

https://pivotal.io/platform/pcf-tutorials/getting-started-with-pivotal-cloud-foundry?utm_source=OReilly&utm_medium=banner-ad&utm_campaign=Cloud-Native-Java-q117

This Preview Edition of Cloud Native Java is a work in
progress. The final book is expected in April, 2017, and will
be available on oreilly.com and through other retailers when

it’s published.

Josh Long & Kenny Bastani

Cloud Native Java
Designing Resilient Systems with Spring Boot,

Spring Cloud, and Cloud Foundry

FIRST EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-4493-7464-8

[???]

Cloud Native Java
by Josh Long, Kenny Bastani

Copyright © 2016 Josh Long, Kenny Bastani. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster Developmental Editor: Nan Barber

Month Year: First Edition

Revision History for the First Edition
2015-11-15: First Early Release
2015-12-14: Second Early Release
2016-01-21: Third Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370787 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cloud Native Java, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370787

Table of Contents

1. Bootcamp: Introducing Spring Boot and Cloud Foundry. 7
Getting Started with the Spring Initializr 7
Getting Started with the Spring Tool Suite 16

Installing Spring Tool Suite (STS) 17
Creating a new Project with the Spring Initializr 18

The Spring Guides 23
Following the Guides in STS 26

Configuration 28
Cloud Foundry 42
Next Steps 57

2. The Cloud Native Application. 59
Amazon’s Story 59
The Promise of a Platform 61
The Patterns 64
Scalability 64
Reliability 65
Agility 65
Netflix’s Story 66

Splitting the Monolith 68
Netflix OSS 69
Cloud Native Java 70

The Twelve Factors 71

3. Messaging. 79
Event Driven Architectures with Spring Integration 80

Messaging Endpoints 81
From Simple Components, Complex Systems 83

v

Message Brokers, Bridges, the Competing Consumer Pattern and Event-
Sourcing 91

Spring Cloud Stream 93
A Stream Producer 94
A Stream Consumer 98

Next Steps 100

4. Batch Processes and Tasks. 101
Batch Workloads 101
Spring Batch 102

Our First Batch Job 103
Scheduling 113
Remote Partitioning a Spring Batch Job with Messaging 114
Task Management 123
Process-Centric Integration with Workflow 125
Distribution with Messaging 139
Next Steps 140

vi | Table of Contents

CHAPTER 1

Bootcamp: Introducing Spring Boot and
Cloud Foundry

From the project website, “Spring Boot makes it easy to create stand-alone,
production-grade Spring based Applications that you can “just run”. We take an opin‐
ionated view of the Spring platform and third-party libraries so you can get started
with minimum fuss. Most Spring Boot applications need very little Spring configura‐
tion.”

This pretty much says it all! Spring builds upon the Spring ecosystem and interesting
third-party libraries, adding in opinions and establishing conventions to streamline
the realization of production-worthy applications. This last aspect is arguably the
most important aspect of Spring Boot. Any framework these days can be used to
standup a simple REST endpoint, but a simple REST endpoint does not a production-
worthy service make. When we say that an application is cloud native, it means that
it is designed to thrive in a cloud-based production environment.

This chapter will introduce you to building Spring Boot applications and deploying
them to production with Cloud Foundry. The rest of the book will talk about what it
means to build applications that thrive in such an environment.

Getting Started with the Spring Initializr
The Spring Initializr is an open source project and tool in the Spring ecosystem that
helps you quickly generate new Spring Boot applications. Pivotal runs an instance of
the Spring Initializr hosted on Pivotal Web Services at http://start.spring.io. It gener‐
ates Maven and Gradle projects with any specified dependencies, a skeletal entry
point Java class and a skeletal unit test.

7

https://github.com/spring-io/initializr
http://start.spring.io

In the world of monolithic applications, this cost may be prohibitive, but it’s easy to
amortize the cost of that initialization across the lifetime of the project. When you
move to the cloud native architecture, you’ll end up with lots of small microservices.
The first requirement, then, is to reduce the cost of creating a new service. The Spring
Initializr helps reduce that upfront cost. The Spring Initializr application is both a
web application that you can consume from your web browser, and as a REST API,
that will generate new projects for you. You could generate a default project using
curl:

curl http://start.spring.io

The results will look something like this:

Figure 1-1. interacting with the Spring Initializr through the REST API

Alternatively, you can use the Spring Initializr from the browser as in shown here.

8 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Figure 1-2. The Spring Initializr website

Let’s suppose we want to build a simple REST service that talks to a SQL database
(H2). We’ll need different libraries from the Spring eocsystem, including Spring
MVC, Spring Data JPA and Spring Data REST. We’ll look at what these libraries do,
later.

Search for Dependencies in the search box or click Switch to the full version and man‐
ually selecting checkboxes for the desired dependencies. Most of these are starter
dependencies.

In Spring Boot, a starter dependency is an opinionated dependency. It is a Maven
pom.xml that is published as a .jar that brings in other Maven dependencies, but has
no Spring Boot code in of itself. The interesting Java code from Spring Boot lives in
only a couple of .jar libraries. The Spring Boot starter depdencies transitively import
these core libraries.

If we were to build a Spring Boot application from scratch, we would have to weather
the web of dependency version conflicts. We might encounter a version conflict if our
application used dependency A and dependency B and they shared a common, but
conflicting, dependency on C. Spring Boot solves this for you in Maven and Gradle
builds, allowing you to focus on what you want on your CLASSPATH, not how to
resolve conflicts from having it.

Getting Started with the Spring Initializr | 9

Table 1-1. Some example Spring Boot Starters for a typical Spring Boot application
Spring Project Starter Projects Maven artifactId

Spring Data JPA JPA spring-boot-starter-data-jpa

Spring Data REST REST Repositories spring-boot-starter-data-rest

Spring Framework (MVC) Web spring-boot-starter-web

Spring Security Security spring-boot-starter-security

H2 Embedded SQL DB H2 h2

Make your selections and include just Web, H2, REST Repositories, and JPA. We’ll
leave everything else as default. Click Generate Project and an archive, demo.zip,
will begin downloading. Decompress the archive and you’ll have a skeletal project
ready to import into an IDE of your choice.

Example 1-1. the contents of the generated Spring Boot application archive once
decompressed

.
├── mvnw
├── mvnw.cmd
├── pom.xml
└── src
 ├── main
 │ ├── java
 │ │ └── com
 │ │ └── example
 │ │ └── DemoServiceApplication.java
 │ └── resources
 │ ├── application.properties
 │ ├── static
 │ └── templates
 └── test
 └── java
 └── com
 └── example
 └── DemoServiceApplicationTests.java

In the listing of our application’s directory structure we can see the directory struc‐
ture of our generated application. The Spring Initializr provides a wrapper script -
either the Gradle wrapper (gradlew) or a Maven wrapper (from the Maven wrapper
project) mvnw - as a part of the contents of the generated project. You can use this
wrapper to build and run the project. The wrapper downloads a configured version of
the build tool on its first run. The version of Maven or Gradle are version controlled.
This means that all subsequent users will have a reproducible build. There’s no risk
that someone will try to build your code with an incompatible version of Maven or

10 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Gradle. This also greatly simplifies continuous delivery: the build used for develop‐
ment is the exact same one used in the continuous integration environment.

The following command will run a clean installation of the Maven project, down‐
loading and caching the dependencies specified in the pom.xml and installing the
built .jar artifact into the local Maven repository (typically $HOME/.m2/

repository/*).

$./mvnw clean install

To run the Spring Boot application from the command line, use the provided Spring
Boot Maven plugin, configured automatically in the generated pom.xml:

$./mvnw spring-boot:run

The web application should be up and running and available at http://localhost:8080.
Don’t worry, nothing particularly interesting has happened, yet.

Open the project’s pom.xml file in a text editor of your choice. emacs, vi, TextMate,
Sublime, Atom, Notepad.exe, etc., are all valid choices.

Example 1-2. The demo-service project’s pom.xml file’s dependencies section.

<dependencies>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
 </dependency>

Getting Started with the Spring Initializr | 11

http://localhost:8080

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

spring-boot-starter-data-jpa brings in everything needed to persist Java
objects using the Java ORM (Object Relational Mapping) specification, JPA (the
Java Persistence API), and be productive out of the gate. This includes the JPA
specification types, basic SQL Java database connectivity (JDBC) and JPA sup‐
port for Spring, Hibernate as an implementation, Spring Data JPA and Spring
Data REST.

spring-boot-starter-data-rest makes it trivial to export hypermedia-aware
REST services from a Spring Data repository definition.

spring-boot-starter-web brings in everything needed to build REST applica‐
tions with Spring. It brings in JSON and XML marshalling support, file upload
support, an embedded web container (the default is the latest version of Apache
Tomcat), validation support, the Servlet API, and so much more. This is a redun‐
dant dependency as spring-boot-starter-data-rest will automatically bring it
in for us. It’s highlighted here for clarity.

h2 is an in-memory, embedded SQL database. If Spring Boot detects an embed‐
ded database like H2, Derby or HSQL on the classpath and it detects that you
haven’t otherwise configured a javax.sql.DataSource somewhere, it’ll configure
one for you. The embedded DataSource will spin up when the application spins
up and it’ll destroy itself (and all of its contents!) when the application shuts
down.

spring-boot-starter-test brings in all the default types needed to write effec‐
tive mock and integration tests, including the Spring MVC test framework. It’s
assumed that testing support is needed, and this dependency is added by default.

The parent build specifies all the versions for these dependencies. In a typical Spring
Boot project the only version explicitly specified is the one for Spring Boot itself.
When one day a new version of Spring Boot is available, point your build to the new
version and all the corresponding libraries and integrations get updated with it.

Next, open up the application’s entry point class, demo/src/main/java/com/example/
DemoApplication.java in your favorite text editor and replace it with the following
code:

12 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Example 1-3.

package com.example;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.rest.core.annotation.RepositoryRestResource;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

@RepositoryRestResource
interface CatRepository extends JpaRepository<Cat, Long> {
}

@SpringBootApplication

public class DemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }
}

@Entity
class Cat {

 @Id
 @GeneratedValue
 private Long id;
 private String name;

 Cat() {
 }

 public Cat(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return "Cat{" + "id=" + id + ", name='" + name + '\'' + '}';
 }

 public Long getId() {
 return id;
 }

Getting Started with the Spring Initializr | 13

 public String getName() {
 return name;
 }
}

annotates a class as a Spring Boot application.

starts the Spring Boot application

a plain JPA entity to model a Cat entity

a Spring Data JPA repository (which handles all common create-read-update-
and-delete operations) that has been exported as a REST API

This code should work, but we can’t be sure unless we have a test! If we have tests, we
can establish a baseline working state for our software and then make measured
improvements to that baseline quality. So, open up the test class, demo/src/test/
java/com/example/DemoApplicationTests.java, and replace it with the following
code:

Example 1-4.

package com.example;

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.MediaType;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;

import java.util.stream.Stream;

import static org.junit.Assert.assertTrue;
import static org.springframework.test.web.servlet.request.MockMvcRequestBuild
ers.get;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.con
tent;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.sta
tus;

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.MOCK)
@AutoConfigureMockMvc
public class DemoApplicationTests {

14 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

 @Autowired
 private MockMvc mvc;

 @Autowired
 private CatRepository catRepository;

 @Before
 public void before() throws Exception {
 Stream.of("Felix", "Garfield", "Whiskers").forEach(
 n -> catRepository.save(new Cat(n)));
 }

 @Test
 public void catsReflectedInRead() throws Exception {
 MediaType halJson = MediaType.parseMediaType("application/hal
+json;charset=UTF-8");
 this.mvc
 .perform(get("/cats"))
 .andExpect(status().isOk())
 .andExpect(content().contentType(halJson))
 .andExpect(
 mvcResult -> {
 String contentAsString =
mvcResult.getResponse().getContentAsString();
 assertTrue(contentAs
String.split("totalElements")[1].split(":")[1].trim()
 .split(",")
[0].equals("3"));
 });
 }
}

this is a unit test that leverages the Spring framework test runner. We configure it
to also interact nicely with the Spring Boot testing apparata, standing up a mock
web application.

inject a Spring MVC test MockMvc client with which we make calls to the REST
endpoints

we can reference any other beans in our Spring application context, including
CatRepository

install some sample data in the database

invoke the HTTP GET endpoint for the /cats resource.

Getting Started with the Spring Initializr | 15

We’ll learn more about testing in our discussion on testing. Start the application and
manipulate the database through the HAL-encoded hypermedia REST API on
http://locahost:8080/cats. We’ll learn more about data manipulation in Spring
in ??? and we’ll learn more about processing data in ???. We’ll learn more about REST
and web applications in the ??? chapter. If you run the test, it should be green! We’ll
learn more about testing in the chapter on ???.

Thus far we’ve done everything using a text editor, but most developers today use an
IDE. There are many fine choices out there and Spring Boot works well with any of
them. If you don’t already have a Java IDE, you might consider the Spring Tool Suite
(STS). The Spring Tool Suite is an Eclipse-based IDE that packages up common eco‐
system tooling to deliver a smoother Eclipse experience than what you’d get out of the
box if you were to download the base Eclipse platform from Eclipse. STS is freely-
available under the terms of the Eclipse Public License.

STS provides an in-IDE experience for the Spring Initializr. Indeed, the functionality
in Spring Tool Suite, IntelliJ Ultimate edition, NetBeans and the Spring Initializr web
application itself all delegate to the Spring Initializr’s REST API, so you get a common
result no matter where you start.

Let’s build a new project in the Spring Tool Suite.

Getting Started with the Spring Tool Suite
You do not need to use any particular IDE to develop Spring or Spring Boot applica‐
tions. The authors have built Spring applications in emacs, plain Eclipse, Apache Net‐
beans (with and without the excellent Spring Boot plugin support that engineers from
no less than Oracle have contributed) and IntelliJ IDEA Community edition and
IntelliJ IDEA Ultimate edition with no problems. Spring Boot 1.x, in particular, needs
Java 6 or better and support for editing plain .properties files as well as support for
working with Maven or Gradle-based builds. Any IDE from 2010 or later will do a
good job here.

If you use Eclipse, the Spring Tool Suite has a lot of nice features that make working
with Spring Boot-based projects even nicer:

• you can access all of the Spring guides in the STS IDE
• you can generate new projects with the Spring Initializr in the IDE.
• If you attempt to access a type that doesn’t exist on the CLASSPATH, but can be

discovered within one of Spring Boot’s -starter dependencies, then STS will
automatically add that type for you.

• The Boot Dashboard makes it seamless to edit local Spring Boot applications
and have them synchronized with a Cloud Foundry deployment. You can further
debug and live-reload deployed Cloud Foundry applications, all within the IDE.

16 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

http://spring.io/tools
http://spring.io/tools
http://eclipse.org

• STS makes editing Spring Boot .properties or .yml files effortless, offering
autocompleion out of the box.

• The Spring Tool Suite is a stable, integrated edition of Eclipse that’s released
shortly after the mainline Eclipse release.

Installing Spring Tool Suite (STS)
Download and install the Spring Tool Suite (STS), available from http://
www.spring.io:

• Go to https://spring.io/tools/sts
• Choose Download STS
• Download, extract, and run STS.

After you have downloaded, extracted, and have run the STS program, you will be
prompted to choose a workspace location. Select your desired workspace location
and click OK. If you plan to use the same workspace location each time you run STS,
click on the option "Use this as the default and do not ask again“. After you have pro‐
vided a workspace location and clicked OK, the STS IDE will load for the first time.

Getting Started with the Spring Tool Suite | 17

http://www.spring.io:
http://www.spring.io:
https://spring.io/tools/sts

Figure 1-3. The STS dashboard

There are also packages available for numerous operating systems,
as well. For example, if you use Homebrew Cask on OS X or
macOS Sierra, you can use the Pivotal tap and then say brew cask
install sts.

Creating a new Project with the Spring Initializr
We could import the example that we just created from the Spring Initializr, directly,
by going to File > Import > Maven and then pointing the import to the pom.xml at
the root of our existing demo project, but let’s instead use STS to create our first
Spring Boot application. We’re going to create a simple “Hello World” web service
using the Spring Boot starter project for web applications. To create a new Spring
Boot application using a Spring Boot Starter project, choose from the menu File >
New > Spring Starter Project.

18 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

https://github.com/pivotal/homebrew-tap

Figure 1-4. Create a new Spring Boot Starter Project

After choosing to create a new Spring Boot Starter Project, you will be presented with
a dialog to configure your new Spring Boot application.

Figure 1-5. Configure your new Spring Boot Starter Project

You can configure your options, but for the purposes of this simple walkthrough, let’s
use the defaults and click Next. After clicking Next, you will be provided with a set of
Spring Boot Starter projects that you can choose for your new Spring Boot applica‐
tion. For our first application we’re going to select the Web support.

Getting Started with the Spring Tool Suite | 19

Figure 1-6. Choose your Spring Boot Start Project

Once you’ve made your selections, click Finish. After you click Finish, your Spring
Boot application will be created and imported into the IDE workspace for you and
visible in the package explorer.

20 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Figure 1-7. Expand the demo project from the package explorer

If you haven’t already, expand the demo [boot] node in the Package Explorer and
view the project contents as shown in the screenshot above. From the expanded
project files, navigate to src/main/java/com/example/DemoApplication.java. Let’s
go ahead and run the application. Run the application from the Run > Run menu.

Getting Started with the Spring Tool Suite | 21

Figure 1-8. Run the Spring Boot application

After choosing the Run option from the menu, you’ll be presented with a Run As
dialog. Choose Spring Boot App and then click OK.

Figure 1-9. Choose Spring Boot App and launch the application

Your Spring Boot application will now start up. If you look at your STS console, you
should see the iconic Spring Boot ASCII art and the version of Spring Boot as it starts
up. The log output of the Spring Boot application can be seen here. You’ll see that an

22 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

embedded Tomcat server is being started up and launched on the default port of
8080. You can access your Spring Boot web service from http://localhost:8080.

Figure 1-10. See the Spring Boot log output in the STS console

Congratulations! You’ve just created your first Spring Boot application with the
Spring Tool Suite!

The Spring Guides
The Spring Guides are a set of small, focused introductions to all manner of different
topics in terms of Spring projects. There are many guides, most of which were written
by experts on the Spring team, though some of them were contributed from ecosys‐
tem partners. Each Spring guide takes the same approach to providing a comprehen‐
sive yet consumable guide that you should be able to get through within 15-30
minutes. These guides are one of the most useful resources (in addition to this book,
of course!) when getting started with Spring Boot. To get started with the Spring
Guides, head over to https://spring.io/guides.

The Spring Guides | 23

http://localhost:8080
https://spring.io/guides

Figure 1-11. The Spring Guides website

As we can see from Figure 1-11, the Spring Guides website provides a collection of
maintained examples that target a specific use case.

24 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Figure 1-12. Exploring the Spring Guides

In Figure 1-12 I’ve entered the search term spring boot, which will narrow down the
list of guides to those that focus on Spring Boot.

As a part of each Spring Guide, we’ll find the following familiar features.

• Getting started
• Table of contents
• What you’ll build
• What you’ll need
• How to complete this guide
• Walkthrough
• Summary
• Get the code
• Link to GitHub repository

Let’s now choose one of the basic Spring Boot guides: Building an Application with
Spring Boot.

The Spring Guides | 25

https://spring.io/guides/gs/spring-boot/
https://spring.io/guides/gs/spring-boot/

Figure 1-13. Building an Application with Spring Boot guide

In Figure 1-13 we see the basic anatomy of a Spring Guide. Each guide is structured
in a familiar way to help you move through the content as effectively as possible. Each
guide features a GitHub repository that contains three folders: complete, initial,
and test. The complete folder contains the final working example so that you can
check your work. The initial folder contains a skeletal, almost empty file system
that you can use to push past the boilerplate and focus on that which is unique to the
guide. The test folder has whatever’s required to confirm that the complete project
works.

Throughout this book you’ll find situations or scenarios that you
may need an expanded companion guide to help you get a better
understanding of the content. It’s recommended in this case that
you take a look at the Spring Guides and find a guide that best suits
your needs.

Following the Guides in STS
If you’re using the Spring Tool Suite, you can follow along with the guides from
within the IDE. Choose File > New > Import Spring Getting Started Content.

26 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Figure 1-14. Import Spring Getting Started Content

You’ll be given the same catalog of guides as you would at spring.io/guides.

Figure 1-15. Choosing a guide from within the Import Spring Getting Started Content
dialog

Select a guide and it’ll be displayed within your IDE and the associated code will be
shown.

The Spring Guides | 27

http://spring.io/guides

Figure 1-16. The IDE loads the guide and the relevant Git projects

Configuration
At the end of the day, a Spring application is a collection of objects. Spring manages
those objects and their relationships for you, providing services to those objects as
necessary. In order for Spring to support your objects - beans - it needs to be made
aware of them. Spring provides a few different (complimentary) ways to describe
your beans.

Let’s suppose we have a typical layered service, with a service object in turn talking to
a javax.sql.DataSource to talk to a (in this case) embedded database, H2. We’ll
need to define a service. That service will need a datasource. We could instantiate that
data source in-place, where it’s needed, but then we’d have to duplicate that logic
whenever we wish to reuse the data source. In other objects. The resource accquisi‐
tion and initialization is happening at the call site, which means that we can’t reuse
that logic elsewhere.

28 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Example 1-5.

package com.example.raai;

import com.example.Customer;
import org.springframework.core.io.ClassPathResource;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.jdbc.datasource.init.DataSourceInitializer;
import org.springframework.jdbc.datasource.init.ResourceDatabasePopulator;
import org.springframework.util.Assert;

import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

public class CustomerService {

 private final DataSource dataSource = new EmbeddedDatabaseBuilder()
 .setName("customers").setType(EmbeddedDatabase
Type.H2).build();

 public static void main(String argsp[]) throws Throwable {
 CustomerService customerService = new CustomerService();

 DataSource dataSource = customerService.dataSource;
 DataSourceInitializer init = new DataSourceInitializer();
 init.setDataSource(dataSource);
 ResourceDatabasePopulator populator = new ResourceDatabasePopula
tor();
 populator.setScripts(new ClassPathResource("schema.sql"), new Class
PathResource(
 "data.sql"));
 init.setDatabasePopulator(populator);
 init.afterPropertiesSet();

 int size = customerService.findAll().size();
 Assert.isTrue(size == 2);

 }

 public Collection<Customer> findAll() {
 List<Customer> customerList = new ArrayList<>();
 try {
 try (Connection c = dataSource.getConnection()) {

Configuration | 29

 Statement statement = c.createStatement();
 try (ResultSet rs = statement.executeQuery("select
* from CUSTOMERS")) {
 while (rs.next()) {
 customerList.add(new Customer(rs.get
Long("ID"), rs.getString("EMAIL")));
 }
 }
 }
 }
 catch (SQLException e) {
 throw new RuntimeException(e);
 }
 return customerList;
 }
}

it’s hard to stage the datasource as the only reference to it is buried in a private
final field in the CustomerService class itself. The only way to get access to that
variable is by taking advantage of Java’s friend access, where instances of a given
object are able to see other instances private variables.

here we use types from Spring itself, not JUnit, since the JUnit library is test
scoped, to “exercise” the component. The Spring framework Assert class sup‐
ports design-by-contract behavior, not unit testing!

As we can’t plugin a mock datasource, and we can’t stage the datasource any other
way, we’re forced to embed the test code in the component itself. This won’t be easy to
test in a proper fashion and it means we need test-time dependencies on the CLASS‐
PATH for our main code.

We’re using an embedded datasource and so the datasource would be the same in
both development and production, but in a realistic example, the configuration of
environment-specific details like usernames and hostnames would be parameteriza‐
ble, otherwise any attempt to exercise the code might execute against a production
datasource!

It would be cleaner to centralize the bean definition, outside of the call sites where it’s
used. How does our component code get access to that centralized reference? We
could store them in static variables, but how do we test it since we have static refer‐
ences littered throughout our code? How do we mock the reference out? We could
also store the references in some sort of shared context, like JNDI (Java Naming and
Directory Interface), but we end up with the same problem: it’s hard to test this
arrangement without mocking out all of JNDI!

Instead of burying resource initialization and accquisition logic code in all the con‐
sumers of those resources, we could create the objects and establish their wiring in

30 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

one place, in a single class. This principle is called inversion of control. The wiring of
objects is seprate from the components themselves. In teasing these things apart,
we’re able to build component code that is dependant on base-types and interfaces,
not coupled to a particular implementation. This is called dependency injection. A
component that is ignorant of how and where a pariticular dependency was created
won’t care if that dependency is a fake (mock) object during a unit test.

Instead, let’s move the wiring of the objects - the configuration - into a separate class,
a configuration class. Let’s look at how this is supported with Spring’s Java configura‐
tion.

What about XML? Spring debuted with support for XML-based
configuration. XML configuration offers a lot of the same benefits
of Java configuration: it’s a centralized artifact separate from the
components being wired. It’s still supported, but it’s not the best fit
for a Spring Boot application which relies on Java configuration. In
this book, we won’t use XML-based configuration.

Example 1-6.

package com.example.javaconfig;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

import javax.sql.DataSource;

@Configuration
public class ApplicationConfiguration {

 @Bean(destroyMethod = "shutdown")
 DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().setType(EmbeddedDatabase
Type.H2)
 .setName("customers").build();
 }

 @Bean
 CustomerService customerService(DataSource dataSource) {
 return new CustomerService(dataSource);
 }
}

Configuration | 31

this class is a Spring @Configuration class, which tells Spring that it can expect
to find definitions of objects and how they wire together in this class.

we’ll extract the definition of the DataSource into a bean definition. Any other
Spring component can see, and work with, this single instance of the DataSource.
If ten Spring components depend on the DataSource, then they will all have
access to the same instance in memory, by default. This has to do with Spring’s
notion of scope. By default, a Spring bean is singleton scoped.

register the CustomerService instance with Spring and tell Spring to satisfy the
DataSource by sifting through the other registered beans in the application con‐
text and finding the one whose type matches the bean provider parameter.

Revisit the CustomerService and remove the explicit DataSource creation logic.

Example 1-7.

package com.example.javaconfig;

import com.example.Customer;

import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

public class CustomerService {

 private final DataSource dataSource;

 public CustomerService(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public Collection<Customer> findAll() {
 List<Customer> customerList = new ArrayList<>();
 try {
 try (Connection c = dataSource.getConnection()) {
 Statement statement = c.createStatement();
 try (ResultSet rs = statement.executeQuery("select
* from CUSTOMERS")) {
 while (rs.next()) {
 customerList.add(new Customer(rs.get

32 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Long("ID"), rs.getString("EMAIL")));
 }
 }
 }
 }
 catch (SQLException e) {
 throw new RuntimeException(e);
 }
 return customerList;
 }
}

the definition of the CustomerService type is markedly simpler, since it now
merely depends on a DataSource. We’ve limited its responsibilities, arguably, to
things more in scope for this type: interacting with the dataSource, not defining
the dataSource itself.

The configuration is explicit, but also a bit redundant. Spring could do some of the
construction for us, if we let it! After all, why should we do all of the heavy lifting? We
could use Spring’s stereotype annotations to mark our own components and let
spring instantiate those for us based on convention.

Let’s revisit the ApplicationConfiguration class and let Spring discover our stereo‐
typed components using component scanning. We no longer need to explicitly
describe how to construct a CustomerService bean, so we’ll remove that definition
too. The CustomerService type is exactly the same as before, except that it has the
@Component annotation applied to it.

Example 1-8.

package com.example.componentscan;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

import javax.sql.DataSource;

@Configuration
@ComponentScan

public class ApplicationConfiguration {

 @Bean(destroyMethod = "shutdown")
 DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().setType(EmbeddedDatabase
Type.H2)

Configuration | 33

 .setName("customers").build();
 }

}

this annotation tells Spring to discover other beans in the application context by
scanning the current package (or below) and looking for all objects annotated
with stereotype annotations like @Component. This annotation, and others besides
that are themselves annotated with @Component, act as sorts of markers for
Spring. Tags. Spring perceives them on components and creates a new instance of
the object on which they’re applied. It calls the no-argument constructor by
default, or it’ll call a constructor with parameters so long as all the parameters
themselves are satisfyable with references to other objects in the application con‐
text. Spring provides a lot of services as opt-in annotations expected on @Configu
ration classes.

The code in our example uses a datasource directly and we’re forced to write a lot of
low-level boilerplate JDBC code to get a simple result. Dependency injection is a
powerful tool, but it’s the least interesting aspect of Spring. Let’s use one of Spring’s
most compelling features: the portable service abstractions, to simplify our interac‐
tion with the datasource. We’ll swap out our manual and verbose JDBC-code and use
Spring framework’s JdbcTemplate instead.

Example 1-9.

package com.example.psa;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

import javax.sql.DataSource;

@Configuration
@ComponentScan
public class ApplicationConfiguration {

 @Bean(destroyMethod = "shutdown")
 DataSource dataSource() {
 return new EmbeddedDatabaseBuilder().setType(EmbeddedDatabase
Type.H2)
 .setName("customers").build();
 }

34 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

 @Bean
 JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
 }

}

the JdbcTemplate is one of many implementations in the Spring ecosystem of the
template pattern. It provides convenient utility methods that make working with
JDBC a one-liner for common things. It handles resource initialization and
acquisition, destruction, exception handling and so much more so that we can
focus on the essence of the task at hand.

With the JdbcTemplate in place, our revised CustomerService is much cleaner.

Example 1-10.

package com.example.psa;

import com.example.Customer;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.stereotype.Component;

import java.util.Collection;

@Component
public class CustomerService {

 private final JdbcTemplate jdbcTemplate;

 public CustomerService(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 public Collection<Customer> findAll() {

 RowMapper<Customer> rowMapper = (rs, i) -> new Customer(rs.get
Long("ID"),
 rs.getString("EMAIL"));

 return this.jdbcTemplate.query("select * from CUSTOMERS ", rowMap
per);
 }
}

there are many overloaded variants of the query method, one of which expects a
RowMapper implementation. It is a callback object that Spring will invoke for you
on each returned result, allowing you to map objects returned from the database

Configuration | 35

to the domain object of your systemm. The RowMapper interface also lends itself
nicely to Java 8 lambas!

the query is a trivial one-liner. Much better!

As we control the wiring in a central place, in the bean configuration, we’re able to
substitute (or inject) implementations with different specializations or capabilites. If
we wanted to, we could change all the injected implementations to support cross-
cutting concerns without altering the consumers of the beans. Suppose we wanted to
support logging the time it takes to invoke all methods. We could create a class that
subclasses our existing CustomerService and then, in method overrides, insert log‐
ging functionality before and after we invoke the super implementation. The logging
functionality is a cross-cutting concern, but in order to inject it into the behavior of
our object hierarchy we’d have to override all methods.

Ideally, we wouldn’t need to go through so many hoops to interpose trivial cross-
cutting concerns over objects like this. Languages (like Java) that only support single-
inheritance don’t provide a clean way to address this use case for any arbitrary object.
Spring suppports an alternative, aspect-oriented programming (AOP). AOP is a larger
topic than Spring, but Spring provides a very approachable subset of AOP for Spring
objects. Spring’s AOP support centers around the notion of an aspect which codifies
cross-cutting behavior. A pointcut describes the pattern that should be matched when
applying an aspect. The pattern in a pointcut is part of a full-featured pointcut lan‐
guage that Spring supports. The pointcut language lets you describe method invoca‐
tions for objects in a Spring application. Let’s suppose we wanted to create an aspect
that will match all method invocations, today and tomorrow, in our CustomerService
example and interpose logging to capture timing.

Add @EnableAspectJAutoProxy to the ApplicationConfiguration @Configuration
class to activate Spring’s AOP functionality. Then, we need only extract our cross-
cutting functionality into a separate type, an @Aspect-annotated object.

Example 1-11.

package com.example.aop;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.springframework.stereotype.Component;

import java.time.LocalDateTime;

@Component

36 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

@Aspect

public class LoggingAroundAspect {

 private Log log = LogFactory.getLog(getClass());

 @Around("execution(* com.example.aop.CustomerService.*(..))")
 public Object log(ProceedingJoinPoint joinPoint) throws Throwable {
 LocalDateTime start = LocalDateTime.now();

 Throwable toThrow = null;
 Object returnValue = null;

 try {
 returnValue = joinPoint.proceed();
 }
 catch (Throwable t) {
 toThrow = t;
 }
 LocalDateTime stop = LocalDateTime.now();

 log.info("starting @ " + start.toString());
 log.info("finishing @ " + stop.toString() + " with duration "
 + stop.minusNanos(start.getNano()).getNano());

 if (null != toThrow)
 throw toThrow;

 return returnValue;
 }
}

mark this bean as an aspect

declare that this method is to be given a chance to execute around - before and
afer - the execution of any method that matches the pointcut expression in the
@Around annotation. There are numerous other annotations, but for now this one
will give us a lot of power. For more, you might investigate Spring’s support for
AspectJ.

when the method matching this pointcut is invoked, our aspect is invoked first,
and passed a ProceedingJoinPoint which is a handle on the running method
invocation. We can choose to interrogate the method execution, to proceed with
it, to skip it, etc. This aspect logs before and after it proceeds with the method
invocation.

Configuration | 37

if an exception is thrown it is cached and rethrown later

if a return value is recorded it is returned as well (assuming no exception’s been
thrown)

We can use AOP directly, if we need to, but many of the really important cross cutting
concerns we’re likely going to encounter in typical application development are
already extracted out for us in Spring itself. An example is declarative transaction
management. In our example, we have one method which is read-only. If we were to
introduce another business service method - one that mutated the database multiple
times in a single service call - then we’d need to need to ensure that those mutations
all happened in a single unit-of-work; either every interaction with the stateful
resource (the datasource) succeeds or none of them do. We don’t want to leave the
system in an inconsistent state. This is an ideal example of a cross-cutting concern:
we might use AOP to begin a transactional block before every method invocation in a
business service and commit (or rollback) that transaction upon the completion of
the invocation. We could, but thankfully Spring’s declarative transaction support does
this for us already, we don’t need to write lower-level AOP-centric code to make it
work. Add @EnableTransactionManagement to a configuration class and then delin‐
eate transactional boundries on business services using the @Transactional annota‐
tion.

We have a service tier, a logical next step might be to build a web application. We
could use Spring MVC to create a REST endpoint. We would need to configure
Spring MVC itself, and then deploy it an Servlet-compatible application server, and
then confgure the application server’s interaction with Servlet API. It can be a lot of
work before we can take that next step and realize a humble working web application
and REST endpoint!

We’ve used straight JDBC here but we could’ve elected to use an ORM layer, instead.
This would’ve invited even more complexity. None of it is too much, step by step, but
taken together the cognitive load can be overwhelming.

This is where Spring Boot and and its auto-configuration kick in.

In our first example in this chapter, we created an application with an interface, a JPA
entity, a few annotations and a public static void main entry-point class and..
that’s it! Spring Boot started up, and presto!, there was a working REST API running
on http://localhost:8080/cats. The application supported manipulating JPA enti‐
ties using the Spring Data JPA-based repository. It did a lot of things for which there
was, seemingly, no explicit code - magic!

If you know much about Spring then you’ll no doubt recognize that we were using,
among other things, Spring framework and its robust support for JPA, Spring Data
JPA to configure a declarative, interface-based repository, Spring MVC and Spring

38 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Data REST to serve an HTTP-based REST API, and even then you might be wonder‐
ing about where the web server itself came from. If you know much about Spring
then you’ll appreciate that each of these modules requires some configuration. Not
much, usually, but certainly more than what we did there! They require, if nothing
else, an annotation to opt-in to certain default behavior.

Historically, Spring has opted to expose the configuration. It’s a configuration plane -
a chance to refine the behavior of the application. In Spring Boot, the priority is pro‐
viding a sensible default and supporting easy overrides. It’s a full throated embrace of
convention-over-configuration. Ultimately, Spring Boot’s auto-configuration is the
same sort of configuration that you could write by hand, with the same annotations
and the same beans you might register, along with common sense defaults.

Spring supports the notion of a service loader to support registering custom contri‐
butions to the application without changing Spring itself. A service loader is a map‐
ping of types to Java configuration class names that are then evaluated and made
available to the Spring application later on. The registration of custom contributions
happens in the META-INF/spring.factories file. Spring Boot looks in the
spring.factories file for, among other things, all classes under the org.springfra
mework.boot.autoconfigure.EnableAutoConfiguration entry. In the spring-

boot-autoconfigure .jar that ships with the Spring Boot framework itself there are
dozens of different configuration classes here, and Spring Boot will try to evaluate
them all! It’ll try, but fail, to evaluate all of them, at least, thanks to various conditions
- guards, if you like - that have been placed on the configuration classes and the @Bean
definitions therein. This facility, to conditionally register Spring components, is from
Spring framework itself, on which Spring Boot is built. These conditions are wide-
ranging: they test for the availability of beans of a given type, the presence of environ‐
ment properties, the availability of certain types on the CLASSPATH, and more.

Let’s review our CustomerService example. We want to build a Spring Boot-version
of the application that uses an embedded database, the Spring framework JdbcTem
plate and then support building a web application. Spring Boot will do all of that for
us. Revisit the ApplicationConfiguration and turn it into a Spring Boot application
accordingly:

Example 1-12. ApplicationConfiguration.java class

package com.example.boot;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class ApplicationConfiguration {

}

Configuration | 39

Look ma, no configuration! Spring Boot will contribute all the things that we
contributed ourselves, manually, and so much more.

Let’s introduce a Spring MVC-based controller to expose a REST endpoint to respond
to HTTP GET requests at /customers.

Example 1-13. CustomerRestController.java class

package com.example.boot;

import com.example.Customer;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Collection;

@RestController

public class CustomerRestController {

 private final CustomerService customerService;

 public CustomerRestController(CustomerService customerService) {
 this.customerService = customerService;
 }

 @GetMapping("/customers")
 public Collection<Customer> readAll() {
 return this.customerService.findAll();
 }
}

@RestController is another stereotype annotation, like @Component. It tells
Spring that this component is to serve as a REST controller.

We can use Spring MVC annotations that map to the domain of what we’re try‐
ing to do, in this case, to handle HTTP GET requests to a certain endpoint with
@GetMapping

You could create an entry point in the ApplicationConfiguration class and then run
the application and visit http://localhost:8080/customers in your browser. Cog‐
nitively, it’s much easier to reason about what’s happening in our business logic and
we’ve done more in less!

40 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Example 1-14.

 //...

 public static void main(String [] args){
 SpringApplication.run (ApplicationConfiguration.class, args);
 }

 //...

We got more for less, but we know that somewhere something is doing the same con‐
figuration as we did explicitly, before. Where is the JdbcTemplate being created? It’s
created in an auto-configuration class called JdbcTemplateAutoConfiguration,
whose definition is (roughly):

Example 1-15. JdbcTemplateAutoConfiguration

@Configuration
@ConditionalOnClass({ DataSource.class, JdbcTemplate.class })
@ConditionalOnSingleCandidate(DataSource.class)
@AutoConfigureAfter(DataSourceAutoConfiguration.class)
public class JdbcTemplateAutoConfiguration {

 private final DataSource dataSource;

 public JdbcTemplateAutoConfiguration(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @Bean
 @Primary
 @ConditionalOnMissingBean(JdbcOperations.class)
 public JdbcTemplate jdbcTemplate() {
 return new JdbcTemplate(this.dataSource);
 }

 @Bean
 @Primary
 @ConditionalOnMissingBean(NamedParameterJdbcOperations.class)
 public NamedParameterJdbcTemplate namedParameterJdbcTemplate() {
 return new NamedParameterJdbcTemplate(this.dataSource);
 }

}

this is a normal @Configuration class

Configuration | 41

the configuration class should only be evaluated if the type DataSource.class
and JdbcTemplate.class are somewhere on the classpath, otherwise this would
no doubt fail with an error like ClassNotFoundException

we only want this configuration class if, somewhere in the application context, a
DataSource bean has been contributed.

we know that DataSourceAutoConfiguration will contribute an embedded H2
datasource if we let it, so this annotation ensures that this configuration happens
after that DataSourceAutoConfiguration has run. If a database is contributed,
then this configuration class will evaluate.

we want to contribute a JdbcTemplate but only so long as the user (that’s to say,
so long as you and I) haven’t already defined a bean of the same type in our own
configuration classes.

Spring Boot’s auto-configuration greatly reduces the actual code count and the cogni‐
tive load associated with that code. It frees us to focus on the essence of the business
logic, leaving the tedium to the framework. If we want to exert control over some
aspect of the stack we’re free to contribute beans of certain types and those will be
plugged in to the framework for us. Spring Boot is an implementation of the open-
closed principal: it’s open for extension but closed for modification. You don’t need to
recompile Spring or Spring Boot in order to override parts of the machine. You may
see your Spring Boot application exhibit some odd behavior that you want to override
or customize. It’s important to know how to customise the application and how to
debug it. Specify the --Ddebug=true flag when the application starts up and Spring
Boot will print out the Debug Report, showing you all the conditions that have been
evaluated and whether they’re a positive or negative match. From there, it’s easy to
examine what’s happening in the relevant auto-configuration class to ascertain its
behavior.

Cloud Foundry
Spring Boot lets us focus on the essence of the application itself, but what good would
all that newfound productivity be if we then lost it all struggling to move the applica‐
tion to production? Operationalizing an application is a daunting task, but one that
must not be ignored. Our goal is to continuously deploy our application into a
production-like environment, to validate in integration and acceptance tests, that
things will work when they’re deployed to production. It’s important to get to produc‐
tion as early and often as possible for that is the only place where the customer, the
party most invested in the outcome of a team’s deliverable, can validate that it works.
If moving to production is arduous, inevitably, a software team will come to fear the

42 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

process and hesitate, increasing the delta between development and production
pushes. This increases the backlog of work that hasn’t been moved to production,
which means that each push becomes more risky because there’s more business value
in each release. In order to de-risk the move to production, reduce the batch of work
and increase the frequency of deployment. If there’s a mistake in production, it
should be as cheap as possible to fix it and deploy that fix.

The trick is to automate away everything that can be automated in the value chain
from product management to production that doesn’t add value to the process.
Deployment is not a business differentiating activity; it adds no value to the process.
It should be completely automated. You get velocity through automation.

Cloud Foundry is a cloud platform that wants to help. It’s a Platform-as-a-service
(PaaS). Cloud Foundry focuses not on hard disks, RAM, CPU, Linux installations and
security patches as you would with an Infrastructure-as-a-service (IaaS) offering, or
on containers as you might in a container-as-a-service offering, but instead on appli‐
cations and their services. Operators focus on applications and their services, nothing
else. We’ll see Cloud Foundry throughout this book, so far now let’s focus on deploy‐
ing the Spring Boot application we iteratively developed when looking at Spring’s
configuration support.

There are multiple implementations of Cloud Foundry, all based on the open-source
Cloud Foundry code. For this book we’ve run and deployed all applications on Pivo‐
tal Web Services. Pivotal Web Services offers a subset of the functionality of Pivotal’s
on-premise Pivotal Cloud Foundry offering. It’s hosted on Amazon Web Services, in
the AWS East region. If you want to take your first steps with Cloud Foundry, PWS is
an affordable and approachable option that serves projects large and small every day
and is maintained by the operations team at Pivotal who turns that know-how that
gets driven back into the product.

Go to the main page. You’ll find a place to sign in an existing account, or register new
accounts.

Cloud Foundry | 43

http://run.pivotal.io
http://run.pivotal.io
https://pivotal.io/platform

Figure 1-17. The PWS main page

Once logged in you can interact with your account and get information about
deployed applications.

Figure 1-18. The PWS Console

44 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Once you have an account, make sure you have the cf CLI. You’ll need to login if you
haven’t before.

Target the appropriate Cloud Foundry instance using cf target api.run.pivo
tal.io and then login using cf login.

Example 1-16. authenticating and targeting a Cloud Foundry organization and a space

➜ cf login

API endpoint: https://api.run.pivotal.io

Email> email@gmail.com

Password>
Authenticating...
OK

Select an org (or press enter to skip):
1. marketing
2. sales
2. back-office

Org> 1
Targeted org back-office

Targeted space development

API endpoint: https://api.run.pivotal.io (API version: 2.65.0)
User: email@gmail.com
Org: back-office # 1
Space: development # 2

in Cloud Foundry, there might be many organizations to which a given user has
access.

within that organization, there might be multiple environments (for example,
development, staging, and integration).

Now that we have a valid account and are logged in, we can deploy our existing appli‐
cation, in target/configuration.jar. We’ll need to provision a database using the
cf create-service command.

Example 1-17. create a MySQL database, bind it to our application and then start the
application

#!/usr/bin/env bash

cf create-service p-mysql 100mb bootcamp-customers-mysql # 1

Cloud Foundry | 45

https://docs.cloudfoundry.org/cf-cli/install-go-cli.html

cf push -p target/configuration.jar bootcamp-customers \
 --random-route --no-start # 2

cf bind-service bootcamp-customers bootcamp-customers-mysql # 3

cf start bootcamp-customers # 4

first we need to provision a MySQL database from the MySQL service (called p-
mysql) at the 100mb plan. Here, we’ll assign it a logical name, bootcamp-
customers-mysql. Use cf marketplace to enumerate other services in a Cloud
Foundry instance’s service catalog.

then push the application’s artifact, target/configuration.jar, to Cloud Foun‐
dry. We assign the application and a random route (a URL, in this case under the
PWS cfapps.io domain), but we don’t want to start it yet: it still needs a data‐
base!

the database exists, but nobody can talk to it unless we bind it to an application.
Ultimately, binding results in environment variables being exposed in the applica‐
tion with the relevant connection information in the environmental variables.

now that the application is bound to a database, we can finally start it up!

When you push the application to Cloud Foundry, you’re giving it an application
binary, a .jar, not a virtual machine or a Linux container (though, you could give it a
Linux container). When Cloud Foundry receives the .jar it will try to determine
what the nature of the application is - is it a Java application? A Ruby application?
A .NET application? It’ll eventually arrive at a Java application. It will pass the .jar to
the Java buildpack. A buildpack is a directory full of scripts invoked according to a
well-known lifecycle. You can override the default buildpack used by specifying its
URL, or you can let the default buildpack kick in. There are buildpacks for all manner
of different languages and platforms including Java, .NET, Node.js, Go, Python, Ruby,
and a slew more. The Java buildpack will realize that the application is an executable
main(String [] args) method, and that it is self-contained. It will pull down the
latest OpenJDK version, and specify that our application is to run. All of this configu‐
ration is packaged into a Linux container which Cloud Foundry’s scheduler will then
deploy across a cluster. Cloud Foundry can run hundreds of thousands of containers
in a single environment.

In no time at all, the application will spin up and report a URL on the console at
which the application has been exposed. Congratulations! Our application is now
deployed to a Cloud Foundry instance.

46 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

In our application, we have one datasource bean and so Cloud Foundry re-mapped it
automatically to the single, bound MySQL service, overwriting the default embedded
H2 datasource definition with one that points to a MySQL datasource.

There are a lot of aspects to the deployed application that we may want to describe on
each deployment. In our first run, we used various cf incantations to configure the
application, but that could get tedious, quickly. Instead, let’s capture our application’s
configuration in a Cloud Foundry manifest file, typically named manifest.yml.
Here’s a manifest.yml for our application that will work so long as we’ve already got
a MySQL datasource provisioned with the same name as specified earlier.

Example 1-18. a Cloud Foundry manifest

applications:
- name: bootcamp-customers # 1
 buildpack: https://github.com/cloudfoundry/java-buildpack.git # 2
 instances: 1
 random-route: true
 path: target/configuration.jar # 3
 services:
 - bootcamp-customers-mysql # 4
 env:
 DEBUG: "true"
 SPRING_PROFILES_ACTIVE: cloud # 5

we provide a logical name for the application

specify a buildpack

specify which binary to use

specify a dependency on provisioned Cloud Foundry services

specify environment variables to override properties to which Spring Boot will
respond. --Ddebug=true (or DEBUG: true) enumerates the conditions in the
auto-configuration and --Dspring.profiles.active=cloud specifies which pro‐
files, or logical groupings with arbitrary names, should be activated in a Spring
application. This configuration says to start all Spring beans without any profile
as well as those with the cloud profile.

Now, instead of writing all those cf incantations, just run cf push -f manifest.yml.
Soon, your application will be up and running and ready for inspection.

Thus far we’ve seen that the Cloud Foundry experience is all about obtaining velocity
through automation: the platform does as much of the undifferentiated heavy lifting

Cloud Foundry | 47

as possible, letting you focus on the business logic that should matter. We’ve worked
within the opinionated approach offered by Cloud Foundry: if your application needs
something, you can declare as much in a cf incantation or in a manifest.yml and the
platform will support you. It is surprising therefore that, despite constraining inputs
into the platform, Cloud Foundry is itself also easy to program. It provides a rich API
that supports virtually everything you’d want to do. Taking things a step further, the
Spring and Cloud Foundry teams have developed a Java Cloud Foundry client that
supports all the major components in a Cloud Foundry implementation. The Cloud
Foundry Java client also supports higher-level, more granular business operations
that correspond to the things you might do using the cf CLI.

The Cloud Foundry Java client is built on the Pivotal Reactor 3.0 project. Reactor in
turn underpins the reactive web runtime in Spring Framework 5. The Cloud Foundry
Java client is fast, and as it’s built on reactive principles, it’s almost entirely non-
blocking.

The Reactor project in turn is an implementation of the Reactive Streams initiative.
The Reactive Streams initiative, according to the website, “is an initiative to provide a
standard for asynchronous stream processing with non-blocking back pressure.” It
provides a language and APIs to describe a potentially unlimited stream of live data
that arrives asynchronously. The Reactor API makes it easy to write code that benefits
from parallelization without write coding to achieve parallelization. The goal is to
avoid aggressive resources usage and isolate the blocking parts of cloud-based work‐
loads in an efficient way. The Reactive Streams initiative defines backpressure; a sub‐
scriber can signal to the publisher that it does not wish to receive any more
notifications. In essence, it’s pushing back on the producer, throttling consumption
until it can afford it.

The heart of this API is the org.reactivestreams.Publisher which may produce
zero or more values, eventually. A Subscriber subscribes to notifications of new val‐
ues from a Publisher. The Reactor project defines two useful specializations of the
Publisher: Mono and Flux. A Mono<T> is a Publisher<T> that produces one value. A
Flux<T> is a Publisher<T> that produces zero or more values.

Cardinality Synchronous Asynchronous

One T Future<T>

Many Collection<T> org.reactivestreams.Publisher<T>

We won’t delve too deeply into reactive streams or the Reactor project, but know that
it provides the foundations for the extraordinary efficiencies of the Cloud Foundry
Java API. The Cloud Foundry Java API lends itself to parallelization of processing
that is very difficult to achieve using the cf CLI. So, we’ve deployed the same applica‐
tion using the cf CLI, and a manifest.yml file. Let’s look at doing so in Java code. It’s

48 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

http://www.reactive-streams.org/

particularly handy to use the Cloud Foundry Java client in integration tests. In order
to use the Cloud Foundry Java client, you’ll need to configure some objects required
to securely integrate with different subsystems in Cloud Foundry, including the log-
aggregation subsystem, the Cloud Foundry REST APIs, and the Cloud Foundry
authentication subsystem. We’ll demonstrate the configuration of those components
here, for posterity, but it’s very likely that you won’t need to configure this functional‐
ity in a not-too-distant release of Spring Boot.

Example 1-19. configure the Cloud Foundry Java client

package com.example;

import org.cloudfoundry.client.CloudFoundryClient;
import org.cloudfoundry.operations.DefaultCloudFoundryOperations;
import org.cloudfoundry.reactor.ConnectionContext;
import org.cloudfoundry.reactor.DefaultConnectionContext;
import org.cloudfoundry.reactor.TokenProvider;
import org.cloudfoundry.reactor.client.ReactorCloudFoundryClient;
import org.cloudfoundry.reactor.doppler.ReactorDopplerClient;
import org.cloudfoundry.reactor.tokenprovider.PasswordGrantTokenProvider;
import org.cloudfoundry.reactor.uaa.ReactorUaaClient;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class CloudFoundryClientExample {

 public static void main(String[] args) {
 SpringApplication.run(CloudFoundryClientExample.class, args);
 }

 @Bean
 ReactorCloudFoundryClient cloudFoundryClient(ConnectionContext connectionCon
text,
 TokenProvider tokenProvider) {
 return ReactorCloudFoundryClient.builder().connectionContext(connec
tionContext)
 .tokenProvider(tokenProvider).build();
 }

 @Bean
 ReactorDopplerClient dopplerClient(ConnectionContext connectionContext,
 TokenProvider tokenProvider) {
 return ReactorDopplerClient.builder().connectionContext(connection
Context)
 .tokenProvider(tokenProvider).build();

Cloud Foundry | 49

 }

 @Bean
 ReactorUaaClient uaaClient(ConnectionContext connectionContext,
 TokenProvider tokenProvider) {
 return ReactorUaaClient.builder().connectionContext(connectionCon
text)
 .tokenProvider(tokenProvider).build();
 }

 @Bean
 DefaultCloudFoundryOperations cloudFoundryOperations(
 CloudFoundryClient cloudFoundryClient, ReactorDopplerClient
dopplerClient,
 ReactorUaaClient uaaClient, @Value("${cf.org}") String orga
nization,
 @Value("${cf.space}") String space) {
 return DefaultCloudFoundryOperations.builder().cloudFoundry
Client(cloudFoundryClient)
 .dopplerClient(dopplerClient).uaaClient(uaa
Client).organization(organization)
 .space(space).build();
 }

 @Bean
 DefaultConnectionContext connectionContext(@Value("${cf.api}") String api
Host) {
 if (apiHost.contains("://")) {
 apiHost = apiHost.split("://")[1];
 }
 return DefaultConnectionContext.builder().apiHost(apiHost).build();
 }

 @Bean
 PasswordGrantTokenProvider tokenProvider(@Value("${cf.user}") String user
name,
 @Value("${cf.password}") String password) {
 return PasswordGrantTokenProvider.builder().password(password).user
name(username)
 .build();
 }
}

the ReactorCloudFoundryClient is the client for the Cloud Foundry REST API.

the ReactorDopplerClient is the client for Cloud Foundry’s websocket-based
log-aggregation subsystem, Doppler

50 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

the ReactorUaaClient is the client for UAA, the authorization and authentica‐
tion subsystem in Cloud Foundry

the DefaultCloudFoundryOperations instance provides coarser-grained opera‐
tions that compose the lower-level subsystem clients. Start here.

the ConnectionContext describes the Cloud Foundry instance that we wish to
target

the PasswordGrantTokenProvider describes our authentication

all this ado about nothing! The client spins up and prints out the registered appli‐
cations in a given user’s account.

It’s trivial to get a simple proof-of-concept with this in place. Here is a simple example
that will enumerate all the deployed applications in a particular Cloud Foundry space
and organization.

Example 1-20. configure the Cloud Foundry Java client

package com.example;

import org.cloudfoundry.operations.CloudFoundryOperations;
import org.springframework.boot.CommandLineRunner;
import org.springframework.stereotype.Component;

@Component
class ApplicationListingCommandLineRunner implements CommandLineRunner {

 private final CloudFoundryOperations cf;

 ApplicationListingCommandLineRunner(CloudFoundryOperations cf) {
 this.cf = cf;
 }

 @Override
 public void run(String... args) throws Exception {
 cf.applications().list().subscribe(System.out::println);
 }
}

inject the configured CloudFoundryOperations

.. and use it to enumerate all the deployed applications in this particular Cloud
Foundry space and organization.

Cloud Foundry | 51

For a more real-world example, let’s deploy our bootcamp-customers application
using the Java client. Here’s a simple integration-test that provisions a MySQL service,
pushes the application to Cloud Foundry (but doesn’t start it), binds environment
variables, binds the MySQL service and then, finally, starts the application. First, let’s
look at the skeletal code where we identify the deployable .jar, name our application
and the service. We’ll delegate to two components, ApplicationDeployer and Serv
icesDeployer.

Example 1-21. the skeleton of an integration-test that provisions an application

package bootcamp;

import org.cloudfoundry.operations.CloudFoundryOperations;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.context.annotation.Bean;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import reactor.core.publisher.Mono;

import java.io.File;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(classes = SpringConfigurationIT.Config.class)
public class SpringConfigurationIT {

 @Autowired
 private ApplicationDeployer applicationDeployer;
 @Autowired
 private ServicesDeployer servicesDeployer;

 @Test
 public void deploy() throws Throwable {
 File projectFolder = new File(new File("."), "../spring-
configuration");
 File jar = new File(projectFolder, "target/spring-
configuration.jar");
 String applicationName = "bootcamp-customers";
 String mysqlServiceName = "bootcamp-customers-mysql";

 Mono<Void> service = servicesDeployer.deployService(
 applicationName, mysqlServiceName);

 Mono<Void> apps = applicationDeployer.deployApplication(
 jar, applicationName, mysqlServiceName);

52 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

 service.then(apps).block();
 }

 @SpringBootApplication
 public static class Config {

 @Bean
 ApplicationDeployer applications(CloudFoundryOperations cloudFoun
dryOperations) {
 return new ApplicationDeployer(cloudFoundryOperations);
 }

 @Bean
 ServicesDeployer services(CloudFoundryOperations cloudFoundryOpera
tions) {
 return new ServicesDeployer(cloudFoundryOperations);
 }
 }

}

first deploy our services..

..then the application

..then chain the flows together, one after the other, using the .next

This example composes two Publisher instances, one describing the processing
required to provision a service, and another describing the processing required to
provision the application. The final call in the chain, .block(), triggers processing; it
is a terminal method that activates the entire flow.

The ServicesDeployer takes the required parameters and provisions our MySQL
instance. It also unbinds and deletes the instance if it should already exist.

Example 1-22. ServicesDeployer

package bootcamp;

import org.cloudfoundry.operations.CloudFoundryOperations;
import org.cloudfoundry.operations.services.CreateServiceInstanceRequest;
import org.cloudfoundry.operations.services.DeleteServiceInstanceRequest;
import org.cloudfoundry.operations.services.UnbindServiceInstanceRequest;
import reactor.core.publisher.Mono;

class ServicesDeployer {

 private final CloudFoundryOperations cf;

Cloud Foundry | 53

 ServicesDeployer(CloudFoundryOperations cf) {
 this.cf = cf;
 }

 Mono<Void> deployService(String applicationName, String mysqlServiceName) {
 return cf.services()
 .listInstances()
 .filter(si -> si.getName().equalsIgnoreCase(mysqlSer
viceName))
 .singleOrEmpty()
 .then(serviceInstance ->
 cf.services()
 .unbind(UnbindServi
ceInstanceRequest.builder()
 .app
licationName(applicationName)
 .ser
viceInstanceName(mysqlServiceName)
 .bui
ld())
 .then(cf.services()
 .del
eteInstance(DeleteServiceInstanceRequest.builder()

.name(serviceInstance.getName())

.build())))
 .then(cf.services()
 .createInstance(CreateServiceInstan
ceRequest.builder()
 .serviceName("p-
mysql")
 .planName("100mb")
 .serviceInstance
Name(mysqlServiceName)
 .build()));
 }
}

In keeping with the ideas of immutable infrastructure, let’s ensure that if the ser‐
vice has already been provisioned, that we..

..unbind it and then..

..delete it.

Finally, we need to create the instance.

54 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

The ApplicationDeployer then provisions the application itself. It binds to the ser‐
vice that will have already been provisioned in the earlier ServicesDeployer flow.

Example 1-23. ApplicationDeployer

package bootcamp;

import org.cloudfoundry.operations.CloudFoundryOperations;
import org.cloudfoundry.operations.applications.PushApplicationRequest;
import org.cloudfoundry.operations.applications.SetEnvironmentVariableApplicationRe
quest;
import org.cloudfoundry.operations.applications.StartApplicationRequest;
import org.cloudfoundry.operations.services.BindServiceInstanceRequest;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import java.io.File;
import java.time.Duration;
import java.util.stream.Stream;

class ApplicationDeployer {

 private final CloudFoundryOperations cf;

 ApplicationDeployer(CloudFoundryOperations cf) {
 this.cf = cf;
 }

 Mono<Void> deployApplication(
 File jar,
 String applicationName,
 String... svcs) {

 return cf.applications()
 .push(PushApplicationRequest.builder()
 .name(applicationName)
 .noStart(true)
 .randomRoute(true)
 .buildpack("https://github.com/cloud
foundry/java-buildpack.git")
 .application(jar.toPath())
 .instances(1)
 .build())
 .thenMany(Flux.merge(Flux.from
Stream(Stream.of(svcs)
 .map(svc ->
 cf.services()
 .bin
d(BindServiceInstanceRequest.builder()

.applicationName(applicationName)

Cloud Foundry | 55

.serviceInstanceName(svc)

.build())))))
 .then()
 .then(cf.applications()
 .setEnvironmentVariable(SetEnviron
mentVariableApplicationRequest.builder()
 .name(application
Name)
 .variable
Name("SPRING_PROFILES_ACTIVE")
 .variable
Value("cloud")
 .build()))
 .then(cf.applications()
 .start(StartApplicationRe
quest.builder()
 .name(application
Name)
 .stagingTimeout(Dura
tion.ofMinutes(5))
 .startupTimeout(Dura
tion.ofMinutes(5))
 .build()));
 }
}

first, we push the application binary (the path), specifying a buildpack, memory,
and deployment properties like instance count. Importantly, we do not start the
application yet. We’ll do that after the environment variables and services are
bound. This step is automatically handled for you when you use Cloud Foundry
manifests.

then let’s visit each service isntance name ensure that its bound to the the appli‐
cation

then let’s specify an environment variable

and, finally, let’s start the application.

Run the whole thing and it’ll take a pittance of time, and even less once you tune it by
specifying that certain branches of the flow should be run on different threads. The
Cloud Foundry Java client is very powerful and one of the authors favorite ways to
describe complex systems. It’s also very handy when the deployment requires more
than a trivial amount of of shell scripting.

56 | Chapter 1: Bootcamp: Introducing Spring Boot and Cloud Foundry

Next Steps
In this chapter we looked every so briefly at getting started with Spring Boot and sup‐
porting tools like the Spring Tool Suite, creating Java configuration, and then moving
that application to a cloud environment. We’ve automated the deployment of the code
to a production environment, and it wouldn’t be hard to standup a continuous inte‐
gration flow using Jenkins or Bamboo. In the next chapters, we’ll look more heavily at
all things Spring Boot and Cloud Foundry.

Next Steps | 57

CHAPTER 2

The Cloud Native Application

The patterns for how we develop software, both in teams and as individuals, are
always evolving. The open source software movement has provided the software
industry with somewhat of a Cambrian explosion of tools, frameworks, platforms,
and operating systems—all with an increasing focus on flexibility and automation. A
majority of today’s most popular open source tools focus on features that give soft‐
ware teams the ability to continuously deliver software faster than ever before possi‐
ble, at every level, from development to operations.

Amazon’s Story
In the span of two decades, starting in the early 90s, an online bookstore headquar‐
tered in Seattle, called Amazon.com, grew into the world’s largest online retailer.
Known today simply as Amazon, the company now sells far more than just books. In
2015, Amazon surpassed Walmart as the most valuable retailer in the United States.
The most interesting part of Amazon’s story of unparalleled growth can be summar‐
ized in one simple question: How did a website that started out as a simple online
bookstore transform into one of the largest retailers in the world—doing so without
ever opening a single retail location?

It’s not hard to see how the world of commerce has been shifted and reshaped around
digital connectivity, catalyzed by ever increasing access to the internet from every
corner of the globe. As personal computers became smaller, morphing into the ubiq‐
uitous smart phone, tablets and watches we use today, we’ve experienced an exponen‐
tial increase in accessibility to distribution channels that are transforming the way the
world does commerce.

Amazon’s CTO, Werner Vogels, oversaw the technical evolution of Amazon from a
hugely successful online bookstore into one of the world’s most valuable technology

59

companies and product retailers. In June 2006, Vogels was interviewed in a piece for
the computer magazine ACM Queue on the rapid evolution of the technology choices
that powered the growth of the online retailer. In the interview Vogels talks about the
core driver behind the company’s continued growth.

A large part of Amazon.com’s technology evolution has been driven to enable
this continuing growth, to be ultra-scalable while maintaining availability and
performance.

—Werner Vogels, ACM Queue, Volume 4 Issue 4, A Conversation with Werner
Vogels

Vogels goes on to state that in order for Amazon to achieve ultra-scalability it needed
to move towards a different pattern of software architecture. Vogels mentions in the
interview that Amazon.com started as a monolithic application. Over time, as more
and more teams operated on the same application, the boundries of ownership of the
codebase began to blur. “There was no isolation and, as a result, no clear ownership.”
said Vogels.

Vogels went on to pinpoint that shared resources, such as databases, were making it
difficult to scale-out the overall business. The greater the number of shared resources,
whether it be application servers or databases, the less control teams would have
when delivering features into production.

You build it, you run it.
—Werner Vogels, CTO, Amazon

Vogels touched on a common theme that cloud native applications share: the idea
that teams own what they are building. He goes on to say that “the traditional model
is that you take your software to the wall that separates development and operations,
and throw it over and then forget about it. Not at Amazon. You build it, you run it.”

In what has been one of the most reused quotes by prominent keynote speakers at
some of the world’s premier software conferences, the words "you build it, you run it"
would later become a slogan of a popular movement we know today simply as
DevOps.

Many of the practices that Vogels spoke about in 2006 were seeds for popular soft‐
ware movements that are thriving today. Practices such as DevOps and microservices
can be tied back to the ideas that Vogels introduced over a decade ago. While ideas
like these were being developed at large internet companies similar to Amazon, the
tooling around these ideas would take years to develop and mature into a service
offering.

In 2006 Amazon launched a new product named Amazon Web Services (AWS). The
idea behind AWS was to provide a platform, the same platform that Amazon used
internally, and release it as a service to the public. Amazon was keen to see the oppor‐

60 | Chapter 2: The Cloud Native Application

tunity to commodotize the ideas and tooling behind the Amazon.com platform.
Many of the ideas that Vogels introduced were already built into the Amazon.com
platform. By releasing the platform as a service to the public, Amazon would enter
into a new market called the public cloud.

The ideas behind the public cloud were sound. Virtual resources could be provi‐
sioned on-demand without needing to worry about the underlying infrastructure.
One could simply rent a virtual machine to house their applications without needing
to purchase or manage the infrastructure. This approach was a low-risk self-service
option that would help to grow the appeal of the public cloud, with AWS leading the
way in terms of adoption.

It would take years before AWS would mature into a set of services and patterns for
building and running applications that are designed to be operated on a public cloud.
While many developers flocked to these services for building new applications, many
companies with existing applications still had concerns with migrations. Existing
applications were not designed for portability. Also, many applications were still
dependent on legacy workloads that were not compatible with the public cloud.

In order for most large companies to take advantage of the public cloud, they would
need to make changes in the way they developed their applications.

The Promise of a Platform
Platform is an overused word today.

When we talk about platforms in computing, we are generally talking about a set of
capabilities that help us to either build or run applications. Platforms are best sum‐
marized by the nature in which they impose constraints on how developers build
applications.

Platforms are able to automate the tasks that are not essential to supporting the busi‐
ness requirements of an application. This makes development teams more agile in the
way they are able to support only the features that help to differentiate value for the
business.

Any team that has written shell scripts or stamped containers or virtual machines to
automate deployment has built a platform, of sorts. The question is: what promises
can that platform keep? How much work would it take to support the majority (or
even all) requirements for continuously delivering new software?

When we build platforms, we are creating a tool that automates a set of repeatable
practices. Practices are formulated from a set of constraints that translate valuable
ideas into a plan.

• Ideas What are our core ideas of the platform and why are they valuable?

The Promise of a Platform | 61

• Constraints What are the constraints necessary to transform our ideas into prac‐
tices?

• Practices How do we automate constraints into a set of repeatable practices?

At the core of every platform are simple ideas that, when realized, increase differenti‐
ated business value through the use of an automated tool.

Let’s take for example the Amazon.com platform. Werner Vogels stated that by
increasing isolation between software components, teams would have more control
over features they delivered into production.

Ideas:

• By increasing isolation between software components, we are able to deliver parts of
the system both rapidly and independently.

By using this idea as the platform’s foundation, we are able to fashion it into a set of
constraints. Constraints take the form of an opinion about how a core ideal will cre‐
ate value when automated into a practice. The following statements are opinionated
constraints about how isolation of components can be increased.

Constraints:

• Software components are to be built as independently deployable services.
• All business logic in a service is encapsulated with the data it operates on.
• There is no direct access to a database from outside of a service.
• Services are to publish a web interface that allows access to its business logic from

other services.

With these constraints, we have taken an opinionated view on how isolation of soft‐
ware components will be increased in practice. The promises of these constraints,
when automated into practices, will provide teams with more control over how fea‐
tures are delivered to production. The next step is to describe how these constraints
can be captured into a set of repeatable practices.

Practices that are derived from these constraints should be stated as a collection of
promises. By stating practices as promises we maintain an expectation with the users
of the platform on how they will build and operate their applications.

Practices:

• A self-service interface is provided to teams that allows for the provisioning of infra‐
structure required to operate applications.

• Applications are packaged as a bundled artifact and deployed to an environment
using the self-service interface.

62 | Chapter 2: The Cloud Native Application

• Databases are provided to applications in the form of a service, and are to be provi‐
sioned using the self-service interface.

• An application is provided with credentials to a database as environment variables,
only after declaring an explicit relationship to the database as a service binding.

• Each application is provided with a service registry that is used as a manifest of
where to locate external service dependencies.

Each of the practices listed above takes on the form of a promise to the user. In this
way, the intent of the ideas at the core of the platform are realized as constraints
imposed on applications.

Cloud native applications are built on a set of constraints that reduce the time
spent doing undifferentiated heavy lifting.

When AWS was first released to the public, Amazon did not force its users to adhere
to the same constraints that they used internally for Amazon.com. Staying true to the
name, Amazon Web Services, AWS is not itself a cloud platform, but rather it is a col‐
lection of independent infrastructure services that can be composed into automated
tooling resembling a platform of promises. Years after the first release of AWS, Ama‐
zon would begin to offer a collection of managed platform services, with use cases
ranging from IoT (Internet of Things) to machine learning.

If every company needs to build their own platform from scratch, the amount of time
delivering value in applications is delayed until the platform is fully assembled. Com‐
panies who were early adopters of AWS would have needed to assemble together
some form of automation resembling a platform. Each company would have had to
bake-in a set of promises that captured the core ideas of how to develop and deliver
software into production.

More recently, the software industry has converged on the idea that there are a basic
set of common promises that every cloud platform should make. These promises will
be explored throughout this book using the open source Platform-as-a-Service (PaaS),
named Cloud Foundry. The core idea behind Cloud Foundry is to provide a platform
that encapsulates a set of common promises for quickly building and operating.
Cloud Foundry makes these promises while still providing portability between multi‐
ple different cloud infrastructure providers.

The subject of much of this book is how to build cloud native Java applications. We’ll
focus largely on tools and frameworks that help to reduce undifferentiated heavy lift‐
ing, by taking advantage of the benefits and promises of a cloud native platform.

The Promise of a Platform | 63

The Patterns
New patterns for how we develop software are enabling us to think more about the
behavior of our applications in production. Both developers and operators, together,
are placing more emphasis on understanding how their applications will behave in
production, with fewer assurances of how complexity will unravel in the event of a
failure.

As was the case with Amazon.com, software architectures are beginning to move
away from large monolithic applications. Architectures are now focused on achieving
ultra-scalability without sacrificing performance and availability. By breaking apart
components of a monolith, engineering organizations are taking efforts to decentral‐
ize change management, providing teams with more control over how features make
their way to production. By increasing isolation between components, software teams
are starting to enter into the world of distributed systems development, with a focus
of building smaller more singularly focused services with independent release cycles.

Cloud native applications take advantage of a set of patterns that make teams more
agile in the way they deliver features to production. As applications become more dis‐
tributed, a result of increasing isolation necessary to provide more control to the
teams that own applications, the chance of failure in the way application components
communicate becomes an important concern. As software applications turn into
complex distributed systems, operational failures become an inevitable result.

Cloud native application architectures provide the benefit of ultra-scalability while
still maintaining guarantees about overall availability and performance of applica‐
tions. While companies like Amazon reaped the benefits of ultra-scalability in the
cloud, widely available tooling for building cloud-native applications had yet to sur‐
face. The tooling and platform would eventually surface as a collection of open source
projects maintained by an early pioneer of the public cloud, a company named Net‐
flix.

Scalability
To develop software faster, we are required to think about scale at all levels. Scale, in a
most general sense, is a function of cost that produces value. The level of unpredicta‐
bility that reduces that value is called risk. We are forced to frame scale in this context
because building software is fraught with risks. The risks that are being created by
software developers are not always known to operators. By demanding that develop‐
ers deliver features to production at a faster pace, we are adding to the risks of its
operation without having a sense of empathy for its operators.

The result of this is that operators grow distrustful of the software that developers
produce. The lack of trust between developers and operators creates a blame culture

64 | Chapter 2: The Cloud Native Application

that tends to confuse the causes of failures that impact the creation of value for the
business.

To alleviate the strain that is being put on traditional structures of an IT organization,
we need to rethink how software delivery and operations teams communicate. Com‐
munication between operations and developers can affect our ability to scale, as the
goals of each party tends to become misaligned over time. To succeed at this requires
a shift towards a more reliable kind of software development, one that puts emphasis
on the experience of an operations team inside the software development process;
one that fosters shared learning and improvement.

Reliability
The expectations that are created between teams, be it operations, development, or
user experience design, we can think of these expectations as contracts. The contracts
that are created between teams imply some level of service is provided or consumed.
By looking at how teams provide services to one another in the process of developing
software, we can better understand how failures in communication can introduce risk
that lead to failures down the road.

Service agreements between teams are created in order to reduce the risk of unexpec‐
ted behavior in the overall functions of scale that produce value for a business. A ser‐
vice agreement between teams is made explicit in order to guarantee that behaviors
are consistent with the expected cost of operations. In this way, services enable units
of a business to maximize its total output. The goal here for a software business is to
reliably predict the creation of value through cost. The result of this goal is what we
call reliability.

The service model for a business is the same model that we use when we build soft‐
ware. This is how we guarantee the reliability of a system, whether it be in the soft‐
ware that we produce to automate a business function or in the people that we train
to perform a manual operation.

Agility
We are beginning to find that there is no longer only one way to develop and operate
software. Driven by the adoption of agile methodologies and a move towards Soft‐
ware as a Service business models, the enterprise application stack is becoming
increasingly distributed. Developing distributed systems is a complex undertaking.
The move towards a more distributed application architecture for companies is being
fueled by the need to deliver software faster and with less risk of failure.

The modern day software-defined business is seeking to restructure their develop‐
ment processes to enable faster delivery of software projects and continuous deploy‐

Reliability | 65

ment of applications into production. Not only are companies wanting to increase the
rate in which they develop software applications, but they also want to increase the
number of software applications that are created and operated to serve the various
business units of an organization.

Software is increasingly becoming a competitive advantage for companies. Better and
better tools are enabling business experts to open up new sources of revenue, or to
optimize business functions in ways that lead to rapid innovation.

At the heart of this movement is the cloud. When we talk about the cloud, we are talk‐
ing about a very specific set of technologies that enable developers and operators to
take advantage of web services that exist to provision and manage virtualized com‐
puting infrastructure.

Companies are starting to move out of the data center and into public clouds. One
such company is the popular subscription-based streaming media company, named
Netflix.

Netflix’s Story
Today, Netflix is one of the world’s largest on-demand streaming media services,
operating their online services in the cloud. Netflix was founded in 1997 in Scotts
Valley, California by Reed Hastings and Marc Randolph. Originally, Netflix provided
an online DVD rental service that would allow customers to pay a flat-fee subscrip‐
tion each month for unlimited movie rentals without late fees. Customers would be
shipped DVDs by mail after selecting from a list of movie titles and placing them into
a queue using the Netflix website.

In 2008, Netflix had experienced a major database corruption that prevented the
company from shipping any DVDs to its customers. At the time, Netflix was just
starting to deploy its streaming video services to customers. The streaming team at
Netflix realized that a similar kind of outage in streaming would be devastating to the
future of its business. Netflix made a critical decision as a result of the database cor‐
ruption, that they would move to a different way of developing and operating their
software, one that ensured that their services would always be available to their cus‐
tomers.

As a part of Netflix’s decision to prevent failures in their online services, they decided
that they must move away from vertically scaled infrastructure and single points of
failure. The realization stemmed from a result of the database corruption, which was
a result of using a vertically scaled relational database. Netflix would eventually
migrate their customer data to a distributed NoSQL database, an open source data‐
base project named Apache Cassandra. This was the beginning of the move to
become a “cloud native” company, a decision to run all of their software applications
as highly distributed and resilient services in the cloud. They settled on increasing the

66 | Chapter 2: The Cloud Native Application

robustness of their online services by adding redundancy to their applications and
databases in a scale out infrastructure model.

As a part of Netflix’s decision to move to the cloud, they would need to migrate their
large application deployments to highly reliable distributed systems. They faced a
major challenge. The teams at Netflix would have to re-architect their applications
while moving away from an on-premise data center to a public cloud. In 2009, Netflix
would begin its move to Amazon Web Services (AWS), and they focused on three
main goals: scalability, performance, and availability.

By the start of 2009, the subscriptions to Netflix’s streaming services had increased by
nearly 100 times. Yuri Izrailevsky, VP Cloud Platform at Netflix, gave a presentation
in 2013 at the AWS reinvent conference. “We would not be able to scale our services
using an on-premise solution,” said Izrailevsky.

Furthermore, Izrailevsky stated that the benefits of scalability in the cloud became
more evident when looking at its rapid global expansion. “In order to give our Euro‐
pean customers a better low-latency experience, we launched a second cloud region
in Ireland. Spinning up a new data center in a different territory would take many
months and millions of dollars. It would be a huge investment.” said Izrailevsky.

As Netflix began its move to hosting their applications on Amazon Web Services,
employees of the company would chronicle their learnings on Netflix’s company blog.
Many of Netflix’s employees were advocating a move to a new kind of architecture
that focused on horizontal scalability at all layers of the software stack.

John Ciancutti, who was then the Vice President of Personalization Technologies at
Netflix, said on the company’s blog in late 2010 that, “cloud environments are ideal
for horizontally scaling architectures. We don’t have to guess months ahead what our
hardware, storage, and networking needs are going to be. We can programmatically
access more of these resources from shared pools within Amazon Web Services
almost instantly.”

What Ciancutti meant by being able to “programmatically access” resources, was that
developers and operators could programmatically access certain management APIs
that are exposed by Amazon Web Services in order to give customers a controller for
provisioning their virtualized computing infrastructure. The interface for these APIs
are in the form of RESTful web services, and they give developers a way to build
applications that manage and provision virtual infrastructure for their applications.

Providing management services to control virtualized computing
infrastructure is one of the primary concepts of cloud computing,
called Infrastructure as a Service, commonly referred to as IaaS.

Netflix’s Story | 67

Ciancutti admitted in the same blog post that Netflix was not very good at predicting
customer growth or device engagement. This is a central theme behind cloud native
companies. Cloud native is a mindset that admits to not being able to reliably predict
when and where capacity will be needed.

In Yuri Izrailevsky’s presentation at the 2013 AWS reinvent conference, he said that
“in the cloud, we can spin up capacity in just a few days as traffic eventually increases.
We could go with a tiny footprint in the beginning and gradually spin it up as our
traffic increases.”

Izrailevsky goes on to say “As we become a global company, we have the benefit of
relying on multiple Amazon Web Services regions throughout the world to give our
customers a great interactive experience no matter where they are.”

The economies of scale that benefited Amazon Web Services’s international expan‐
sion also benefited Netflix. With AWS expanding availability zones to regions outside
of the United States, Netflix expanded its services globally using only the manage‐
ment APIs provided by AWS.

Izrailevsky quoted a general argument of cloud adoption by enterprise IT, “Sure, the
cloud is great, but it’s too expensive for us.” His response to this argument is that “as a
result of Netflix’s move to the cloud, the cost of operations has decreased by 87%.
We’re paying 1/8th of what we used to pay in the data center.”

Izrailevsky explained further why the cloud provided such large cost savings to Net‐
flix. “It’s really helpful to be able to grow without worrying about capacity buffers. We
can scale to demand as we grow.”

Splitting the Monolith
There are two cited major benefits by Netflix of moving to a distributed systems
architecture in the cloud from a monolith: agility and reliability.

68 | Chapter 2: The Cloud Native Application

Netflix’s architecture before going cloud native comprised of a single monolithic JVM
application. While there were multiple advantages of having one large application
deployment, the major drawback was that development teams were slowed down due
to needing to coordinate their changes.

When building and operating software, increased centralization decreases the risk of
a failure at an increased cost of needing to coordinate. Coordination takes time. The
more centralized a software architecture is, the more time it will take to coordinate
changes to any one piece of it.

Monoliths also tend not to be very reliable. When components share resources on the
same virtual machine, a failure in one component can spread to others, causing
downtime for users. The risk of making a breaking change in a monolith increases
with the amount of effort by teams needing to coordinate their changes. The more
changes that occur during a single release cycle also increase the risk of a breaking
change that will cause downtime. By splitting up a monolith into smaller more singu‐
larly focused services, deployments can be made with smaller batch sizes on a team’s
independent release cycle.

Netflix not only needed to transform the way they build and operate their software,
they needed to transform the culture of their organization. Netflix moved to a new
operational model, called DevOps. In this new operational model each team would
become a product group, moving away from the traditional project group structure.
In a product group, teams were composed vertically, embedding operations and
product management into each team. Product teams would have everything they
needed to build and operate their software.

Netflix OSS
As Netflix transitioned to become a cloud native company, they also started to partic‐
ipate actively in open source. In late 2010, Kevin McEntee, then the VP of Systems &
Ecommerce Engineering at Netflix, announced in a blog post about the company’s
future role in open source.

McEntee stated that “the great thing about a good open source project that solves a
shared challenge is that it develops its own momentum and it is sustained for a long
time by a virtuous cycle of continuous improvement.”

In the years that followed this announcement, Netflix open sourced over 50 of their
internal projects, each of which would become a part of the Netflix OSS brand.

Key employees at Netflix would later clarify on the company’s aspirations to open
source many of their internal tools. In July 2012, Ruslan Meshenberg, Netflix’s Direc‐
tor of Cloud Platform Engineering, published a post on the company’s technology
blog. The blog post, titled Open Source at Netflix, explained why Netflix was taking
such a bold move to open source so much of its internal tooling.

Netflix’s Story | 69

Meshenberg wrote in the blog post, on the reasoning behind its open source aspira‐
tions, that “Netflix was an early cloud adopter, moving all of our streaming services to
run on top of AWS infrastructure. We paid the pioneer tax – by encountering and
working through many issues, corner cases and limitations.”

The cultural motivations at Netflix to contribute back to the open source community
and technology ecosystem are seen to be strongly tied to the principles behind the
microeconomics concept known as Economies of Scale. Meshenberg then continues,
stating that “We’ve captured the patterns that work in our platform components and
automation tools. We benefit from the scale effects of other AWS users adopting simi‐
lar patterns, and will continue working with the community to develop the ecosys‐
tem.”

In the advent of what has been referred to as the era of the cloud, we have seen that its
pioneers are not technology companies such as IBM or Microsoft, but rather they are
companies that were born on the back of the internet. Netflix and Amazon are both
businesses who started in the late 90s as dot-com companies. Both companies started
out by offering online services that aimed to compete with their brick and mortar
counterparts.

Both Netflix and Amazon would in time surpass the valuation of their brick and mor‐
tar counterparts. As Amazon had entered itself into the cloud computing market, it
did so by turning its collective experience and internal tooling into a set of services.
Netflix would then do the same on the back of the services of Amazon. Along the
way, Netflix open sourced both its experiences and tooling, transforming themselves
into a cloud native company built on virtualized infrastructure services provided by
AWS by Amazon. This is how the economies of scale are powering forward a revolu‐
tion in the cloud computing industry.

In early 2015, on reports of Netflix’s first quarterly earnings, the company was
reported to be valued at $32.9 billion. As a result of this new valuation for Netflix, the
company’s value had surpassed the value of the CBS network for the first time.

Cloud Native Java
Netflix has provided the software industry with a wealth of knowledge as a result of
their move to become a cloud native company. This book is going to focus taking the
learnings and open source projects by Netflix and apply them as a set of patterns with
two central themes:

• Building resilient distributed systems using Spring and Netflix OSS
• Using continuous delivery to operate cloud native applications with Cloud Foun‐

dry

70 | Chapter 2: The Cloud Native Application

The first stop on our journey will be to understand a set of terms and concepts that
we will use throughout this book to describe building and operating cloud native
applications.

The Twelve Factors
The twelve-factor methodology is a popular set of application development principles
compiled by the creators of the Heroku cloud platform. The Twelve Factor App is a
website that was originally created by Adam Wiggins, a co-founder of Heroku, as a
manifesto that describes Software-as-a-Service applications that are designed to take
advantage of the common practices of modern cloud platforms.

On the website, which is located at http://12factor.net, the methodology starts out by
describing a set of core foundational ideas for building applications.

Example 2-1. Core ideas of the 12-factor application

• Use declarative formats for setup automation, to minimize time and cost for new
developers joining the project;

• Have a clean contract with the underlying operating system, offering maximum
portability between execution environments;

• Are suitable for deployment on modern cloud platforms, obviating the need for
servers and systems administration;

• Minimize divergence between development and production, enabling continu‐
ous deployment for maximum agility;

• And can scale up without significant changes to tooling, architecture, or devel‐
opment practices.

Earlier on in the chapter we talked about the promises that platforms make to its
users who are building applications. In Example 2-1 we have a set of ideas that explic‐
itly state the value proposition of building applications that follow the twelve-factor
methodology. These ideas break down further into a set of constraints—the twelve
individual factors that distill these core ideas into a collection of opinions for how
applications should be built.

Example 2-2. The practices of a twelve-factor application

• Codebase — One codebase tracked in revision control, many deploys
• Dependencies — Explicitly declare and isolate dependencies
• Config — Store config in the environment

The Twelve Factors | 71

http://12factor.net

• Backing services — Treat backing services as attached resources
• Build, release, run — Strictly separate build and run stages
• Processes — Execute the app as one or more stateless processes
• Port binding — Export services via port binding
• Concurrency — Scale out via the process model
• Disposability — Maximize robustness with fast startup and graceful shutdown
• Dev/prod parity — Keep development, staging, and production as similar as

possible
• Logs — Treat logs as event streams
• Admin processes — Run admin/management tasks as one-off processes

The twelve factors, each listed in Example 2-2, describe constraints that help to build
applications that take advantage of the ideas in Example 2-1. The twelve factors are a
basic set of constraints that can be used to build cloud native applications. Since the
factors cover a wide range of concerns that are common practices in all modern cloud
platforms, building 12-factor apps are a common starting point in cloud native appli‐
cation development.

Outside of the 12-factor website—which covers each of the twelve factors in detail—
there are full books that have been written that expand even greater details on each
constraint. The twelve-factor methodology is now used in some application frame‐
works to help developers comply with some, or even all, of the twelve factors out-of-
the-box.

We’ll be using the twelve-factor methodology throughout this book to describe how
certain features of Spring projects were implemented to satisfy this style of applica‐
tion development. For this reason, it’s important that we summarize each of the fac‐
tors here.

Codebase
One codebase tracked in revision control, many deploys

Source code repositories for an application should contain a single application with a
manifest to its application dependencies.

72 | Chapter 2: The Cloud Native Application

Dependencies
Explicitly declare and isolate dependencies

Application dependencies should be explicitly declared and any and all dependencies
should be available from an artifact repository that can be downloaded using a
dependency manager, such as Apache Maven.

Twelve-factor applications never rely on the existence of implicit system-wide pack‐
ages required as a dependency to run the application. All dependencies of an applica‐
tion are declared explicitly in a manifest file that cleanly declares the detail of each
reference.

Config
Store config in the environment

Application code should be strictly separated from configuration. The configuration
of the application should be driven by the environment.

Application settings such as connection strings, credentials, or host names of depen‐
dent web services, should be stored as environment variables, making them easy to
change without deploying configuration files.

Any divergence in your application from environment to environment is considered
an environment configuration, and should be stored in the environment and not with
the application.

The Twelve Factors | 73

Backing services
Treat backing services as attached resources

A backing service is any service that the twelve-factor application consumes as a part
of its normal operation. Examples of backing services are databases, API-driven
RESTful web services, SMTP server, or FTP server.

Backing services are considered to be resources of the application. These resources are
attached to the application for the duration of operation. A deployment of a twelve-
factor application should be able to swap out an embedded SQL database in a testing
environment with an external MySQL database hosted in a staging environment
without making changes to the application’s code.

Build, release, run
Strictly separate build and run stages

The twelve-factor application strictly separates the build, release, and run stages.

• Build stage — The build stage takes the source code for an application and either
compiles or bundles it into a package. The package that is created is referred to as
a build.

• Release stage — The release stage takes a build and combines it with its config.
The release that is created for the deploy is then ready to be operated in an execu‐
tion environment. Each release should have a unique identifier, either using

74 | Chapter 2: The Cloud Native Application

semantic versioning or a timestamp. Each release should be added to a directory
that can be used by the release management tool to rollback to a previous release.

• Run stage — The run stage, commonly referred to as the runtime, runs the appli‐
cation in the execution environment for a selected release.

By separating each of these stages into separate processes, it becomes impossible to
change an application’s code at runtime. The only way to change the application’s
code is to initiate the build stage to create a new release, or to initiate a rollback to
deploy a previous release.

Processes
Execute the app as one or more stateless processes

Twelve-factor applications are created to be stateless in a share-nothing architecture.
The only persistence that an application may depend on is through a backing service.
Examples of a backing service that provide persistence include a database or an object
store. All resources to the application are attached as a backing service at runtime. A
litmus test for testing whether or not an application is stateless is that the application’s
execution environment can be torn down and recreated without any loss of data.

Twelve-factor applications do not store state on a local file system in the execution
environment.

Port bindings
Export services via port binding

Twelve-factor applications are completely self-contained, which means that they do
not require a webserver to be injected into the execution environment at runtime in
order to create a web-facing service. Each application will expose access to itself over
an HTTP port that is bound to the application in the execution environment. During
deployment, a routing layer will handle incoming requests from a public hostname
by routing to the application’s execution environment and the bound HTTP port.

Josh Long, one of the co-authors of this book, is attributed with
popularizing the phrase "Make JAR not WAR" in the Java commu‐
nity. Josh uses this phrase to explain how newer Spring applications
are able to embed a Java application server, such as Tomcat, in a
build’s JAR file.

Concurrency
Scale out via the process model

The Twelve Factors | 75

Applications should be able to scale out processes or threads for parallel execution of
work in an on-demand basis. JVM applications are able to handle in-process concur‐
rency automatically using multiple threads.

Applications should distribute work concurrently depending on the type of work that
is used. Most application frameworks for the JVM today have this built in. Some sce‐
narios that require data processing jobs that are executed as long-running tasks
should utilize executors that are able to asynchronously dispatch concurrent work to
an available pool of threads.

The twelve-factor application must also be able to scale out horizontally and handle
requests load-balanced to multiple identical running instances of an application. By
ensuring applications are designed to be stateless, it becomes possible to handle heav‐
ier workloads by scaling applications horizontally across multiple nodes.

Disposability
Maximize robustness with fast startup and graceful shutdown

The processes of a twelve-factor application are designed to be disposable. An appli‐
cation can be stopped at any time during process execution and gracefully handle the
disposal of processes.

Processes of an application should minimize startup time as much as possible. Appli‐
cations should start within seconds and begin to process incoming requests. Short
startups reduce the time it takes to scale out application instances to respond to
increased load.

If an application’s processes take too long to start, there may be reduced availability
during a high-volume traffic spike that is capable of overloading all available healthy
application instances. By decreasing the startup time of applications to just seconds,
newly scheduled instances are able to more quickly respond to unpredicted spikes in
traffic without decreasing availability or performance.

Dev/prod parity
Keep development, staging, and production as similar as possible

The twelve-factor application should prevent divergence between development and
production environments. There are three types of gaps to be mindful of.

• Time gap — Developers should expect development changes to be quickly
deployed into production

• Personnel gap — Developers who make a code change are closely involved with
its deployment into production, and closely monitor the behavior of an applica‐
tion after making changes

76 | Chapter 2: The Cloud Native Application

• Tools gap — Each environment should mirror technology and framework
choices in order to limit unexpected behavior due to small inconsistencies

Logs
Treat logs as event streams

Twelve-factor apps write logs as an ordered event stream to stout. Applications
should not attempt to manage the storage of their own log files. The collection and
archival of log output for an application should instead be handled by the execution
environment.

Admin processes
Run admin/management tasks as one-off processes

It sometimes becomes the case that developers of an application need to run one-off
administrative tasks. These kinds of tasks could include database migrations or run‐
ning one-time scripts that have been checked into the application’s source code repos‐
itory. These kinds of tasks are considered to be admin processes. Admin processes
should be run in the execution environment of an application, with scripts checked
into the repository to maintain consistency between environments.

The Twelve Factors | 77

CHAPTER 3

Messaging

Messaging supports connecting publishing application events to services across pro‐
cesses and networks. The idea is simple enough: email for distributed processes. Mes‐
saging has a lot of applications, many of which Martin Fowler captures in this blog
post, What do you mean by “Event-Driven”?:

• event notifications: one system sends event messages to notify other systems of a
change in the domain. There is no expectation that the recipient of the message
produce a reply. The source system doesn’t expect it, and doesn’t use it. The event
notification doesn’t contain any state, so the recipients will need to know how to
re-source the state from the source system or map the event to its internal state.

• event-carried state transfer: a system produces a message which contains a self-
contained message, including everything the recipient will need to process. In
this scenario, the recipient won’t need to call the sender for more information.
This is convenient if the source system goes down.

• event-sourcing: in this setup, an event message is produced to notify all interes‐
ted consumer systems of a state change (as with an event notification), and that
event is also recorded and persisted for replay later on. In this way, the state of the
system is functionally the ultimate state of the system after all the recorded mes‐
sages have been replayed. If any of the consumers should lose their data, the
events may be replayed to reproduce the original state.

Martin also includes CQRS in his discussion, though it isn’t strictly to do with mes‐
saging, so we’ll leave it off of this list.

Message brokers - like Apache Kafka, RabbitMQ, ActiveMQ, or MQSeries - act as the
repository and hub for messages. Producers and consumers connect to a message
broker, not to each other. Traditional brokers are fairly static, but offerings like Rab‐
bitMQ and Apache Kafka can scale as needed. Messaging systems decouple producer

79

https://martinfowler.com/articles/201701-event-driven.html

from consumer. A producer or a consumer does not need to share the same location,
exist in the same place or process, or even be available at the same time. These quali‐
ties are even more important in a cloud environment where services are fluid and
ephemeral. Cloud platforms support elasticity - they can grow and shrink as demand
requires. Messaging systems are an ideal way to throttle load when systems are down
and to load-balance when scale requires.

Event Driven Architectures with Spring Integration
We’ve looked thus far at processing that we initiate, on our schedule. The world
doesn’t run on our schedule. We are surrounded by events that drive everything we
do. The logical windowing of data is valuable, but some data just can’t be treated in
terms of windows. Some data is continuous and connected to events in the real world.
In this section we’ll look at how to work with data driven by events.

When we think of events, most of us probably think of messaging technologies. Mes‐
saging technologies, like JMS, RabbitMQ, Apache Kafka, Tibco Rendezvous and IBM
MQSeries. These technologies let us connect different autonomous clients through
messages sent to centralized middleware, in much the same way that e-mail lets
humans connect to each other. The message broker stores delivered messages until
such time as the client can consume and respond to it (in much the same way as an e-
mail inbox does).

Most of these technologies have an API, and a usable client that we can use. Spring
has always had good low-level support for messaging technologies; you’ll find sophis‐
ticated low-level support for the JMS API, AMQP (and brokers like RabbitMQ),
Redis and Apache Geode.

There are many types of events int he world, of course. receiving an email is one.
Receiving a tweet another. A new file in a directory? That’s an event too. An XMPP-
powered chat message? Also an event. Your MQTT-powered microwave sending a
status update? That’s also an event.

It’s all a bit overwhelming! If you’re looking at the landscape of different event sources
out there then you’re (hopefully) seeing a lot of opportunity and of complexity. Some
of the complexity comes from the act of integration itself. How do you build a system
that depends on events from these various systems? One might address integration
int erms of point-to-point connections between the various event sources. This will
result eventually in spaghetti architecture, and it’s a mathematically poor idea, too, as
every integration point needs a connection with every other one. It’s a binomial coef‐
ficient: n(n-1) / 2. Thus, for six services you’d need 15 different point-to-point con‐
nections!

Instead, let’s take a more structured approach to integration with Spring Integration.
At the heart of Spring Integration are the Spring framework MessageChannel and Mes

80 | Chapter 3: Messaging

sage<T> types. A Message<T> object has a payload and a set of headers that provide
metadata about the message payload itself. A MessageChannel is like a
java.util.Queue. Message<T> objects flow through MessageChannel instances.

Spring Integration supports the integration of services and data across multiple
otherwise incompatible systems. Conceptually, composing an integration flow is sim‐
ilar to composing a pipes-and-filters flow on a UNIX OS with stdin and stdout:

Example 3-1. an example of using the pipes-and-filters model to connect otherwise
singly focused command line utilities

cat input.txt | grep ERROR | wc -l > output.txt

Here, we take data from a source (the file input.txt), pipe it to the grep command to
filter the results and keep only the lines that contain the token ERROR. Then we pipe it
to the wc utility to count how many lines there are. Finally, the final count is written
to an output file, output.txt. These components - cat, grep, and wc - know nothing
of each other. They were not designed with each other in mind. Instead, they know
only how to read from stdin and write to stdout. This normalization of data makes
it very easy to compose complex solutions from simple atoms. In the example, the
cat command turns the file data into data that any process aware of stdin can read. It
adapts the inbound data into the normalized format, lines of strings on stdout. At the
end, the redirect (>) operator turns the normalized data, lines of strings, into data on
the file system. It adapts it. The pipe (|) character is used to signal that the output of
one component should flow to the input of another.

A Spring Integration flow works the same way: data is normalized into Message<T>
instances. Each Message<T> has a payload and headers - metadata about the payload
in a Map<K,V> - that are the input and output of different messaging components.
These messaging components are typically provided by Spring Integration, but it’s
easy to write and use your own. There are all manner of messaging components sup‐
porting all of the [the Enterprise Application Integration patterns](http://www.enter
priseintegrationpatterns.com/) (filters, routers, transformers, adapters, gateways, etc.).
The Spring framework MessageChannel is a named conduit through which Mes
sage<T>`s flow between messaging components. They're pipes and, by

default, they work sort of like a `java.util.Queue. Data in, data out.

Messaging Endpoints
These MessageChannel objects are connected through messaging endpoints, Java
objects that do different things with the messages. Spring Integration will do the right
thing when you give it a Message<T> or just a T for the various components. Spring
Integration provides a component model that you might use, or a Java DSL. Each

Event Driven Architectures with Spring Integration | 81

http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/

messaging endpoint in a Spring Integraton flow may produce an output value which
is then sent to whatever is downstream, or null, which terminates processing.

Inbound gateways take incoming requests from external systems, process them as
`Message<T>`s, and send a reply. Outbound gateways take `Message<T>`s, forward
them to an external system, and await the response from that system. They support
request and reply interactions.

An inbound adapter is a component that takes messages from the outside world and
then turns them into a Spring Message<T>. An outbound adapter does the same
thing, in reverse; it takes a Spring Message<T> and delivers it as the message type
expected by the downstream system. Spring Integration ships with a proliferation of
different adapters for technologies and protocols including MQTT, Twitter, email,
(S)FTP(S), XMPP, TCP/UDP, etc.

There are two types of inbound adapters: either a polling adapter or an event drive
adapter. The inbound polling adapter is configured to automatically pull a certain
interval or rate an upstream message source.

A gateway is a component that handles both requests and replies. For example, an
inbound gateway would take a message from the outside world, deliver it to Spring
Integration, and then deliver a reply message back to the outside world. A typical
HTTP flow might look like this. An outbound gateway would take a spring integra‐
tion message and deliver it to the outside world, then take the reply and delivered
back in the spring integration. You might see this when using the RabbitMQ broker
and you’ve specified a reply destination.

A filter is a component that takes incoming messages and then applies some sort of
condition to determine whether the message should proceed. Think of a filter like an
if (...) test in Java.

A router takes an incoming message and applies a test (any test you want) to deter‐
mine where to send that message downstream. Think of a router as a switch state‐
ment for messages.

A transformer takes a message and does something with it, optionally enriching or
changing it, and then it sends the message out.

A splitter takes a message and then, based on some property of the message, divides
it into multiple smaller messages that are then fowarded downstream. You might for
example have an incoming message for an order and then forward a message for each
line item in that order to some sort of fulfillment flow.

An aggregator takes multiple messages, correlated through some unique property
and then synthesizes a message that is sent downstream.

82 | Chapter 3: Messaging

The integration flow is aware of the system, but the involved components used in the
integration don’t need to be. This makes it easy to compose complex solutions from
small, otherwise silo’d services. The act of building a Spring integration flow is
rewarding in of itself. It forces a logical decomposition of services; they must be able
to communicate in terms of messages that contain payloads. The schema of the pay‐
load is the contract. This property is very useful in a distributed system.

From Simple Components, Complex Systems
Spring Integration supports event-driven architectures because it can help detect and
then respond to events in the external world. For example, you can use Spring Inte‐
gration to poll a filesystem every 10 seconds and publish a Message<T> whenever a
new file appears. You can use Spring Integration to act as a listener to messages deliv‐
ered to a Apache Kafka topic. The adapter handles responding to the external event
and frees you from worrying too much about originating the message and lets you
focus on handling the message once it arrives. It’s the integration equivalent of
dependency injection!

Dependency injection leaves component code free of worries about resource initiali‐
zation and acquisition and leaves it free to focus on writing code with those depen‐
dencies. Where did the javax.sql.DataSource field come from? Who cares! Spring
wired it in, and it may have gotten it from a Mock in a test, from JNDI in a classic
application server, or from a configured Spring Boot bean. Component code remains
ignorant of those details. You can explain dependency injection with the “Hollywood
principal:” “don’t call me, I’ll call you!” Dependant objects are provided to an object,
instead of the object having to initialize or lookup the resource. This same principle
applies to Spring Integration: code is written in such a way that its ignorant of where
messages are coming from. It simplifies development considerably.

So, let’s start with something simple. Let’s look at a simple example that responds to
new files appearing in a directory, logs the observed file, and then dynamically routes
the payload to one of two possible flows based on a simple test, using a router.

We’ll use the Spring Integration Java DSL. The Java DSL works very nicely with lamb‐
das in Java 8. Each IntegrationFlow chains components together implicitly. We can
make explicit this chaining by providing connecting MessageChannel references.

Example 3-2. an example of using the pipes-and-filters model to connect otherwise
singly focused command line utilities

package eda;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;

Event Driven Architectures with Spring Integration | 83

import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.channel.MessageChannels;
import org.springframework.integration.dsl.file.Files;
import org.springframework.messaging.MessageChannel;

import java.io.File;

@Configuration
public class IntegrationConfiguration {

 private final Log log = LogFactory.getLog(getClass());

 @Bean
 IntegrationFlow etlFlow(@Value("${input-directory:${HOME}/Desktop/in}")
File dir) {
 // @formatter:off
 return IntegrationFlows

 .from(Files
 .inboundAdapter(dir)
 .autoCreateDirec
tory(true),
 consumer -> consumer.poller(
 spec -> spec.fixedRate(1000)))

 .handle(File.class, (file, headers) -> {
 log.info("we noticed a new file, " + file);
 return file;
 })

 .routeToRecipients(
 spec -> spec
 .recipient(csv(),
 msg ->
hasExt(msg.getPayload(), ".csv"))
 .recipient(txt(),
 msg ->
hasExt(msg.getPayload(), ".txt")))
 .get();
 // @formatter:on
 }

 private boolean hasExt(Object f, String ext) {
 File file = File.class.cast(f);
 return file.getName().toLowerCase().endsWith(ext.toLowerCase());
 }

 @Bean
 MessageChannel txt() {

84 | Chapter 3: Messaging

 return MessageChannels.direct().get();
 }

 @Bean
 MessageChannel csv() {
 return MessageChannels.direct().get();
 }

 @Bean
 IntegrationFlow txtFlow() {
 return IntegrationFlows.from(txt()).handle(File.class, (f, h) -> {
 log.info("file is .txt!");
 return null;
 }).get();
 }

 @Bean
 IntegrationFlow csvFlow() {
 return IntegrationFlows.from(csv()).handle(File.class, (f, h) -> {
 log.info("file is .csv!");
 return null;
 }).get();
 }
}

configure a Spring Integration inbound File adapter. We also want to configure
how the adapter consumes incoming messages and at what millisecond rate the
poller that sweeps the directory should scan.

this method announces that we’ve received a file and then forward the payload
onward

route the request to one of two possible integration flows, derived from the
extension of the file, through well-known MessageChannel instances

the channel through which all files with the .txt extension will travel

the channel through which all files with the .csv extension will travel

the IntegrationFlow to handle files with .txt

the IntegrationFlow to handle files with .csv

The channel is a logical decoupling; it doesn’t matter what’s on either the other end of
the channel, so long as we have a pointer to the channel. Today the consumer that

Event Driven Architectures with Spring Integration | 85

comes from a channel might be a simple logging MessageHandler<T>, as in this
example, but tomorrow it might instead be a component that writes a message to
Apache Kafka. We can also begin a flow from the moment it arrives in a channel.
How, exactly, it arrives in the channel is irrelevant. We could accept requests from a
REST API, or adapt messages coming in from Apache Kafka, or monitor a directory.
It doesn’t matter so long as we somehow adapt the incoming message into a
java.io.File and submit it to the right channel.

Let’s suppose we have a batch process that works on files. Traditionally, such a job
would run at a fixed time, on a scheduler like cron, perhaps. This introduces idle time
between runs and that idle period delays the results we’re looking for. We can use
Spring Integration to kick off a batch job whenever a new java.io.File appears,
instead. Spring Integration provides an inbound file adapter. We’ll listen for messages
coming from the inbound file adapter, transform it into a message whose payload is a
JobLaunchRequest. The JobLaunchRequest describes which Job to launch and it
describes the JobParameters for that job. Finally, the JobLaunchRequest is forwarded
to a JobLaunchingGateway which then produces as its output a JobExecution object
that we inspect to decide where to route execution. If a job completes normally, we’ll
move the input file to a directory of completed jobs. Otherwise, we’ll move the file to
an error directory.

We’ll have one main flow that forwards execution to one of two branches, so two
channels: invalid and completed.

Example 3-3. the two MessageChannel instances

package edabatch;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.channel.MessageChannels;
import org.springframework.messaging.MessageChannel;

@Configuration
class BatchChannels {

 @Bean
 MessageChannel invalid() {
 return MessageChannels.direct().get();
 }

 @Bean
 MessageChannel completed() {
 return MessageChannels.direct().get();
 }

}

86 | Chapter 3: Messaging

The main flow, called etlFlow, monitors a directory (directory) at a fixed rate and
turns each event into a JobLaunchRequest.

Example 3-4. the two EtlFlowConfiguration instances

package edabatch;

import org.springframework.batch.core.*;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.batch.integration.launch.JobLaunchRequest;
import org.springframework.batch.integration.launch.JobLaunchingGateway;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.file.Files;
import org.springframework.integration.support.MessageBuilder;
import org.springframework.messaging.Message;

import java.io.File;

import static org.springframework.integration.file.FileHeaders.ORIGINAL_FILE;

@Configuration
class EtlFlowConfiguration {

 @Bean
 IntegrationFlow etlFlow(@Value("${input-directory:${HOME}/Desktop/in}")
File directory,
 BatchChannels c, JobLauncher launcher, Job job) {

 // @formatter:off
 return
 IntegrationFlows
 .from(
 Files.inboundAdapter(direc
tory).autoCreateDirectory(true),
 cs -> cs.poller(p -> p.fixe
dRate(1000)))
 .handle(File.class, (file, headers) -> {

 String absolutePath = file.getAbsolute
Path();

 JobParameters params = new JobParameters
Builder()
 .addString("file", absolute
Path)
 .toJobParameters();

Event Driven Architectures with Spring Integration | 87

 return MessageBuilder
 .withPayload(new JobLaunchRe
quest(job, params))
 .setHeader(ORIGINAL_FILE, absolute
Path)
 .copyHeadersIfAbsent(headers)
 .build();
 })
 .handle(new JobLaunchingGateway(launcher))
 .routeToRecipients(
 spec -> spec
 .recipient(c.invalid(), this::notFin
ished)
 .recipient(c.completed(), this::fin
ished))
 .get();

 // @formatter:on
 }

 private boolean finished(Message<?> msg) {
 Object payload = msg.getPayload();
 return JobExecution.class.cast(payload).getExitStatus().equals(Exit
Status.COMPLETED);
 }

 private boolean notFinished(Message<?> msg) {
 return !this.finished(msg);
 }

}

this EtlFlowConfiguration starts off the same as in the previous example

setup some JobParameters for our Spring Batch job using the JobParameters
Builder

forward the job and associated parameters to a JobLaunchingGateway

test to see if the job exited normally by examining the JobExecution

The last component in the Spring Integration flow is a router that examines the Exit
Status from the Job and determines to which directory the input file should be
moved. If the file was completed successfully, it will be routed to completed channel.
If there was an error or the job terminated early, for some reason, it will be routed to
the invalid channel.

88 | Chapter 3: Messaging

The FinishedFileFlowConfiguration configuration listens for incoming messages
on the completed channel, moves its incoming payload (a java.io.File) to a comple
ted directory, and then queries the table to which the data was written.

Example 3-5. the FinishedFileFlowConfiguration instances

package edabatch;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.batch.core.JobExecution;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.file.FileHeaders;
import org.springframework.jdbc.core.JdbcTemplate;

import java.io.File;
import java.util.List;

import static edabatch.Utils.mv;

@Configuration
class FinishedFileFlowConfiguration {

 private Log log = LogFactory.getLog(getClass());

 @Bean
 IntegrationFlow finishedJobsFlow(BatchChannels channels,
 @Value("${completed-directory:${HOME}/Desktop/completed}")
File finished,
 JdbcTemplate jdbcTemplate) {
 // @formatter:off
 return IntegrationFlows
 .from(channels.completed())
 .handle(JobExecution.class,
 (je, headers) -> {
 String ogFileName =
String.class.cast(headers
 .get(File
Headers.ORIGINAL_FILE));
 File file = new File(ogFile
Name);
 mv(file, finished);
 List<Contact> contacts =
jdbcTemplate.query(
 "select *
from CONTACT",
 (rs, i) ->

Event Driven Architectures with Spring Integration | 89

new Contact(

rs.getBoolean("valid_email"),

rs.getString("full_name"),

rs.getString("email"),

rs.getLong("id")));
 contacts.forEach(log::info);
 return null;
 }).get();
 // @formatter:on
 }

}

The InvalidFileFlowConfiguration configuration listens for incoming messages on
the invalid channel, moves its incoming payload (a java.io.File) to an errors
directory and then terminates the flow.

Example 3-6. the InvalidFileFlowConfiguration instances

package edabatch;

import org.springframework.batch.core.JobExecution;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.file.FileHeaders;

import java.io.File;

import static edabatch.Utils.mv;

@Configuration
class InvalidFileFlowConfiguration {

 @Bean
 IntegrationFlow invalidFileFlow(BatchChannels channels,
 @Value("${error-directory:${HOME}/Desktop/errors}") File
errors) {
 // @formatter:off
 return IntegrationFlows
 .from(channels.invalid())
 .handle(JobExecution.class,
 (je, headers) -> {
 String ogFileName =
String.class.cast(headers

90 | Chapter 3: Messaging

 .get(File
Headers.ORIGINAL_FILE));
 File file = new File(ogFile
Name);
 mv(file, errors);
 return null;
 }).get();
 // @formatter:on
 }

}

The MessageChannel definitions serve to decouple different integration flows. We’re
able to reuse common functionality and compose higher order systems using only a
channel as a connection. The MessageChannel is the interface.

Message Brokers, Bridges, the Competing Consumer
Pattern and Event-Sourcing
The last example was fairly straightforward. It’s a simple flow that works in terms of
messages (events). We’re able to begin processing as soon as possible without over‐
whelming the system. As our integration is built in terms of channels, and every com‐
ponent could consume or produce messages with a channel, it would be trivial to
introduce a message broker in between the inbound file adapter and the node that
actually launches the Spring Batch job. This would help us scale out the work across a
cluster, like one powered by Cloud Foundry.

That said, you’re not likely going to be integrating file systems in a cloud-native archi‐
tecture. You will, however, probably have other, non-transactional, event sources
(message producers) and sinks (message consumers) with which you’ll want to inte‐
grate.

We could use the saga pattern and design compensatory transactions for every service
with which we integrate and the possible failure conditions, but we might be able to
get away with something simpler if we use a message broker. Message brokers are
conceptually very simple: as messages are delivered to the broker, they’re stored and
delivered to connected consumers. If there are no connected consumers, then the
broker will store the messages and redeliver them upon connection of a consumer.

Message brokers typically offer two types of destinations (think of them as mail‐
boxes): publish-subscribe and point-to-point. A public-subscribe destination delivers
one message to all connected consumers. It’s a bit like broadcasting a message over a
megaphone to a full room.

Publish-subscribe messaging supports event-collaboration, wherein multiple systems
keep their own view or perspective of the state of the world. As new events arrive

Message Brokers, Bridges, the Competing Consumer Pattern and Event-Sourcing | 91

from different components in the system, with updates to state, each system updates
its local view of the system state. Suppose you had a catalog of products. As new
entries were added to the product-service, it might publish an event describing the
delta. The search-engine service might consume the messages and update its internal
Elasticsearch index. The inventory-service might update its own internal state in an
RDBMS. The recommendation-service might update its internal state in a Neo4J ser‐
vice. These systems no longer need to ask the product-service for anything, the
product-service tells. If you record every event in a log, you have the ability to do
temporal queries, analyzing the state of the system at any time since in the past. If any
service should fail, its internal state may be replayed entirely from the log. You can
cherry pick parts of the state by replaying state up until a point and perhaps skipping
over some anomolous event. Yes, this is how a version control system works! This
approach is called event-sourcing, and it’s very powerful. Message brokers like Apache
Kafka have the ability to selectively consume messages given an offset. You could, of
course, re-read all the messages which would give you, in effect, a poor man’s event-
source. There are also some purpose-built event-source technologies like Chris
Richardson’s Eventuate platform.

A point-to-point destination delivers one message to one consumer, even if there are
multiple connected consumers. This is a bit like telling one person a secret. If you
connect multiple consumers and they all work as fast as they can to drain messages
from the point-to-point destination then you get a sort of load-balancing: work gets
divided by the number of connected consumers. This approach, called the competing
consumers pattern, simplifies load-balancing work across multiple consumers and
makes it an ideal way to leverage the elasticity of a cloud computing environment like
Cloud Foundry, where horizontal capacity is elastic and (virtually) infinite.

Message brokers also have their own, resource-local notion of a transaction. A pro‐
ducer may deliver a message and then, if necessary, withdraw it, effectively rolling the
message back. A consumer may accept delivery of a message, attempt to do some‐
thing with it, and then acknowledge the delivery or - if something should go wrong -
return the message to the broker, effectively rolling back the delivery. Eventually both
sides we’ll agree upon the state. This is different than a distributed transaction in that
the message broker introduces the variable of time, or temporal decoupling. In so
doing it simplifies the integration between services. This property makes it easier to
reason about state in a distributed system. You can ensure that two otherwise non-
transactional resources will - eventually agree upon state. In this way, a message
broker bridges the two otherwise non-transactional resources.

A message broker complicates the architecture by adding another moving part to the
system. Message brokers have well-known recipes for disaster recovery, backups, and
scale out. An organization will neeed to know how to do this and then they can reuse
that across all services. The alternative is that every service be forced to re-invent or,
less desirably, go without these qualities. If you’re using a platform like Cloud Foun‐

92 | Chapter 3: Messaging

http://eventuate.io
http://eventuate.io

dry which already manages the message broker for you, then using a message broker
should be a very easy decision for it.

Logically, message brokers make a lot of sense as a way by which we can connect dif‐
ferent services. Spring Integration provides ample support here in the way of adapters
that produce and consume messages from a diverse set of brokers.

Spring Cloud Stream
While Spring Integration is on solid footing to solve the problems of service-to-
service communication with message brokers, it might seem a bit too clumsy in the
large. We want to support messaging with the same ease as we think about REST-
based interactions with Spring. We’re not going to connect our services using Twitte,
or e-mail. More likely, we’ll use RabbitMQ or Apache Kafka or similar message brok‐
ers with known interaction modes. We could explicitly configure inbound and out‐
bound RabbitMQ or Apache Kafka adapers, of course. Instead, let’s move up the stack
a little bit, to simplify our work and remove the congnitive dissonance of configuring
inbound and outbound adapters every time we want to work with another service.

Spring integration does a great job of decoupling component in terms of Message
Channel objects. A MessageChannel is a nice level of indirection. From the perspec‐
tive of our application logic, a channel represents a logical conduit to some
downstream service that will route through a message broker.

In this section, we’ll look at Spring Cloud Stream. Spring Cloud Stream sits atop
Spring Integration, with the channel at the heart of the inteaction model. It implies
conventions and supports easy externalization of configuration. In exchange, it makes
the common case of connecting services with a message broker much cleaner and
more concise.

Let’s have a look at a simple example. We’ll build a producer and a consumer. The
producer will expose a REST API endpoint that, when invoked, publishes a message
into two channels. One for broadcast, or publish-subscribe-style messaging, and the
other for point-to-point messaging. We’ll then standup a consumer to accept these
incoming messages.

Spring Cloud Stream makes it easy to define channels that are then connected to
messaging technologies. We can use binder implementations to, by convention, con‐
nect to a broker. In this example, we’ll use RabbitMQ, a popular message broker that
speaks the AMQP specification. The binder for Spring Cloud Stream’s RabbitMQ
support is org.springframework.cloud : spring-cloud-starter-stream-rabbit.
There are clients and bindings in dozens of languages, and this makes RabbitMQ
(and the AMQP specification in general) a fine fit for integration across different lan‐
guages and platforms. Spring Cloud Stream builds on Spring Integration (which pro‐
vides the necessary inbound and outbound adapters) and Spring Integration in turn

Spring Cloud Stream | 93

builds on Spring AMQP (which provides the low-level AmqpOperations, RabbitTem
plate, a RabbitMQ ConnectionFactory implementation, etc.). Spring Boot autocon‐
figures a ConnectionFactory based on defaults or properties. On a local machine
with an unadulturated RabbitMQ instance, this application will work out of the box.

A Stream Producer
The centerpiece of Spring Cloud Stream is a binding. A binding defines logical refer‐
ences to other services through MessageChannel instances that we’ll leave to Spring
Cloud Stream to connect for us. From the perspective of our business logic, these
downstream or upstream messaging-based services are unknowns on the other side
of MessageChannel objects. We don’t need to worry about how the connection is
made, for the moment. Let’s define two channels, one for broadcasting a greeting to
all consumers and another for sending a greeting point-to-point, once, to whichever
consumer happens to receive it first.

Example 3-7. a simple MessageChannel-centric greetings producer

package stream.producer;

import org.springframework.cloud.stream.annotation.Output;
import org.springframework.messaging.MessageChannel;

public interface ProducerChannels {

 String DIRECT = "directGreetings";
 String BROADCAST = "broadcastGreetings";

 @Output(DIRECT)

 MessageChannel directGreetings();

 @Output(BROADCAST)
 MessageChannel broadcastGreetings();
}

by default the name of the stream, which we’ll work with in other parts of the
system, is based on the MessageChannel method itself. It’s useful to provide a
String constant in the interface so we can reference without any magic strings.

Spring Cloud Stream provides two annotations, @Output and @Input. An @Out
put annotation tells Spring Cloud Stream that messages put into the channel will
be sent out (usually, and ultimately, through an outbound channel adapter in
Spring Integration).

94 | Chapter 3: Messaging

We need to give Spring Cloud Stream an idea of what to do with data sent into these
channels which we can do with some well-placed properties in the environment.
Here’s what our producer node’s application.properties looks like.

Example 3-8. a simple MessageChannel-centric greetings producer

spring.cloud.stream.bindings.broadcastGreetings.destination=greetings-pub-sub
spring.cloud.stream.bindings.directGreetings.destination=greetings-p2p

spring.rabbitmq.addresses=localhost

in these two lines the sections just after spring.cloud.stream.bindings. and
just before .destination have to match the name of the Java MessageChannel.
This is the application’s local perspective on the service it’s calling. The bit after
the = sign is the agreed upon rendez-vous point for the producer and the con‐
sumer. Both sides need to specify the exact name here. This is the name of the
destination in whatever broker we’ve configured.

we’re using Spring Boot’s auto-configuration to create a RabbitMQ Connection
Factory which Spring Cloud Stream will depend on.

Let’s look now at a simple producer that stands up a REST API that then publishes
messages to be observed in the consumer.

Example 3-9. a simple MessageChannel-centric greetings producer

package stream.producer.channels;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.stream.annotation.EnableBinding;
import org.springframework.http.ResponseEntity;
import org.springframework.messaging.MessageChannel;
import org.springframework.messaging.support.MessageBuilder;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import stream.producer.ProducerChannels;

@SpringBootApplication
@EnableBinding(ProducerChannels.class)

public class StreamProducer {

 public static void main(String args[]) {
 SpringApplication.run(StreamProducer.class, args);

Spring Cloud Stream | 95

 }
}

@RestController
class GreetingProducer {

 private final MessageChannel broadcast, direct;

 @Autowired
 GreetingProducer(ProducerChannels channels) {
 this.broadcast = channels.broadcastGreetings();
 this.direct = channels.directGreetings();
 }

 @RequestMapping("/hi/{name}")
 ResponseEntity<String> hi(@PathVariable String name) {
 String message = "Hello, " + name + "!";

 this.direct.send(MessageBuilder.withPayload("Direct: " + mes
sage).build());

 this.broadcast.send(MessageBuilder.withPayload("Broadcast: " + mes
sage).build());
 return ResponseEntity.ok(message);
 }
}

the @EnableBinding annotation activates Spring Cloud Stream

we inject the hydrated ProducerChannels and then dereference the required
channels in the constructor so that we can send messages whenever somebody
makes an HTTP request at /hi/{name}.

this is a regular Spring framework channel, so it’s simple enough to use the Messa
geBuilder API to create a Message<T>.

Style matters, of course, so while we’ve reduced the cost of workign with our down‐
stream services to an interface, a few lines of property declarations and a few lines of
messaging-centric channel manipulation, we could do better if we used Spring Inte‐
gration’s messaging gateway support. A messaging gateway, as a design pattern, is
meant to hide the client from the messaging logic behind a service. From the client
perspective, a gateway may seem like a regular object. This can be very convenient.
You might define an interface and synchronous service today and then extract it out
as a messaging gateway based implementation tomorrow and nobody would be the
wiser. Let’s revisit our producer and, instead of sending messages directly with Spring
Integration, let’s send messages using a messaging gateway.

96 | Chapter 3: Messaging

Example 3-10. a messaging gateway producer implementation.

package stream.producer.gateway;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.stream.annotation.EnableBinding;
import org.springframework.http.ResponseEntity;
import org.springframework.integration.annotation.Gateway;
import org.springframework.integration.annotation.IntegrationComponentScan;
import org.springframework.integration.annotation.MessagingGateway;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import stream.producer.ProducerChannels;

@MessagingGateway
interface GreetingGateway {

 @Gateway(requestChannel = ProducerChannels.BROADCAST)
 void broadcastGreet(String msg);

 @Gateway(requestChannel = ProducerChannels.DIRECT)
 void directGreet(String msg);
}

@SpringBootApplication
@EnableBinding(ProducerChannels.class)

@IntegrationComponentScan

public class StreamProducer {

 public static void main(String args[]) {
 SpringApplication.run(StreamProducer.class, args);
 }
}

@RestController
class GreetingProducer {

 private final GreetingGateway gateway;

 @Autowired
 GreetingProducer(GreetingGateway gateway) {
 this.gateway = gateway;
 }

Spring Cloud Stream | 97

 @RequestMapping(method = RequestMethod.GET, value = "/hi/{name}")
 ResponseEntity<?> hi(@PathVariable String name) {
 String message = "Hello, " + name + "!";
 this.gateway.directGreet("Direct: " + message);
 this.gateway.broadcastGreet("Broadcast: " + message);
 return ResponseEntity.ok(message);
 }
}

the @EnableBinding annotation activates Spring Cloud Stream, as before

many Spring frameworks register stereotype annotations for custom compo‐
nents, but Spring Integration can also turn interface definitions into beans, so we
need a custom annotation to activate Spring Integration’s component-scanning to
find our declarative, interface-based messaging gateway

the @MessagingGateway is one of the many messaging endpoints supported by
Spring Integration (as an alternative to the Java DSL, which we’ve used thus far).
Each method in the gateway is annotated with @Gateway where we specify on
which message channel the arguments to the method should go. In this case, it’ll
be as though we sent the message onto a channel and called .send(Mes
sage<String>) with the argument as a payload.

the GreetingGateway is just a regular bean, as far as the rest of our business logic
is concerned.

A Stream Consumer
On the other side, we want to accept delivery of messages and log them out. We’ll
create channels using an interface. It’s worth reiterating: these channel names don’t
have to line up with the names on the producer side; only the names of the destina‐
tions in the brokers do.

Example 3-11. the channels for incoming greetings

package stream.consumer;

import org.springframework.cloud.stream.annotation.Input;
import org.springframework.messaging.SubscribableChannel;

public interface ConsumerChannels {

 String DIRECTED = "directed";
 String BROADCASTS = "broadcasts";

 @Input(DIRECTED)

98 | Chapter 3: Messaging

 SubscribableChannel directed();

 @Input(BROADCASTS)
 SubscribableChannel broadcasts();

}

the only thing worth noting here is that these channels are annotated with
@Input (naturally!) and that they return a MessageChannel subtype that supports
subscribing to incoming messages, SubscribableChannel.

Remember, all bindings in Spring Cloud Stream are publish-subscribe by default. We
can achieve the effect of exclusivity and a direct connection with a consumer group.
Given, say, ten instances of a consumer in a group named foo, only one instance
would see a message delivered to it. In a sufficiently distributed system, we can’t be
assured that a service will always be running, so we’ll take advantage of durable sub‐
scriptions to ensure that messages are redelivered as soon as a consumer connects to
the broker.

Example 3-12. the application.properties for our consumer

spring.cloud.stream.bindings.broadcasts.destination=greetings-pub-sub

spring.cloud.stream.bindings.directed.destination=greetings-p2p
spring.cloud.stream.bindings.directed.group=greetings-p2p-group
spring.cloud.stream.bindings.directed.durableSubscription=true
server.port=0
spring.rabbitmq.addresses=localhost

this should look fairly familiar given what we just covered in the producer

here we configure a destination, as before, but we also give our directed con‐
sumer an exclusive consumer group. Only one node among all the active con‐
sumers in the group greetings-p2p-group will see an incoming message. We
ensure that the broker will store and redeliver failed messages as soon as a con‐
sumer is connected by specifying that the binding has a durableSubscription.

Finally, let’s look at the Spring Integration Java DSL based consumer. This should look
very familiar.

Example 3-13. a consumer driven by the Spring Integration Java DSL

as before, we see @EnableBinding activates the consumer channels.

Spring Cloud Stream | 99

This @Configuration class defines two IntegrationFlow flows that do basically
the same thing take the incoming message, transform it by capitalizing it, and
then logging it. One flow listens for the broadcasted greetings and the other for
the direct, point-to-point greetings. We stop processing by returning null in the
final component in the chain.

You can try it all out easily. Run one instance of one of the producer nodes
(whichever one) and run three instances of the consumer. Visit http://localhost:
8080/hi/World and then observe in the logs of the three consumers that all three
have the message sent to the broadcast channel and one (although there’s no telling
which, so check all of the consoles) will have the message sent to the direct channel.
Raise the stakes by killing all of the consumer nodes, then visiting http://local
host:8080/hi/Again. All the consumers are down, but we specified that the point-
to-point connection be durable, so as soon as you restart one of the consumers you’ll
see the direct message arrive and logged to the console.

Next Steps
Messaging provides a communications channel for complex distributed interactions.
We’ll see in later chapters that you can connect batch processing solutions, workflow
engines, and services in terms of a messaging substrait.

100 | Chapter 3: Messaging

CHAPTER 4

Batch Processes and Tasks

The cloud gives us unprecedented scale. It costs virtually nothing to spin up new
application instances to accommodate demand and, once the dust has settled, it’s easy
to scale down. This means that, as long as the work at hand lends itself to paralleliza‐
tion, we improve our efficiency with scale. Many problems are embarrassingly parallel
and require no coordination between nodes. Others may require some coordination.
Both of these types of workloads are ideal for a cloud computing environment, while
others are inherently serial. For work that is not particularly parallelized, a cloud
computing environment is ideal for horizontally scaling compute to multiple nodes.
In this chapter, we will look at a few different ways, both old and new, to ingest and
process data using microservices.

Batch Workloads
Batch processing has a long history. Batch processing refers to the idea that a pro‐
gram processes batches of input data at the same time. Historically, batch processing
is a more efficient way of utilizing computing resources. The approach amortizes the
cost of a set of machines by prioritizing windows of interactive work — when opera‐
tors are using the machines — and non-interactive work in the evening hours, when
the machine would otherwise be idle. Today, in the era of the cloud with virtually
infinite and ephemeral computing capacity, efficient utilization of a machine isn’t a
particularly compelling reason to adapt batch processing.

Batch processing is also attractive when working with large data sets. Sequential data
- SQL data, .csv files, etc. - in particular, lends itself to being processed in batches.
Expensive resources, like files, SQL table cursors, and transactions may be preserved
over a chunk of data, allowing processing to continue more quickly.

101

Batch processing supports the logical notion of a window - an upper and lower bound
that delimits one set of data from another. Perhaps the window is temporal: all
records from the last 60 minutes, or all logs from the last 24 hours. Perhaps the win‐
dow is logical; the first 1,000 records, or all the records with a certain property.

If the dataset being processed is too large to fit into memory, then it’s possible to pro‐
cess it in smaller chunks. A chunk is an efficient, albeit resource-centric, division of a
batch of data. Suppose you want to visit every record in a product sales database that
spans over twenty-million rows. Without paging, executing SELECT * FROM PROD
UCT_SALES may cause the entire dataset to be loaded into memory, which could
quickly overwhelm the system. Paging through this large dataset is far more efficient,
loading only a thousand (or ten thousand!) records at a time. Process chunks either
sequentially or in parallel, moving forward until eventually visiting all records of a
large query — doing so without having to load everything into memory at the same
time.

Batch provides processing efficiencies, in the case that your system is able to tolerate
stale data. Many systems fit into this category. For example, a weekly sales report
won’t need to calculate last week’s sales until the end of the week.

Spring Batch
Spring Batch is a framework that’s designed to support processing large volumes of
records. Spring Batch includes logging/tracing, transaction management, job process‐
ing statistics, job restart, skip, and resource management. It has become widely used
industry standard for batch processing on the JVM.

At the heart of Spring Batch is the notion of a job — which in turn might have multi‐
ple steps. Each step would then provide a context to an optional ItemReader, ItemPro
cessor and ItemWriter.

Figure 4-1. The domain of a Spring Batch job

102 | Chapter 4: Batch Processes and Tasks

Batch jobs have multiple steps. A step is meant to do some sort of preparation, or
staging, of data before it’s sent off to the next step. You may guide the flow of data
from one step to another with routing logic - conditions, concurrence and basic loop‐
ing. Steps might also define generic business functionality in a tasklet. In this case,
you’re using Spring Batch to orchestrate the sequence of an execution. Steps may
extend ItemReader, ItemProcessor and ItemWriter implementations for more
defined processing.

An ItemReader takes input from the outside world (.csv or XML documents, SQL
databases, directories, etc.) and adapts it into something that we can work with logi‐
cally in a job: an item. The item can be anything. An item could be a record from a
database or a paragraph from a text file, a record from a .csv file, or a stanza of an
XML document. Spring Batch provides useful out-of-the-box ItemReader implemen‐
tations. ItemReader implementations read one item at a time, but accumulate the
resulting items in a buffer that matches a specified chunk size.

If an ItemProcessor is specified, then it will be given each item from the ItemReader.
An ItemProcessor is meant to handle processing and transformation. Data goes in,
data goes out. An ItemProcessor is an ideal place for any staging or validation — or
general purpose business logic not specifically concerned with input and output.

If an ItemWriter is specified, then it will be given the accumulated (not individual)
items from the ItemProcessor (if so configured) or the ItemReader. Spring Batch
provides useful out-of-the-box ItemWriter implementations. The ItemWriter writes
the accumulated chunk of items to a resource like a database or a file. The Item
Writer writes as many as it can, up to the specified chunk size, per write.

This is what we mean when we talk about batch processing. Writing batches of items
is more efficient for most types of I/O. It becomes more efficient to write batches of
lines in a buffer, and much more efficient to batch the writes to a database.

Our First Batch Job
Let’s look first at a high level Job and the flow of the configured Step instances.

Example 4-1. a trivial Job with three Step

package processing;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

Spring Batch | 103

import org.springframework.web.client.HttpStatusCodeException;
import processing.email.InvalidEmailException;

import java.util.Map;

@Configuration
class BatchConfiguration {

 @Bean
 Job etl(JobBuilderFactory jbf, StepBuilderFactory sbf, Step1Configuration
step1,
 Step2Configuration step2, Step3Configuration step3) throws
Exception {

 Step setup = sbf.get("clean-contact-table").tasklet(step1.task
let(null))
 .build();

 Step s2 = sbf.get("file-db").<Person, Person>chunk(1000)

 .faultTolerant()

 .skip(InvalidEmailException.class).retry(HttpStatus
CodeException.class)
 .retryLimit(2).reader(step2.fileReader(null))
 .processor(step2.emailValidatingProcessor(null))
 .writer(step2.jdbcWriter(null))
 .build();

 Step s3 = sbf.get("db-file").<Map<Integer, Integer>, Map<Integer,
Integer>>chunk(100)
 .reader(step3.jdbcReader(null)).writer(step3.file
Writer(null)).build();

 return jbf.get("etl").incrementer(new RunIdIncrementer())

 .start(setup)

 .next(s2).next(s3).build();
 }
}

Define a Spring Batch Job using the JobBuilderFactory and StepBuilderFac
tory

We also need beans for each step so those have been defined in configuration
classes and injected to be easily dereferenced

104 | Chapter 4: Batch Processes and Tasks

The first step will use a Tasklet which is a sort of free-form callback in which
you can do anything. You describe when it’s executed relative to the rest of the
job by including it in a Step

We want to write ten records a time to the configured ItemWriter

We want to handle possible failures, so we configure the job’s skip policy (on
what exceptions an individual record should be skipped) and retry policy (on
what exceptions should the step be retried for a given item and how many times).
Spring Batch gives you a lot of knobs and levers here so that you don’t have to
abort the whole job just because of a single record with malformed data.

Here we dereference the FlatFileItemReader from Step1Configuration. The
ItemReader reads data from a .csv file and turns it into a Person POJO. The
@Bean definition expects parameters, but Spring will provide those. It’s fine to call
the method with null arguments as the bean will have already been created (with
the container-provided parameters) and the return value of the method will be
the cached, pre-created instance.

The ItemProcessor is an ideal place to insert a call to a web service to validate
the email on the Person record is valid.

Dereference an ItemWriter to write to a JDBC DataSource

This step runs a query against the just persisted data from the first step and cal‐
culates how frequently records have a given age and then writes those calcula‐
tions to an output .csv.

A Spring Batch Job is parameterized. These parameters contribute to the identity
of the job. This identity is maintained in the metadata tables for your database. In
this example, the metadata tables are being persisted in MySQL. If we attempt to
start the same Job with the same parameters twice, it’ll refuse to run as it’s
already seen the job before, and recorded as much in the metadata tables. Here,
we configure a RunIdIncrementer that derives a new key by incrementing an
existing one (called the run.id parameter) if it already exists.

Now we finally string together the flow of the steps in the job, starting with the
setup step, and continuing to the s1 step and the s3 step.

Finally, build the Job

Spring Batch | 105

Let’s say we run the job and something goes wrong - a read fails and the job aborts.
Spring Batch will run through the configured retry and skip policies and attempt to
carry on. If the job should fail, its progress will be recorded in the metadata tables and
an operator can then decide to intervene and possibly restart (as opposed to start
another, duplicate instance) the job. The job will need to resume where it left off. This
is possible as some ItemReader implementations read stateful resources whose pro‐
gress can be recorded, like a file.

This job is not particularly performant. As configured, it will read from the Item
Reader in a single thread, serially. We could configure a TaskExecutor implementa‐
tion for the Job and Spring Batch will read concurrently, effectively dividing the read
time by however many threads the configured TaskExecutor supports.

you can retry failed jobs with recorded offsets or you can parallelize
the reads with a TaskExecutor but not both! This is because the
offset is stored in a thread local and so would end up corrupting
the values observed in other threads.

Spring Batch is stateful; it keeps metadata tables for all of the jobs running in a data‐
base. The database records, among other things, how far along the job is, what its exit
code is, whether it skipped certain rows (and whether that aborted the job or it was
just skipped). Operators (or autonomous agents) may use this information to decide
whether to re-run the job or to intervene manually.

It’s dead simple to get everything running. When the Spring Boot auto-configuration
for Spring Batch kicks in, it looks for a DataSource and attempts to create the appro‐
priate metadata tables based on schema on the classpath, automatically.

Example 4-2. The Spring Batch metadata tables in MySQL

mysql> show tables;
+------------------------------+
| Tables_in_batch |
+------------------------------+
| BATCH_JOB_EXECUTION |
| BATCH_JOB_EXECUTION_CONTEXT |
| BATCH_JOB_EXECUTION_PARAMS |
| BATCH_JOB_EXECUTION_SEQ |
| BATCH_JOB_INSTANCE |
| BATCH_JOB_SEQ |
| BATCH_STEP_EXECUTION |
| BATCH_STEP_EXECUTION_CONTEXT |
| BATCH_STEP_EXECUTION_SEQ |
+------------------------------+
9 rows in set (0.00 sec)

106 | Chapter 4: Batch Processes and Tasks

In the example, we configure two levels of fault tolerance: we configure that a certain
step could be retried, two times, before it’s considered an error. We use a third party
web service which may or may not be available. You can simulate the service’s availa‐
bility by turning off your machine’s internet connection. You’ll observe that it’ll fail to
connect, throw an HttpStatusCodeException subclass, and then be retried. We also
want to skip records that aren’t validated, so we’ve configured a skip policy that,
whenever an exception is thrown that can be assigned to the InvalidEmailException
type, skips the processing on that row.

Let’s inspect the configuration for the individual steps. First, the setup step, which
couldn’t be more straightforward.

Example 4-3. configure the first Step which has only a Tasklet

package processing;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.core.JdbcTemplate;

@Configuration
class Step1Configuration {

 @Bean
 Tasklet tasklet(JdbcTemplate jdbcTemplate) {

 Log log = LogFactory.getLog(getClass());

 return (contribution, chunkContext) -> {
 log.info("starting the ETL job.");
 jdbcTemplate.update("delete from PEOPLE");
 return RepeatStatus.FINISHED;
 };
 }
}

the Tasklet is a general-purpose callback in which you can do anything. In this
case, we stage the PEOPLE table by deleting any data.

The Tasklet stages the table for the second step, which reads data from an input file,
validates the email, and then writes the results our freshly cleared database table. This
step ingests data from a .csv file with three columns: the name, the age, and the
email of a person.

Spring Batch | 107

Example 4-4. the contents of a .csv file to ingest

tam mie,30,tammie@email.com
srinivas,35,srinivas@email.com
lois,53,lois@email.com
bob,26,bob@email.com
jane,18,jane@email.com
jennifer,20,jennifer@email.com
luan,34,luan@email.com
toby,24,toby@email.com
toby,24,toby@email.com
...

This step demonstrates configuring a typical ItemReader, ItemProcessor and Item
Writer.

Example 4-5. read records from a .csv file and load them into a database table

package processing;

import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.item.ItemProcessor;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.builder.FlatFileItemReaderBuilder;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.Resource;
import processing.email.EmailValidationService;
import processing.email.InvalidEmailException;

import javax.sql.DataSource;

@Configuration
class Step2Configuration {

 @Bean
 @StepScope

 FlatFileItemReader<Person> fileReader(
 @Value("file://#{jobParameters['input']}") Resource in)
 throws Exception {

 return new FlatFileItemReaderBuilder<Person>().name("file-
reader").resource(in)
 .targetType(Person.class).delimited().delimiter(",")
 .names(new String[] { "firstName", "age",
"email" }).build();

108 | Chapter 4: Batch Processes and Tasks

 }

 @Bean
 ItemProcessor<Person, Person> emailValidatingProcessor(
 EmailValidationService emailValidator) {
 return item -> {
 String email = item.getEmail();
 if (!emailValidator.isEmailValid(email)) {
 throw new InvalidEmailException(email);
 }
 return item;
 };
 }

 @Bean
 JdbcBatchItemWriter<Person> jdbcWriter(DataSource ds) {
 return new JdbcBatchItemWriterBuilder<Person>()
 .dataSource(ds)
 .sql(
 "insert into PEOPLE(AGE,
FIRST_NAME, EMAIL)"
 + " values
(:age, :firstName, :email)").beanMapped().build();
 }
}

Beans annotated with @StepScope are not singletons, they’re created anew each
time an instance of the job is run.

The @Value uses the Spring Expression Language to obtain the input job param‐
eter from the Spring Batch jobParameters context. This is a common practice in
batch jobs: you might run the job today pointing to a file reflecting today’s date,
and run the same job tomorrow with a different file for a different date.

Spring Batch’s Java configuration DSL provides convenient builder APIs to con‐
figure common ItemReader and ItemWriter implementations. Here, we config‐
ure an ItemReader that reads a comma-separated line from the in file, maps the
columns to names that in turn map to the fields on our Person POJO. The fields
are then overlayed on an instance of the Person POJO and that Person is what’s
returned from the ItemReader to be accumulated.

The custom ItemProcessor simply delegates to our EmailValidationService
implementation which in turn calls a REST API.

The JdbcBatchItemWriter takes the results of the ItemProcessor<Person,Per
son> and writes it to the underlying SQL datastore using a SQL statement that we
provide. The named parameters for the SQL statement correspond to the Java‐

Spring Batch | 109

Bean properties on the Person POJO instance being produced from the ItemPro
cessor.

The ingest is now complete. In the final step we’ll analyze the results, identifying how
common a given age is among the records ingested.

Example 4-6. Analyze the data and report the results to an output file

package processing;

import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.item.database.JdbcCursorItemReader;
import org.springframework.batch.item.database.builder.JdbcCursorItemReaderBuilder;
import org.springframework.batch.item.file.FlatFileItemWriter;
import org.springframework.batch.item.file.builder.FlatFileItemWriterBuilder;
import org.springframework.batch.item.file.transform.DelimitedLineAggregator;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.Resource;

import javax.sql.DataSource;
import java.util.Collections;
import java.util.Map;

@Configuration
class Step3Configuration {

 @Bean
 JdbcCursorItemReader<Map<Integer, Integer>> jdbcReader(DataSource data
Source) {
 return new JdbcCursorItemReaderBuilder<Map<Integer, Integer>>()
 .dataSource(dataSource).name("jdbc-reader")
 .sql("select COUNT(age) c, age a from PEOPLE group
by age")
 .rowMapper((rs, i) -> Collections.singleton
Map(rs.getInt("a"), rs.getInt("c")))
 .build();
 }

 @Bean
 @StepScope
 FlatFileItemWriter<Map<Integer, Integer>> fileWriter(
 @Value("file://#{jobParameters['output']}") Resource out) {

 DelimitedLineAggregator<Map<Integer, Integer>> aggregator = new
DelimitedLineAggregator<Map<Integer, Integer>>() {
 {

110 | Chapter 4: Batch Processes and Tasks

 setDelimiter(",");
 setFieldExtractor(ageAndCount -> {
 Map.Entry<Integer, Integer> next = ageAnd
Count.entrySet().iterator().next();
 return new Object[] { next.getKey(),
next.getValue() };
 });
 }
 };

 return new FlatFileItemWriterBuilder<Map<Integer,
Integer>>().name("file-writer")
 .resource(out).lineAggregator(aggregator).build();
 }
}

The JdbcCursorItemReader executes a query and then visits every result in the
result set and maps (using the same RowMapper<T> used by Spring Framework’s
JdbcTemplate) each row into an object that we want for the processor and/or
writer: a single key Map<Integer,Integer> that reflects an age and a count of
how frequent that age is in the result set.

The writer is stateful, and needs to be recreated on every run of the Job, because
each job writes the results to a differently named file. The FlatFileItemWriter
needs a LineAggregator instance to figure out how to turn the incoming POJO
(our Map<Integer,Integer>) and turn it into columns to be written to an out‐
put .csv file.

Now, all that’s needed is to run it! Spring Boot’s auto-configuration will run the job
for us, on startup, by default. This job requires parameters (input and output)
though, so we’ve disabled the default behavior and explicitly launched the job in a
CommandLineRunner instance.

Example 4-7. The entry point into our batch application

package processing;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcess
ing;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.jdbc.core.JdbcTemplate;

Spring Batch | 111

import org.springframework.web.client.RestTemplate;

import javax.sql.DataSource;
import java.io.File;

@EnableBatchProcessing
@SpringBootApplication
public class BatchApplication {

 public static void main(String[] args) {
 SpringApplication.run(BatchApplication.class, args);
 }

 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }

 @Bean
 JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
 }

 @Bean
 CommandLineRunner run(JobLauncher launcher, Job job, @Value("${user.home}")
String home) {
 return args -> launcher.run(
 job,
 new JobParametersBuilder().addString("input",
path(home, "in.csv"))
 .addString("output", path(home,
"out.csv")).toJobParameters());
 }

 private String path(String home, String fileName) {
 return new File(home, fileName).getAbsolutePath();
 }
}

The CommandLineRunner runs when the application starts up. In it, we just hard‐
code some path references pointing to the local filesystem and pass those in as
JobParameter instances.

The Job will run synchronously by default. The JobLauncher#run method returns a
JobExecution that you can use to interrogate the status of the job once it completes.
If the configured JobLauncher has a TaskExecutor then you can run the job asyn‐
chronously.

112 | Chapter 4: Batch Processes and Tasks

Spring Batch is designed to safely handle large amounts of data though so far we’ve
only looked at a single node. Later, we’ll look at how to partition the processing of a
Spring Batch Job with remote partitioning.

Spring Cloud Task is a generic abstraction that is designed to manage and make
observable processes that run to completion and then terminate. We’ll look at it later,
but suffice it to say that it works with any Spring Boot-based service that defines an
implementation of CommandLineRunner or ApplicationRunner, both of which are
simple callback interfaces that, when perceived on a Spring bean, are given a callback
with the application’s String [] args array from the main(String args[]) method.
Spring Boot automatically configures a CommandLineRunner that runs any existing
Spring Batch Job instances in the Spring application context. So, our Spring Batch
jobs are already prime candidates to be run and managed as jobs with Spring Cloud
Task! We’ll look at this more when we discuss Spring Cloud Task.

Scheduling
One question that often comes up here is, “How do I schedule these jobs?” If your
jobs are fat-.jar-based deployables that draw their configuration from ambient con‐
figuration sources like command-line parameters or environment variables, then it
might be enough to just use good ‘ol cron if you only have a single node. Maybe that’s
enough.

If you want finer-grained control over the way your jobs are scheduled, you could just
use the ScheduledExecutorService in the JDK or even move up the abstraction a bit
and leverage Spring’s @Scheduled annotation, which in turn delegates to a
java.util.concurrent.Executor instance. The main flaw with this approach is that
there’s no book keeping done on whether a job has been run or not; there’s no builtin
notion of a cluster. What happens if the node running a job should die? Will it get
replaced and restarted on another node? What if the node that died should somehow
be restored? How do you avoid the classic split-brain problem where two nodes, both
operating under the assumption that it is the leader, end up running concurrently?

There are commercial schedulers like BMC, Flux Scheduler, or Autosys. These tools
are powerful enough to schedule workloads, no matter what the job type, across a
cluster. They work, although perhaps not as readily as you’d hope in a cloud environ‐
ment. If you want more control over the scheduling and lifecycle of your jobs, you
might checkout Spring’s integration with the the Quartz Enterprise Job scheduler.
Quartz runs well in a cluster and should have what you need to get the job done. It’s
also open-source and easy enough to get working in a cloud environment.

Another approach here might be to use leadership election to manage the promotion
and demotion of leader nodes in a cluster. The leader node would need to be stateful,
or risk running the same work twice. Spring integration has an abstraction to support

Scheduling | 113

http://www.quartz-scheduler.org/

uses cases around leadership election and distributed locks, with implementations
delegating to Apache Zookeeper, Hazelcast, and others. It makes it easy to transac‐
tionally rotate one node out of leadership and another one in. It provides implemen‐
tations that work with Apache Zookeeper, Hazelcast and Redis. Such a leader node
would farm work to other nodes in a cluster, on a schedule. The communication
between nodes could be something as simple as messaging. We’ll explore messaging a
little later in this chapter.

There are many answers here, but it’s worth underscoring that it’s not a particularly
interesting question as many workloads today are event-driven, not schedule-driven.

Remote Partitioning a Spring Batch Job with Messaging
Earlier, we saw that the TaskExecutor makes it easy to parallelize the reads in a
Spring Batch Job. Spring Batch also supports parallelizing the writes through two
mechanisms, remote partitioning and remote chunking.

Functionally, both remote partitioning and remote chunking forward control of a
single step to another node in a cluster, typically connected through a messaging sub‐
strate (connected through Spring Framework MessageChannel instances).

Remote partitioning publishes a message to another node containing the range of
records (e.g.: 0-100, 101-200, etc.) to be read. There, the actual ItemReader, ItemPro
cessor and / or ItemWriter are run. This approach requires that the worker node
have full access to all the resources of the leader node. If the worker node is to read a
range of records from a file, for example, then it would need access to that file. The
statuses returned from the configured worker nodes are aggregated by the leader
node. So, if your job is IO bound in the ItemReader and ItemWriter, prefer remote
partitioning.

Remote chunking is similar to remote partitioning, except that data is read on the
leader node and sent over the wire to the leader node for processing. The result’s of
the processing are then sent back to the leader node to be written. So, if your job is
CPU bound in an ItemProcessor, prefer remote chunking.

Both remote chunking and remote partitioning lend themselves to the elasticity of a
platform like Cloud Foundry. You can spin up as many nodes as you want to handle
processing, let the job run, then spin down.

Spring Batch lead Michael Minella does a good job explaining all
this in detail in this talk

114 | Chapter 4: Batch Processes and Tasks

http://www.youtube.com/watch?v=CYTj5YT7CZU
http://www.youtube.com/watch?v=CYTj5YT7CZU

Batch processing is almost always I/O bound and so we find more applications for
remote partitioning than remote chunking, though your mileage may vary. Let’s look
at an example. In order for remote partitioning to work, both the leader and the
worker node need access to the Spring Batch JobRepository which owns the state
behind different instances of Spring Batch instances. The JobRepository in turn
needs a few other components. So, any remote partitioning application will have code
that lives only on the worker nodes, and code that lives only on the leader node, and
code that lives in both. Thankfully, Spring provides a natural mechanism for enforc‐
ing this division within a single code-base: profiles! Profiles let us tag certain objects
and conditionally, at runtime, toggle on or off the objects so tagged.

Example 4-8. we’ve defined a set of profiles for this application

package partition;

public class Profiles {
 public static final String WORKER_PROFILE = "worker";
 public static final String LEADER_PROFILE = "!" + WORKER_PROFILE;
}

the profile for the worker nodes

the profile that is active as long as the worker profile is not active

In a remote partitioning application, there are one or more worker nodes and a leader
node. The leader node coordinates with the worker nodes using messaging. Specifi‐
cally it communicates with worker nodes over MessageChannel instances which may
be Spring Cloud Stream-powered MessageChannel instances connected to message
brokers like RabbitMQ or Apache Kafka.

Let’s look at a simple Spring Batch Job that reads all the records in one table (our
PEOPLE table) and copies them to another empty table called NEW_PEOPLE. This is a
simple example with one step so that we aren’t distracted by the domain of the job
and can focus on the components required to achieve the solution.

The entry point into the application is straightforward: it activates Spring Batch and
Spring Integration and configures a JdbcTemplate and a default poller to to be used
for Spring Integration components that periodically poll a downstream component.

Example 4-9. the entry point into the application

package partition;

import org.springframework.batch.core.configuration.annotation.EnableBatchProcess
ing;
import org.springframework.boot.SpringApplication;

Remote Partitioning a Spring Batch Job with Messaging | 115

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.integration.annotation.IntegrationComponentScan;
import org.springframework.integration.dsl.core.Pollers;
import org.springframework.integration.scheduling.PollerMetadata;
import org.springframework.jdbc.core.JdbcTemplate;

import javax.sql.DataSource;
import java.util.concurrent.TimeUnit;

@EnableBatchProcessing

@IntegrationComponentScan
@SpringBootApplication
public class PartitionApplication {

 public static void main(String args[]) {
 SpringApplication.run(PartitionApplication.class, args);
 }

 @Bean(name = PollerMetadata.DEFAULT_POLLER)
 PollerMetadata defaultPoller() {
 return Pollers.fixedRate(10, TimeUnit.SECONDS).get();
 }

 @Bean
 JdbcTemplate jdbcTemplate(DataSource dataSource) {
 return new JdbcTemplate(dataSource);
 }
}

activate Spring Batch and Spring Integration

specify a default, global poller for MessageChannel implenentations that require
polling

The application has a single Spring Batch Job with two steps. The first step is a Task
let step that stages the database by emptying it (truncate in MySQL). The second
step is a partitioned step whose configuration we’ll visit shortly.

Example 4-10. the partitioned Step configuration

package partition;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.launch.support.RunIdIncrementer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

116 | Chapter 4: Batch Processes and Tasks

import org.springframework.context.annotation.Profile;

@Configuration
@Profile(Profiles.LEADER_PROFILE)

class JobConfiguration {

 @Bean
 Job job(JobBuilderFactory jbf, LeaderStepConfiguration lsc) {
 return jbf.get("job").incrementer(new RunIdIncrementer())
 .start(lsc.stagingStep(null, null))
 .next(lsc.partitionStep(null, null, null, null))
 .build();
 }
}

the Job only exists in the leader node profile

the Tasklet resets the NEW_PEOPLE table

the partitioned Step farms the work out to other nodes.

Thw partitioned step doesn’t do any work on the leader node. Instead, it acts as a sort
of proxy node, dispatching work to worker nodes. The partitioned step needs to
know how many worker nodes (the grid size) will be available. In this example, we’ve
provided a hard-coded value through a property for the grid zie, but the size of the
worker node pool could be dynamically resolved by looking up the service instances
dynamically using the Spring Cloud DiscoveryClient abstraction, for instance, or by
interrogating the underlying platform’s API (e.g.: the Cloud Foundry API Client) and
asking it for the size.

Example 4-11. the configuration for the partitioned step

package partition;

import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.explore.JobExplorer;
import org.springframework.batch.core.partition.PartitionHandler;
import org.springframework.batch.core.partition.support.Partitioner;
import org.springframework.batch.integration.partition.MessageChannelPartitionHan
dler;
import org.springframework.batch.repeat.RepeatStatus;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.integration.core.MessagingTemplate;
import org.springframework.jdbc.core.JdbcOperations;
import org.springframework.jdbc.core.JdbcTemplate;

Remote Partitioning a Spring Batch Job with Messaging | 117

https://docs.cloudfoundry.org/buildpacks/java/java-client.html

@Configuration
class LeaderStepConfiguration {

 @Bean
 Step stagingStep(StepBuilderFactory sbf, JdbcTemplate jdbc) {
 return sbf.get("staging").tasklet((contribution, chunkContext) -> {
 jdbc.execute("truncate NEW_PEOPLE");
 return RepeatStatus.FINISHED;
 }).build();
 }

 @Bean
 Step partitionStep(StepBuilderFactory sbf, Partitioner p, PartitionHandler
ph,
 WorkerStepConfiguration wsc) {
 Step workerStep = wsc.workerStep(null);
 return sbf.get("partitionStep").partitioner(workerStep.getName(), p)
 .partitionHandler(ph).build();
 }

 @Bean
 MessageChannelPartitionHandler partitionHandler(
 @Value("${partition.grid-size:4}") int gridSize,
 MessagingTemplate messagingTemplate, JobExplorer
jobExplorer) {
 MessageChannelPartitionHandler partitionHandler = new MessageChannel
PartitionHandler();
 partitionHandler.setMessagingOperations(messagingTemplate);
 partitionHandler.setJobExplorer(jobExplorer);
 partitionHandler.setStepName("workerStep");
 partitionHandler.setGridSize(gridSize);
 return partitionHandler;
 }

 @Bean
 MessagingTemplate messagingTemplate(LeaderChannels channels) {
 return new MessagingTemplate(channels.leaderRequestsChannel());
 }

 @Bean
 Partitioner partitioner(JdbcOperations jdbcTemplate,
 @Value("${partition.table:PEOPLE}") String table,
 @Value("${partition.column:ID}") String column) {
 return new IdRangePartitioner(jdbcTemplate, table, column);
 }
}

118 | Chapter 4: Batch Processes and Tasks

the first Step in the Job on the leader node resets the database

the next step, the partition step, needs to know which worker step to invoke on
the remote nodes, a Partitioner and a PartitionHandler

the PartitionHandler is responsible for taking the original StepExecution on
the leader node and dividing it into a collection of StepExecution instances that
it will farm out to worker nodes. The PartitionHandler wants to know how
many worker nodes there will be so that it can divide the work accordingly. This
particular PartitionHandler implementation coordinates with worker nodes
using MessageChannel instances..

.. and so requires a MessagingOperations implementation to send and/or receive
messages conveniently

the Partitioner is responsible for partitioning the workload. In this case, the
partitioning is done with some basic division of the IDs of the records in the ori‐
gin table, PEOPLE. In all the code we’ll look at in this example, this is possibly the
most tedious and it is typically specific to your business domain and application.

The worker nodes pick up the work from the broker, routes the requests to a StepExe
cutionRequestHandler which then uses a StepLocator resolve the actual step in the
worker application context to run.

Example 4-12. the configuration for the partitioned step

package partition;

import org.springframework.batch.core.explore.JobExplorer;
import org.springframework.batch.core.step.StepLocator;
import org.springframework.batch.integration.partition.BeanFactoryStepLocator;
import org.springframework.batch.integration.partition.StepExecutionRequest;
import org.springframework.batch.integration.partition.StepExecutionRequestHandler;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.support.GenericHandler;
import org.springframework.messaging.MessageChannel;

@Configuration
@Profile(Profiles.WORKER_PROFILE)

class WorkerConfiguration {

Remote Partitioning a Spring Batch Job with Messaging | 119

 @Bean
 StepLocator stepLocator() {
 return new BeanFactoryStepLocator();
 }

 @Bean
 StepExecutionRequestHandler stepExecutionRequestHandler(JobExplorer
explorer,
 StepLocator stepLocator) {
 StepExecutionRequestHandler handler = new StepExecutionRequestHan
dler();
 handler.setStepLocator(stepLocator);
 handler.setJobExplorer(explorer);
 return handler;
 }

 @Bean
 IntegrationFlow stepExecutionRequestHandlerFlow(WorkerChannels channels,
 StepExecutionRequestHandler handler) {

 MessageChannel channel = channels.workerRequestsChannels();
 GenericHandler<StepExecutionRequest> executionHandler = (payload,
headers) -> handler
 .handle(payload);

 return IntegrationFlows.from(channel)
 .handle(StepExecutionRequest.class, executionHan
dler)
 .channel(channels.workerRepliesChannels()).get();
 }
}

these objects should be present only in the worker node and under the worker
profile.

the StepLocator is responsible for locating a Step implementation by name. In
this case, it’ll resolve the Step by sifting through the beans in the containing Bean
Factory implementation.

the StepExecutionRequestHandler is the counterpart on the worker node to the
PartitionHandler on the leader: it accepts incoming requests and turns them
into executions of a given Step, the results of which are then sent in reply

the StepExecutionRequestHandler is unaware of the MessageChannel instances
on which incoming StepExecutionRequests will arrive, so we use Spring Inte‐
gration to trigger the StepExecutionRequestHandler bean’s #handle(StepExecu

120 | Chapter 4: Batch Processes and Tasks

tionRequest) method in response to messages, and to ensure that the return
value is sent out as a messsage on a reply channel.

Finally, the actual step is activated along with information on which data to read. It is
important that the reader have access to the same state (in this case, a JDBC Data
Source) as the leader node.

Example 4-13. the configuration for the partitioned step

package partition;

import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepScope;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.database.JdbcPagingItemReader;
import org.springframework.batch.item.database.Order;
import org.springframework.batch.item.database.builder.JdbcBatchItemWriterBuilder;
import org.springframework.batch.item.database.support.MySqlPagingQueryProvider;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import javax.sql.DataSource;
import java.util.Collections;

@Configuration
class WorkerStepConfiguration {

 @Value("${partition.chunk-size}")
 private int chunk;

 @Bean
 @StepScope
 JdbcPagingItemReader<Person> reader(DataSource dataSource,
 @Value("#{stepExecutionContext['minValue']}") Long min,
 @Value("#{stepExecutionContext['maxValue']}") Long max) {

 MySqlPagingQueryProvider queryProvider = new MySqlPagingQueryPro
vider();
 queryProvider
 .setSelectClause("id as id, email as email, age as
age, first_name as firstName");
 queryProvider.setFromClause("from PEOPLE");
 queryProvider.setWhereClause("where id >= " + min + " and id <= " +
max);
 queryProvider.setSortKeys(Collections.singletonMap("id",
Order.ASCENDING));

Remote Partitioning a Spring Batch Job with Messaging | 121

 JdbcPagingItemReader<Person> reader = new JdbcPagingItemReader<>();
 reader.setDataSource(dataSource);
 reader.setFetchSize(this.chunk);
 reader.setQueryProvider(queryProvider);
 reader.setRowMapper((rs, i) -> new Person(rs.getInt("id"),
rs.getInt("age"), rs
 .getString("firstName"), rs.getString("email")));
 return reader;
 }

 @Bean
 JdbcBatchItemWriter<Person> writer(DataSource ds) {
 return new JdbcBatchItemWriterBuilder<Person>()
 .beanMapped()
 .dataSource(ds)
 .sql(
 "INSERT INTO NEW_PEO
PLE(age,first_name,email) VALUES(:age, :firstName, :email)")
 .build();
 }

 @Bean
 Step workerStep(StepBuilderFactory sbf) {
 return sbf.get("workerStep").<Person, Person>chunk(this.chunk)
 .reader(reader(null, null,
null)).writer(writer(null)).build();
 }
}

this is a Spring Batch job, at the end of the day, so the JdbcPagingItemReader
implementation still cares about chunking through the records.

Note that we’re using a JdbcPagingItemReader and not an implementation like
JdbcCursorItemReader as we don’t have the ability to share a JDBC result cursor
across all the worker nodes. Ultimately, both implementations let us divide a
large JDBC ResultSet into smaller pieces, and it’s useful to know when and
where to apply which. The ItemReader will receive in the ExecutionContext sent
from the PartitionHandler a map of keys and values providing useful informa‐
tion including, in this case, the bounds of the rows to be read. As these values are
unique for every execution of the Step, the ItemReader has been given the @Step
Scope.

the JdbcBatchItemWriter is straightfoward, writing the fields of the Person
POJO to the database by mapping the POJO properties to the named parameters
in the SQL statement.

122 | Chapter 4: Batch Processes and Tasks

finally, we build the worker Step. This should be very familiar at this point.

Finally, the application components are connected with MessageChannel implemen‐
tations. Three of those definitions - leaderRequests, workerRequests, and workerRe
plies - are defined using Spring Cloud Stream and - in this example - RabbitMQ.
One last MessageChannel - leaderRepliesAggregatedChannel - is used only to con‐
nect two components in-memory. We’ll leave you to peruse the source code -
LeaderChannels, WorkerChannels, and application.properties - to see those
definitions as they’re redundant given our earlier discussion of Spring Cloud Stream.

You’ll need the PEOPLE table setup as well as a duplicate version of this table of identi‐
cal configuration called NEW_PEOPLE. Launch a few instances of the worker nodes
using the worker profile. Then, launch the leader node by not specifying a specific
profile. Once those are all running, you can launch an instance of the job. This exam‐
ple does not run the Job on application launch, but you can trigger a run through a
REST endpoint that’s included in the source code: curl -d{} http://localhost:
8080/migrate.

Task Management
Spring Boot knows what to do with our Job; when the application starts up Spring
Boot runs all CommandLineRunner instances, including the one provided by Spring
Boot’s Spring Batch auto-configuration. From the outside looking in, however, there
is no logical way to know how to run this job. We don’t know, necessarily, that it
describes a workload that will terminate and produce an exit status. We don’t have
common infrastructure that captures the start and end time for a task. There’s no
infrastructure to support us if an exception occurs. Spring Batch surfaces these con‐
cepts, but how do we deal with things that aren’t Spring Batch Job instances, like Com
mandLineRunner or ApplicationRunner instances? Spring Cloud Task helps us here.
Spring Cloud Task provides a way of identifying, executing and interrogating, well,
tasks!

A task is something that starts and has an expected terminal state. Tasks are ideal
abstractions for any ephemeral process or workload that may require an atypically
long amount of time (longer than an ideal transaction in the main request and
response flow of a service; this might imply seconds, hours or even days!). Tasks
describe workloads that run once (in response to an event) or on a schedule. Com‐
mon examples include:

• Somebody requests that the system generated and send Reset Password email
• A Spring Batch Job that runs whenever a new file arrives in a directory

Task Management | 123

• An application that periodically garbage collects stray files or audits inconsistent
data or message queue logs

• Dynamic document (or report) generation
• Media transcoding

A key aspect of a task is that it provides a uniform interface for parameterization.
Spring Cloud Task tasks accept parameters and Spring Boot configuration properties.
If you specify parameters, Spring Cloud Task will perpetuate them CommandLineRun
ner or ApplicationRunner arguments or as Spring Batch JobParameter instances.
Tasks may be configured using Spring Boot configuration properties. Indeed, as we’ll
see later, Spring Cloud Data Flow is even smart enough to let you interrogate the list
of known properties for a given task and render a form for task-specific properties.

If you want your task to benefit from the smart integration with the
Spring Cloud Data Flow, you’ll need to include the Spring Boot
configuration processor (org.springframework.boot : spring-
boot-configuration-processor) and define a @Configuration
Properties component.

Let’s look at a simple example. Start a new Spring Boot project with nothing in it and
then add org.springframework.cloud : spring-cloud-task-starter.

Example 4-14.

package task;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.task.configuration.EnableTask;
import org.springframework.cloud.task.repository.TaskExplorer;
import org.springframework.context.annotation.Bean;
import org.springframework.data.domain.PageRequest;

import java.util.stream.Stream;

@EnableTask

@SpringBootApplication
public class HelloTask {

 private Log log = LogFactory.getLog(getClass());

 public static void main(String args[]) {

124 | Chapter 4: Batch Processes and Tasks

 SpringApplication.run(HelloTask.class, args);
 }

 @Bean
 CommandLineRunner runAndExplore(TaskExplorer taskExplorer) {
 return args -> {
 Stream.of(args).forEach(log::info);

 taskExplorer.findAll(new PageRequest(0, 1)).forEach(
 taskExecution -> log.info(taskExecu
tion.toString()));
 };
 }
}

activate Spring Cloud Task

inject the Spring Cloud Task TaskExplorer to inspect the current running task’s
execution

When you run the example, the CommandLineRunner runs just as we’d expect it would
in a non-Task-based application. Helpfully, though, we can inject the TaskExplorer
to dynamically interrogate the runtime about the status of the running task (or,
indeed, any tasks). The TaskExplorer knows about the CommandLineRunner, Applica
tionRunner and Spring Batch Job instances in our application context. You gain sup‐
port for Spring Batch Job workloads with Spring Cloud Task’s Batch integration
(org.springframework.cloud : spring-cloud-task-batch).

We’ll revisit Spring Cloud Task in our later discussion of Spring Cloud Data Flow,
later.

Process-Centric Integration with Workflow
While Spring Batch gives us rudimentary workflow capabilities, its purpose is to sup‐
port processing of large datasets, not to weave together autonomous agents and
human agents in a comprehensive workflow. Workflow is the practice of explicitly
modeling the progression of work through a system of autonomous (and human!)
agents. Workflow systems define a state machine and constructs for modeling the
progression of that state towards a goal. Workflow systems are designed to work
closely with the business who may have their own designs on a given business pro‐
cess.

Process-Centric Integration with Workflow | 125

Workflow overlaps a lot with the ideas of business process manage‐
ment and business process modeling (both, confusingly, abbrevi‐
ated as BPM). BPM refers to the technical capability to describe
and run a workflow process, but also to the management discipline
of automating business. Analysts use BPM to identify business pro‐
cesses, which they model and execute with a workflow engine like
Activiti.

Workflow systems support ease of modeling processes. Typically, workflow systems
provide design-time tools that facilitate visual modeling. The main goal of this is to
arrive at an artifact that minimally specifies the process for both business and tech‐
nologists. A process model is not directly executable code, but instead a series of
steps. It is up to developers to provide appropriate behavior for the various states.
Workflow systems typically provide a way to store and query the state of various pro‐
cesses. Like Spring Batch, workflow systems also provide a built-in mechanism to
design compensatory behavior in the case of failures.

From a design perspective, workflow systems help keep your services and entities
stateless and free of what would otherwise be irrelevant process state. We’ve seen
many systems where an entity’s progression through fleeting, one time processes was
represented as booleans (is_enrolled, is_fulfilled, etc.) on the entity and in the
database themselves. These flags muddy the design of the entity for very little gain.

Workflow systems map roles to sequences of steps. These roles correspond more or
less to swimlines in UML. A workflow engine, like a swimlane, may describe human
tasklists as well as autonomous activities.

Is workflow for everybody? Decidedly not. We’ve seen that workflow is most useful
for organizations that have complex processes, or are constrained by regulation and
policy and need a way to interrogate process state. It’s optimal for collaborative pro‐
cesses where humans and services drive towards a larger business requirement;
examples include loan approval, legal compliance, insurance reviews, document revi‐
sion, and document publishing.

Workflow simplifies design to free your business logic from the strata of state
required to support auditing and reporting of processes. We look at it in this section
because it, like batch processing, provides a meaningful way to address failure in a
complex, multi-agent and multi-node process. It is possible to model a saga execution
coordinator on top of a workflow engine, although a workflow engine is not itself a
saga execution coordinator. We get a lot of the implied benefits, though, if used cor‐
rectly. We’ll see later that workflows also lend themselves to horizontal scale on a
cloud -environment through messaging infrastructure.

Let’s walk through a simple exercise. Suppose you have a signup process for a new
user. The business cares about the progression of new signups as a metric. Conceptu‐

126 | Chapter 4: Batch Processes and Tasks

ally, the signup process is a simple affair: the user submits a new signup request
through a form, which then must be validated and - if there are errors - fixed. Once
the form is correct and accepted, a confirmation email must be sent. The user has to
click on the confirmation email and trigger a well-known endpoint confirming the
email is addressable. The user may do this in a minute or in two weeks.. or a year!
The long-lived transaction is still valid. We could make the process even more sophis‐
ticated and specify timeouts and escalations within the definition of our workflow.
For now, however, this is an interesting enough example that involves both autono‐
mous and human work towards the goal of enrolling a new customer.

Figure 4-2. a signup process modeled using BPMN 2.0 as viewed from IntelliJ IDEA’s
yFiles-powered BPMN 2.0 preview.

Alfresco’s Activiti project is a business process engine. It supports process definitions in
an XML standard called BPMN 2.0. BPMN 2.0 enjoys robust support across multiple
vendors’ tooling and IDEs. The business process designer defines BPMN business
processes using tools from, say, WebMethods or Activiti or IBM, and can then run the
defined process in Activiti (or, in theory, in any other tool). Activiti also provides a
modeling environment, is easy to deploy standalone or use in a cloud-based services,
and is Apache 2 licensed. Conveniently for us, Activiti also offers a convenient Spring
Boot auto-configuration.

as this book was being developed, the main developers on the Acti‐
viti project forked the project into a new Apache 2 licensed, com‐
pletely backwards-compatible effort called Flowable. We would
definitely watch that space if you like Activiti.

In Activiti, a Process defines an archetypical process definition. A ProcessInstance
is a single execution of a given process. A process instance is uniquely defined by its
process variables, which parameterize the process’ execution. Think of them as
command-line arguments, like JobParameter parameters for a Spring Batch Job.

The Activiti engine, like Spring Batch, keeps its execution state in a relational data‐
base. If you’re using the Spring Boot auto-configuration, it’ll automatically install the
relevant tables for you provided you’ve a DataSource in your application context
somewhere. Here are the relevant tables.

Process-Centric Integration with Workflow | 127

http://activiti.org
http://www.flowable.org/
http://www.flowable.org/

Example 4-15. the Activiti metadata tables in MySQL

mysql> show tables;
+------------------------------+
| Tables_in_activiti |
+------------------------------+
| ACT_EVT_LOG |
| ACT_GE_BYTEARRAY |
| ACT_GE_PROPERTY |
| ACT_HI_ACTINST |
| ACT_HI_ATTACHMENT |
| ACT_HI_COMMENT |
| ACT_HI_DETAIL |
| ACT_HI_IDENTITYLINK |
| ACT_HI_PROCINST |
| ACT_HI_TASKINST |
| ACT_HI_VARINST |
| ACT_ID_GROUP |
| ACT_ID_INFO |
| ACT_ID_MEMBERSHIP |
| ACT_ID_USER |
| ACT_PROCDEF_INFO |
| ACT_RE_DEPLOYMENT |
| ACT_RE_MODEL |
| ACT_RE_PROCDEF |
| ACT_RU_EVENT_SUBSCR |
| ACT_RU_EXECUTION |
| ACT_RU_IDENTITYLINK |
| ACT_RU_JOB |
| ACT_RU_TASK |
| ACT_RU_VARIABLE |
+------------------------------+
24 rows in set (0.00 sec)

The Spring Boot auto-configuration expects any BPMN 2.0 documents to be in the
src/main/resources/processes directory of an application, by default. Let’s take a
look at the definition of a BPMN 2.0 signup process.

Example 4-16. the signup.bpmn20.xml business process definition

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:activiti="http://activiti.org/bpmn"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 targetNamespace="http://www.activiti.org/bpmn2.0">

 <process name="signup" id="signup">

128 | Chapter 4: Batch Processes and Tasks

 <startEvent id="start"/>

 <sequenceFlow sourceRef="start" targetRef="check-form"/>

 <serviceTask id="check-form" name="check-form"
 activiti:expression="#{checkForm.execute(execution)}"/>

 <sequenceFlow sourceRef="check-form" targetRef="form-completed-decision-
gateway"/>

 <exclusiveGateway id="form-completed-decision-gateway"/>

 <sequenceFlow name="formOK" id="formOK" sourceRef="form-completed-decision-
gateway"
 targetRef="send-confirmation-email">
 <conditionExpression xsi:type="tFormalExpression">${formOK == true}
 </conditionExpression>
 </sequenceFlow>

 <sequenceFlow id="formNotOK" name="formNotOK" sourceRef="form-completed-
decision-gateway"
 targetRef="fix-errors">
 <conditionExpression xsi:type="tFormalExpression">${formOK == false}
 </conditionExpression>
 </sequenceFlow>

 <userTask name="fix-errors" id="fix-errors">
 <humanPerformer>
 <resourceAssignmentExpression>
 <formalExpression>customer</formalExpression>
 </resourceAssignmentExpression>
 </humanPerformer>
 </userTask>

 <sequenceFlow sourceRef="fix-errors" targetRef="check-form"/>

 <serviceTask id="send-confirmation-email" name="send-confirmation-email"
 activiti:expression="#{sendConfirmationEmail.execute(execu
tion)}"/>

 <sequenceFlow sourceRef="send-confirmation-email" targetRef="confirm-
email"/>

 <userTask name="confirm-email" id="confirm-email">
 <humanPerformer>

Process-Centric Integration with Workflow | 129

 <resourceAssignmentExpression>
 <formalExpression>customer</formalExpression>
 </resourceAssignmentExpression>
 </humanPerformer>
 </userTask>

 <sequenceFlow sourceRef="confirm-email" targetRef="end"/>

 <endEvent id="end"/>
 </process>
</definitions>

the first state is the startEvent. All processes have a defined start and end.

the sequenceFlow elements serve as guidance to the engine about where to go
next. They’re logical, and are represented as lines in the workflow model itself.

a serviceTask is a state in the process. Our BPMN 2.0 definition uses the
Activiti-specific activiti:expression attribute to delegate handling to method,
execute(ActivityExecution) on a Spring bean (called checkForm). Spring
Boot’s auto-configuration activates this behavior.

After the form is submitted and checked, the checkForm method contributes a
boolean process variable called formOK, whose value is used to drive a decision
downstream. A process variable is context that’s visible to participants in a given
process. Process variables can be whatever you’d like, though we tend to keep
them as trivial as possible to be used later to act as claim-checks for real resources
elsewhere. This process expects one input process variable, customerId.

if the form is invalid, then work flows to the fix-errors user task. The task is
contributed to a worklist and assigned to a human. This tasklist is supported
through a Task API in Activiti. It’s trivial to query the tasklist and start and com‐
plete tasks. The tasklist is meant to model work that a human being must per‐
form. When the process reaches this state, it pauses, waiting to be explicitly
completed by a human at some later state. Work flows from the fix-errors task
back to the checkForm state. If the form is now fixed, work proceeds to the

if the form is valid, then work flows to the send-confirmation-email service
task. This simply delegates to another Spring bean to do its work, perhaps using
SendGrid.

It’s not hard to imagine what has to happen here: the email should contain some
sort of link that, when clicked, triggers an HTTP endpoint that then completes
the outstanding task and moves the process to completion.

130 | Chapter 4: Batch Processes and Tasks

This process is trivial but it provides a clean representation of the moving pieces in
the system. We can see that we will need something to take the inputs from the user,
resulting in a customer record in the database and a valid customerId that we can use
to retrieve that record in downstream components. The customer record may be in
an invalid state (the email might be invalid), and may well need to be revisited by the
user. Once things are in working order, state moves to the step where we send a con‐
firmation email that, once received and confirmed, transitions the process to the ter‐
minal state.

Let’s look at a simple REST API that drives this process along. For brevity, we’ve not
extrapolated out an iPhone client or an HTML5 client, but it’s certainly a natural next
step. The REST API is kept as simple as possible for illustration. a very logical next
step might be to use hypermedia to drive the clients interactions with the REST API
from one state transition to another. For more on this possibility checkout the REST
chapter and the discussion of hypermedia and HATEOAS.

Example 4-17. the SignupRestController that drives the process

package com.example;

import org.activiti.engine.RuntimeService;
import org.activiti.engine.TaskService;
import org.activiti.engine.task.TaskInfo;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;
import org.springframework.util.Assert;
import org.springframework.web.bind.annotation.*;

import java.util.Collections;
import java.util.List;
import java.util.stream.Collectors;

@RestController
@RequestMapping("/customers")
class SignupRestController {

 public static final String CUSTOMER_ID_PV_KEY = "customerId";

 private final RuntimeService runtimeService;
 private final TaskService taskService;
 private final CustomerRepository customerRepository;
 private Log log = LogFactory.getLog(getClass());

 @Autowired
 public SignupRestController(RuntimeService runtimeService, TaskService task
Service,

Process-Centric Integration with Workflow | 131

 CustomerRepository repository) {
 this.runtimeService = runtimeService;
 this.taskService = taskService;
 this.customerRepository = repository;
 }

 @PostMapping
 public ResponseEntity<?> startProcess(@RequestBody Customer customer) {
 Assert.notNull(customer);
 Customer save = this.customerRepository.save(new Customer(cus
tomer.getFirstName(),
 customer.getLastName(), customer.getEmail()));

 String processInstanceId = this.runtimeService.startProcessInstance
ByKey("signup",
 Collections.singletonMap(CUSTOMER_ID_PV_KEY,
Long.toString(save.getId())))
 .getId();
 this.log.info("started sign-up. the processInstance ID is " + proces
sInstanceId);

 return ResponseEntity.ok(save.getId());
 }

 @GetMapping("/{customerId}/signup/errors")
 public List<String> readErrors(@PathVariable String customerId) {
 // @formatter:off
 return this.taskService
 .createTaskQuery()
 .active()
 .taskName("fix-errors")
 .includeProcessVariables()
 .processVariableValueEquals(CUS
TOMER_ID_PV_KEY, customerId)
 .list()
 .stream()
 .map(TaskInfo::getId)
 .collect(Collectors.toList());
 // @formatter:on
 }

 @PostMapping("/{customerId}/signup/errors/{taskId}")
 public void fixErrors(@PathVariable String customerId, @PathVariable String
taskId,
 @RequestBody Customer fixedCustomer) {

 Customer customer = this.customerRepository.findOne(Long.parse
Long(customerId));
 customer.setEmail(fixedCustomer.getEmail());

132 | Chapter 4: Batch Processes and Tasks

 customer.setFirstName(fixedCustomer.getFirstName());
 customer.setLastName(fixedCustomer.getLastName());
 this.customerRepository.save(customer);

 this.taskService.createTaskQuery().active().taskId(taskId).include
ProcessVariables()
 .processVariableValueEquals(CUSTOMER_ID_PV_KEY, cus
tomerId).list().forEach(t -> {
 log.info("fixing customer# " + customerId +
" for taskId " + taskId);
 taskService.complete(t.getId(), Collec
tions.singletonMap("formOK", true));
 });
 }

 @PostMapping("/{customerId}/signup/confirmation")
 public void confirm(@PathVariable String customerId) {
 this.taskService.createTaskQuery().active().taskName("confirm-
email")
 .includeProcessVariables()
 .processVariableValueEquals(CUSTOMER_ID_PV_KEY, cus
tomerId).list().forEach(t -> {
 log.info(t.toString());
 taskService.complete(t.getId());
 });
 this.log.info("confirmed email receipt for " + customerId);
 }
}

the controller will work with a simple Spring Data JPA repository as well as two
services that are auto-configured by the Activiti Spring Boot support. The Runti
meService lets us interrogate the process engine about running processes. The
TaskService lets us interrogate the process engine about running human tasks
and tasklists.

the first endpoint accepts a new customer record and persists it. The newly min‐
ted customer is fed as an input process variable into a new process, where the
customer’s customerId is specificed as a process variable. Here, the process flows
to the check-form serviceTask which will nominally check that the input email
is valid, If the email is valid, then a confirmational email is sent. Otherwise, the
customer will need to address any errors in the input data.

if there are any errors, we want the user’s UI experience to arrest forward pro‐
gress, so the process queues up a user task. This endpoint queries for any out‐
standing tasks for this particular user and then returns a collection of
outstanding tasks IDs. Ideally, this might also return validation information that

Process-Centric Integration with Workflow | 133

can drive the UX for the human using some sort of interactive experience to
enroll.

Once the errors are addressed client-side, the updated entity is persisted in the
database and the outstanding task is marked as complete. At this point the pro‐
cess flows the send-confirmation-email state which will send an email that
includes a confirmation link that the user will have to click to confirm the enroll‐
ment.

The final step, then, is a REST endpoint that queries any outstanding email con‐
firmation tasks for the given customer.

We start this process with a potentially invalid entity, the customer, whose state we
need to ensure is correct before we can proceed. We model this process to support
iteration on the entity, backtracking to the appropriate step for so long as there’s inva‐
lid state.

Let’s complete our tour by examining the beans that power the two serviceTask ele‐
ments, check-form, and send-confirmation-email, in the process.

Both the CheckForm and SendConfirmationEmail beans are uninteresting. They’re
simple Spring beans. CheckForm implements a trivial validation that ensures the first
name and last name are not null and then uses the Mashape email validation REST
API introduced in the discussion on Spring Batch to validate that the email is of a
valid form. The CheckForm bean is used to validate the state of a given Customer
record and then contributes a process variable to the running ProcessInstance, a
boolean called formOK, that then drives a decision as to whether to continue with the
process or force the user to try again.

Example 4-18. the CheckForm bean that validates the customer’s state

package com.example;

import com.example.email.EmailValidationService;
import org.activiti.engine.RuntimeService;
import org.activiti.engine.impl.pvm.delegate.ActivityExecution;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.util.Collections;
import java.util.Map;

import static org.apache.commons.lang3.StringUtils.isEmpty;

@Service
class CheckForm {

134 | Chapter 4: Batch Processes and Tasks

 private final RuntimeService runtimeService;
 private final CustomerRepository customerRepository;
 private final EmailValidationService emailValidationService;

 @Autowired
 public CheckForm(EmailValidationService emailValidationService,
 RuntimeService runtimeService, CustomerRepository customerRe
pository) {
 this.runtimeService = runtimeService;
 this.customerRepository = customerRepository;
 this.emailValidationService = emailValidationService;
 }

 public void execute(ActivityExecution e) throws Exception {
 Long customerId = Long.parseLong(e.getVariable("customerId",
String.class));
 Map<String, Object> vars = Collections.singletonMap("formOK",
 validated(this.customerRepository.findOne(custom
erId)));
 this.runtimeService.setVariables(e.getId(), vars);
 }

 private boolean validated(Customer customer) {
 return !isEmpty(customer.getFirstName()) && !isEmpty(customer.get
LastName())
 && this.emailValidationService.isEmailValid(cus
tomer.getEmail());
 }

}

inject the Activiti RuntimeService

the ActivityExecution is a context object. You can use it to access process vari‐
ables, the process engine itself, and other interesting services.

then use it to artifculate the outcome of the test

The SendConfirmationEmail is of the same basic form.

So far, we’ve looked at workflow in the context of a single node. We’ve ignored one of
the most promising aspects of the cloud: scale! Modeling a workflow helps us identify
embarrassingly parallel processing opportunities. Every state in the process expects
inputs (in the form of process variables and pre-conditions) and provides outputs (in
the form of side-effects and process variables). The workflow manages the process
state.

Our business logic is executed at the right time, depending on state. Thus far every‐
thing we’ve done has happened either in the same node or on whatever node the cli‐

Process-Centric Integration with Workflow | 135

ent is using to interact with the system to satisfy the user-assigned tasklists. If the
automatic processing takes any non-trivial amount of time, it’s safer to move that
work to another node. Any node! This is the cloud, after all. We have the capacity, it’s
just a matter of using it.

In a BPMN process, the serviceTask element is a wait-state: the engine will pause
there (and dispose of any held resources) until it is explicitly signaled. Anything out of
band could signal the process: a message from an Apache Kafka broker arrives, an
email, a button click, or the conclusion of long-running process. We can take advan‐
tage of this behavior and move potentially long-running processing to another node
and then, on completion, signal that the process should be resumed. The workflow
engines keeps track of all this state so its possibly to query for any orphaned pro‐
cesses, and to act accordingly. Workflow gives us the ability to naturally break apart
involved business processes, decompose them into isolated steps, distribute them
across a cluster and it provides the tools to be able to recover should something go
wrong in the distribution of work.

Let’s look at how to farm execution out to worker nodes in terms of Spring Cloud
Stream’s MessageChannel definitions. As we did in the remote-partitioning Spring
Batch job, we’ll think of the solution in terms of the leader node and worker nodes.
The leader node is simply the node that originates the processing. The leader node
features an HTTP endpoint (http://loclahost:8080/start) to initiate processing.
The process is necessarily trivial so we can focus on the distribution.

Example 4-19. an asynchronous business process, async.bpmn20.xml

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns:activiti="http://activiti.org/bpmn"
 id="definitions"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 targetNamespace="http://www.activiti.org/bpmn2.0">

 <process id="asyncProcess">

 <startEvent id="start"/>

 <sequenceFlow id="f1" sourceRef="start" targetRef="spring-gateway"/>

 <serviceTask id="spring-gateway" activiti:delegateExpression="#{gateway}"/>

 <sequenceFlow id="f2" sourceRef="spring-gateway" targetRef="confirm-
movement"/>

136 | Chapter 4: Batch Processes and Tasks

 <scriptTask id="confirm-movement" scriptFormat="groovy">
 <script>
 println 'Moving on..'
 </script>
 </scriptTask>

 <sequenceFlow id="f3" sourceRef="confirm-movement" targetRef="end"/>

 <endEvent id="end"/>

 </process>

</definitions>

As soon as the process begins, it enters a serviceTask state and here we use an
Activiti delegate, a Spring bean called gateway, to process this state. The process
will stop in that handler until it is signalled.

Once signaled, the process will continue to the scriptTask and we’ll see Moving
on! recorded on the console.

The gateway bean is the key. It is an implementation of the Activiti ReceiveTaskActi
vityBehavior that writes a message to a Spring Cloud Stream powered leaderRe
quests MessageChannel. The executionId is the payload for the message. The
executionId is required to later signal the request. We must take care to perpetuate it
in either the message headers or the payload (as we do in this example). When a reply
message is received on another Spring Cloud Stream-powered MessageChannel, the
repliesFlow calls RuntimeService#signal(executionId) which in turn resumes the
execution of the process.

Example 4-20. the LeaderConfiguration defines how requests are sent out to, and
what happens when the replies come back from, the worker nodes

package com.example;

import org.activiti.engine.ProcessEngine;
import org.activiti.engine.impl.bpmn.behavior.ReceiveTaskActivityBehavior;
import org.activiti.engine.impl.pvm.delegate.ActivityBehavior;
import org.activiti.engine.impl.pvm.delegate.ActivityExecution;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.support.MessageBuilder;
import org.springframework.messaging.Message;

@Configuration

Process-Centric Integration with Workflow | 137

@Profile(Profiles.LEADER)
class LeaderConfiguration {

 @Bean
 ActivityBehavior gateway(LeaderChannels channels) {
 return new ReceiveTaskActivityBehavior() {

 @Override
 public void execute(ActivityExecution execution) throws
Exception {

 Message<?> executionMessage = MessageBuilder.withPay
load(execution.getId())
 .build();

 channels.leaderRequests().send(executionMessage);
 }
 };
 }

 @Bean
 IntegrationFlow repliesFlow(LeaderChannels channels, ProcessEngine engine) {
 return IntegrationFlows.from(channels.leaderReplies())
 .handle(String.class, (executionId, map) -> {
 engine.getRuntimeService().signal(executio
nId);
 return null;
 }).get();
 }
}

as soon as the process begins, it enters a serviceTask state and here we use an
Activiti delegate, a Spring bean called gateway, to process this state. The process
will stop in that handler until it is signalled.

Once signaled, the process will continue to the scriptTask and we’ll see Moving
on! recorded on the console.

The worker node works only with MessageChannel instances: there is no awareness
(beyond the String executionId header) of Activiti or of the workflow engine. The
worker nodes are free to do whatever they want: perhaps they launch a Spring Batch
Job or a Spring Cloud Task. Workflow is ideal for any long-running processes, so
whatever you want to do could be done here: video transcoding, document genera‐
tion, image analysis, etc.

138 | Chapter 4: Batch Processes and Tasks

Example 4-21. the WorkerConfiguration defines how requests are sent out to, and
what happens when the replies come back from, the worker nodes

package com.example;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.support.GenericHandler;

@Configuration
@Profile(Profiles.WORKER)
class WorkerConfiguration {

 @Bean
 IntegrationFlow requestsFlow(WorkerChannels channels) {

 Log log = LogFactory.getLog(getClass());

 return IntegrationFlows.from(channels.workerRequests())
 .handle((GenericHandler<String>) (executionId, head
ers) -> {

 headers.entrySet().forEach(e ->
log.info(e.getKey() + '=' + e.getValue()));
 log.info("sending executionId (" +
executionId + ") to workerReplies.");
 return executionId;
 }).channel(channels.workerReplies())
 .get();
 }
}

whenever a new message arrives..

enumerate the headers and do whatever other business logic we want, ensuring
we perpetuate the executionId payload

which gets sent on the workerReplies channel, back to the leader node.

Distribution with Messaging
Though this chapter has talked a lot about long-running processes (Spring Batch,
Spring Cloud Task and workflow), messaging is what makes these topics worthy of
discussion in a book about going cloud-native! These old-guard disciplines become

Distribution with Messaging | 139

very useful tools when we can leverage the opportunity for scale that the cloud
presents us.

Next Steps
We’ve only begun to scratch the surface of the possibilities in data processing. Natu‐
rally, each of these technologies speaks to a large array of different technologies them‐
selves. We might, for example, use Apache Spark or Apache Hadoop in conjunction
with Spring Cloud Data Flow. They also compose well. It’s trivial to scale out process‐
ing of a Spring Batch job across a cluster using Spring Cloud Stream as the messaging
fabric.

140 | Chapter 4: Batch Processes and Tasks

	Cover
	Pivotal
	Copyright
	Table of Contents
	Chapter 1. Bootcamp: Introducing Spring Boot and Cloud Foundry
	Getting Started with the Spring Initializr
	Getting Started with the Spring Tool Suite
	Installing Spring Tool Suite (STS)
	Creating a new Project with the Spring Initializr

	The Spring Guides
	Following the Guides in STS

	Configuration
	Cloud Foundry
	Next Steps

	Chapter 2. The Cloud Native Application
	Amazon’s Story
	The Promise of a Platform
	The Patterns
	Scalability
	Reliability
	Agility
	Netflix’s Story
	Splitting the Monolith
	Netflix OSS
	Cloud Native Java

	The Twelve Factors

	Chapter 3. Messaging
	Event Driven Architectures with Spring Integration
	Messaging Endpoints
	From Simple Components, Complex Systems

	Message Brokers, Bridges, the Competing Consumer Pattern and Event-Sourcing
	Spring Cloud Stream
	A Stream Producer
	A Stream Consumer

	Next Steps

	Chapter 4. Batch Processes and Tasks
	Batch Workloads
	Spring Batch
	Our First Batch Job

	Scheduling
	Remote Partitioning a Spring Batch Job with Messaging
	Task Management
	Process-Centric Integration with Workflow
	Distribution with Messaging
	Next Steps

