
Jonas Bonér

Design Principles for Distributed Systems

Reactive
Microservices
Architecture

Compliments of

https://www.lightbend.com/lagom?r=OReilly

Jonas Bonér

Reactive Microservices
Architecture
Design Principles

for Distributed Systems

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95934-3

[LSI]

Reactive Microservices Architecture
by Jonas Bonér

Copyright © 2016 Jonas Bonér. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster
Production Editor: Colleen Cole
Copyeditor: Colleen Toporek

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kevin Webber

March 2016: First Edition

Revision History for the First Edition
2016-03-15: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Reactive Microser‐
vices Architecture, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

1. Introduction. 1
Services to the Rescue 3
Slicing the Monolith 3
SOA Dressed in New Clothes? 5

2. What Is a Reactive Microservice?. 7
Isolate All the Things 8
Act Autonomously 11
Do One Thing, and Do It Well 12
Own Your State, Exclusively 13
Embrace Asynchronous Message-Passing 17
Stay Mobile, but Addressable 22

3. Microservices Come in Systems. 27
Systems Need to Exploit Reality 28
Service Discovery 30
API Management 32
Managing Communication Patterns 34
Integration 35
Security Management 38
Minimizing Data Coupling 41
Minimizing the Cost of Coordination 42
Summary 47

iii

CHAPTER 1

Introduction

We change a monolithic system only when we have no other choice.
Rather than swiftly capture opportunity, we ponder if it’s really
worth upsetting the delicate balance of the house of cards we call
our enterprise system. Often the opportunity quickly disappears,
captured by a faster company, as in Figure 1-1.

In the new world, it is not the big fish which eats the small fish, it’s
the fast fish which eats the slow fish.

—Klaus Schwab

Figure 1-1. Slow fish versus fast fish

Microservices-Based Architecture is a simple concept: it advocates
creating a system from a collection of small, isolated services, each
of which owns their data, and is independently isolated, scalable and
resilient to failure. Services integrate with other services in order to
form a cohesive system that’s far more flexible than the typical enter‐
prise systems we build today.

1

https://en.wikipedia.org/wiki/Monolithic_application

Traditional enterprise systems are designed as monoliths—all-in-
one, all-or-nothing, difficult to scale, difficult to understand and dif‐
ficult to maintain. Monoliths can quickly turn into nightmares that
stifle innovation, progress, and joy. The negative side effects caused
by monoliths can be catastrophic for a company—everything from
low morale to high employee turnover, from preventing a company
from hiring top engineering talent to lost market opportunities, and
in extreme cases, even the failure of a company.

The war stories often sound like this: “We finally made the decision
to make changes to our Java EE application, after seeking approval
from management. Then we went through months of big up-front
design before we eventually started to build something. But most of
our time during construction was spent trying to figure out what the
monolith actually did. We became paralyzed by fear, worried that
one small mistake would cause unintended and unknown side
effects. Finally, after months of worry, fear, and hard work, the
changes were implemented—and hell broke loose. The collateral
damage kept us awake for nights on end while we were firefighting
and trying to put the pieces back together.”

Does this sound familiar?

Experiences like this enforce fear, which paralyzes us even further.
This is how systems, and companies, stagnate. What if there was a
better way?

You’ve got to start with the customer experience and work back
towards the technology.

—Steve Jobs

The customers of Microservices are the organizations who invest in
systems, so let’s start with the customer: developers, architects, and
key stakeholders.

Do you prefer to work on a large system and have a small impact, or
work on a small, well-defined part of the system and have a large
impact? Do you do your best work in a large bureaucratic group, or
on a small team of people that you know and trust? Do you do your
best work when delegated to, or when you’re given room to think
creatively and build useful things? Enter Microservices.

2 | Chapter 1: Introduction

http://www.agilemodeling.com/essays/bmuf.htm
http://www.agilemodeling.com/essays/bmuf.htm

Services to the Rescue
Although the world is full of suffering, it is also full of the
overcoming of it.

—Helen Keller

Microservices are the next design evolution in software not purely
because of technical reasons. The ideas embodied within the term
Microservices have been around well before our first venture into
Service Oriented Architecture (SOA). Certain technical constraints
held us back from taking the concepts embedded within the Micro‐
services term to the next level: single machines running single core
processors, slow networks, expensive disks, expensive RAM, and
organizations structured as monoliths. Ideas such as organizing sys‐
tems into well-defined components with a single responsibility are
not new.

Fast forward to 2016. The technical limitations holding us back
from Microservices are gone. Networks are fast, disks are cheap
(and a lot faster), RAM is cheap, multi-core processors are cheap,
and cloud architectures are revolutionizing how we design and
deploy systems. Now we can finally structure our systems with the
customer in mind.

Designing and programming software is fun, which is why most of
us entered the software industry to begin with. Microservices are
more than a series of principles and technologies. They’re a way to
approach the complex problem of systems design in a more empa‐
thetic way.

Microservices enable us to structure our systems the same way we
structure our teams, dividing responsibilities among team members
and ensuring they are free to own their work. As we detangle our
systems, we shift the power from central governing bodies to smaller
teams who can seize opportunities rapidly and stay nimble because
they understand the software within well defined boundaries that
they control.

Slicing the Monolith
Tackling a monolith means taking a hard look at your traditional
Java EE systems. Written in a monolithic way, these systems tend to

Services to the Rescue | 3

https://en.wikipedia.org/wiki/Service-oriented_architecture

1 I am using the word Microservice and service interchangeably throughout this docu‐
ment. Both refer to the idea of a Reactive Microservice.

have strong coupling between the components in the service1 and
between services. A system with the services tangled and interde‐
pendent is harder to write, understand, test, evolve, upgrade and
operate independently. Worse still, strong coupling can also lead to
cascading failures—where one failing service can take down the
entire system, instead of allowing you to deal with the failure in iso‐
lation.

One problem has been that application servers (e.g., WebLogic,
WebSphere, JBoss and Tomcat—even though Tomcat does not sup‐
port EAR files) encourage this monolithic model. They assume that
you are bundling your service JARs into an EAR file as a way of
grouping your services, which you then deploy—alongside all your
other applications and services—into the single running instance of
the application server, which manages the service “isolation”
through class loader tricks. All in all, a very fragile model.

Figure 1-2. Classical Java EE architecture

Today we have a much more refined foundation for isolation of
services, using virtualization, Linux Containers (LXC), Docker, and
Unikernels. This has made it possible to treat isolation as a first-class

4 | Chapter 1: Introduction

2 “SOA is Dead; Long Live Services” by Anne Thomas, VP and Distinguished Analyst at
Gartner, Inc.

concern—a necessity for resilience, scalability, continuous delivery
and operations efficiency. It has also paved the way for the rising
interest in Microservices-Based Architectures, allowing you to slice
up the monolith and develop, deploy, run, scale and manage the
services independently of each other.

SOA Dressed in New Clothes?
How splendid his Majesty looks in his new clothes, and how well
they fit!” everyone cried out. “What a design! What colors! These
are indeed royal robes!

—“The Emperor’s New Clothes” by H.C. Andersen

A valid question to ask is whether Microservices are actually just
SOA dressed up in new clothes. The answer is both yes and no. Yes,
because the initial goals—decoupling, isolation, composition, inte‐
gration, discrete and autonomous services—are the same. And no,
because the fundamental ideas of SOA were most often misunder‐
stood and misused, resulting in complicated systems where an
Enterprise Service Bus (ESB) was used to hook up multiple mono‐
liths, communicating over complicated, inefficient and inflexible
protocols.

Anne Thomas captures this very well in her article SOA is Dead;
Long Live Services:2

Although the word “SOA” is dead, the requirement for service-
oriented architecture is stronger than ever. But perhaps that’s the
challenge: The acronym got in the way. People forgot what SOA
stands for. They were too wrapped up in silly technology debates
(e.g., “what’s the best ESB?” or “WS-* vs. REST”), and they missed
the important stuff: architecture and services.
Successful SOA (i.e., application re-architecture) requires disrup‐
tion to the status quo. SOA is not simply a matter of deploying new
technology and building service interfaces to existing applications;
it requires redesign of the application portfolio. And it requires a
massive shift in the way IT operates.

The world of the software architect looks very different today than it
did 10-15 years ago when SOA emerged. Today, multi-core process‐
ors, cloud computing, mobile devices and the Internet of Things

SOA Dressed in New Clothes? | 5

http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
https://en.wikipedia.org/wiki/Enterprise_service_bus

3 “The Reactive Manifesto” can be found at www.reactivemanifesto.org. If you have not
done so already, I recommend that you read it now because this book rests on the foun‐
dation of the Reactive principles.

(IoT) are emerging rapidly, which means that all systems are dis‐
tributed systems from day one—a vastly different and more chal‐
lenging world to operate in.

As always, new challenges demand a new way of thinking and we
have seen new systems emerge that are designed to deal with these
new challenges—systems built on the Reactive principles, as defined
by the Reactive Manifesto.3

The Reactive principles are in no way new. They have been proven
and hardened for more than 40 years, going back to the seminal
work by Carl Hewitt and his invention of the Actor Model, Jim Gray
and Pat Helland at Tandem Systems, and Joe Armstrong and Robert
Virding and their work on Erlang. These people were ahead of their
time, but now the world has caught up with their innovative think‐
ing and we depend on their discoveries and work more than ever.

What makes Microservices interesting is that this architecture has
learned from the failures and successes of SOA, kept the good ideas,
and re-architected them from the ground up using Reactive princi‐
ples and modern infrastructure. In sum, Microservices are one of
the most interesting applications of the Reactive principles in recent
years.

6 | Chapter 1: Introduction

http://www.reactivemanifesto.org

1 For an insightful discussion on the problems caused by a mutable state, see John
Backus’ classic Turing Award Lecture “Can Programming Be Liberated from the von
Neumann Style?”

2 Neil Gunter’s Universal Scalability Law is an essential tool in understanding the effects
of contention and coordination in concurrent and distributed systems.

CHAPTER 2

What Is a Reactive Microservice?

One of the key principles in employing a Microservices-based
Architecture is Divide and Conquer: the decomposition of the sys‐
tem into discrete and isolated subsystems communicating over well-
defined protocols.

Isolation is a prerequisite for resilience and elasticity and requires
asynchronous communication boundaries between services to
decouple them in:

Time
Allowing concurrency

Space
Allowing distribution and mobility—the ability to move serv‐
ices around

When adopting Microservices, it is also essential to eliminate shared
mutable state1 and thereby minimize coordination, contention and
coherency cost, as defined in the Universal Scalability Law2 by
embracing a Share-Nothing Architecture.

7

http://worrydream.com/refs/Backus-CanProgrammingBeLiberated.pdf
http://worrydream.com/refs/Backus-CanProgrammingBeLiberated.pdf
http://www.perfdynamics.com/Manifesto/USLscalability.html
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithms
http://www.reactivemanifesto.org/glossary#Asynchronous
https://en.wikipedia.org/wiki/Shared_nothing_architecture

3 For a discussion on the use of bulkheads in ship construction, see the Wikipedia page
https://en.wikipedia.org/wiki/Bulkhead_(partition).

At this point in our journey, it is high time to discuss the most
important parts that define a Reactive Microservice.

Isolate All the Things
Without great solitude, no serious work is possible.

—Pablo Picasso

Isolation is the most important trait. It is the foundation for many of
the high-level benefits in Microservices. But it is also the trait that
has the biggest impact on your design and architecture. It will, and
should, slice up the whole architecture, and therefore it needs to be
considered from day one. It will even impact the way you break up
and organize the teams and their responsibilities, as Melvyn Conway
discovered and was later turned into Conway’s Law in 1967:

Any organization that designs a system (defined broadly) will pro‐
duce a design whose structure is a copy of the organization’s com‐
munication structure.

Failure isolation—to contain and manage failure without having it
cascade throughout the services participating in the workflow—is a
pattern sometimes referred to as Bulkheading.

Bulkheading has been used in the ship construction for centuries as
a way to “create watertight compartments that can contain water in
the case of a hull breach or other leak.”3 The ship is divided into dis‐
tinct and completely isolated watertight compartments, so that if
compartments are filled up with water, the leak does not spread and
the ship can continue to function and reach its destination.

Figure 2-1. Using bulkheads in ship construction

8 | Chapter 2: What Is a Reactive Microservice?

https://en.wikipedia.org/wiki/Bulkhead_(partition)
http://melconway.com/Home/Conways_Law.html
http://skife.org/architecture/fault-tolerance/2009/12/31/bulkheads.html

4 For an in-depth analysis of what made Titanic sink see the article “Causes and Effects of
the Rapid Sinking of the Titanic.”

5 Process (service) supervision is a construct for managing failure used in Actor lan‐
guages (like Erlang) and libraries (like Akka). Supervisor hierarchies is a pattern where
the processes (or actors/services) are organized in a hierarchical fashion where the par‐
ent process is supervising its subordinates. For a detailed discussion on this pattern see
“Supervision and Monitoring.”

Some people might come to think of the Titanic as a counter-
example. It is actually an interesting study4 in what happens when
you don’t have proper isolation between the compartments and how
that can lead to cascading failures, eventually taking down the whole
system. The Titanic did use bulkheads, but the walls that were sup‐
pose to isolate the compartments did not reach all the way up to the
ceiling. So when 6 out of its 16 compartments were ripped open by
the iceberg, the ship started to tilt and water spilled over from one
compartment to the next, until all of the compartments were filled
with water and the Titanic sank, killing 1500 people.

Resilience—the ability to heal from failure—depends on compart‐
mentalization and containment of failure, and can only be achieved
by breaking free from the strong coupling of synchronous commu‐
nication. Microservices communicating over a process boundary
using asynchronous message-passing enable the level of indirection
and decoupling necessary to capture and manage failure, orthogo‐
nally to the regular workflow, using service supervision.5

Isolation between services makes it natural to adopt Continuous
Delivery. This allows you to safely deploy applications and roll out
and revert changes incrementally—service by service.

Isolation also makes it easier to scale each service, as well as allowing
them to be monitored, debugged and tested independently—some‐
thing that is very hard if the services are all tangled up in the big
bulky mess of a monolith.

Isolate All the Things | 9

http://writing.engr.psu.edu/uer/bassett.html
http://writing.engr.psu.edu/uer/bassett.html
http://doc.akka.io/docs/akka/snapshot/general/supervision.html
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_delivery

Figure 2-2. Bounded contexts of Microservices

10 | Chapter 2: What Is a Reactive Microservice?

6 Our definition of a promise is taken from the chapter “Promise Theory” from Thinking
in Promises by Mark Burgess (O’Reilly), which is a very helpful tool in modeling and
understanding reality in decentralized and collaborative systems. It shows us that by
letting go and embracing uncertainty we get on the path towards greater certainty.

Act Autonomously
Insofar as any agent acts on reason alone, that agent adopts and acts
only on self-consistent maxims that will not conflict with other
maxims any such agent could adopt. Such maxims can also be
adopted by and acted on by all other agents acting on reason alone.

—Law of Autonomy by Immanuel Kant

Isolation is a prerequisite for autonomy. Only when services are iso‐
lated can they be fully autonomous and make decisions independ‐
ently, act independently, and cooperate and coordinate with others
to solve problems.

An autonomous service can only promise6 its own behaviour by pub‐
lishing its protocol/API. Embracing this simple yet fundamental fact
has profound impact on how we can understand and model collabo‐
rative systems with autonomous services.

Another aspect of autonomy is that if a service only can make prom‐
ises about its own behavior, then all information needed to resolve a
conflict or to repair under failure scenarios are available within the
service itself, removing the need for communication and coordina‐
tion.

Working with autonomous services opens up flexibility around ser‐
vice orchestration, workflow management and collaborative behav‐
ior, as well as scalability, availability and runtime management, at
the cost of putting more thought into well-defined and composable
APIs that can make communication—and consensus—a bit more
challenging—something we will discuss shortly.

Act Autonomously | 11

http://markburgess.org/TIpromises.html
http://markburgess.org/TIpromises.html
https://en.wikipedia.org/wiki/Service_autonomy_principle

7 The Unix philosophy is captured really well in the classic book The Art of Unix Pro‐
gramming by Eric Steven Raymond (Pearson Education, Inc.).

8 For an in-depth discussion on the Single Responsibility Principle see Robert C. Martin’s
website “The Principles of Object Oriented Design.”

Do One Thing, and Do It Well
This is the Unix philosophy: Write programs that do one thing and
do it well. Write programs to work together.

—Doug McIlroy

The Unix philosophy7 and design has been highly successful and still
stands strong decades after its inception. One of its core principles is
that developers should write programs that have a single purpose, a
small well-defined responsibility and compose well with other small
programs.

This idea was later brought into the Object-Oriented Programming
community by Robert C. Martin and named the Single Responsibil‐
ity Principle (SRP),8 which states a class or component should “only
have one reason to change.”

There has been a lot of discussion around the true size of a Micro‐
service. What can be considered “micro”? How many lines of code
can it be and still be a Microservice? These are the wrong questions.
Instead, “micro” should refer to scope of responsibility, and the
guiding principle here is the the Unix philosophy of SRP: let it do
one thing, and do it well.

If a service only has one single reason to exist, providing a single
composable piece of functionality, then business domains and
responsibilities are not tangled. Each service can be made more gen‐
erally useful, and the system as a whole is easier to scale, make resil‐
ient, understand, extend and maintain.

12 | Chapter 2: What Is a Reactive Microservice?

http://www.catb.org/esr/writings/taoup/html
http://www.catb.org/esr/writings/taoup/html
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Own Your State, Exclusively
Without privacy there was no point in being an individual.

—Jonathan Franzen

Up to this point, we have characterized Microservices as a set of iso‐
lated services, each one with a single area of responsibility. This
forms the basis for being able to treat each service as a single unit
that lives and dies in isolation—a prerequisite for resilience—and
can be moved around in isolation—a prerequisite for elasticity.

While this all sounds good, we are forgetting the elephant in the
room: state.

Microservices are often stateful entities: they encapsulate state and
behavior, in similar fashion to an Object or an Actor, and isolation
most certainly applies to state and requires that you treat state and
behavior as a single unit.

Unfortunately, ignoring the problem by calling the architecture
“stateless”—by having “stateless” controller-style services that are
pushing their state down into a big shared database, like many web
frameworks do—won’t help as much as you would like and only del‐
egate the problem to a third-party, making it harder to control—
both in terms of data integrity guarantees as well as scalability and
availability guarantees (see Figure 2-3).

Own Your State, Exclusively | 13

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Actor_model

Figure 2-3. A disguised monolith is still a monolith

14 | Chapter 2: What Is a Reactive Microservice?

9 Visit Martin Fowler’s website For more information on how to use the Bounded Con‐
text and Ubiquitous Language modeling tools.

10 Domain-Driven Design (DDD) was introduced by Eric Evans in his book Domain-
Driven Design: Tackling Complexity in the Heart of Software (Addison-Wesley Professio‐
nal).

11 See Jay Kreps’ epic article “The Log: What every software engineer should know about
real-time data’s unifying abstraction.”

12 Martin Fowler has done a couple of good write-ups on Event Sourcing and CQRS.

What is needed is that each Microservice take sole responsibility for
their own state and the persistence thereof. Modeling each service as
a Bounded Context9 can be helpful since each service usually defines
its own domain, each with its own Ubiquitous Language. Both these
techniques are taken from the Domain-Driven Design (DDD)10

toolkit of modeling tools. Of all the new concepts introduced here,
consider DDD a good place to start learning. Microservices are
heavily influenced by DDD and many of the terms you hear in con‐
text of Microservices come from DDD.

When communicating with another Microservice, across Bounded
Contexts, you can only ask politely for its state—you can’t force it to
reveal it. Each service responds to a request at its own will, with
immutable data (facts) derived from its current state, and never
exposes its mutable state directly.

This gives each service the freedom to represent its state in any way
it wants, and store it in the format and medium that is most suitable.
Some services might choose a traditional Relational Database Man‐
agement System (RDBMS) (examples include Oracle, MySQL and
Postgres), some a NoSQL database (for example Cassandra and
Riak), some a Time-Series database (for example InfluxDB and
OpenTSDB) and some to use an Event Log11 (good backends include
Kafka, Amazon Kinesis and Cassandra) through techniques such as
Event Sourcing12 and Command Query Responsibility Segregation
(CQRS).

There are benefits to reap from decentralized data management and
persistence—sometimes called Polyglot Persistence. Conceptually,
which storage medium is used does not really matter; what matters
is that a service can be treated as a single unit—including its state
and behavior—and in order to do that each service needs to own its
state, exclusively. This includes not allowing one service to call
directly into the persistent storage of another service, but only

Own Your State, Exclusively | 15

http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/BoundedContext.html
http://martinfowler.com/bliki/UbiquitousLanguage.html
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://www.martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/bliki/CQRS.html
https://en.wikipedia.org/wiki/Domain-driven_design
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
http://nosql-database.org
http://cassandra.apache.org
http://basho.com/products
https://en.wikipedia.org/wiki/Time_series_database
https://influxdata.com
http://opentsdb.net
http://kafka.apache.org
https://aws.amazon.com/kinesis

13 The quote is taken from Pat Helland’s insightful paper “Immutability Changes Every‐
thing.”

through its API—something that might be hard to enforce program‐
matically and therefore needs to be done using conventions, policies
and code reviews.

An Event Log is a durable storage for the messages. We can either
choose to store the messages as they enter the service from the out‐
side, the Commands to the service, in what is commonly called
called Command Sourcing. We can also choose to ignore the Com‐
mand, let it perform its side-effect to the service, and if the side
effect triggers a state change in the service then we can capture the
state change as a new fact in an Event to be stored in the Event Log
using Event Sourcing.

The messages are stored in order, providing the full history of all the
interactions with the service and since messages most often repre‐
sent service transactions, the Event Log essentially provides us with
a transaction log that is explicitly available to us for querying, audit‐
ing, replaying messages (from an arbitrary point in time) for resil‐
ience, debugging and replication—instead of having it abstracted
away from the user as seen in RDBMSs. Pat Helland puts it very
well:

“Transaction logs record all the changes made to the database.
High-speed appends are the only way to change the log. From this
perspective, the contents of the database hold a caching of the latest
record values in the logs. The truth is the log. The database is a
cache of a subset of the log. That cached subset happens to be the
latest value of each record and index value from the log.”13

Command Sourcing and Event Sourcing have very different seman‐
tics. For example, replaying the Commands means that you are also
replaying the side effects they represent; replaying the Events only
performs the state-changing operations, bringing the service up to
speed in terms of state. Deciding the most appropriate technique
depends on the use case.

Using an Event Log also avoids the Object-Relational Impedance
Mismatch, a problem that occurs when using Object-Relational
Mapping (ORM) techniques and instead builds on the foundation of
message-passing and the fact that it is already there as the primary
communication mechanism. Using an Event Log is often the best

16 | Chapter 2: What Is a Reactive Microservice?

http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping

persistence model for Microservices due to its natural fit with Asyn‐
chronous Message-Passing (see Figure 2-4).

Figure 2-4. Event-based persistence through Event Logging and CQRS

Embrace Asynchronous Message-Passing
Smalltalk is not only NOT its syntax or the class library, it is not
even about classes. I’m sorry that I long ago coined the term
“objects” for this topic because it gets many people to focus on the
lesser idea. The big idea is ‘messaging’.

—Alan Kay

Communication between Microservices needs to be based on Asyn‐
chronous Message-Passing (while the logic inside each Microservice
is performed in a synchronous fashion). As was mentioned earlier,
an asynchronous boundary between services is necessary in order to
decouple them, and their communication flow, in time—allowing
concurrency—and in space—allowing distribution and mobility.
Without this decoupling it is impossible to reach the level of com‐
partmentalization and containment needed for isolation and resil‐
ience.

Asynchronous and non-blocking execution and IO is often more
cost-efficient through more efficient use of resources. It helps mini‐
mizing contention (congestion) on shared resources in the system,

Embrace Asynchronous Message-Passing | 17

http://www.reactivemanifesto.org/glossary#Message-Driven
http://www.reactivemanifesto.org/glossary#Asynchronous
http://www.reactivemanifesto.org/glossary#Non-Blocking

which is one of the biggest hurdles to scalability, low latency, and
high throughput.

As an example, let’s take a service that needs to make 10 requests to
10 other services and compose their responses. Let’s say that each
requests takes 100 milliseconds. If it needs to execute these in a syn‐
chronous sequential fashion the total processing time will be
roughly 1 second (Figure 2-5).

Figure 2-5. Synchronous requests increase latency

Whereas if it is able to execute them all asynchronously the process‐
ing time will just be 100 milliseconds—an order of magnitude dif‐
ference for the client that made the initial request (Figure 2-6).

Figure 2-6. Asynchronous requests execute as fast as the slowest
request

18 | Chapter 2: What Is a Reactive Microservice?

14 As brilliantly explained by Joel Spolsky in his classic piece “The Law of Leaky Abstrac‐
tions.”

15 The fallacies of RPC has not been better explained than in Steve Vinoski’s “Conve‐
nience over Correctness.”

But why is blocking so bad?

It’s best illustrated with an example. If a service makes a blocking
call to another service—waiting for the result to be returned—it
holds the underlying thread hostage. This means no useful work can
be done by the thread during this period. Threads are a scarce
resource and need to be used as efficient as possible. If the service
instead performs the call in an asynchronous and non-blocking
fashion, it frees up the underlying thread to be used by someone else
while waiting for the result to be returned. This leads to much more
efficient usage—in terms of cost, energy and performance—of the
underlying resources (Figure 2-7).

It is also worth pointing out that embracing asynchronicity is as
important when communicating with different resources within a
service boundary as it is between services. In order to reap the full
benefits of non-blocking execution all parts in a request chain needs
to participate—from the request dispatch, through the service
implementation, down to the database and back.

Asynchronous message-passing helps making the constraints—in
particular the failure scenarios—of network programming first-
class, instead of hiding them behind a leaky abstraction14 and pre‐
tending that they don’t exist—as seen in the fallacies15 of
synchronous Remote Procedure Calls (RPC).

Another benefit of asynchronous message-passing is that it tends to
shift focus to the workflow and communication patterns in the
application and helps you think in terms of collaboration—how data
flows between the different services, their protocols, and interaction
patterns.

Embrace Asynchronous Message-Passing | 19

http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf
http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf
https://en.wikipedia.org/wiki/Remote_procedure_call

Figure 2-7. Why blocking is bad

20 | Chapter 2: What Is a Reactive Microservice?

16 Nothing in the idea of REST itself requires synchronous communication, but it is
almost exclusively used that way in the industry.

17 See the Integration section in Chapter 3 for a discussion on how to interface with clients
that assumes a synchronous protocol.

18 We are using Tyler Akidau’s definition of streaming, “A type of data processing engine
that is designed with infinite data sets in mind” from his article “The world beyond
batch: Streaming 101.”

It is unfortunate that REST is widely considered as the default
Microservice communication protocol. It’s important to understand
that REST is most often synchronous16 which makes it a very unfit‐
ting default protocol for inter-service communication. REST might
be a reasonable option when there will only ever be a handful of
services, or in situations between specific tightly coupled services.
But use it sparingly, outside the regular request/response cycle,
knowing that it is always at the expense of decoupling, system evolu‐
tion, scale and availability.17

The need for asynchronous message-passing does not only include
responding to individual messages or requests, but also to continu‐
ous streams of messages, potentially unbounded streams. Over the
past few years the streaming landscape has exploded in terms of
both products and definitions of what streaming really means.18

The fundamental shift is that we’ve moved from “data at rest” to
“data in motion.” The data used to be offline and now it’s online.
Applications today need to react to changes in data in close to real
time—when it happens—to perform continuous queries or aggrega‐
tions of inbound data and feed it—in real time—back into the appli‐
cation to affect the way it is operating.

The first wave of big data was “data at rest.” We stored massive
amounts in HDFS or similar and then had offline batch processes
crunching the data over night, often with hours of latency.

In the second wave, we saw that the need to react in real time to the
“data in motion”—to capture the live data, process it, and feed the
result back into the running system within seconds and sometimes
even subseconds response time—had become increasingly impor‐
tant.

This need instigated hybrid architectures such as the Lambda Archi‐
tecture, which had two layers: the “speed layer” for real-time online
processing and the “batch layer” for more comprehensive offline

Embrace Asynchronous Message-Passing | 21

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://en.wikipedia.org/wiki/Representational_state_transfer
http://lambda-architecture.net
http://lambda-architecture.net

19 Location Transparency is an extremely important but very often ignored and under-
appreciated principle. The best definition of it can be found in the glossary of the Reac‐
tive Manifesto—which also puts it in context: http://www.reactivemanifesto.org/
glossary#Location-Transparency.

processing; this is where the result from the real-time processing in
the “speed layer” was later merged with the “batch layer.” This model
solved some of the immediate need for reacting quickly to (at least a
subset of) the data. But it added needless complexity with the main‐
tenance of two independent models and data processing pipelines,
as well as a data merge in the end.

The third wave—that we have already started to see happening—is
to fully embrace “data in motion” and for most use cases and data
sizes, move away from the traditional batch-oriented architecture
altogether towards pure stream processing architecture.

This is the model that is most interesting to Microservices-based
architectures because it gives us a way to bring the power of stream‐
ing and “data in motion” into the services themselves—both as a
communication protocol as well as a persistence solution (through
Event Logging, as discussed in the previous section)—including
both client-to-service and service-to-service communication.

Stay Mobile, but Addressable
To move, to breathe, to fly, to float,
To gain all while you give,
To roam the roads of lands remote,
To travel is to live.

—H.C. Andersen

With the advent of cloud computing, virtualization, and Docker
containers, we have a lot of power at our disposal to efficiently man‐
age hardware resources. The problem is that none of this matters if
our Microservices and its underlying platform cannot make efficient
use of it. What we need are services that are mobile, allowing them
to be elastic.

We have talked about asynchronous message-passing, and that it
provides decoupling in time and space. The latter, decoupling in
space, is what we call Location Transparency,19 the ability to, at run‐
time, dynamically scale the Microservice—either on multiple cores

22 | Chapter 2: What Is a Reactive Microservice?

http://www.reactivemanifesto.org/glossary#Location-Transparency
http://www.reactivemanifesto.org/glossary#Location-Transparency

20 Sometimes referred to as “Master-Slave,” “Executor-Worker,” or “Master-Minion” repli‐
cation.

or on multiple nodes—without changing the code. This is service
distribution that enables elasticity and mobility; it is needed to take
full advantage of cloud computing and its pay-as-you-go models.

For a service to become location transparent it needs to be addressa‐
ble. But what does that really mean?

First, addresses need to be stable in the sense that they can be used
to refer to the service indefinitely, regardless of where it is currently
located. This should hold true if the service is running, has been
stopped, is suspended, is being upgraded, has crashed, and so on.
The address should always work (Figure 2-8). This means a client
can always send messages to an address. In practice they might
sometimes be queued up, resubmitted, delegated, logged, or sent to
a dead letter queue.

Second, an address needs to be virtual in the sense that it can, and
often does, represent not just one, but a whole set of runtime instan‐
ces that together defines the service. Reasons this can be advanta‐
geous include:

Load-balancing between instances of a stateless service
If a service is stateless then it does not matter to which instance
a particular request is sent and a wide variety of routing algo‐
rithms can be employed, such as round-robin, broadcast or
metrics-based.

Active-Passive20 state replication between instances of a stateful service
If a service is stateful then sticky routing needs to be used—
sending every request to a particular instance. This scheme also
requires each state change to be made available to the passive
instances of the service—the replicas—each one ready to take
over serving the requests in case of failover.

Stay Mobile, but Addressable | 23

https://en.wikipedia.org/wiki/Dead_letter_queue
https://en.wikipedia.org/wiki/Replication_(computing)

Figure 2-8. Virtual addressing allows seamless fail-over

24 | Chapter 2: What Is a Reactive Microservice?

21 Locality of Reference is an important technique in building highly performant systems.
There are two types of reference locality: temporal, reuse of specific data; and spatial,
keeping data relatively close in space. It is important to understand and optimize for
both.

Relocation of a stateful service
It can be beneficial to move a service instance from one location
to another in order to improve locality of reference21 or resource
efficiency.

Using virtual addresses means that the client can stay oblivious to all
of these low-level runtime concerns—it communicates with a ser‐
vice through an address and does not have to care about how and
where the service is currently configured to operate.

Stay Mobile, but Addressable | 25

CHAPTER 3

Microservices Come in Systems

One actor is no actor. Actors come in systems.
—Carl Hewitt

No man is an island,
Entire of itself,
Every man is a piece of the continent,
A part of the main.

—John Donne

Now we have a pretty good understanding of what characterizes a
Reactive Microservice. However, learning from Carl Hewitt: one
Microservice is no Microservice—they come in systems. Like humans
they act autonomously and therefore need to communicate and col‐
laborate with others to solve problems—and as with humans, it is in
collaboration that both the most interesting opportunities and chal‐
lenging problems arise.

Individual Microservices are comparatively easy to design and
implement—what is hard in a Microservices-based Architecture is
all the things around them: discovery, coordination, security, repli‐
cation, data consistency, failover, deployment, and integration with
other systems, just to name a few.

27

1 As Albert Einstein proved in his 1905 paper “On the Electrodynamics of Moving Bod‐
ies.”

2 That fact that information has latency and that the speed of light represents a hard (and
sometimes very frustrating) unnegotiable limit on its maximum velocity, is an obvious
fact for anyone that is building Internet systems, or has been on a VOIP call across the
Atlantic ocean.

3 For a discussion of the relativity of time, the present and the past in distributed sys‐
tems, and how we need change the way we model systems so that we can break free
from the illusion that we live in a globally consistent now, see my talk “Life Beyond the
Illusion of Present” YouTube video, 53:54, from a presentation at Voxxed Days, posted
March 6, 2016. You should also take time to read Justin Sheehy’s great article on the
topic “There is No Now.”

Systems Need to Exploit Reality
If you cannot solve a problem without programming.
You cannot solve a problem with programming.

—Klang’s Conjecture by Viktor Klang

One of the major benefits of Microservices-based Architecture is
that it gives you a set of tools to exploit reality, to create systems that
closely mimic how the world works, including all its constraints and
opportunities.

We have already discussed—highlighted by Conway’s Law—how
Microservices development is often a better fit to how your engi‐
neering organization and departments already work.

Another subtle, and more important fact to embrace, is that reality
is not consistent—there is no single absolute present—everything is
relative, including time and our experience of now.1

Information cannot travel faster than the speed of light, and most
often travels considerably slower, which means that communication
of information has latency.2 Information is always from the past, and
when you think of it, it holds true for everything we observe. When
we observe or learn about an effect, it has already happened, not
uncommonly quite some time ago—we are always looking into the
past. “Now” is in the eye of the beholder.3

Here the Microservice can become an escape route from reality.
Within each Microservice, we can live on a safe island of determin‐
ism and strong consistency (see ACID)—an island where we can

28 | Chapter 3: Microservices Come in Systems

http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf
http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Einstein_1905_relativity.pdf
https://www.youtube.com/watch?v=Nhz5jMXS8gE
https://www.youtube.com/watch?v=Nhz5jMXS8gE
https://queue.acm.org/detail.cfm?id=2745385
http://www.bailis.org/blog/linearizability-versus-serializability
https://en.wikipedia.org/wiki/ACID

4 If you have not experienced this first-hand then I suggest that you spend some time
thinking through the implications of L Peter Deutsch’s Fallacies of distributed comput‐
ing.

5 Pat Helland’s paper is essential reading for anyone building Microservices-based sys‐
tems “Data on the Outside versus Data on the Inside.”

live happily under the illusion that time and the present is absolute
(see Figure 3-1).

Figure 3-1. Employing Microservices means embracing eventual con‐
sistency

However, as soon as we exit the boundary of the Microservice we
enter a wild ocean of non-determinism—the world of distributed
systems, which is a very different world. You have probably heard
that building distributed systems is hard.4 It is. That being said it is
also the world that gives us solutions for resilience, elasticity, isola‐
tion amongst others. At this point, what we need to do is not to run
back to the monolith, but instead learn how to apply and use the
right set of principles, abstractions and tools in order to manage it.

Pat Helland talks about this5 as “data on the inside” versus “data on
the outside:” in which inside data is “our current local present,” out‐

Systems Need to Exploit Reality | 29

https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing
http://www.cidrdb.org/cidr2005/papers/P12.pdf

side data—the events—the “blast from the past,” and commands
between services “hope for the future.”

One of the biggest challenges in the transition to Service Oriented
Architectures is getting programmers to understand they have no
choice but to understand both the “then” of data that has arrived
from partner services, via the outside, and the “now” inside of the
service itself.

—Pat Helland

Let’s imagine that we have created a bunch of Microservices and
now is the time to make them all work together as a system—what
are some of the most important things we need to understand and
do?

Service Discovery
The greatest obstacle to discovery is not ignorance—it is the illu‐
sion of knowledge.

—Daniel J. Boorstin

So now I have a set of Microservices that needs to collaborate.
How can I help them to locate each other?

In order to communicate with another service, a service needs to
know the other service’s address. The simplest solution would be to
hardcode the physical address and port of all the services that a ser‐
vice needs to use, or have them externalized into a configuration file
provided at startup time. The problem with this solution is that it
forces a static deployment model which contradicts everything we
are trying to accomplish with Microservices.

They need to stay decoupled and mobile, and the system needs to be
elastic and dynamic. This can be addressed by adding a level of indi‐
rection using a pattern called Inversion of Control (IoC). What this
means in practice is that each service should report information to
the platform about where it is currently running and how it can be
contacted. This is called Service Discovery and is an essential part of
a Microservices-based Platform.

Once the information about each service has been stored it can be
made available through a Service Registry that services can use to
look the information up—using a pattern called Client-Side Service
Discovery. Another strategy is to have the information stored and
maintained in a load balancer (as done in AWS Elastic Load Bal‐

30 | Chapter 3: Microservices Come in Systems

https://en.wikipedia.org/wiki/Inversion_of_control
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture
http://microservices.io/patterns/service-registry.html
http://microservices.io/patterns/client-side-discovery.html
http://microservices.io/patterns/client-side-discovery.html

6 CP refers to Consistency and Partition Tolerance in the CAP Theorem, and means that
a system chooses Consistency over Availability in the face of network partitions.

7 Examples of CP-based service discovery systems include ZooKeeper, and etcd.
8 The nanosecond after you “know” a service’s location, that location might have

changed. So what was the gain in having “strong” consistency for that information?
9 AP refers to Availability and Partition Tolerance in the CAP Theorem, and means that

a system chooses Availability over Consistency in the face of network partitions.
10 CRDTs is one of the most interesting ideas coming out of distributed systems research

in recent years, giving us rich, eventually consistent, composable data-structures that
are guaranteed to converge consistently without the need for coordination. For more
information see “A comprehensive study of Convergent and Commutative Replicated
Data Types.”

11 Examples of AP-based service discovery systems include Lightbend Reactive Platform,
Netflix Eureka, Serf, and regular DNS.

ancer) or directly in the address references that the services use
(injected into the services using Dependency Injection)—using a
pattern called Server-Side Service Discovery.

What do I need to consider when choosing a service discovery
tool?

One way of storing service information is through a CP-based6

(strongly consistent) configuration storage.7 This is simple in one
way, since you have all information in one place in an atomic fash‐
ion. But it often gives you much stronger consistency guarantees
than needed,8 at the expense of availability and an additional infra‐
structure cluster that needs to be understood and managed.

It is often better to rely on distributed AP-based9 Peer-to-Peer tech‐
nologies that use techniques like Epidemic Gossip sometimes
together with Conflict-Free Replicated Data Types (CRDTs)10 to dis‐
seminate the information in a simpler, eventually consistent and
resilient way—without the need for additional infrastructure.11

Service Discovery | 31

https://en.wikipedia.org/wiki/CAP_theorem
https://zookeeper.apache.org
https://github.com/coreos/etcd
https://hal.inria.fr/inria-00555588/document
https://hal.inria.fr/inria-00555588/document
http://www.lightbend.com/products/lightbend-reactive-platform
https://github.com/Netflix/eureka
https://www.serfdom.io
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Gossip_protocol
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

12 For example session state, credentials for authentication, cached data, and so on.
13 Originally stated by Jon Postel in “RFC 761” on TCP in 1980.
14 It has among other things influenced the Tolerant Reader Pattern.
15 There is a semantic difference between a service that is truly new, compared to a new

version of an existing service.

API Management
Be conservative in what you do, be liberal in what you
accept from others.

—Jon Postel

What are the challenges in managing service protocols and APIs
when they evolve independently over time?

Individual Microservices are only independent and decoupled if
they can evolve independently. This requires their data and proto‐
cols to be resilient to and permissive of change—for persistently
stored data as well as for exchange of ephemeral information.12 In
particular, the interoperability of different versions is crucial to
enable the long-term management of complex service landscapes.

Postel’s Law,13 also known as the Robustness Principle, states that
you should “be conservative in what you do, be liberal in what you
accept from others” and is a good guiding principle in API design
and evolution for collaborative services.14

Challenges include versioning of the protocol and data and how to
handle upgrades and downgrades of the protocol and data. This is a
non-trivial problem that includes picking extensible codecs for seri‐
alization, maintaining a protocol and data translation layer and
sometimes even versioning the service itself.15 This is what is called
an Anti-Corruption Layer in DDD, and can be added to the service
itself or done in an API Gateway.

Let’s say I have a client that, in order to perform a task, needs to
talk to 10 different services, each with a different API. That
sounds complicated. How can I simplify the API management?

This is common scenario in large Microservices-based systems and
can lead to unnecessary complexity on the client side. In these situa‐
tions it is often better to, instead of having the client communicating

32 | Chapter 3: Microservices Come in Systems

https://tools.ietf.org/html/rfc761
http://martinfowler.com/bliki/TolerantReader.html
http://www.reactivemanifesto.org/glossary#Protocol
http://www.reactivemanifesto.org/glossary#Protocol
https://moffdub.wordpress.com/2008/09/21/anatomy-of-an-anti-corruption-layer-part-1

16 The API Gateway pattern has been used successfully by Netflix and Amazon API Gate‐
way amongst others.

directly with each Microservice, let it talk to an API Gateway ser‐
vice.16 See Figure 3-2.

Figure 3-2. Simplifying client access with an API Gateway

The API Gateway is responsible for receiving the request from the
client, routing it to the right set of services—doing protocol transla‐
tions if necessary—composing the replies, and returning it to the
client.

The benefits of this pattern include simplifying the client-to-service
protocol by encapsulating the service’s internal structure and their
APIs. It is challenging to achieve this in a highly available and scala‐
ble way using a centralized solution. Instead, use a decentralized
technology, as mentioned in Service Discovery.

But this is—as with all these core infrastructure services—not some‐
thing that you should build yourself but ideally get as part of the
underlying platform.

API Management | 33

http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://www.nginx.com/blog/building-microservices-using-an-api-gateway

Managing Communication Patterns
The Japanese have a small word - ma - for “that which is in
between” - perhaps the nearest English equivalent is “interstitial”.
The key in making great and growable systems is much more to
design how its modules communicate rather than what their inter‐
nal properties and behaviors should be.

—Alan Kay

How can I keep the complexity of communication patterns
between Microservices in a large system under control?

The role of the ESB still has its place—now in the form of a modern
scalable message queue.

In systems with a handful of Microservices, direct Point-to-Point
communication gets the job done. However, once you go beyond
that, allowing each one of them to just talk directly with everyone it
pleases can quickly turn the architecture into an incomprehensible
mess of chatter. Time to introduce some rules of engagement! What
is needed is a logical decoupling of the sender and receiver and a
way of routing data between the parties according to predefined
rules.

One solution is to use a Publish-Subscribe mechanism, in which the
publisher can publish information to a topic where the subscriber
can listen in. This can be solved by using a scalable messaging sys‐
tem (for example Kafka or Amazon Kinesis) or a NoSQL database
(preferably into an AP-style database like Cassandra or Riak).

In the SOA world, this role was usually played by the ESB. However,
in this case we are not using it to bridge monoliths, but rather as a
backbone publishing system for the services to use for broadcasting
work or data, or as an integration and communication bus between
systems (for example for ingesting data into Spark through Spark
Streaming).

Sometimes using a Publish-Subscribe protocol is insufficient—for
example, when you need more advanced routing capabilities that
allow the programmer to define custom routing rules involving
multiple parties, or when used in stages of data transformation,
enrichment, splitting, and merging (for example, using Akka
Streams or Apache Camel). See Figure 3-3.

34 | Chapter 3: Microservices Come in Systems

http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://spark.apache.org
http://spark.apache.org/streaming
http://spark.apache.org/streaming
http://www.enterpriseintegrationpatterns.com/MessageRoutingIntro.html
http://doc.akka.io/docs/akka-stream-and-http-experimental/2.0.1/scala/stream-index.html
http://doc.akka.io/docs/akka-stream-and-http-experimental/2.0.1/scala/stream-index.html
https://camel.apache.org

Figure 3-3. Routing and transformation of data streams

Integration
Nature laughs at the difficulties of integration.

—Pierre-Simon Laplace

What about integrating multiple systems?

Most systems need a way of communicating with the outside world,
either consuming and/or producing information from/to other sys‐
tems.

When communicating with an external system, especially one that
you have no control over, you are putting yourself at risk. You can
never be sure how the other system will behave when the communi‐
cation diverge from the “happy path”—when things start to fail,
when the system is overloaded, and so on. You can’t even trust that
the other service will behave according to the established protocol.
So you can see why it’s important to take precautions to stay safe.

The first step is to agree on a protocol that minimizes the risk of
having one system overloading another during unexpected load
increase. If synchronous communication is used—even if it is only
for a subset of the protocol—you are introducing strong coupling
and are putting yourself in the hands and mercy of the other system.

Avoiding cascading failures requires services that are fully decou‐
pled and isolated. This is best achieved using a fully asynchronous
protocol of communication. It is equally important that the protocol
includes a mechanism for agreeing on the velocity of the flow of
data by applying what is called back-pressure, which ensures a fast
system can’t overload its slower counterpart. More and more tools
and libraries are starting to embrace the Reactive Streams specifica‐

Integration | 35

http://en.wikipedia.org/wiki/Happy_path
http://www.reactivemanifesto.org/glossary#Back-Pressure
http://www.reactive-streams.org

17 The Circuit Breaker pattern is important in Microservices-based systems. Read about it
more in Martin Fowler’s “CircuitBreaker.”

tion (Reactive Streams-compatible products include Akka Streams,
RxJava, Spark Streaming, and Cassandra drivers)—which will make
it possible to bridge systems using fully asynchronous back-
pressured real-time streaming—improving interoperability, reliabil‐
ity and performance of the composed system as a whole.

It is also crucial to have a way of managing faulty services; by cap‐
turing failures, you can retry tasks and, if the failure persists, quar‐
antine the service for a specific period of time while waiting for the
service to recover—which is abstracted away in the Circuit Breaker
pattern17 (production-grade Circuit Breaker implementations can be
found in Netflix Hystrix and Akka). See Figure 3-4.

The role of system integration has historically fallen on passing
around flat files, or relying on centralized services like an RDBMS or
an ESB. But the increasing need for scale, throughput and availabil‐
ity has led many systems to adopt decentralized strategies for inte‐
gration (for example HTTP-based REST services and ZeroMQ) or
modern, centralized, scalable and resilient Pub-Sub systems (like
Kafka and Amazon Kinesis).

Recent trends include using Event Streaming Platforms for system
integration, bringing in ideas from Fast Data and real-time data
management.

What about client to service communication—should that also be
asynchronous?

Throughout this paper we have emphasized the need for asynchro‐
nous communication, execution, and IO. Relying on asynchronous
message-passing is quite straightforward between services, where we
have full control of the communication protocol and its implemen‐
tation. However, when communicating with external clients we don’t
always have that luxury. Many clients—browsers, apps, and so on—
assume synchronous communication, and in situations like this
using REST is often a good choice.

36 | Chapter 3: Microservices Come in Systems

http://martinfowler.com/bliki/CircuitBreaker.html
https://github.com/ReactiveX/RxJava
https://github.com/Netflix/Hystrix
http://doc.akka.io/docs/akka/snapshot/common/circuitbreaker.html
http://zeromq.org
http://lightbend.com/big-data-evolved

Figure 3-4. Managing faulty services with the Circuit Breaker pattern

Integration | 37

18 Defining the procedure for assessing use-cases is outside of the scope of this paper.
19 A good discussion on different client-side semantics of eventual consistency—includ‐

ing read-your-writes consistency and causal consistency—can be found in “Eventually
Consistent - Revisited” by Werner Vogels.

What is important is to not go all in on synchronous client commu‐
nication, but to think through and assess each client and use-case
individually.18 There are many situations where developers gravitate
to a synchronous solution out of habit, instead of using where it
really matters, where it can simplify things and improve interopera‐
bility.

Examples of use-cases that are inherently asynchronous but tradi‐
tionally modeled as synchronous include: information on whether
an item is in stock—if it’s hot and stock is running out the user usu‐
ally wants to be notified; the current specials at a restaurant—if they
change, the user may want to know immediately; user comments on
websites—often end up being a real time conversation; and ads—
may respond and change depending on how a user is using the page.

We need to look at each use-case individually to understand what is
the most natural way to express the communication between the cli‐
ent and the service. This often requires looking at the data integrity
constraints to find opportunities to weaken the consistency (order‐
ing) guarantees—relying on techniques like causality and read-your-
writes19—with the goal of finding the minimal set of coordination
constraints that gives the user intuitive semantics: the goal of finding
best strategy to exploit reality.

Security Management
The user’s going to pick dancing pigs over security every time.
Security is a not a product, but a process.

—Bruce Schneier

If someone asks us to make sure that not every service can call the
Billing service, what do we do then?

It is important to distinguish between authentication and authoriza‐
tion. Authentication is the process of making sure that a client
(human or service) is who she says she is (typically using a user‐
name and a password), while authorization is the process of allow‐
ing or denying the user to access a specific resource.

38 | Chapter 3: Microservices Come in Systems

http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

Both are important to get right and need to work in concert. There
are many ways to make this work, each way with their own benefits
and drawbacks.

TLS Client Certificates, also called Mutual Authentication or Two
Way Authentication, can provide a very robust security solution for
inter-service authentication in which each service is given a unique
private key and certificate on deployment. In this strategy, it is not
only the server that is verifying the identity of the client, but the cli‐
ent verifying the identity of the server. This means it’s safe not only
from eavesdropping, but from a completely hostile network where
an attacker could potentially intercept and redirect requests—such
as the Internet itself (see Figure 3-5). Communication over SSL is
safe from eavesdropping and on an open, well understood standard.
It is, however, complicated to manage, and benefits from support by
the underlying platform.

If the services are HTTP-based, they can make use of HTTPS Basic
Authentication. It is well understood and straightforward, but it can
be complicated to manage SSL certificates on all the machines and
the requests can no longer be cached by a reverse proxy.

One advantage is that it provides Two Way Authentication similar to
the Client Certificate solution, where client verifies the identity of
the server using the server’s certificate before it sends the creden‐
tials, and the server verifies the identify of the client using the cre‐
dentials it sends.

Another approach is to use Asymmetric Request Signing. In this solu‐
tion, each service is given its own private key to sign requests with,
while the public keys for each service are made known the Service
Discovery service. The drawback is that as a proprietary solution, it
can be vulnerable to eavesdropping or request replay attacks if your
network has been compromised.

Security Management | 39

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

Figure 3-5. Man in the middle attack

40 | Chapter 3: Microservices Come in Systems

20 As the character Mia Wallace stated in Quentin Tarantino’s movie Pulp Fiction, and
Peter Bailis’ later used in his excellent talk “Silence is Golden: Coordination-Avoiding
System Design.”

Finally, basing the security on a Shared Secret, either using Hash
Message Authentication Code (HMAC) signing of the request or a
secret token that is shared at deployment time. This solution is con‐
ceptually simple but can be hard to implement since each service
pair that talk to each other need a unique shared secret, making the
number of shared secrets needed for the system the permutation of
all services that talk to each other.

Minimizing Data Coupling
Silence is not only golden, it is seldom misquoted.

—Bob Monkhouse

We have been spoiled by the monolith talking to a centralized
RDBMS for too long—assuming that the world can always be shoe‐
horned into a strongly consistent (see ACID) model. But strong
consistency requires coordination, which is extremely expensive in a
distributed system, and puts an upper bound on scalability,
throughput, low latency and availability.

The need for coordination—adding to the costs of contention and
coherency, as defined in the Universal Scalability Law—means that
individual services can’t make progress individually but has to wait
for consensus. When designing Microservices-based systems we
should therefore strive to minimize the service-to-service coordina‐
tion of state, to allow the Microservices to comfortably share silence.20

How can I design individual Microservices that ensure minimal
coordination of state?

Traditionally, developers have been used to a monolithic architec‐
ture hooked up to a single SQL database—giving a single “global”
unit of consistency. This model feels simple because it gives the illu‐
sion of one globally consistent “now,” one absolute present—which
is easy to reason about intuitively. But as we have discussed, break‐
ing free from this illusion and splitting up the monolith into discrete
isolated Microservices has a lot of benefits.

Minimizing Data Coupling | 41

https://speakerdeck.com/pbailis/silence-is-golden-coordination-avoiding-systems-design
https://speakerdeck.com/pbailis/silence-is-golden-coordination-avoiding-systems-design
https://en.wikipedia.org/wiki/Hash-based_message_authentication_cod
https://en.wikipedia.org/wiki/Hash-based_message_authentication_cod
http://www.bailis.org/blog/linearizability-versus-serializability
http://www.perfdynamics.com/Manifesto/USLscalability.html

21 Pat Helland did not use the term Apology-Oriented Programming but introduced the
general idea behind it in his blog post “Memories, Guesses, and Apologies.”

You have to start by looking at the data and work with a domain
expert to understand its relationships, guarantees and integrity con‐
straints from a business perspective, exploiting reality.

This often includes denormalizing the data. Continue by defining
the consistency (transactional) boundaries in the system, within
which you can rely on strong consistency. Then you should let these
boundaries drive the design and scoping of the Microservices. If you
design your services with data dependencies and relationships in
mind it is possible to reduce, and sometimes completely eliminate,
the coupling of data—which means that you do not have to coordi‐
nate the changes to it.

Minimizing the Cost of Coordination
It’s easier to ask for forgiveness than it is to get permission.

—Grace Hopper

What do I do if I have designed Microservices with minimal data
coupling, but still have use cases where I need to coordinate data
between them?

This is to be expected, and not a failure in the design. Many systems
built with Microservices have use cases that need to coordinate data.
Fortunately you are now in a position where you can add coordina‐
tion as needed, instead of starting with coupling and trying to
remove it—which is so much harder.

There are reasonable ways of coordinating data changes in an scala‐
ble and resilient fashion, but it requires that your operations on the
data are composable.

Composability in this context means that changes to data can be
made available to other services without stalling them (or yourself),
without waiting on coordination to take place. Let’s spend the next
paragraphs discussing how this can be addressed using communica‐
tion protocols that embrace techniques such as Apology-Oriented
Programming, Event-Driven Architecture and ACID 2.0.

The idea of Apology-Oriented Programming21 is built around the
idea that it is easier to ask for forgiveness than permission. If you

42 | Chapter 3: Microservices Come in Systems

http://blogs.msdn.com/b/pathelland/archive/2007/05/15/memories-guesses-and-apologies.aspx

22 Another excellent paper by Pat Helland, where he introduced the idea of ACID 2.0, is
“Building on Quicksand.”

can’t coordinate (and be sure about something), then take an educa‐
ted guess, a bet that a condition will hold, and if you were wrong,
apologize and perform a compensating action.

This approach matches reality very well. It’s how humans collaborate
all the time. Other examples include ATMs—allowing you to with‐
draw money in the case of network disconnect, and then later charg‐
ing your account—and how airlines are overbooking flights—and
then bribe themselves out of the problem through vouchers.

This model works very well with an Event-Driven Architecture that
leverages asynchronous message-passing and Event Sourcing. In
this model it is very important to distinguish between Commands
and Events, where Commands represent the intent to perform a
side-effecting operation—what Pat Helland calls “hope for the
future”—and Events represent the fact that something has already
happened—the history leading up to the current local present.

Queries are best performed using the CQRS pattern, where the write
side—persisted as Events in the Event Log—is separated from the
read side—stored in a rich schema format using a RDBMS or
NoSQL database with great support for queries. Using an Event Log
for state management and persistence has many other benefits, such
as simplified auditing, debugging, replication and failover, allowing
you to replay the event stream at any point, from any point in the
past.

The term ACID 2.0 was coined22 by Pat Helland and is a summary of
a set of principles for scalable and resilient protocol and API design.
The acronym is meant to somewhat challenge the traditional ACID
from database systems.

The “A” in the acronym stands for Associative, which means that
grouping of messages does not matter—and allows for batching. The
“C” is for Commutative, which means that ordering of messages
does not matter. The “I” stands for Idempotent, which means that
duplication of messages does not matter. The “D” could stand for
Distributed, but is probably included just to make the ACID acro‐
nym work.

Minimizing the Cost of Coordination | 43

http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/ACID

23 That Causal Consistency is the strongest consistency that we can achieve in an always
available system was proved by Mahajan et al. in their influential paper “Consistency,
Availability, and Convergence.”

24 The use of wall clock time (timestamps) for state coordination is something that should
most often be avoided in distributed system design due to the problems of coordinating
clocks across nodes, clock skew etc. Instead, rely on logical time, which gives you a sta‐
ble notion of time that you can trust, even if nodes fail, messages drop etc. There are
several good options available, one is Vector Clock.

One tool that embraces these ideas is CRDTs, as they are eventually
consistent, rich data-structures (including counters, sets, maps and
even graphs) that compose, and that converge without coordination.
The ordering of the updates does not matter, and can always be
automatically merged safely. CRDTs are fairly recent, but have been
hardened in production for quite some years, and there are
production-grade libraries that you can leverage directly (for exam‐
ple in Akka and Riak).

However, relying on eventual consistency is sometimes not permis‐
sible, since it can force us to give up too much of the high-level busi‐
ness semantics. If that is the case then using causal consistency can
be a good trade-off. Semantics based on causality is what humans
expect and find intuitive. The good news is that causal consistency
can be made both scalable and available (and is even proven23 to be
the best we can do in an always available system). Causal consis‐
tency is usually implemented using logical time24 and is available in
many NoSQL databases, Event Logging and Distributed Event
Streaming products (products allowing use of logical time to imple‐
ment causal consistency include Riak and Red Bull’s Eventuate).

44 | Chapter 3: Microservices Come in Systems

http://blog.acolyer.org/2015/03/17/consistency-availability-and-convergence-cops
http://blog.acolyer.org/2015/03/17/consistency-availability-and-convergence-cops
https://en.wikipedia.org/wiki/Vector_clock
https://en.wikipedia.org/wiki/Causal_consistency
https://rbmhtechnology.github.io/eventuate

Figure 3-6. Resilient transaction management with the SAGA pattern

Minimizing the Cost of Coordination | 45

25 Peter Bailis is an assistant professor at Stanford and one of the leading experts on dis‐
tributed and database systems in the world. The paper referenced is “Coordination
Avoidance in Database Systems.”

26 This quote is from Pat Helland’s excellent paper “Life Beyond Distributed Transac‐
tions.”

27 The golden standard is X/Open Distributed Transaction Processing, most often
referred to as XA.

28 Originally defined in the 1987 paper “SAGAS” by Hector Garcia-Molina and Kenneth
Salem.

But what about RDBMSs? You can actually get pretty far using SQL
as well. In one of his papers,25 Peter Bailis talks about coordination-
avoidance in RDBMSs and shows how many standard SQL opera‐
tions can be made without coordinating the changes—i.e., without
transactions. The list of operations includes: Equality, Unique ID
Generation, Greater than Increment, Less than Decrement, Foreign
Key Insert and Delete, Secondary Indexing and Materialized Views.

What about transactions? Don’t I need transactions?
In general, application developers simply do not implement large
scalable applications assuming distributed transactions.26

—Pat Helland

Historically, distributed transactions27 have been used to coordinate
changes across a distributed system. They do their job of simplifying
the experience of concurrent execution well, by providing the illu‐
sion that you are the only person in the world using the data, or that
everyone else is just sitting back and letting you perform your
changes for as long as you wish. This is not true, and upholding this
illusion is extremely costly, making systems slow, unscalable, and
brittle.

The Saga Pattern28 is a scalable and resilient alternative to dis‐
tributed transactions (Figure 3-6). It is a way to manage long-
running business transactions based on the discovery that long-
running business transactions often comprise multiple transactional
steps in which overall consistency of the whole transaction can be
achieved by grouping these steps into an overall distributed transac‐
tion. The technique is to pair every stage’s transaction with a com‐
pensating reversing transaction, so that the whole distributed
transaction can be reversed (in reverse order) if one of the stage’s
transactions fails.

46 | Chapter 3: Microservices Come in Systems

http://www.bailis.org/
http://www.bailis.org/papers/ca-vldb2015.pdf
http://www.bailis.org/papers/ca-vldb2015.pdf
https://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
https://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
ftp://ftp.cs.princeton.edu/reports/1987/070.pdf
http://blog.acolyer.org/2014/11/20/life-beyond-distributed-transactions
http://bit.ly/22hhl6F

29 For more information see the paper “Highly Available Transactions: Virtues and Limi‐
tations” by Peter Bailis et. al.

30 The failures of SOA, CORBA, EJB and synchronous RPC are well worth studying and
understanding.

31 Successful platforms with tons of great design ideas and architectural patterns have so
much to teach us—for example, Tandem Computer’s NonStop platform, the Erlang
platform and the BitTorrent protocol.

It might come as a surprise to some people, but many of the tradi‐
tional RDBMS guarantees that we have learned to use and love are
actually possible to implement in a scalable and highly available
manner. Peter Bailis et al. have shown29 that we could for example
keep using Read Committed, Read Uncommitted, and Read Your
Writes while we have to give up on Serializable, Snapshot Isolation,
and Repeatable Read. This is recent research but something I believe
more SQL and NoSQL databases to start taking advantage of in the
near future.

Summary
When designing individual Reactive Microservices, it is important
to adhere to the core traits of Isolation, Single Responsibility,
Autonomy, Exclusive State, Asynchronous Message-Passing and
Mobility. What’s more, Microservices are collaborative in nature and
only make sense as systems. It is in between the Microservices that
the most interesting, rewarding, and challenging things take place,
and learning from past failures30 and successes31 in distributed sys‐
tems and collaborative services-based architectures is paramount.
What we need is comprehensive Microservices platforms that pro‐
vide the heavy lifting for distributed systems, and offer essential
services and patterns built on a solid foundation of the Reactive
principles.

Summary | 47

http://www.bailis.org/papers/hat-vldb2014.pdf
http://www.bailis.org/papers/hat-vldb2014.pdf
http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
https://queue.acm.org/detail.cfm?id=1142044
https://www.manning.com/books/bitter-ejb
http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf
http://www.hpl.hp.com/techreports/tandem/TR-86.2.pdf
http://ftp.nsysu.edu.tw/FreeBSD/ports/distfiles/erlang/armstrong_thesis_2003.pdf
http://ftp.nsysu.edu.tw/FreeBSD/ports/distfiles/erlang/armstrong_thesis_2003.pdf
https://en.wikipedia.org/wiki/BitTorrent
http://www.reactivemanifesto.org
http://www.reactivemanifesto.org

About the Author
Jonas Bonér is co-Founder and CTO of Lightbend, inventor of
the Akka project, co-author of the Reactive Manifesto and a Java
Champion. Learn more about his work at jonasboner.com or follow
him on Twitter at @jboner.

http://www.lightbend.com/
http://akka.io/
http://reactivemanifesto.org/
http://java.net/website/java-champions/bios.html#Boner
http://java.net/website/java-champions/bios.html#Boner
http://jonasboner.com/
https://twitter.com/jboner

	Copyright
	Table of Contents
	Chapter 1. Introduction
	Services to the Rescue
	Slicing the Monolith
	SOA Dressed in New Clothes?

	Chapter 2. What Is a Reactive Microservice?
	Isolate All the Things
	Act Autonomously
	Do One Thing, and Do It Well
	Own Your State, Exclusively
	Embrace Asynchronous Message-Passing
	Stay Mobile, but Addressable

	Chapter 3. Microservices Come in Systems
	Systems Need to Exploit Reality
	Service Discovery
	API Management
	Managing Communication Patterns
	Integration
	Security Management
	Minimizing Data Coupling
	Minimizing the Cost of Coordination
	Summary

	About the Author

