instance.

Sub Command - Show

 knowledge portal

The terraform state show command is used to show the attributes of a single resource in the
Terraform state.

Connecting Remote States
Terraform in detail

Basics of Terraform Remote State

 knowledge portal

The terraform_remote_state data source retrieves the root module output values from some
other Terraform configuration, using the latest state snapshot from the remote backend.

 Public IPs
Remote State

Project 1

 Security GroupProject 2

Output Values

172.31.0.5

172.31.0.6
S3 Bucket

Fetch Output Values and Whitelist

Step 1 - Create a Project with Output Values & S3 Backend

 knowledge portal

Step 2 - Reference Output Values from Different Project

 knowledge portal

 Terraform Import

 Typical Challenge

It can happen that all the resources in an organization are created manually.

Organization now wants to start using Terraform and manage these resources
via Terraform.

Manually Created

 Earlier Approach

In the older approach, Terraform import would create the state file associated
with the resources running in your environment.

Users still had to write the tf files from scratch.

Manually Created

 ec2.tf

 s3.tf

 terraform.tfstate

terraform import
create manually

 Newer Approach

In the newer approach, terraform import can automatically create the terraform
configuration files for the resources you want to import.

Manually Created

 terraform.tfstate

Terraform Import
 resources.tf

 Point to Note

Terraform 1.5 introduces automatic code generation for imported resources.

This dramatically reduces the amount of time you need to spend writing code to
match the imported

This feature is not available in the older version of Terraform.

Provider Configuration
Terraform in detail

Single Provider Multiple Configuration

 knowledge portal

Till now, we have been hardcoding the aws-region parameter within the providers.tf

This means that resources would be created in the region specified in the providers.tf file.

us-east-1

ap-south-1

resource “myec201”

resource “myec201”

Single Provider Multiple Configuration

 knowledge portal

Account 01

Account 02

resource “myec201”

resource “myec201”

Terraform with STS
Terraform in detail

Definitive Use-Case

 knowledge portal

Sensitive Parameter
Terraform Security

Overview of Sensitive Parameter

 knowledge portal

With organization managing their entire infrastructure in terraform, it is likely that you will see
some sensitive information embedded in the code.

When working with a field that contains information likely to be considered sensitive, it is best to
set the Sensitive property on its schema to true

Overview of Sensitive Parameter

 knowledge portal

Setting the sensitive to “true” will prevent the field's values from showing up in CLI output and
in Terraform Cloud

It will not encrypt or obscure the value in the state, however.

Overview of Vault
 HashiCorp Certified: Vault Associate

Let’s get started

HashiCorp Vault allows organizations to securely store secrets like tokens, passwords, certificates
along with access management for protecting secrets.

One of the common challenges nowadays in an organization is “Secrets Management”

Secrets can include, database passwords, AWS access/secret keys, API Tokens, encryption keys
and others.

Dynamic Secrets

 knowledge portal

Life Becomes Easier

 knowledge portal

Once Vault is integrated with multiple backends, your life will become much easier and you can
focus more on the right work.

Major aspect related to Access Management can be taken over by vault.

Vault Provider
Back to Providers

Vault Provider

 knowledge portal

The Vault provider allows Terraform to read from, write to, and configure HashiCorp
Vault.

 Vault

admin
password123

db_creds

Inject in Terraform

Important Note

 knowledge portal

Interacting with Vault from Terraform causes any secrets that you read and write to be
persisted in both Terraform's state file.

Terraform Cloud

 Terraform in detail

Overview of Terraform Cloud

 knowledge portal

Terraform Cloud manages Terraform runs in a consistent and reliable environment with various
features like access controls, private registry for sharing modules, policy controls and others.

Sentinel
 Terraform Cloud In Detail

Overview of the Sentinel

 knowledge portal

Sentinel is a policy-as-code framework integrated with the HashiCorp Enterprise products.

It enables fine-grained, logic-based policy decisions, and can be extended to use information
from external sources.

Note: Sentinel policies are paid feature

 terraform plan sentinel checks terraform apply

High Level Structure

 knowledge portal

 Policy Sets Workspace Policy

Block EC2 without tags

Terraform Backend
Terraform in detail

Basics of Backends

 knowledge portal

Backends primarily determine where Terraform stores its state.

By default, Terraform implicitly uses a backend called local to store state as a local file on disk.

demo.tf
terraform.tfstate

Challenge with Local Backend

 knowledge portal

Nowadays Terraform project is handled and collaborated by an entire team.

Storing the state file in the local laptop will not allow collaboration.

Ideal Architecture

 knowledge portal

Following describes one of the recommended architectures:

1. The Terraform Code is stored in Git Repository.
2. The State file is stored in a Central backend.

 Central Git Repo

Central Backend

terraform.tfstate

TF files

Project Collaborators

Backends Supported in Terraform

 knowledge portal

Terraform supports multiple backends that allows remote service related operations.

Some of the popular backends include:

● S3
● Consul
● Azurerm
● Kubernetes
● HTTP
● ETCD

Important Note

 knowledge portal

Accessing state in a remote service generally requires some kind of access credentials

Some backends act like plain "remote disks" for state files; others support locking the state while
operations are being performed, which helps prevent conflicts and inconsistencies.

Terraform User S3 Bucket

Store State File

Authenticate First

 Air Gapped Environments
Installation Methods

Understanding Concept of Air Gap

 knowledge portal

An air gap is a network security measure employed to ensure that a secure computer network
is physically isolated from unsecured networks, such as the public Internet.

Internet Connectivity Air Gapped System

Internal RouterInternet Gateway

Usage of Air Gapped Systems

 knowledge portal

Air Gapped Environments are used in various areas. Some of these include:

● Military/governmental computer networks/systems

● Financial computer systems, such as stock exchanges

● Industrial control systems, such as SCADA in Oil & Gas fields

Terraform Enterprise Installation Methods

 knowledge portal

Terraform Enterprise installs using either an online or air gapped method and as the
names infer, one requires internet connectivity, the other does not

Terraform Enterprise

Air Gap Install

Isolated Server

 knowledge portal

 knowledge portal

Relax and Have a Meme Before Proceeding

 knowledge portal

Overview of HashiCorp Exams

Let’s Get Certified!

Overview of HashiCorp Associate Exams

 knowledge portal

Assessment Type Description

Type of Exams Multiple Choice

Format Online Proctored

Duration 1 hour

Questions 57

Price 70.50 USD + Taxes

Language English

Expiration 2 years

Overview of the basic exam related information.

Multiple Choice

 knowledge portal

This includes various sub-formats, including:

● True or False
● Multiple Choice
● Fill in the blank

Delta Type of Question

 knowledge portal

Example 1:

Demo Software stores information in which type of backend?

Format - Online Proctored

 knowledge portal

Important Rules to be followed:

● You are alone in the room
● Your desk and work area are clear
● You are connected to a power source
● No phones or headphones
● No dual monitors
● No leaving your seat
● No talking
● Webcam, speakers, and microphone must remain on throughout the test.
● The proctor must be able to see you for the duration of the test.

My Experience - Before Room

 knowledge portal

My Experience - After Room

 knowledge portal

My Experience - My Desk

 knowledge portal

Registration Process

 knowledge portal

The high-level steps for registering for the exams are as follows:

1. Login to the HashiCorp Certification Page.
2. Register for Exams.
3. Check System Requirements
4. Download PSI Software
5. Best of Luck & Good Luck!

Make sure to complete system check.

 knowledge portal

Registration Process

 knowledge portal

Registration Process

 knowledge portal

Registration Process

 knowledge portal

Registration Process

 knowledge portal

Registration Process

 knowledge portal

Important Pointers for Exams - 1
Let’s get Certified

Terraform Providers

 knowledge portal

A provider is responsible for understanding API interactions and exposing resources.

Most of the available providers correspond to one cloud or on-premises infrastructure platform,
and offer resource types that correspond to each of the features of that platform.

You can explicitly set a specific version of the provider within the provider block.

To upgrade to the latest acceptable version of each provider, run terraform init -upgrade

Provider Architecture

 knowledge portal

 New Dropet Terraform Digital Ocean
 Provider

 do_droplet.tf

Infrastructure
Provisioning

(API interactions)

Digital Ocean

Terraform Providers - Part 2

 knowledge portal

You can have multiple provider instance with the help of alias

provider "aws" {

 region = "us-east-1"

}

provider "aws" {

 alias = "west"

 region = "us-west-2"

}

The provider block without alias set is known as the default provider configuration. When

an alias is set, it creates an additional provider configuration.

Terraform Init

 knowledge portal

The terraform init command is used to initialize a working directory containing Terraform
configuration files.

During init, the configuration is searched for module blocks, and the source code for referenced
modules is retrieved from the locations given in their source arguments.
Terraform must initialize the provider before it can be used.

Initialization downloads and installs the provider's plugin so that it can later be executed.

It will not create any sample files like example.tf

Terraform Plan

 knowledge portal

The terraform plan command is used to create an execution plan.

It will not modify things in infrastructure.

Terraform performs a refresh, unless explicitly disabled, and then determines what actions are
necessary to achieve the desired state specified in the configuration files.

This command is a convenient way to check whether the execution plan for a set of changes
matches your expectations without making any changes to real resources or to the state.

Terraform Apply

 knowledge portal

The terraform apply command is used to apply the changes required to reach the desired state of
the configuration.

Terraform apply will also write data to the terraform.tfstate file.

Once apply is completed, resources are immediately available.

Terraform Refresh

 knowledge portal

The terraform refresh command is used to reconcile the state Terraform knows about (via its
state file) with the real-world infrastructure.

This does not modify infrastructure but does modify the state file.

Terraform Destroy

 knowledge portal

The terraform destroy command is used to destroy the Terraform-managed infrastructure.

terraform destroy command is not the only command through which infrastructure can be
destroyed.

Terraform Format

 knowledge portal

The terraform fmt command is used to rewrite Terraform configuration files to a canonical
format and style.

For use-case, where the all configuration written by team members needs to have a proper style of
code, terraform fmt can be used.

Terraform Validate

 knowledge portal

The terraform validate command validates the configuration files in a directory.

Validate runs checks that verify whether a configuration is syntactically valid and thus primarily
useful for general verification of reusable modules, including the correctness of attribute names
and value types.

It is safe to run this command automatically, for example, as a post-save check in a text editor or
as a test step for a reusable module in a CI system. It can run before terraform plan.

Validation requires an initialized working directory with any referenced plugins and modules
installed

Terraform Provisioners

 knowledge portal

Provisioners can be used to model specific actions on the local machine or on a remote machine
in order to prepare servers or other infrastructure objects for service.

Provisioners should only be used as a last resort. For most common situations, there are better
alternatives.

● Provisioners are inside the resource block.
● Have an overview of local and remote provisioner

Important Pointers for Exams - 2
Let’s get Certified

Overview of Debugging Terraform

 knowledge portal

Terraform has detailed logs that can be enabled by setting the TF_LOG environment variable to
any value.

You can set TF_LOG to one of the log levels TRACE, DEBUG, INFO, WARN or ERROR to
change the verbosity of the logs.

Example:

TF_LOG=TRACE

To persist logged output, you can set TF_LOG_PATH

Terraform Import

 knowledge portal

Terraform is able to import existing infrastructure.

This allows you take resources that you've created by some other means and bring it under
Terraform management.

The current implementation of Terraform import can only import resources into the state. It
does not generate configuration.

Because of this, prior to running terraform import, it is necessary to write a resource
configuration block manually for the resource, to which the imported object will be mapped.

terraform import aws_instance.myec2 instance-id

Local Values

 knowledge portal

A local value assigns a name to an expression, allowing it to be used multiple times within a
module without repeating it.

The expression of a local value can refer to other locals, but as usual reference cycles are not
allowed. That is, a local cannot refer to itself or to a variable that refers (directly or indirectly)
back to it.

It's recommended to group together logically-related local values into a single block, particularly
if they depend on each other.

 Overview of Data Types

 knowledge portal

Type Keywords Description

string Sequence of Unicode characters representing some text, like "hello".

list Sequential list of values identified by their position. Starts with 0
[“mumbai” ,”singapore”, ”usa”]

map a group of values identified by named labels, like
 {name = "Mabel", age = 52}.

number Example: 200

Terraform WorkSpaces

 knowledge portal

Terraform allows us to have multiple workspaces; with each of the workspaces, we can have a
different set of environment variables associated.

Workspaces allow multiple state files of a single configuration.

Terraform Modules

 knowledge portal

We can centralize the terraform resources and can call out from TF files whenever required.

resource "aws_instance" "myweb" {

 ami = "ami-bf5540df"

 instance_type = "t2.micro"

 security_groups = ["default"]

 }

 module “source”

 source

Terraform Modules - ROOT and Child

Every Terraform configuration has at least one module, known as its root module, which consists
of the resources defined in the .tf files in the main working directory.

A module can call other modules, which lets you include the child module's resources into the
configuration in a concise way.

A module that includes a module block like this is the calling module of the child module.

Module - Accessing Output Values

The resources defined in a module are encapsulated, so the calling module cannot access their
attributes directly.

However, the child module can declare output values to selectively export certain values to be
accessed by the calling module.

A module includes a module block like this is the calling module of the child module.

Suppressing Values in CLI Output

An output can be marked as containing sensitive material using the optional sensitive argument:

Setting an output value in the root module as sensitive prevents Terraform from showing its value
in the list of outputs at the end of terraform apply

Sensitive output values are still recorded in the state, and so will be visible to anyone who is able
to access the state data.

Module Versions

It is recommended to explicitly constraining the acceptable version numbers for each external
module to avoid unexpected or unwanted changes.

Version constraints are supported only for modules installed from a module registry, such as the
Terraform Registry or Terraform Cloud's private module registry.

Terraform Registry

The Terraform Registry is integrated directly into Terraform.

The syntax for referencing a registry module is

<NAMESPACE>/<NAME>/<PROVIDER>.

 For example: hashicorp/consul/aws.

Private Registry for Module Sources

You can also use modules from a private registry, like the one provided by Terraform Cloud.

Private registry modules have source strings of the following form:
<HOSTNAME>/<NAMESPACE>/<NAME>/<PROVIDER>.

This is the same format as the public registry, but with an added hostname prefix.

While fetching a module, having a version is required.

Important Pointers for Exams - 3
Let’s get Certified

Terraform Functions

 knowledge portal

The Terraform language includes a number of built-in functions that you can use to transform
and combine values.

> max(5, 12, 9)

12

The Terraform language does not support user-defined functions, and so only the functions
built into the language are available for use

Be aware of basic functions like element, lookup.

Count and Count Index

 knowledge portal

The count parameter on resources can simplify configurations and let you scale resources by
simply incrementing a number.

In resource blocks where the count is set, an additional count object (count.index) is available in
expressions, so that you can modify the configuration of each instance.

Find the Issue - Use-Case

 knowledge portal

You can expect use-case with terraform code, and you have to find what should be removed as
part of Terraform best practice.

terraform {

 backend "s3" {

 bucket = "mybucket"

 key = "path/to/my/key"

 region = "us-east-1"

 access_key = 1234

 aecret_key = 1234567890

 }

}

Terraform Lock

 knowledge portal

If supported by your backend, Terraform will lock your state for all operations that could write
state.

Terraform has a force-unlock command to manually unlock the state if unlocking failed.

Use-Case - Resources Deleted Out of Terraform

 knowledge portal

You have created an EC2 instance. Someone has modified the EC2 instance manually. What will
happen if you do terraform plan yet again?

1. Someone has changed EC2 instance type from t2.micro to t2.large?
2. Someone has terminated the EC2 instance.

Answer 1. Terraform’s current state will have t2.large, and the desired state is t2.micro. It will try
to change back instance type to t2.micro.

Answer 2. Terraform will create a new EC2 instance.

Resource Block

 knowledge portal

Each resource block describes one or more infrastructure objects, such as virtual networks,
compute instances, or higher-level components such as DNS records.

A resource block declares a resource of a given type ("aws_instance") with a given local name
("web").

Sentinel

 knowledge portal

Sentinel is an embedded policy-as-code framework integrated with the HashiCorp Enterprise
products.

Can be used for various use-cases like:

● Verify if EC2 instance has tags.
● Verify if the S3 bucket has encryption enabled.

 terraform plan sentinel checks terraform apply

Sensitive Data in State File

 knowledge portal

If you manage any sensitive data with Terraform (like database passwords, user passwords, or
private keys), treat the state itself as sensitive data.

Approaches in such a scenario:

Terraform Cloud always encrypts the state at rest and protects it with TLS in transit. Terraform
Cloud also knows the identity of the user requesting state and maintains a history of state
changes.

The S3 backend supports encryption at rest when the encrypt option is enabled.

Dealing with Credentials in Config

 knowledge portal

Hard-coding credentials into any Terraform configuration are not recommended, and risks the
secret leakage should this file ever be committed to a public version control system.

You can store the credentials outside of terraform configuration.

Storing credentials as part of environment variables is also a much better approach than hard
coding it in the system.

Remote Backend for Terraform Cloud

 knowledge portal

The remote backend stores Terraform state and may be used to run operations in Terraform
Cloud.

When using full remote operations, operations like terraform plan or terraform apply can be
executed in Terraform Cloud's run environment, with log output streaming to the local terminal.

Miscellaneous Pointers

 knowledge portal

Terraform does not require go as a prerequisite.

It works well in Windows, Linux, MAC.

Windows Server is not mandatory.

Important Pointers for Exams - 4
Let’s get Certified

Terraform Graph
The terraform graph command is used to generate a visual representation of either a
configuration or execution plan

The output of terraform graph is in the DOT format, which can easily be converted to
an image.

 knowledge portal

Splat Expressions

Splat Expression allows us to get a list of all the attributes.

 knowledge portal

Terraform Terminologies

 knowledge portal

aws_instance Resource Type

example Local name for the resource

ami Argument Name

abc123 Argument value

Provider Configuration

 knowledge portal

Provider Configuration block is not mandatory for all the terraform configuration.

Terraform Output

 knowledge portal

The terraform output command is used to extract the value of an output variable from the state
file.

Terraform Unlock

 knowledge portal

If supported by your backend, Terraform will lock your state for all operations that could write
state.

Not all backends supports locking functionality.

Terraform has a force-unlock command to manually unlock the state if unlocking failed.

terraform force-unlock LOCK_ID [DIR]

Miscellaneous Pointers - 1

 knowledge portal

There are three primary benefits of Infrastructure as Code tools:

Automation, Versioning, and Reusability.

Various IAC Tools Available in the market:

● Terraform
● CloudFormation
● Azure Resource Manager
● Google Cloud Deployment Manager

Miscellaneous Pointers - 2

 knowledge portal

Sentinel is a proactive service.

Terraform Refresh does not modify the infrastructure but it modifies the state file.

Slice Function is not part of the string function. Others like join, split, chomp are part of it.

It is not mandatory to include the module version argument while pulling the code from
terraform registry.

Miscellaneous Pointers - 3

 knowledge portal

Overuse of dynamic blocks can make configuration hard to read and maintain.

Terraform Apply can change, destroy and provision resources but cannot import any resource.

 Join us in our Adventure

 kplabs.in/twitter

Be Awesome

 kplabs.in/linkedin

 instructors@kplabs.in

Important Pointers for Exams - 5
Let’s get Certified

Terraform Enterprise & Terraform Cloud
Terraform Enterprise provides several added advantage compared to Terraform Cloud.

Some of these include:

● Single Sign-On
● Auditing
● Private Data Center Networking
● Clustering

Team & Governance features are not available for Terraform Cloud Free (Paid)

 knowledge portal

Variables with undefined values

If you have variables with undefined values, it will not directly result in an error.

Terraform will ask you to supply the value associated with them.

Example Code:

variable custom_var { }

 knowledge portal

Environment Variables

Environment variables can be used to set variables.

The environment variables must be in the format TF_VAR_name

 knowledge portal

Structural Data Types
A structural type allows multiple values of several distinct types to be grouped together
as a single value.

List contains multiple values of same type while object can contain multiple values of
different type.

Structural Type Description

object A collection of named attributes that each have their own type.
object({<ATTR NAME> = <TYPE>, ... })

object({ name=string, age=number })

{
 name = "John"

 age = 52
}

tuple tuple([<TYPE>, ...])

BackEnd Configuration

Backends are configured directly in Terraform files in the terraform section.

After configuring a backend, it has to be initialized.

 knowledge portal

BackEnd Configuration Types - 1

 knowledge portal

First Time Configuration:

When configuring a backend for the first time (moving from no defined backend to
explicitly configuring one), Terraform will give you the option to migrate your state to
the new backend.

This lets you adopt backends without losing any existing state.

BackEnd Configuration Types - 2

 knowledge portal

Partial Time Configuration:

You do not need to specify every required argument in the backend configuration.
Omitting certain arguments may be desirable to avoid storing secrets, such as access keys,
within the main configuration.

With a partial configuration, the remaining configuration arguments must be provided
as part of the initialization process.

Overview of Terraform Taint

The terraform taint command manually marks a Terraform-managed resource as tainted, forcing
it to be destroyed and recreated on the next apply.

Once a resource is marked as tainted, the next plan will show that the resource will be destroyed
and recreated and the next apply will implement this change.

 knowledge portal

Input Variables

The value associated with a variable can be assigned via multiple approaches.

Value associated with the variables can be defined via CLI as well as in tfvars file.

Following is syntax to load custom tfvars file:

terraform apply -var-file="testing.tfvars"

 knowledge portal

Variable Definition Precedence

Terraform loads variables in the following order, with later sources taking precedence over earlier
ones:

● Environment variables
● The terraform.tfvars file, if present.
● The terraform.tfvars.json file, if present.
● Any *.auto.tfvars or *.auto.tfvars.json files, processed in lexical order of their filenames.
● Any -var and -var-file options on the command line, in the order they are provided.

If the same variable is assigned multiple values, Terraform uses the last value it finds.

 knowledge portal

Terraform Local Backend

 knowledge portal

The local backend stores state on the local filesystem, locks that state using system APIs, and
performs operations locally.

By default, Terraform uses the "local" backend, which is the normal behavior of Terraform you're
used to

Required Providers

 knowledge portal

Each Terraform module must declare which providers it requires, so that Terraform can install
and use them.

Provider requirements are declared in a required_providers block.

Required Version

 knowledge portal

The required_version setting accepts a version constraint string, which specifies which versions of
Terraform can be used with your configuration.

If the running version of Terraform doesn't match the constraints specified, Terraform will
produce an error and exit without taking any further actions.

Versioning Arguments

 knowledge portal

There are multiple ways for specifying the version of a provider.

Version Number Arguments Description

 >=1.0 Greater than equal to the version

 <=1.0 Less than equal to the version

 ~>2.0 Any version in the 2.X range.

>=2.10,<=2.30 Any version between 2.10 and 2.30

Important Pointers for Exams - 6
Let’s get Certified

Fetching Values from Map

 knowledge portal

To reference to image-abc from the below map, following approaches needs to be used:

var.ami_ids[“mumbai”]

Terraform and GIT - Part 1

 knowledge portal

If you are making use of GIT repository for commiting terraform code, the .gitignore
should be configured to ignore certain terraform files that might contain sensitive data.

Some of these can include:

● terraform.tfstate file (this can include sensitive information)

● *.tfvars (may contain sensitive data like passwords)

.

Terraform and GIT - Part 2

 knowledge portal

Arbitrary Git repositories can be used by prefixing the address with the special git::
prefix.

After this prefix, any valid Git URL can be specified to select one of the protocols
supported by Git.

.

Terraform and GIT - Part 3

 knowledge portal

By default, Terraform will clone and use the default branch (referenced by HEAD) in
the selected repository.

You can override this using the ref argument:

.
The value of the ref argument can be any reference that would be accepted by the git
checkout command, including branch and tag names.

Terraform Workspace

 knowledge portal

● Workspaces are managed with the terraform workspace set of commands.
● State File Directory = terraform.tfstate.d
● Not suitable for isolation for strong separation between workspace (stage/prod)

.

Use-Case Command

Create New Workspace terraform workspace new kplabs

Switch to a specific Workspace terraform workspace select prod

Dependency Types - Implicit

 knowledge portal

With implicit dependency, Terraform can automatically find references of the object,
and create an implicit ordering requirement between the two resources.

.

Dependency Types - Explicit

 knowledge portal

Explicitly specifying a dependency is only necessary when a resource relies on some other
resource's behavior but doesn't access any of that resource's data in its arguments.

.

State Command

 knowledge portal

Rather than modify the state directly, the terraform state commands can be used in
many cases instead.

.
State Command Description

terraform state list List resources within terraform state

terraform state mv Move items within terraform state. Can be used to resource renaming.

terraform state pull manually download and output the state from state file.

terraform state rm Remove Items from terraform state file.

Terraform state show Show the attributes of a single resource in the Terraform state.

Data Source Code

 knowledge portal

● Data sources allow data to be fetched or computed for use elsewhere in Terraform
configuration.

● Reads from a specific data source (aws_ami) and exports results under “app_ami”

Terraform taint

 knowledge portal

Terraform Taint can also be used to taint resource within a module.

terraform taint [options] address

For multiple sub modules, following syntax-based example can be used

module.foo.module.bar.aws_instance.qux

Terraform Plan Destroy

 knowledge portal

The behavior of any terraform destroy command can be previewed at any time with an
equivalent terraform plan -destroy command.

Terraform Module Sources

 knowledge portal

The module installer supports installation from a number of different source types like
Local paths, Terraform Registry, GitHub, S3 buckets and others.

Local path references allow for factoring out portions of a configuration within a single
source repository.

A local path must begin with either ./ or ../ to indicate that a local path is intended.

Dealing with Larger Infrastructure

 knowledge portal

Cloud Providers has certain amount of rate limiting set so Terraform can only request
certain amount of resources over a period of time.

It is important to break larger configurations into multiple smaller configurations that
can be independently applied.

Alternatively, you can make use of -refresh=false and target flag for a workaround (not
recommended)

Miscellaneous Pointers

 knowledge portal

lookup retrieves the value of a single element from a map

lookup(map, key, default)

Various commands runs terraform refresh implicitly, some of these include:

terraform [plan, apply, destroy]

Others like terraform [init, import] do not run refresh implictly.

Array Datatype is not supported in Terraform.

Miscellaneous Pointers -2

 knowledge portal

Various variable definition files will be loaded automatically in terraform. These include:

● terraform.tfvars
● terraform.tfvars.json
● Any files with names ending in .auto.tfvars.json

Both implicit and explicit dependency information is stored in terraform.tfstate file.

terraform init -upgrade updates all previously installed plugins to the newest version.

Miscellaneous Pointers -3

 knowledge portal

The terraform console command provides an interactive console for evaluating
expressions.

Difference 0.11 and 0.12

● “${var.instance_type}” → 0.11
● var.instance_type → 0.12

Miscellaneous Pointers -3

 knowledge portal

If you have multiple modules and you want to export a value from one module to be
imported into another module,

Difference 0.11 and 0.12

● “${var.instance_type}” → 0.11
● var.instance_type → 0.12

