
tribu.woapi@octo.com

WWW.OCTO.COM

As soon as we start working on an API, design issues
arise. A robust and strong design is a key factor for
API success. A poorly designed API will indeed lead
to misuse or – even worse – no use at all by its intended
clients: application developers.

Creating and providing a state of the art API requires taking into
account:

 �RESTful API principles as described in the literature (Roy Fielding,
Leonard Richardson, Martin Fowler, HTTP specification…)

 �The API practices of the Web Giants

Nowadays, two opposing approaches are seen.

“Purists” insist upon following REST principles without compromise.
“Pragmatics” prefer a more practical approach, to provide their
clients with a more usable API. The proper solution often lies in
between.

Designing a REST API raises questions and issues for which there is
no universal answer. REST best practices are still being debated and
consolidated, which is what makes this job fascinating.

To facilitate and accelerate the design and development of your
APIs, we share our vision and beliefs with you in this Reference Card.
They come from our direct experience on API projects.

RESTful API
Design 

Why an API
strategy ? 

WWW.OCTO.COM

©
 O

C
TO

 T
ec

hn
ol

og
y

20
15

 -
A

ll
rig

ht
s

re
se

rv
ed

“Anytime, Anywhere, Any device” are the key problems
of digitalisation. API is the answer to “Business
Agility” as it allows to build rapidly new GUI for
upcoming devices.

An API layer enables
 �Cross device

 �Cross channel

 �360° customer view

Open API allows
 �To outsource innovation

 �To create new business
models

Embrace WOA
“Web Oriented Architecture”
 �Build a fast, scalable & secured
REST API

 �Based on: REST, HATEOAS,
Stateless decoupled
µ-services, Asynchronous
patterns, OAuth2 and OpenID
Connect protocols

 �Leverage the power of your
existing web infrastructure

DISCLAMER
This Reference Card doesn’t claim to be absolutely accurate. The
design concepts exposed result from our previous work in the REST
area. Please check out our blog http://blog.octo.com, and feel free
to comment or challenge this API cookbook. We are really looking
forward to sharing with you.

HTTP STATUS CODE DESCRIPTION

SUCCESS

200 OK
• �Basic success code. Works for the general cases.
• �Especially used on successful first GET requests or PUT/PATCH updated content.

201 Created • �Indicates that a resource was created. Typically responding to PUT and POST requests.

202 Accepted
• �Indicates that the request has been accepted for processing.
• �Typically responding to an asynchronous processing call (for a better UX and good performances).

204 No Content • �The request succeeded but there is nothing to show. Usually sent after a successful DELETE.

206 Partial Content • �The returned resource is incomplete. Typically used with paginated resources.

HTTP Status codes 

400 Bad Request

General error for a request that cannot be processed.

CLIENT ERROR

SERVER ERROR

GET /bookings?paid=true
→ 400 Bad Request
→ {"error":"invalid_request", "error_description":"There is no ‘paid’ property"}

401 Unauthorized

I do not know you, tell me who you are and I will check your permissions.

GET /bookings/42
→ 401 Unauthorized
→ {"error”:"no_credentials", "error_description":"You must be authenticated"}

403 Forbidden

Your rights are not sufficient to access this resource.

GET /bookings/42
→ 403 Forbidden
→ {"error":"protected_resource", "error_description":"You need sufficient rights"}

404 Not Found

The resource you are requesting does not exist.

GET /hotels/999999
→ 404 Not Found
→ {"error":"not_found", "error_description": "The hotel ‘999999’ does not exist"}

405 Method Not Allowed

Either the method is not supported or relevant on this resource or the user does not have the permission.

PUT /hotels/999999
→ 405 Method Not Allowed
→ {"error":"not_implemented", "error_description":"Hotel creation not implemented"}

406 Not Acceptable

There is nothing to send that matches the Accept-* headers. For example, you requested a resource
in XML but it is only available in JSON.

GET /hotels
Accept-Language: cn
→ 406 Not Acceptable
→ {"error": "not_acceptable", "error_description":"Available languages: en, fr"}

500 Internal Server Error

The request seems right, but a problem occurred on the server. The client cannot do anything about that.

GET /users
→ 500 Internal server error
→ {"error":"server_error", "error_description":"Oops! Something went wrong…"}

ERROR 418
I’m a teapot

We believe that API
IS THE ENGINE OF
DIGI+AL STRATEGY
WE KNOW that the Web infiltrates

AND transforms COMPANIES

WE WORK +OGETHER,
with passion, TO CONNECT

BUSINESS & IT
We help you CREATE
OPPORTUNITIES AND EMBRACE
THE WEB Inside & Out

General concepts 

Anyone should be able to use your API without
having to refer to the documentation.

 �Use standard, concrete and shared terms,
not your specific business terms or acronyms.

 �Never allow application developers to do
things more than one way.

 �Design your API for your clients (Application
developers), not for your data.

 �Target main use cases first, deal with
exceptions later.

GET /orders, GET /users, GET /products, ...

KISS

OAuth2/OIDC & HTTPS
You should use OAuth2 to manage Authorization.
OAuth2 matches 99% of requirements and client
typologies, don’t reinvent the wheel, you’ll fail.
You should use HTTPS for every API/OAuth2
request. You may use OpenID Connect to
handle Authentication.

SECURITY

URLs 

You should use nouns, not verbs (vs SOAP-RPC).
GET /orders not /getAllOrders

NOUNS

You should use plural nouns, not singular
nouns, to manage two different types of
resources:

 Collection resource: /users
 Instance resource: /users/007

You should remain consistent.
GET /users/007 not GET /user/007

PLURALS

Other key concepts 

Content negotiation is managed only in a pure
RESTful way. The client asks for the required
content, in the Accept header, in order of
preference. Default format is JSON.
Accept: application/json, text/plain not /orders.json

CONTENT
NEGOTIATION

Query strings 

SEARCH

You should use /search keyword to perform
a search on a specific resource.
GET /restaurants/search?type=thai

You may use the “Google way” to perform a
global search on multiple resources.
GET /search?q=running+paid

SORT

CURL

You should use CURL to share examples,
which you can copy/paste easily.

GRANULARITY

Medium grained resources
You should use medium grained, not fine nor
coarse. Resources shouldn’t be nested more
than two levels deep:

GET /users/007

{ "id”:"007",

 "first_name”:"James",

 "name":"Bond",

 "address":{

 "street":”Horsen Ferry Road",

 ”city":{"name":"London"}

 }

}

API DOMAIN
NAMES

You may consider the following five
subdomains:

 Production: https://api.fakecompany.com
 Test: https://api.sandbox.fakecompany.com
 �Developer portal:
https://developers.fakecompany.com

 Production: https://oauth2.fakecompany.com
 Test: https://oauth2.sandbox.fakecompany.com

www.

user(s)

You may choose between snake_case or
camelCase for attributes and parameters,
but you should remain consistent.

CONSISTENT
CASE

GET /orders?id_user=007	
or GET /orders?idUser=007

POST/orders {"id_user":"007"}	
or POST/orders {"idUser":"007"}

If you have to use more than one word in URL,
you should use spinal-case (some servers
ignore case).
POST /specific-orders

You should make versioning mandatory in the
URL at the highest scope (major versions).

You may support at most two versions at the
same time (Native apps need a longer cycle).
GET /v1/orders

VERSIONING

You should leverage the hierarchical nature
of the URL to imply structure (aggregation or
composition). Ex: an order contains products.
GET /orders/1234/products/1

HIERARCHICAL
STRUCTURE

/V1/ /V2/

/V3/ /V4/

POST is used to Create an instance of a collection.
The ID isn’t provided, and the new resource
location is returned in the “Location” Header.

POST /orders {"state":"running", «id_user":"007"}
201 Created
Location: https://api.fakecompany.com/orders/1234

But remember that, if the ID is specified by
the client, PUT is used to Create the resource.

PUT /orders/1234
201 Created

PUT is used for Updates to perform a full
replacement.

PUT /orders/1234 {"state":"paid", "id_user":"007"}
200 Ok

PATCH is commonly used for partial Update.

PATCH /orders/1234 {"state":"paid"}
200 Ok

Use HTTP verbs for CRUD operations (Create/Read/Update/Delete).

CRUD-LIKE OPERATIONS

HTTP VERB COLLECTION: /ORDERS INSTANCE : /ORDER/{ID}

GET
POST
PUT

PATCH
DELETE

Read a list of orders. 200 OK.
Create a new order. 201 Created.
-

-

-

Read the details of a single order. 200 OK.
-

Full Update: 200 OK./ Create a specific order:
201 Created.
Partial Update. 200 OK.
Delete order. 204 OK.

GET is used to Read a collection.

GET /orders
200 Ok
[{"id":"1234", "state":"paid"}
{"id":"5678", "state":"running"}]

GET is used to Read an instance.

GET /orders/1234
200 Ok
{"id":"1234", "state":"paid"}

PAGINATION
You may use a range query parameter. Pagination is mandatory: a default pagination has to be
defined, for example: range=0-25.
The response should contain the following headers: Link, Content-Range, Accept-Range.
Note that pagination may cause some unexpected behavior if many resources are added.

PARTIAL
RESPONSES

You should use partial responses so
developers can select which information they
need, to optimize bandwidth (crucial for
mobile development).

/orders?range=48-55
206 Partial Content
Content-Range: 48-55/971
Accept-Range: order 10
Link : <https://api.fakecompany.com/v1/orders?range=0-7>; rel="first",
<https://api.fakecompany.com/v1/orders?range=40-47>; rel="prev",
<https://api.fakecompany.com/v1/orders?range=56-64>; rel="next",
<https://api.fakecompany.com/v1/orders?range=968-975>; rel="last"

GET /users/007?fields=firstname,name,address(street)

200 OK

{ "id":"007",

 "firstname":"James",

 "name":"Bond",

 address:{"street":"Horsen Ferry Road"}

}

FILTERS
You ought to use ‘?’ to filter resources
GET /orders?state=payed&id_user=007

or (multiple URIs may refer to the same resource)
GET /users/007/orders?state=paied

Use ?sort =atribute1,atributeN to sort resources.
By default resources are sorted in ascending order.
Use ?desc=atribute1,atributeN to sort resources
in descending order
GET /restaurants?sort=rating,reviews,name;desc=rate,reviews

URL RESERVED
WORDS :
FIRST, LAST, COUNT

Use /first to get the 1st element

GET /orders/first	

200 OK

{"id":"1234", "state":"paid"}

Use /last to retrieve the latest resource of a
collection

GET /orders/last	

200 OK

{"id":"5678", "state":"running"}

Use /count to get the current size of a collection

GET /orders/count	

200 OK	

{"2"}

Use ISO 8601 standard for Date/Time/Timestamp:
1978-05-10T06:06:06+00:00 or 1978-05-10

Add support for different Languages.
Accept-Language: fr-CA, fr-FR not ?language=fr

I18N

Use CORS standard to support REST API
requests from browsers (js SPA…).

But if you plan to support Internet Explorer
7/8 or 9, you shall consider specifics endpoints
to add JSONP support.

 All requests will be sent with a GET method!

 �Content negotiation cannot be handled with
Accept header in JSONP.

 Payload cannot be used to send data.

CROSS-ORIGIN
REQUESTS

POST /orders and /orders.jsonp?method=POST&callback=foo

GET /orders and /orders.jsonp?callback=foo

GET /orders/1234 and /orders/1234.jsonp?callback=foo

PUT /orders/1234 and /orders/1234.jsonp?method=PUT&callback=foo

Warning: a web crawler could easily damage your application with a method parameter. Make
sure that an OAuth2 access_token is required, and an OAuth2 client_id as well.

Your API should provide Hypermedia links in order to be completely discoverable. But keep in
mind that a majority of users wont probably use those hyperlinks (for now), and will read the API
documentation and copy/paste call examples.

So, each call to the API should return in the Link header every possible state of the application
from the current state, plus self.

You may use RFC5988 Link notation to implement HATEOAS :

HATEOAS

GET /users/007
< 200 Ok
< { "id":"007", "firstname":"Mario",...}
< Link : <https://api.fakecompany.com/v1/users>; rel="self"; method:"GET",
<https://api.fakecompany.com/v1/addresses/42>; rel="addresses"; method:"GET",
<https://api.fakecompany.com/v1/orders/1234>; rel="orders"; method:"GET"

In a few use cases we have to consider operations
or services rather than resources.

You may use a POST request with a verb at the
end of the URI.

“NON RESOURCE”
SCENARIOS

POST /emails/42/send
POST /calculator/sum [1,2,3,5,8,13,21]
POST /convert?from=EUR&to=USD&amount=42

However, you should consider using RESTful
resources first before going this way.

nouns
verbs

CURL –X POST \

-H "Accept: application/json" \

-H "Authorization: Bearer at-80003004-19a8-46a2-908e-33d4057128e7" \

-d ‘{"state":"running"}’ \

https://api.fakecompany.com/v1/users/007/orders?client_id=API_KEY_003

RESTFUL WAY

