
Effective Aggregate Design
Part I: Modeling a Single Aggregate

Vaughn Vernon: vvernon@shiftmethod.com

Clustering entities and value objects into an aggregate
with a carefully crafted consistency boundary may at first
seem like quick work, but among all [DDD] tactical guid-
ance, this pattern is one of the least well understood.

To start off, it might help to consider some common ques-
tions. Is an aggregate just a way to cluster a graph of
closely related objects under a common parent? If so, is
there some practical limit to the number of objects that
should be allowed to reside in the graph? Since one ag-
gregate instance can reference other aggregate instances,
can the associations be navigated deeply, modifying various
objects along the way? And what is this concept of invari-
ants and a consistency boundary all about? It is the answer
to this last question that greatly influences the answers to
the others.

There are various ways to model aggregates incorrectly.
We could fall into the trap of designing for compositional
convenience and make them too large. At the other end of
the spectrum we could strip all aggregates bare, and as a
result fail to protect true invariants. As we'll see, it's imper-
ative that we avoid both extremes and instead pay attention
to the business rules.

Designing a Scrum Management Application

The best way to explain aggregates is with an example.
Our fictitious company is developing an application to sup-
port Scrum-based projects, ProjectOvation. It follows the
traditional Scrum project management model, complete
with product, product owner, team, backlog items, planned
releases, and sprints. If you think of Scrum at its richest,
that's where ProjectOvation is headed. This provides a fa-
miliar domain to most of us. The Scrum terminology forms
the starting point of the ubiquitous language. It is a
subscription-based application hosted using the software as
a service (SaaS) model. Each subscribing organization is
registered as a tenant, another term for our ubiquitous lan-
guage.

The company has assembled a group of talented Scrum ex-
perts and Java developers.1 However, their experience with
DDD is somewhat limited. That means the team is going to
make some mistakes with DDD as they climb a difficult
learning curve. They will grow, and so can we. Their
struggles may help us recognize and change similar unfa-
vorable situations we've created in our own software.

1 Although the examples use Java and Hibernate, all of this material is applicable
to C# and NHibernate, for instance.

The concepts of this domain, along with its performance
and scalability requirements, are more complex than any of
them have previously faced. To address these issues, one of
the DDD tactical tools that they will employ is aggregate.

How should the team choose the best object clusters? The
aggregate pattern discusses composition and alludes to in-
formation hiding, which they understand how to achieve. It
also discusses consistency boundaries and transactions, but
they haven't been overly concerned with that. Their chosen
persistence mechanism will help manage atomic commits
of their data. However, that was a crucial misunderstanding
of the pattern's guidance that caused them to regress. Here's
what happened. The team considered the following state-
ments in the ubiquitous language:

• Products have backlog items, releases, and sprints.

• New product backlog items are planned.

• New product releases are scheduled.

• New product sprints are scheduled.

• A planned backlog item may be scheduled for
release.

• A scheduled backlog item may be committed to a
sprint.

From these they envisioned a model, and made their first
attempt at a design. Let's see how it went.

First Attempt: Large-Cluster Aggregate

The team put a lot of weight on the words “Products have”
in the first statement. It sounded to some like composition,
that objects needed to be interconnected like an object
graph. Maintaining these object life cycles together was
considered very important. So, the developers added the
following consistency rules into the specification:

• If a backlog item is committed to a sprint, we must
not allow it to be removed from the system.

• If a sprint has committed backlog items, we must
not allow it to be removed from the system.

• If a release has scheduled backlog items, we must
not allow it to be removed from the system.

• If a backlog item is scheduled for release, we must
not allow it to be removed from the system.

1

As a result, Product was first modeled as a very large ag-
gregate. The root object, Product, held all Backlog
Item, all Release, and all Sprint instances associated
with it. The interface design protected all parts from inad-
vertent client removal. This design is shown in the follow-
ing code, and as a UML diagram in Figure 1:

public class Product extends ConcurrencySafeEntity {

 private Set<BacklogItem> backlogItems;

 private String description;

 private String name;

 private ProductId productId;

 private Set<Release> releases;

 private Set<Sprint> sprints;

 private TenantId tenantId;

 ...

}

Figure 1: Product modeled as a very large aggregate.

The big aggregate looked attractive, but it wasn't truly
practical. Once the application was running in its intended
multi-user environment it began to regularly experience
transactional failures. Let's look more closely at a few cli-
ent usage patterns and how they interact with our technical
solution model. Our aggregate instances employ optimistic
concurrency to protect persistent objects from simultaneous
overlapping modifications by different clients, thus avoid-
ing the use of database locks. Objects carry a version num-
ber that is incremented when changes are made and
checked before they are saved to the database. If the ver-
sion on the persisted object is greater than the version on
the client's copy, the client's is considered stale and updates
are rejected.

Consider a common simultaneous, multi-client usage scen-
ario:

• Two users, Bill and Joe, view the same Product
marked as version 1, and begin to work on it.

• Bill plans a new BacklogItem and commits.
The Product version is incremented to 2.

• Joe schedules a new Release and tries to save,
but his commit fails because it was based on
Product version 1.

Persistence mechanisms are used in this general way to deal
with concurrency.2 If you argue that the default concurrency
configurations can be changed, reserve your verdict for a
while longer. This approach is actually important to protect-
ing aggregate invariants from concurrent changes.

These consistency problems came up with just two users.
Add more users, and this becomes a really big problem.
With Scrum, multiple users often make these kinds of over-
lapping modifications during the sprint planning meeting
and in sprint execution. Failing all but one of their requests
on an ongoing basis is completely unacceptable.

Nothing about planning a new backlog item should logic-
ally interfere with scheduling a new release! Why did Joe's
commit fail? At the heart of the issue, the large cluster ag-
gregate was designed with false invariants in mind, not real
business rules. These false invariants are artificial con-
straints imposed by developers. There are other ways for
the team to prevent inappropriate removal without being ar-
bitrarily restrictive. Besides causing transactional issues,
the design also has performance and scalability drawbacks.

Second Attempt: Multiple Aggregates

Now consider an alternative model as shown in Figure 2, in
which we have four distinct aggregates. Each of the de-
pendencies is associated by inference using a common
ProductId, which is the identity of Product con-
sidered the parent of the other three.

Figure 2: Product and related concepts are modeled as
separate aggregate types.

Breaking the large aggregate into four will change some
method contracts on Product. With the large cluster ag-
gregate design the method signatures looked like this:

public class Product ... {

 ...

 public void planBacklogItem(

 String aSummary, String aCategory,

 BacklogItemType aType, StoryPoints aStoryPoints) {

 ...

 }

 ...

2 For example, Hibernate provides optimistic concurrency in this way. The same
could be true of a key-value store because the entire aggregate is often serial-
ized as one value, unless designed to save composed parts separately.

2

 public void scheduleRelease(

 String aName, String aDescription,

 Date aBegins, Date anEnds) {

 ...

 }

 public void scheduleSprint(

 String aName, String aGoals,

 Date aBegins, Date anEnds) {

 ...

 }

 ...

}

All of these methods are [CQS] commands. That is, they
modify the state of the Product by adding the new ele-
ment to a collection, so they have a void return type. But
with the multiple aggregate design, we have:

public class Product ... {

 ...

 public BacklogItem planBacklogItem(

 String aSummary, String aCategory,

 BacklogItemType aType, StoryPoints aStoryPoints) {

 ...

 }

 public Release scheduleRelease(

 String aName, String aDescription,

 Date aBegins, Date anEnds) {

 ...

 }

 public Sprint scheduleSprint(

 String aName, String aGoals,

 Date aBegins, Date anEnds) {

 ...

 }

 ...

}

These redesigned methods have a [CQS] query contract,
and act as factories. That is, they each respectively create a
new aggregate instance and return a reference to it. Now
when a client wants to plan a backlog item, the transaction-
al application service must do the following:

public class ProductBacklogItemService ... {

 ...

 @Transactional

 public void planProductBacklogItem(

 String aTenantId, String aProductId,

 String aSummary, String aCategory,

 String aBacklogItemType, String aStoryPoints) {

 Product product =

 productRepository.productOfId(

 new TenantId(aTenantId),

 new ProductId(aProductId));

 BacklogItem plannedBacklogItem =

 product.planBacklogItem(

 aSummary,

 aCategory,

 BacklogItemType.valueOf(aBacklogItemType),

 StoryPoints.valueOf(aStoryPoints));

 backlogItemRepository.add(plannedBacklogItem);

 }

 ...

}

So we've solved the transaction failure issue by modeling it
away. Any number of BacklogItem, Release, and
Sprint instances can now be safely created by simultan-
eous user requests. That's pretty simple.

However, even with clear transactional advantages, the four
smaller aggregates are less convenient from the perspect-
ive of client consumption. Perhaps instead we could tune
the large aggregate to eliminate the concurrency issues. By
setting our Hibernate mapping optimistic-lock op-
tion to false, the transaction failure domino effect goes
away. There is no invariant on the total number of created
BacklogItem, Release, or Sprint instances, so why
not just allow the collections to grow unbounded and ignore
these specific modifications on Product? What additional
cost would there be in keeping the large cluster aggregate?
The problem is that it could actually grow out of control.
Before thoroughly examining why, let's consider the most
important modeling tip the team needed.

Rule: Model True Invariants In Consistency
Boundaries

When trying to discover the aggregates in a bounded con-
text, we must understand the model's true invariants. Only
with that knowledge can we determine which objects
should be clustered into a given aggregate.

An invariant is a business rule that must always be consist-
ent. There are different kinds of consistency. One is trans-
actional, which is considered immediate and atomic. There
is also eventual consistency. When discussing invariants,
we are referring to transactional consistency. We might
have the invariant:

 c = a + b

Therefore, when a is 2 and b is 3, c must be 5. According
to that rule and conditions, if c is anything but 5, a system
invariant is violated. To ensure that c is consistent, we
model a boundary around these specific attributes of the
model:

 AggregateType1 {

 int a; int b; int c;

 operations...

 }

The consistency boundary logically asserts that everything
inside adheres to a specific set of business invariant rules
no matter what operations are performed. The consistency
of everything outside this boundary is irrelevant to the ag-
gregate. Thus, aggregate is synonymous with transactional
consistency boundary. (In this limited example,
AggregateType1 has three attributes of type int, but
any given aggregate could hold attributes of various types.)

When employing a typical persistence mechanism we use a

3

single transaction3 to manage consistency. When the trans-
action commits, everything inside one boundary must be
consistent. A properly designed aggregate is one that can
be modified in any way required by the business with its in-
variants completely consistent within a single transaction.
And a properly designed bounded context modifies only
one aggregate instance per transaction in all cases. What is
more, we cannot correctly reason on aggregate design
without applying transactional analysis.

Limiting the modification of one aggregate instance per
transaction may sound overly strict. However, it is a rule of
thumb and should be the goal in most cases. It addresses
the very reason to use aggregates.

Since aggregates must be designed with a consistency fo-
cus, it implies that the user interface should concentrate
each request to execute a single command on just one ag-
gregate instance. If user requests try to accomplish too
much, it will force the application to modify multiple in-
stances at once.

Therefore, aggregates are chiefly about consistency bound-
aries and not driven by a desire to design object graphs.
Some real-world invariants will be more complex than this.
Even so, typically invariants will be less demanding on our
modeling efforts, making it possible to design small ag-
gregates.

Rule: Design Small Aggregates

We can now thoroughly address the question: What addi-
tional cost would there be in keeping the large cluster ag-
gregate? Even if we guarantee that every transaction would
succeed, we still limit performance and scalability. As our
company develops its market, it's going to bring in lots of
tenants. As each tenant makes a deep commitment to Pro-
jectOvation, they'll host more and more projects and the
management artifacts to go along with them. That will res-
ult in vast numbers of products, backlog items, releases,
sprints, and others. Performance and scalability are non-
functional requirements that cannot be ignored.

Keeping performance and scalability in mind, what hap-
pens when one user of one tenant wants to add a single
backlog item to a product, one that is years old and already
has thousands of backlog items? Assume a persistence
mechanism capable of lazy loading (Hibernate). We almost
never load all backlog items, releases, and sprints all at
once. Still, thousands of backlog items would be loaded
into memory just to add one new element to the already
large collection. It's worse if a persistence mechanism does
not support lazy loading. Even being memory conscious,
sometimes we would have to load multiple collections,
such as when scheduling a backlog item for release or com-
mitting one to a sprint; all backlog items, and either all re-
leases or all sprints, would be loaded.

3 The transaction may be handled by a unit of work.

To see this clearly, look at the diagram in Figure 3 contain-
ing the zoomed composition. Don't let the 0..* fool you; the
number of associations will almost never be zero and will
keep growing over time. We would likely need to load
thousands and thousands of objects into memory all at
once, just to carry out what should be a relatively basic op-
eration. That's just for a single team member of a single
tenant on a single product. We have to keep in mind that
this could happen all at once with hundreds and thousands
of tenants, each with multiple teams and many products.
And over time the situation will only become worse.

Figure 3: With this Product model, multiple large collec-
tions load during many basic operations.

This large cluster aggregate will never perform or scale
well. It is more likely to become a nightmare leading only
to failure. It was deficient from the start because the false
invariants and a desire for compositional convenience
drove the design, to the detriment of transactional success,
performance, and scalability.

If we are going to design small aggregates, what does
“small” mean? The extreme would be an aggregate with
only its globally unique identity and one additional attrib-
ute, which is not what's being recommended (unless that is
truly what one specific aggregate requires). Rather, limit
the aggregate to just the root entity and a minimal number
of attributes and/or value-typed properties.4 The correct
minimum is the ones necessary, and no more.

Which ones are necessary? The simple answer is: those that
must be consistent with others, even if domain experts don't
specify them as rules. For example, Product has name

4 A value-typed property is an attribute that holds a reference to a value object. I
distinguish this from a simple attribute such as a String or numeric type, as does
Ward Cunningham when describing Whole Value; see http://fit.c2.com/wiki.cgi?
WholeValue

4

and description attributes. We can't imagine name and
description being inconsistent, modeled in separate
aggregates. When you change the name you probably also
change the description. If you change one and not the
other, it's probably because you are fixing a spelling error
or making the description more fitting to the name.
Even though domain experts will probably not think of this
as an explicit business rule, it is an implicit one.

What if you think you should model a contained part as an
entity? First ask whether that part must itself change over
time, or whether it can be completely replaced when
change is necessary. If instances can be completely re-
placed, it points to the use of a value object rather than an
entity. At times entity parts are necessary. Yet, if we run
through this exercise on a case-by-case basis, many con-
cepts modeled as entities can be refactored to value ob-
jects. Favoring value types as aggregate parts doesn't
mean the aggregate is immutable since the root entity it-
self mutates when one of its value-typed properties is re-
placed.

There are important advantages to limiting internal parts to
values. Depending on your persistence mechanism, values
can be serialized with the root entity, whereas entities usu-
ally require separately tracked storage. Overhead is higher
with entity parts, as, for example, when SQL joins are ne-
cessary to read them using Hibernate. Reading a single
database table row is much faster. Value objects are smal-
ler and safer to use (fewer bugs). Due to immutability it is
easier for unit tests to prove their correctness.

On one project for the financial derivatives sector using
[Qi4j], Niclas [Hedhman] reported that his team was able to
design approximately 70% of all aggregates with just a
root entity containing some value-typed properties. The re-
maining 30% had just two to three total entities. This does-
n't indicate that all domain models will have a 70/30 split. It
does indicate that a high percentage of aggregates can be
limited to a single entity, the root.

The [DDD] discussion of aggregates gives an example
where multiple entities makes sense. A purchase order is
assigned a maximum allowable total, and the sum of all line
items must not surpass the total. The rule becomes tricky to
enforce when multiple users simultaneously add line items.
Any one addition is not permitted to exceed the limit, but
concurrent additions by multiple users could collectively do
so. I won't repeat the solution here, but I want to emphasize
that most of the time the invariants of business models are
simpler to manage than that example. Recognizing this
helps us to model aggregates with as few properties as pos-
sible.

Smaller aggregates not only perform and scale better, they
are also biased toward transactional success, meaning that
conflicts preventing a commit are rare. This makes a system
more usable. Your domain will not often have true invariant

constraints that force you into large composition design
situations. Therefore, it is just plain smart to limit aggreg-
ate size. When you occasionally encounter a true consist-
ency rule, then add another few entities, or possibly a col-
lection, as necessary, but continue to push yourself to keep
the overall size as small as possible.

Don't Trust Every Use Case

Business analysts play an important role in delivering use
case specifications. Since much work goes into a large and
detailed specification, it will affect many of our design de-
cisions. Yet, we mustn't forget that use cases derived in this
way does not carry the perspective of the domain experts
and developers of our close-knit modeling team. We still
must reconcile each use case with our current model and
design, including our decisions about aggregates. A com-
mon issue that arises is a particular use case that calls for
the modification of multiple aggregate instances. In such a
case we must determine whether the specified large user
goal is spread across multiple persistence transactions, or if
it occurs within just one. If it is the latter, it pays to be
skeptical. No matter how well it is written, such a use case
may not accurately reflect the true aggregates of our
model.

Assuming your aggregate boundaries are aligned with real
business constraints, then it's going to cause problems if
business analysts specify what you see in Figure 4. Think-
ing through the various commit order permutations, you'll
see that there are cases where two of the three requests will
fail.5 What does attempting this indicate about your design?
The answer to that question may lead to a deeper under-
standing of the domain. Trying to keep multiple aggregate
instances consistent may be telling you that your team has
missed an invariant. You may end up folding the multiple
aggregates into one new concept with a new name in order
to address the newly recognized business rule. (And, of
course, it might be only parts of the old aggregates that get
rolled into the new one.)

Figure 4: Concurrency contention exists between three
users all trying to access the same two aggregate instances,
leading to a high number of transactional failures.

5 This doesn't address the fact that some use cases describe modifications to mul-
tiple aggregates that span transactions, which would be fine. A user goal should
not be viewed as synonymous with transaction. We are only concerned with use
cases that actually indicate the modification of multiple aggregates instances in
one transaction.

5

So a new use case may lead to insights that push us to re-
model the aggregate, but be skeptical here, too. Forming
one aggregate from multiple ones may drive out a com-
pletely new concept with a new name, yet if modeling this
new concept leads you toward designing a large cluster ag-
gregate, that can end up with all the problems of large ag-
gregates. What different approach may help?

Just because you are given a use case that calls for main-
taining consistency in a single transaction doesn't mean you
should do that. Often, in such cases, the business goal can
be achieved with eventual consistency between aggregates.
The team should critically examine the use cases and chal-
lenge their assumptions, especially when following them as
written would lead to unwieldy designs. The team may
have to rewrite the use case (or at least re-imagine it if they
face an uncooperative business analyst). The new use case
would specify eventual consistency and the acceptable
update delay. This is one of the issues taken up in Part II of
this essay.

Coming in Part II

Part I has focused on the design of a number of small
aggregates and their internals. There will be cases that
require references and consistency between aggregates,
especially when we keep aggregates small. Part II of this
essay covers how aggregates reference other aggregates as
well as eventual consistency.

Copyright © 2011 Vaughn Vernon. All rights reserved.
Effective Aggregate Design is licensed under the Creative
Commons Attribution-NoDerivs 3.0 Unported License:
http://creativecommons.org/licenses/by-nd/3.0/

Acknowledgments

Eric Evans and Paul Rayner did several detailed reviews of
this essay. I also received feedback from Udi Dahan, Greg
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Öberg.

References

[CQS] Martin Fowler explains Bertrand Meyer's
Command-Query Separation: http://martinfowler.com/bliki/
CommandQuerySeparation.html

[DDD] Eric Evans; Domain-Driven Design—Tackling
Complexity in the Heart of Software; 2003, Addison-
Wesley, ISBN 0-321-12521-5.

[Hedhman] Niclas Hedhman; http://www.jroller.com/niclas/

[Qi4j] Rickard Öberg, Niclas Hedhman; Qi4j framework;
http://qi4j.org/

Biography

Vaughn Vernon is a veteran consultant, providing
architecture, development, mentoring, and training services.
This three-part essay is based on his upcoming book on
implementing domain-driven design. His QCon San
Francisco 2010 presentation on context mapping is
available on the DDD Community site:
http://dddcommunity.org/library/vernon_2010. Vaughn
blogs here: http://vaughnvernon.co/, and you can reach him
by email here: vvernon@shiftmethod.com

6

