
The OSGi Alliance
OSGi Compendium

Release 6
July 2015

Copyright © OSGi Alliance (2000, 2015).
All Rights Reserved.

OSGi Specification License, Version 2.0

License Grant
OSGi Alliance ("OSGi") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited li-
cense (without the right to sublicense), under OSGi's applicable intellectual property rights to view, download,
and reproduce this OSGi Specification ("Specification") which follows this License Agreement ("Agreement"). You
are not authorized to create any derivative work of the Specification. However, to the extent that an implemen-
tation of the Specification would necessarily be a derivative work of the Specification, OSGi also grants you a
perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the Specification that: (i) ful-
ly implements the Specification including all its required interfaces and functionality; (ii) does not modify, sub-
set, superset or otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Ja-
va interfaces, fields or methods within the OSGi Name Space other than those required and authorized by the
Specification. An implementation that does not satisfy limitations (i)-(ii) is not considered an implementation
of the Specification, does not receive the benefits of this license, and must not be described as an implementa-
tion of the Specification. An implementation of the Specification must not claim to be a compliant implementa-
tion of the Specification unless it passes the OSGi Compliance Tests for the Specification in accordance with OS-
Gi processes. "OSGi Name Space" shall mean the public class or interface declarations whose names begin with
"org.osgi" or any recognized successors or replacements thereof.

OSGi Participants (as such term is defined in the OSGi Intellectual Property Rights Policy) have made non-as-
sert and licensing commitments regarding patent claims necessary to implement the Specification, if any, un-
der the OSGi Intellectual Property Rights Policy which is available for examination on the OSGi public web site
(www.osgi.org).

No Warranties and Limitation of Liability
THE SPECIFICATION IS PROVIDED "AS IS," AND OSGi AND ANY OTHER AUTHORS MAKE NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS. OSGi AND ANY OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION
OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

Covenant Not to Assert
As a material condition to this license you hereby agree, to the extent that you have any patent claims which are
necessarily infringed by an implementation of the Specification, not to assert any such patent claims against the
creation, distribution or use of an implementation of the Specification.

General
The name and trademarks of OSGi or any other Authors may NOT be used in any manner, including advertis-
ing or publicity pertaining to the Specification or its contents without specific, written prior permission. Title to
copyright in the Specification will at all times remain with OSGi.

No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other countries.
Java is a trademark, registered trademark, or service mark of Oracle Corporation in the US and other countries.
All other trademarks, registered trademarks, or service marks used in this document are the property of their re-
spective owners and are hereby recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

http://www.osgi.org

Comments about this specification can be raised at:

https://osgi.org/bugzilla/

OSGi Compendium Release 6 Page 3

Table of Contents

1 Introduction 17
1.1 Reader Level. 17

1.2 Version Information. 17

1.3 References. 19

1.4 Changes. 19

100 Remote Services 21
100.1 The Fallacies. 21

100.2 Remote Service Properties. 22

100.3 Intents. 26

100.4 General Usage. 26

100.5 Configuration Types. 27

100.6 Security. 30

100.7 References. 31

101 Log Service Specification 33
101.1 Introduction. 33

101.2 The Log Service Interface. 34

101.3 Log Level and Error Severity. 35

101.4 Log Reader Service. 35

101.5 Log Entry Interface. 36

101.6 Mapping of Events. 36

101.7 Security. 39

101.8 org.osgi.service.log. 39

102 Http Service Specification 45
102.1 Introduction. 45

102.2 Registering Servlets. 46

102.3 Registering Resources. 48

102.4 Mapping HTTP Requests to Servlet and Resource Registrations. 49

102.5 The Default Http Context Object. 50

102.6 Multipurpose Internet Mail Extension (MIME) Types. 51

102.7 Authentication. 52

102.8 Security. 53

102.9 Configuration Properties. 54

102.10 org.osgi.service.http. 54

102.11 References. 59

103 Device Access Specification 61
103.1 Introduction. 61

103.2 Device Services. 63

Page 4 OSGi Compendium Release 6

103.3 Device Category Specifications. 65

103.4 Driver Services. 67

103.5 Driver Locator Service. 73

103.6 The Driver Selector Service. 76

103.7 Device Manager. 76

103.8 Security. 81

103.9 org.osgi.service.device. 82

103.10 References. 86

104 Configuration Admin Service Specification 87
104.1 Introduction. 87

104.2 Configuration Targets. 89

104.3 The Persistent Identity. 90

104.4 The Configuration Object. 93

104.5 Managed Service. 96

104.6 Managed Service Factory. 99

104.7 Configuration Admin Service. 103

104.8 Configuration Events. 107

104.9 Configuration Plugin. 108

104.10 Meta Typing. 110

104.11 Security. 111

104.12 org.osgi.service.cm. 112

104.13 Changes. 129

105 Metatype Service Specification 131
105.1 Introduction. 131

105.2 Attributes Model. 132

105.3 Object Class Definition. 133

105.4 Attribute Definition. 133

105.5 Meta Type Service. 134

105.6 Meta Type Provider Service. 136

105.7 Using the Meta Type Resources. 136

105.8 Meta Type Resource XML Schema. 142

105.9 Meta Type Annotations. 145

105.10 Limitations. 147

105.11 Related Standards. 147

105.12 Capabilities. 147

105.13 Security Considerations. 148

105.14 org.osgi.service.metatype. 148

105.15 org.osgi.service.metatype.annotations. 154

105.16 References. 161

105.17 Changes. 161

106 PreferencesService Specification 163

OSGi Compendium Release 6 Page 5

106.1 Introduction. 163

106.2 Preferences Interface. 165

106.3 Concurrency. 167

106.4 PreferencesService Interface. 168

106.5 Cleanup. 168

106.6 org.osgi.service.prefs. 168

106.7 References. 178

107 User Admin Service Specification 179
107.1 Introduction. 179

107.2 Authentication. 181

107.3 Authorization. 183

107.4 Repository Maintenance. 185

107.5 User Admin Events. 185

107.6 Security. 186

107.7 Relation to JAAS. 187

107.8 org.osgi.service.useradmin. 187

107.9 References. 198

108 Wire Admin Service Specification 199
108.1 Introduction. 199

108.2 Producer Service. 202

108.3 Consumer Service. 204

108.4 Implementation issues. 206

108.5 Wire Properties. 206

108.6 Composite objects. 208

108.7 Wire Flow Control. 211

108.8 Flavors. 214

108.9 Converters. 214

108.10 Wire Admin Service Implementation. 215

108.11 Wire Admin Listener Service Events. 215

108.12 Connecting External Entities. 217

108.13 Related Standards. 218

108.14 Security. 218

108.15 org.osgi.service.wireadmin. 219

108.16 References. 234

109 IO Connector Service Specification 235
109.1 Introduction. 235

109.2 The Connector Framework. 236

109.3 Connector Service. 238

109.4 Providing New Schemes. 238

109.5 Execution Environment. 239

109.6 Security. 240

Page 6 OSGi Compendium Release 6

109.7 org.osgi.service.io. 240

109.8 References. 243

110 Initial Provisioning Specification 245
110.1 Introduction. 245

110.2 Procedure. 246

110.3 Special Configurations. 249

110.4 The Provisioning Service. 250

110.5 Management Agent Environment. 250

110.6 Mapping To File Scheme. 251

110.7 Mapping To HTTP(S) Scheme. 251

110.8 Mapping To RSH Scheme. 253

110.9 Exception Handling. 257

110.10 Security. 257

110.11 org.osgi.service.provisioning. 258

110.12 References. 261

111 UPnP™ Device Service Specification 263
111.1 Introduction. 263

111.2 UPnP Specifications. 265

111.3 UPnP Device. 266

111.4 Device Category. 267

111.5 UPnPService. 268

111.6 Working With a UPnP Device. 268

111.7 Implementing a UPnP Device. 269

111.8 Event API. 269

111.9 UPnP Events and Event Admin service. 270

111.10 Localization. 271

111.11 Dates and Times. 271

111.12 UPnP Exception. 271

111.13 Configuration. 272

111.14 Networking considerations. 272

111.15 Security. 272

111.16 org.osgi.service.upnp. 272

111.17 References. 287

112 Declarative Services Specification 289
112.1 Introduction. 289

112.2 Components. 292

112.3 References to Services. 295

112.4 Component Description. 305

112.5 Component Life Cycle. 314

112.6 Component Properties. 324

112.7 Deployment. 325

OSGi Compendium Release 6 Page 7

112.8 Annotations. 328

112.9 Service Component Runtime. 333

112.10 Security. 337

112.11 Component Description Schema. 338

112.12 org.osgi.service.component. 341

112.13 org.osgi.service.component.annotations. 348

112.14 org.osgi.service.component.runtime. 357

112.15 org.osgi.service.component.runtime.dto. 359

112.16 References. 365

112.17 Changes. 365

113 Event Admin Service Specification 367
113.1 Introduction. 367

113.2 Event Admin Architecture. 368

113.3 The Event. 369

113.4 Event Handler. 370

113.5 Event Publisher. 371

113.6 Specific Events. 373

113.7 Event Admin Service. 375

113.8 Reliability. 377

113.9 Inter-operability with Native Applications. 377

113.10 Security. 377

113.11 org.osgi.service.event. 378

114 Deployment Admin Specification 389
114.1 Introduction. 389

114.2 Deployment Package. 391

114.3 File Format. 393

114.4 Fix Package. 400

114.5 Customizer. 401

114.6 Deployment Admin Service. 402

114.7 Sessions. 404

114.8 Installing a Deployment Package. 406

114.9 Uninstalling a Deployment Package. 411

114.10 Resource Processors. 412

114.11 Events. 417

114.12 Threading. 417

114.13 Security. 417

114.14 org.osgi.service.deploymentadmin. 419

114.15 org.osgi.service.deploymentadmin.spi. 431

114.16 References. 437

115 Auto Configuration Specification 439
115.1 Introduction. 439

Page 8 OSGi Compendium Release 6

115.2 Configuration Data. 440

115.3 Processing. 441

115.4 Security Considerations. 444

116 Application Admin Specification 447
116.1 Introduction. 447

116.2 Application Managers. 448

116.3 Application Containers. 454

116.4 Application Admin Implementations. 460

116.5 Interaction. 462

116.6 Security. 464

116.7 org.osgi.service.application. 465

116.8 References. 476

117 Dmt Admin Service Specification 477
117.1 Introduction. 477

117.2 The Device Management Model. 480

117.3 The DMT Admin Service. 483

117.4 Manipulating the DMT. 483

117.5 Meta Data. 491

117.6 Plugins. 494

117.7 Sharing the DMT. 500

117.8 Access Control Lists. 507

117.9 Notifications. 511

117.10 Exceptions. 513

117.11 Events. 513

117.12 OSGi Object Modeling. 519

117.13 Security. 527

117.14 org.osgi.service.dmt. 531

117.15 org.osgi.service.dmt.spi. 579

117.16 org.osgi.service.dmt.notification. 593

117.17 org.osgi.service.dmt.notification.spi. 596

117.18 org.osgi.service.dmt.security. 597

117.19 References. 602

119 Monitor Admin Service Specification 603
119.1 Introduction. 603

119.2 Monitorable. 604

119.3 Status Variable. 606

119.4 Using Monitor Admin Service. 607

119.5 Monitoring events. 611

119.6 Security. 611

119.7 org.osgi.service.monitor. 612

119.8 References. 624

OSGi Compendium Release 6 Page 9

120 Foreign Application Access Specification 625
120.1 Introduction. 625

120.2 Foreign Applications. 626

120.3 Application Containers. 631

120.4 Application Descriptor Resource. 632

120.5 Component Description Schema. 633

120.6 Security. 635

120.7 org.osgi.application. 635

120.8 References. 641

121 Blueprint Container Specification 643
121.1 Introduction. 643

121.2 Managers. 646

121.3 Blueprint Life-Cycle. 653

121.4 Blueprint Definitions. 659

121.5 Bean Manager. 664

121.6 Service Manager. 670

121.7 Service Reference Managers. 676

121.8 Object Values. 683

121.9 Dependency Injection. 689

121.10 Service Dynamics. 696

121.11 Blueprint Container. 698

121.12 Events. 699

121.13 Class Loading. 701

121.14 Metadata. 703

121.15 Blueprint XML Schema. 704

121.16 Security. 721

121.17 org.osgi.service.blueprint.container. 721

121.18 org.osgi.service.blueprint.reflect. 731

121.19 References. 741

122 Remote Service Admin Service Specification 743
122.1 Introduction. 743

122.2 Actors. 746

122.3 Topology Managers. 747

122.4 Endpoint Description. 748

122.5 Remote Service Admin. 752

122.6 Discovery. 757

122.7 Events. 761

122.8 Endpoint Description Extender Format. 763

122.9 Capability Namespaces. 768

122.10 Advice to implementations. 770

122.11 Security. 771

Page 10 OSGi Compendium Release 6

122.12 org.osgi.service.remoteserviceadmin. 772

122.13 org.osgi.service.remoteserviceadmin.namespace. 788

122.14 References. 789

122.15 Changes. 789

123 JTA Transaction Services Specification 791
123.1 Introduction. 791

123.2 JTA Overview. 793

123.3 Application. 795

123.4 Resource Managers. 798

123.5 The JTA Provider. 798

123.6 Life Cycle. 799

123.7 Security. 800

123.8 References. 800

125 JDBC™ Service Specification 801
125.1 Introduction. 801

125.2 Database Driver. 802

125.3 Applications. 803

125.4 Security. 804

125.5 org.osgi.service.jdbc. 805

125.6 References. 807

126 JNDI Services Specification 809
126.1 Introduction. 809

126.2 JNDI Overview. 812

126.3 JNDI Context Manager Service. 814

126.4 JNDI Provider Admin service. 817

126.5 JNDI Providers. 817

126.6 OSGi URL Scheme. 820

126.7 Traditional Client Model. 822

126.8 Security. 824

126.9 org.osgi.service.jndi. 825

126.10 References. 827

127 JPA Service Specification 829
127.1 Introduction. 829

127.2 JPA Overview. 831

127.3 Bundles with Persistence. 835

127.4 Extending a Persistence Bundle. 837

127.5 JPA Provider. 841

127.6 Static Access. 843

127.7 Security. 843

127.8 org.osgi.service.jpa. 844

OSGi Compendium Release 6 Page 11

127.9 References. 844

128 Web Applications Specification 847
128.1 Introduction. 847

128.2 Web Container. 849

128.3 Web Application Bundle. 850

128.4 Web URL Handler. 854

128.5 Events. 857

128.6 Interacting with the OSGi Environment. 858

128.7 Security. 859

128.8 References. 859

130 Coordinator Service Specification 861
130.1 Introduction. 861

130.2 Usage. 862

130.3 Coordinator Service. 871

130.4 Security. 876

130.5 org.osgi.service.coordinator. 877

130.6 References. 888

132 Repository Service Specification 889
132.1 Introduction. 889

132.2 Using a Repository. 890

132.3 Repository. 894

132.4 osgi.content Namespace. 894

132.5 XML Repository Format. 895

132.6 XML Repository Schema. 898

132.7 Capabilities. 902

132.8 Security. 902

132.9 org.osgi.service.repository. 903

132.10 References. 908

132.11 Changes. 909

133 Service Loader Mediator Specification 911
133.1 Introduction. 911

133.2 Java Service Loader API. 913

133.3 Consumers. 914

133.4 Service Provider Bundles. 916

133.5 Service Loader Mediator. 918

133.6 osgi.serviceloader Namespace. 921

133.7 Use of the osgi.extender Namespace. 921

133.8 Security. 922

133.9 org.osgi.service.serviceloader. 922

133.10 References. 923

Page 12 OSGi Compendium Release 6

134 Subsystem Service Specification 925
134.1 Introduction. 925

134.2 Subsystems. 928

134.3 Subsystem Region. 935

134.4 Subsystem Relationships. 936

134.5 Determining Content. 939

134.6 Determining Dependencies. 944

134.7 Accepting Dependencies. 945

134.8 Sharing Capabilities. 947

134.9 Region Context Bundle. 948

134.10 Explicit and Implicit Resources. 948

134.11 Resource References. 952

134.12 Starting and Stopping Resources. 953

134.13 Subsystem Service. 955

134.14 Subsystem Life Cycle. 958

134.15 Pre-Calculated Deployment. 963

134.16 Subsystem Types. 968

134.17 Weaving Hooks. 972

134.18 Stopping and Uninstalling Subsystems Implementation. 973

134.19 Capabilities. 973

134.20 Security. 973

134.21 org.osgi.service.subsystem. 975

134.22 References. 991

134.23 Changes. 991

135 Common Namespaces Specification 993
135.1 Introduction. 993

135.2 osgi.extender Namespace. 993

135.3 osgi.contract Namespace. 995

135.4 osgi.service Namespace. 997

135.5 osgi.implementation Namespace. 997

135.6 org.osgi.namespace.contract. 998

135.7 org.osgi.namespace.extender. 999

135.8 org.osgi.namespace.service. 999

135.9 org.osgi.namespace.implementation. 1000

135.10 References. 1001

135.11 Changes. 1001

136 Resolver Service Specification 1003
136.1 Introduction. 1003

136.2 The Resolve Context. 1005

136.3 Resolver Service. 1013

136.4 Security. 1015

OSGi Compendium Release 6 Page 13

136.5 org.osgi.service.resolver. 1015

136.6 References. 1019

137 REST Management Service Specification 1021
137.1 Introduction. 1021

137.2 Interacting with the REST Management Service. 1022

137.3 Resources. 1024

137.4 Representations. 1029

137.5 Clients. 1034

137.6 Extending the REST Management Service. 1035

137.7 XML Schema. 1036

137.8 Capabilities. 1040

137.9 Security. 1041

137.10 org.osgi.service.rest. 1041

137.11 org.osgi.service.rest.client. 1042

137.12 JavaScript Client API. 1047

137.13 References. 1050

138 Asynchronous Service Specification 1053
138.1 Introduction. 1053

138.2 Usage. 1054

138.3 Async Service. 1057

138.4 The Async Mediator. 1058

138.5 Fire and Forget Invocations. 1059

138.6 Delegating to Asynchronous Implementations. 1060

138.7 Capabilities. 1061

138.8 Security. 1061

138.9 org.osgi.service.async. 1062

138.10 org.osgi.service.async.delegate. 1064

138.11 References. 1065

140 Http Whiteboard Specification 1067
140.1 Introduction. 1067

140.2 The Servlet Context. 1068

140.3 Common Whiteboard Properties. 1073

140.4 Registering Servlets. 1074

140.5 Registering Servlet Filters. 1078

140.6 Registering Resources. 1080

140.7 Registering Listeners. 1081

140.8 Lifecycle. 1082

140.9 The Http Service Runtime Service. 1083

140.10 Configuration Properties. 1085

140.11 Capabilities. 1085

140.12 Security. 1086

Page 14 OSGi Compendium Release 6

140.13 org.osgi.service.http.context. 1087

140.14 org.osgi.service.http.runtime. 1090

140.15 org.osgi.service.http.runtime.dto. 1092

140.16 org.osgi.service.http.whiteboard. 1101

140.17 References. 1106

702 XML Parser Service Specification 1107
702.1 Introduction. 1107

702.2 JAXP. 1108

702.3 XML Parser service. 1109

702.4 Properties. 1109

702.5 Getting a Parser Factory. 1109

702.6 Adapting a JAXP Parser to OSGi. 1110

702.7 Usage of JAXP. 1111

702.8 Security. 1112

702.9 org.osgi.util.xml. 1112

702.10 References. 1115

703 Position Specification 1117
703.1 Introduction. 1117

703.2 Positioning. 1117

703.3 Units. 1118

703.4 Optimizations. 1118

703.5 Errors. 1118

703.6 Using Position With Wire Admin. 1118

703.7 Related Standards. 1119

703.8 Security. 1119

703.9 org.osgi.util.position. 1119

703.10 References. 1120

704 Measurement and State Specification 1121
704.1 Introduction. 1121

704.2 Measurement Object. 1122

704.3 Error Calculations. 1123

704.4 Constructing and Comparing Measurements. 1123

704.5 Unit Object. 1124

704.6 State Object. 1126

704.7 Related Standards. 1126

704.8 Security Considerations. 1126

704.9 org.osgi.util.measurement. 1126

704.10 References. 1134

705 Promises Specification 1137
705.1 Introduction. 1137

OSGi Compendium Release 6 Page 15

705.2 Promise. 1138

705.3 Deferred. 1138

705.4 Callbacks. 1139

705.5 Chaining Promises. 1140

705.6 Monad. 1140

705.7 Functional Interfaces. 1142

705.8 Promises Class. 1142

705.9 Security. 1142

705.10 org.osgi.util.promise. 1142

705.11 org.osgi.util.function. 1151

705.12 References. 1152

999 Execution Environment Specification 1153
999.1 Introduction. 1153

999.2 About Execution Environments. 1154

999.3 OSGi Defined Execution Environments. 1154

999.4 References. 1197

Page 16 OSGi Compendium Release 6

Introduction Reader Level

OSGi Compendium Release 6 Page 17

1 Introduction
This compendium contains the specifications of all current OSGi services.

1.1 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical experience in writing Ja-
va programs. Experience with embedded systems and server-environments is a plus. Application de-
velopers must be aware that the OSGi environment is significantly more dynamic than traditional
desktop or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding ex-
perience in a system environment is recommended. A Framework implementation will use areas
of Java that are not normally encountered in traditional applications. Detailed understanding is re-
quired of class loaders, garbage collection, Java 2 security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

1.2 Version Information
This document is the Compendium Specification for the OSGi Compendium Release 6.

1.2.1 OSGi Core Release 6
This specification is based on the OSGi Core Release 6. This specification can be downloaded from:

http://www.osgi.org/Specifications/HomePage

1.2.2 Component Versions
Components in this specification have their own specification version, independent of this speci-
fication. The following table summarizes the packages and specification versions for the different
subjects.

Table 1.1 Packages and versions

Item Package Version
100 Remote Services - Version 1.0
101 Log Service Specification org.osgi .service. log Version 1.3
102 Http Service Specification org.osgi .service.http Version 1.2
103 Device Access Specification org.osgi .service.device Version 1.1

Version Information Introduction

Page 18 OSGi Compendium Release 6

Item Package Version
104 Configuration Admin Service Specification org.osgi .service.cm Version 1.5
105 Metatype Service Specification org.osgi .service.metatype

org.osgi .service.metatype.annotations

Version 1.3

106 PreferencesService Specification org.osgi .service.prefs Version 1.1
107 User Admin Service Specification org.osgi .service.useradmin Version 1.1
108 Wire Admin Service Specification org.osgi .service.wireadmin Version 1.0
109 IO Connector Service Specification org.osgi .service. io Version 1.0
110 Initial Provisioning Specification org.osgi .service.provis ioning Version 1.2
111 UPnP™ Device Service Specification org.osgi .service.upnp Version 1.2
112 Declarative Services Specification org.osgi .service.component

org.osgi .service.component.annotations

org.osgi .service.component.runtime

org.osgi .service.component.runtime.dto

Version 1.3

113 Event Admin Service Specification org.osgi .service.event Version 1.3
114 Deployment Admin Specification org.osgi .service.deploymentadmin

org.osgi .service.deploymentadmin.spi

Version 1.1

115 Auto Configuration Specification - Version 1.0
116 Application Admin Specification org.osgi .service.appl icat ion Version 1.1
117 Dmt Admin Service Specification org.osgi .service.dmt

org.osgi .service.dmt.noti f icat ion

org.osgi .service.dmt.noti f icat ion.spi

org.osgi .service.dmt.security

org.osgi .service.dmt.spi

Version 2.0

119 Monitor Admin Service Specification org.osgi .service.monitor Version 1.0
120 Foreign Application Access Specification org.osgi .appl icat ion Version 1.0
121 Blueprint Container Specification org.osgi .service.blueprint .container

org.osgi .service.blueprint .reflect

Version 1.0

122 Remote Service Admin Service Specification org.osgi .service.remoteserviceadmin Version 1.1
123 JTA Transaction Services Specification - Version 1.0
125 JDBC™ Service Specification org.osgi .service. jdbc Version 1.0
126 JNDI Services Specification org.osgi .service. jndi Version 1.0
127 JPA Service Specification org.osgi .service. jpa Version 1.0
128 Web Applications Specification - Version 1.0
130 Coordinator Service Specification org.osgi .service.coordinator Version 1.0
132 Repository Service Specification org.osgi .service.repository Version 1.1
133 Service Loader Mediator Specification org.osgi .service.serviceloader Version 1.0
134 Subsystem Service Specification org.osgi .service.subsystem Version 1.1
135 Common Namespaces Specification org.osgi .namespace.contract

org.osgi .namespace.extender

org.osgi .namespace. implementation

org.osgi .namespace.service

Version 1.1

136 Resolver Service Specification org.osgi .service.resolver Version 1.0

Introduction References

OSGi Compendium Release 6 Page 19

Item Package Version
137 REST Management Service Specification org.osgi .service.rest Version 1.0
138 Asynchronous Service Specification org.osgi .service.async

org.osgi .service.async.delegate

Version 1.0

140 Http Whiteboard Specification org.osgi .service.http.whiteboard

org.osgi .service.http.context

org.osgi .service.http.runtime

org.osgi .service.http.runtime.dto

Version 1.0

702 XML Parser Service Specification org.osgi .ut i l .xml Version 1.0
703 Position Specification org.osgi .ut i l .posit ion Version 1.0
704 Measurement and State Specification org.osgi .ut i l .measurement Version 1.0
705 Promises Specification org.osgi .ut i l .promise

org.osgi .ut i l .function

Version 1.0

999 Execution Environment Specification - Version 1.3

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

1.3 References

[1] OSGi Specifications
http://www.osgi.org/Specifications/HomePage

1.4 Changes
• Updated Metatype Service Specification on page 131.
• Updated Declarative Services Specification on page 289.
• Updated Remote Service Admin Service Specification on page 743.
• Updated Repository Service Specification on page 889.
• Updated Subsystem Service Specification on page 925.
• Updated Common Namespaces Specification on page 993.
• Added REST Management Service Specification on page 1021.
• Added Asynchronous Service Specification on page 1053.
• Added Http Whiteboard Specification on page 1067.
• Added Promises Specification on page 1137.

Changes Introduction

Page 20 OSGi Compendium Release 6

Remote Services Version 1.0 The Fallacies

OSGi Compendium Release 6 Page 21

100 Remote Services

Version 1.0
The OSGi framework provides a local service registry for bundles to communicate through service
objects, where a service is an object that one bundle registers and another bundle gets. A distribution
provider can use this loose coupling between bundles to export a registered service by creating an
endpoint. Vice versa, the distribution provider can create a proxy that accesses an endpoint and then
registers this proxy as an imported service. A Framework can contain multiple distribution providers
simultaneously, each independently importing and exporting services.

An endpoint is a communications access mechanisms to a service in another framework, a (web)
service, another process, or a queue or topic destination, etc., requiring some protocol for commu-
nications. The constellation of the mapping between services and endpoints as well as their com-
munication characteristics is called the topology. A common case for distribution providers is to be
present on multiple frameworks importing and exporting services; effectively distributing the ser-
vice registry.

The local architecture for remote services is depicted in Figure 100.1 on page 21.

Figure 100.1 Architecture

Service Consumer
Impl

Service Producer
Impl

service.imported

service.exported.interfaces

=...

=*

Distribution
Provider Impl

imported
service

exported
serviceto an endpoint endpoint

Local services imply in-VM call semantics. Many of these semantics cannot be supported over a
communications connection, or require special configuration of the communications connection. It
is therefore necessary to define a mechanism for bundles to convey their assumptions and require-
ments to the distribution provider. This chapter defines a number of service properties that a distrib-
ution provider can use to establish a topology while adhering to the given constraints.

100.1 The Fallacies
General abstractions for distributed systems have been tried before and often failed. Well known are
the fallacies described in [1] The Fallacies of Distributed Computing Explained:

• The network is reliable

Remote Service Properties Remote Services Version 1.0

Page 22 OSGi Compendium Release 6

• Latency is zero
• Bandwidth is infinite
• The network is secure
• Topology doesn't change
• There is one administrator
• Transport cost is zero
• The network is homogeneous

Most fallacies represent non-functional trade-offs that should be considered by administrators, their
decisions can then be reflected in the topology. For example, in certain cases limited bandwidth is
acceptable and the latency in a datacenter is near zero. However, the reliability fallacy is the hard-
est because it intrudes into the application code. If a communication channel is lost, the application
code needs to take specific actions to recover from this failure.

This reliability aspect is also addressed with OSGi services because services are dynamic. Failures in
the communications layer can be mapped to the unregistration of the imported service. OSGi bun-
dles are already well aware of these dynamics, and a number of programming models have been de-
veloped to minimize the complexity of writing these dynamic applications.

100.2 Remote Service Properties
This section introduces a number of properties that participating bundles can use to convey infor-
mation to the distribution provider according to this Remote Service specification.

The following table lists the properties that must be listed by a distribution provider.

Table 100.1 Remote Service Properties registered by the Distribution Provider

Service Property Name Type Description
remote.configs.supported Str ing+ Registered by the distribution provider on one of

its services to indicate the supported configuration
types. See Configuration Types on page 27 and De-
pendencies on page 30.

remote. intents.supported Str ing+ Registered by the distribution provider on one of its
services to indicate the vocabulary of implemented
intents. See Dependencies on page 30.

service. imported * Must be set by a distribution provider to any value
when it registers the endpoint proxy as an imported
service. A bundle can use this property to filter out
imported services.

service. imported.configs Str ing+ The configuration information used to import this
service, as described in service.exported.configs .
Any associated properties for this configuration
types must be properly mapped to the importing
system. For example, a URL in these properties must
point to a valid resource when used in the importing
framework.

If multiple configuration types are listed in this
property, then they must be synonyms for exactly
the same remote endpoint that is used to export this
service.

Remote Services Version 1.0 Remote Service Properties

OSGi Compendium Release 6 Page 23

Service Property Name Type Description
service. intents Str ing+ A distribution provider must use this property to

convey the combined intents of:

• The exporting service, and
• The intents that the exporting distribution

provider adds.
• The intents that the importing distribution

provider adds.

The properties for bundles providing services to be exported or require services to be imported are
listed alphabetically in the following table. The scenarios that these properties are used in are dis-
cussed in later sections.

Table 100.2 Remote Service Properties registered by Exporting bundles

Service Property Name Type Description
service.exported.configs Str ing+ A list of configuration types that should be used to

export the service. Each configuration type repre-
sents the configuration parameters for one or more
Endpoints. A distribution provider should create
endpoints for each configuration type that it sup-
ports. See Configuration Types on page 27 for
more details. If this property is not set or empty a
distribution provider is free to choose a default con-
figuration type for the service.

service.exported. intents Str ing+ A list of intents that the distribution provider must
implement to distribute the service. Intents listed in
this property are reserved for intents that are critical
for the code to function correctly, for example, order-
ing of messages. These intents should not be config-
urable. For more information about intents, see In-
tents on page 26. This property is optional.

service.exported. intents.extra Str ing+ This property is merged with the
service.exported. intents property before the dis-
tribution provider interprets the listed intents; it
has therefore the same semantics but the proper-
ty should be configurable so the administrator can
choose the intents based on the topology. Bundles
should therefore make this property configurable,
for example through the Configuration Admin ser-
vice. See Intents on page 26. This property is op-
tional. If absent or empty no specific intents are re-
quired.

service.exported. interfaces Str ing+ Setting this property marks this service for export. It
defines the interfaces under which this service can
be exported. This list must be a subset of the types
listed in the objectClass service property. The single
value of an asterisk ('* ' \u002A) indicates all inter-
faces in the registration's objectClass property and
ignore the classes. It is strongly recommended to on-
ly export interfaces and not concrete classes due to
the complexity of creating proxies for some type of
concrete classes. See Registering a Service for Export on
page 24.

Remote Service Properties Remote Services Version 1.0

Page 24 OSGi Compendium Release 6

Service Property Name Type Description
service. intents Str ing+ A list of intents that this service implements. A dis-

tribution provider must use this property to convey
the combined intents of:

• The exporting service, and
• The intents that the exporting distribution

provider adds.
• The intents that the importing distribution

provider adds.

To export a service, a distribution provider must ex-
pand any qualified intents to include those support-
ed by the endpoint. This can be a subset of all known
qualified intents. See Intents on page 26. This
property is optional for registering bundles.

service.pid Str ing+ Services that are exported should have a service.pid
property. The service.pid (PID) is a unique persistent
identity for the service, the PID is defined in Persis-
tent Identifier (PID) of OSGi Core Release 6. This prop-
erty enables a distribution provider to associate per-
sistent proprietary data with a service registration.

The properties and their treatment by the distribution provider is depicted in Figure 100.2.

Figure 100.2 Distribution Service Properties

service.imported=...

<other service properties>

service.exported.interfaces

service.exported.intents.extra

service.exported.intents

service.intents

service.intents

<other service properties>

service.exported.configs

importexport
Framework A Framework B

Distribution Provider

remote.intents.supported

remote.configs.supported

objectClass

service.imported.configs

endpoint

1 *

100.2.1 Registering a Service for Export
A distribution provider should create one or more endpoints for an exported service when the fol-
lowing conditions are met:

• The service has the service property service.exported. interfaces set.
• All intents listed in service.exported. intents , service.exported. intents.extra and service. intents

are part of the distributed provider's vocabulary
• None of the intents are mutually exclusive.

Remote Services Version 1.0 Remote Service Properties

OSGi Compendium Release 6 Page 25

• The distribution provider can use the configuration types in service.exported.configs to create
one or more endpoints.

The endpoint must at least implement all the intents that are listed in the service.exported. intents
and service.exported. intents.extra properties.

The configuration types listed in the service.exported.configs can contain alternatives and/or syn-
onyms. Alternatives describe different endpoints for the same service while a synonym describes a
different configuration type for the same endpoint.

A distribution provider should create endpoints for each of the configuration types it supports;
these configuration types should be alternatives. Synonyms are allowed.

If no configuration types are recognized, the distribution provider should create an endpoint with a
default configuration type except when one of the listed configuration types is <<nodefault>> .

For more information about the configuration types, see further Configuration Types on page 27.

100.2.2 Getting an Imported Service
An imported service must be a normal service, there are therefore no special rules for getting it.
An imported service has a number of additional properties that must be set by the distribution
provider.

If the endpoint for an exported service is imported as an OSGi service in another framework, then
the following properties must be treated as special.

• service. imported - Must be set to some value.
• service. intents - This must be the combination of the following:

• The service. intents property on the exported service
• The service.exported. intents and service.exported. intents.extra properties on the exported

service
• Any additional intents implemented by the distribution providers on both sides.

• service. imported.configs - Contains the configuration types that can be used to import this ser-
vice. The types listed in this property must be synonymous, that is, they must refer to exactly the
same endpoint that is exporting the service. See Configuration Types on page 27.

• service.exported.* - Properties starting with service.exported. must not be set on the imported
service.

• service.exported. interfaces - This property must not be set, its content is reflected in the object-
Class property.

All other public service properties (not starting with a full stop ('.' \u002E)) must be listed on the im-
ported service if they use the basic service property types. If the service property cannot be commu-
nicated because, for example, it uses a type that can not be marshaled by the distribution provider
then the distribution provider must ignore this property.

The service. imported property indicates that a service is an imported service. If this service proper-
ty is set to any value, then the imported service is a proxy for an endpoint. If a bundle wants to filter
out imported services, then it can add the following filter:

(&(!(service.imported=*)) <previousfilter>)

Distribution providers can also use the Service Hook Service Specification of OSGi Core Release 6 to hide
services from specific bundles.

100.2.3 On Demand Import
The Service Hooks Service Specification of OSGi Core Release 6, allows a distribution provider to de-
tect when a bundle is listening for specific services. Bundles can request imported services with spe-

Intents Remote Services Version 1.0

Page 26 OSGi Compendium Release 6

cific intents by building an appropriate filter. The distribution provider can use this information to
import a service on demand.

The following example creates a Service Tracker that is interested in an imported service.

Filter f = context.createFilter(
 "(&(objectClasss=com.acme.Foo)"
 + "(service.intents=confidentiality))"
);
ServiceTracker tracker =
 new ServiceTracker(context, f, null);
tracker.open();

Such a Service Tracker will inform the Listener Hook and will give it the filter expression. If the dis-
tribution provider has registered such a hook, it will be informed about the need for an imported
com.acme.Foo service that has a confidential i ty intent. It can then use some proprietary means to
find a service to import that matches the given object class and intent.

How the distribution provider finds an appropriate endpoint is out of scope for this specification.

100.3 Intents
An intent is a name for an abstract distribution capability. An intent can be implemented by a service;
this can then be reflected in the service. intents property. An intent can also constrain the possible
communication mechanisms that a distribution provider can choose to distribute a service. This is
reflected in the service.export . intents and service.exported. intents.extra properties.

The purpose of the intents is to have a vocabulary that is shared between distribution aware bundles
and the distribution provider. This vocabulary allows the bundles to express constraints on the ex-
port of their services as well as providing information on what intents are implemented by a service.

Intents have the following syntax

intent ::= token ('.' token)?

Qualified intents use a full stop ('.' \u002E) to separate the intent from the qualifier. A qualifier pro-
vides additional details, however, it implies its prefix. For example:

confidentiality.message

This example, can be expanded into confidential i ty and confidential i ty.message . Qualified in-
tents can be used to provide additional details how an intent is achieved. However, a Distribution
Provider must expand any qualified intents to include those supported by the endpoint. This can be
a subset of all known qualified intents.

The concept of intents is derived from the [3] SCA Policy Framework specification. When designing a
vocabulary for a distribution provider it is recommended to closely follow the vocabulary of intents
defined in the SCA Policy Framework.

100.4 General Usage

100.4.1 Call by Value
Normal service semantics are call-by-reference. An object passed as an argument in a service call is a
direct reference to that object. Any changes to this object will be shared on both sides of the service
registry.

Remote Services Version 1.0 Configuration Types

OSGi Compendium Release 6 Page 27

Distributed services are different. Arguments are normally passed by value, which means that a
copy is sent to the remote system, changes to this value are not reflected in the originating frame-
work. When using distributed services, call-by-value should always be assumed by all participants
in the distribution chain.

100.4.2 Data Fencing
Services are syntactically defined by their Java interfaces. When exposing a service over a remote
protocol, typically such an interface is mapped to a protocol-specific interface definition. For exam-
ple, in CORBA the Java interfaces would be converted to a corresponding IDL definition. This map-
ping does not always result in a complete solution.

Therefore, for many practical distributed applications it will be necessary to constrain the possible
usage of data types in service interfaces. A distribution provider must at least support interfaces (not
classes) that only use the basic types as defined for the service properties. These are the primitive
types and their wrappers as well as arrays and collections. See Filter Syntax of OSGi Core Release 6 for
a list of service property types.

Distribution providers will in general provide a richer set of types that can be distributed.

100.4.3 Remote Services Life Cycle
A distributed service must closely track any modifications on the corresponding service registra-
tion. If service properties are modified, these modifications should be propagated to the distributed
service and associated service proxies. If the exported service is unregistered, the endpoint must be
withdrawn as soon as possible and any imported service proxies unregistered.

100.4.4 Runtime
An imported service is just like any other service and can be used as such. However, certain non-
functional characteristics of this service can differ significantly from what is normal for an in-VM
object call. Many of these characteristics can be mapped to the normal service operations. That is,
if the connection fails in any way, the service can be unregistered. According to the standard OSGi
contract, this means that the users of that service must perform the appropriate cleanup to prevent
stale references.

100.4.5 Exceptions
It is impossible to guarantee that a service is not used when it is no longer valid. Even with the syn-
chronous callbacks from the Service Listeners, there is always a finite window where a service can
be used while the underlying implementation has failed. In a distributed environment, this window
can actually be quite large for an imported service.

Such failure situations must be exposed to the application code that uses a failing imported service.
In these occasions, the distribution provider must notify the application by throwing a Service Ex-
ception, or subclass thereof, with the reason REMOTE . The Service Exception is a Runtime Excep-
tion, it can be handled higher up in the call chain. The cause of this Service Exception must be the
Exception that caused the problem.

A distribution provider should log any problems with the communications layer to the Log Service,
if available.

100.5 Configuration Types
An exported service can have a service.exported.configs service property. This property lists config-
uration types for endpoints that are provided for this service. Each type provides a specification that
defines how the configuration data for one or more endpoints is provided. For example, a hypotheti-
cal configuration type could use a service property to hold a URL for the RMI naming registry.

Configuration Types Remote Services Version 1.0

Page 28 OSGi Compendium Release 6

Configuration types that are not defined by the OSGi Alliance should use a name that follows the
reverse capabi l i t ies domain name scheme defined in [4] Java Language Specification for Java pack-
ages. For example, com.acme.wsdl would be the proprietary way for the ACME company to specify a
WSDL configuration type.

100.5.1 Configuration Type Properties
The service.exported.configs and service. imported.configs use the configuration types
in very different ways. That is, the service. imported.configs property is not a copy of the
service.exported.configs as the name might seem to imply.

An exporting service can list its desired configuration types in the service.exported.configs prop-
erty. This property is potentially seen and interpreted by multiple distribution providers. Each of
these providers can independently create endpoints from the configuration types. In principle, the
service.exported.configs lists alternatives for a single distribution provider and can list synonyms to
support alternative distribution providers. If only one of the synonyms is useful, there is an implic-
it assumption that when the service is exported, only one of the synonyms should be supported by
the installed distribution providers. If it is detected that this assumption is violated, then an error
should be logged and the conflicting configuration is further ignored.

The interplay of synonyms and alternatives is depicted in Table 100.3. In this table, the first columns
on the left list different combinations of the configuration types in the service.exported.configs
property. The next two columns list two distribution providers that each support an overlapping set
of configuration types. The x 's in this table indicate if a configuration type or distribution provider
is active in a line. The description then outlines the issues, if any. It is assumed in this table that
hypothetical configuration types net.rmi and com.rmix map to an identical endpoint, just like
net.soap and net.soapx .

Table 100.3 Synonyms and Alternatives in Exported Configurations

service.exported.
configs

Distribution
Provider A

Distribution
Provider B

Description

ne
t.

rm
i

co
m

.r
m

ix

ne
t.

so
ap

co
m

.s
oa

px

<<
no

 d
ef

au
lt

>> Supports:

net.rmi

com.rmix

com.soapx

Supports:

net.rmi

net.soap

x x x Ok, A will create an endpoint for the RMI and SOAP
alternatives.

x x x Configuration error. There is a clash for net.rmi be-
cause A and B can both create an endpoint for the
same configuration. It is likely that one will fail.

x x x Ok, exported on com.soapx by A, the net.soap is ig-
nored.

x x x x Synonym error because A and B export to same
SOAP endpoint, it is likely that one will fail.

x x x x Ok, two alternative endpoints over RMI (by A) and
SOAP (by B) are created. This is a typical use case.

x x x Ok. Synonyms are used to allow frameworks that
have either A or B installed. In this case A exports
over SOAP.

x x x Ok. Synonyms are used to allow frameworks that
have either A or B installed. In this case B exports.

x Ok. A creates an endpoint with default configura-
tion type.

Remote Services Version 1.0 Configuration Types

OSGi Compendium Release 6 Page 29

service.exported.
configs

Distribution
Provider A

Distribution
Provider B

Description

x x Ok. Both A and B each create an endpoint with their
default configuration type.

x x Ok. No endpoint is created.
x x x Provider B does not recognize the configuration

types it should therefore use a default configura-
tion type.

To summarize, the following rules apply for a single distribution provider:

• Only configuration types that are supported by this distribution provider must be used. All other
configuration types must be ignored.

• All of the supported configuration types must be alternatives, that is, they must map to different
endpoints. Synonyms for the same distribution provider should be logged as errors.

• If a configuration type results in an endpoint that is already in use, then an error should be
logged. It is likely then that another distribution provider already had created that endpoint.

An export of a service can therefore result in multiple endpoints being created. For example, a ser-
vice can be exported over RMI as well as SOAP. Creating an endpoint can fail, in that case the distrib-
ution provider must log this information in the Log Service, if available, and not export the service
to that endpoint. Such a failure can, for example, occur when two configuration types are synonym
and multiple distribution providers are installed that supporting this type.

On the importing side, the service. imported.configs property lists configuration types that must re-
fer to the same endpoint. That is, it can list alternative configuration types for this endpoint but all
configuration types must result in the same endpoint.

For example, there are two distribution providers installed at the exporting and importing frame-
works. Distribution provider A supports the hypothetical configuration type net.rmi and net.soap .
Distribution provider B supports the hypothetical configuration type net.smart . A service is regis-
tered that list all three of those configuration types.

Distribution provider A will create two endpoints, one for RMI and one for SOAP. Distribution
provider B will create one endpoint for the smart protocol. The distribution provider A knows how
to create the configuration data for the com.acme.rmi configuration type as well and can therefore
create a synonymous description of the endpoint in that configuration type. It will therefore set the
imported configuration type for the RMI endpoint to:

service.imported.configs = net.rmi, com.acme.rmi
net.rmi.url = rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.address = 172.25.25.109
com.acme.rmi.port = 1099
com.acme.rmi.path = service-id/24

Security Remote Services Version 1.0

Page 30 OSGi Compendium Release 6

Figure 100.3 Relation between imported and exported configuration types

service.exported.configs=[net.rmi,net.soap,net.smart]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
net.soap.wsdl=/wsdl/remote.xml
net.smart.name=remote

service.imported.configs=smart
net.smart.name=remote

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24

service.imported.configs=net.soap
net.soap.wsdl=http://172.25.25.109/wsdls/24.wsdl

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.*=...

B A

smart

rmi

soap

A

100.5.2 Dependencies
A bundle that uses a configuration type has an implicit dependency on the distribution provider. To
make this dependency explicit, the distribution provider must register a service with the following
properties:

• remote. intents.supported - (Str ing+) The vocabulary of the given distribution provider.
• remote.configs.supported - (Str ing+) The configuration types that are implemented by the dis-

tribution provider.

A bundle that depends on the availability of specific intents or configuration types can create a ser-
vice dependency on an anonymous service with the given properties. The following filter is an ex-
ample of depending on a hypothetical net.rmi configuration type:

(remote.configs.supported=net.rmi)

100.6 Security
The distribution provider will be required to invoke methods on any exported service. This implies
that it must have the combined set of permissions of all methods it can call. It also implies that the
distribution provider is responsible for ensuring that a bundle that calls an imported service is not
granted additional permissions through the fact that the distribution provider will call the exported
service, not the original invoker.

The actual mechanism to ensure that bundles can get additional permissions through the distrib-
ution is out of scope for this specification. However, distribution providers should provide mecha-
nisms to limit the set of available permissions for a remote invocation, preferably on a small granu-
larity basis.

One possible means is to use the getAccessControlContext method on the Conditional Permission
Admin service to get an Access Control Context that is used in a doPriv i leged block where the invo-
cation takes place. The getAccessControlContext method takes a list of signers which could repre-

Remote Services Version 1.0 References

OSGi Compendium Release 6 Page 31

sent the remote bundles that cause an invocation. How these are authenticated is up to the distribu-
tion provider.

A distribution provider is a potential attack point for intruders. Great care should be taken to prop-
erly setup the permissions or topology in an environment that requires security.

100.6.1 Limiting Exports and Imports
Service registration and getting services is controlled through the ServicePermission class. This per-
mission supports a filter based constructor that can assert service properties. This facility can be
used to limit bundles from being able to register exported services or get imported services if they
are combined with Conditional Permission Admin's ALLOW facility. The following example shows
how all bundles except from www.acme.com are denied the registration and getting of distributed
services.

DENY {
 [...BundleLocationCondition("http://www.acme.com/*" "!")]
 (...ServicePermission "(service.imported=*)" "GET")
 (...ServicePermission "(service.exported.interfaces=*)"
 "REGISTER")
}

100.7 References

[1] The Fallacies of Distributed Computing Explained
http://www.rgoarchitects.com/Files/fallacies.pdf

[2] Service Component Architecture (SCA)
http://www.oasis-opencsa.org/

[3] SCA Policy Framework specification
http://www.oasis-open.org/committees/sca-policy/

[4] Java Language Specification
http://docs.oracle.com/javase/specs/

References Remote Services Version 1.0

Page 32 OSGi Compendium Release 6

Log Service Specification Version 1.3 Introduction

OSGi Compendium Release 6 Page 33

101 Log Service Specification

Version 1.3

101.1 Introduction
The Log Service provides a general purpose message logger for the OSGi framework. It consists of
two services, one for logging information and another for retrieving current or previously recorded
log information.

This specification defines the methods and semantics of interfaces which bundle developers can use
to log entries and to retrieve log entries.

Bundles can use the Log Service to log information for the Operator. Other bundles, oriented toward
management of the environment, can use the Log Reader Service to retrieve Log Entry objects that
were recorded recently or to receive Log Entry objects as they are logged by other bundles.

101.1.1 Entities

• LogService - The service interface that allows a bundle to log information, including a message, a
level, an exception, a ServiceReference object, and a Bundle object.

• LogEntry - An interface that allows access to a log entry in the log. It includes all the information
that can be logged through the Log Service and a time stamp.

• LogReaderService - A service interface that allows access to a list of recent LogEntry objects, and al-
lows the registration of a LogListener object that receives LogEntry objects as they are created.

• LogListener - The interface for the listener to LogEntry objects. Must be registered with the Log
Reader Service.

Figure 101.1 Log Service Class Diagram org.osgi.service.log package

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user bundle

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log
or register
listener

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

Bundle using
Log Service Bundle using

Log Reader
Service

Log implementation bundle

The Log Service Interface Log Service Specification Version 1.3

Page 34 OSGi Compendium Release 6

101.2 The Log Service Interface
The LogService interface allows bundle developers to log messages that can be distributed to other
bundles, which in turn can forward the logged entries to a file system, remote system, or some other
destination.

The LogService interface allows the bundle developer to:

• Specify a message and/or exception to be logged.
• Supply a log level representing the severity of the message being logged. This should be one of

the levels defined in the LogService interface but it may be any integer that is interpreted in a
user-defined way.

• Specify the Service associated with the log requests.

By obtaining a LogService object from the Framework service registry, a bundle can start logging
messages to the LogService object by calling one of the LogService methods. A Log Service object
can log any message, but it is primarily intended for reporting events and error conditions.

The LogService interface defines these methods for logging messages:

• log(int , Str ing) - This method logs a simple message at a given log level.
• log(int , Str ing, Throwable) - This method logs a message with an exception at a given log level.
• log(ServiceReference, int , Str ing) - This method logs a message associated with a specific ser-

vice.
• log(ServiceReference, int , Str ing, Throwable) - This method logs a message with an exception

associated with a specific service.

While it is possible for a bundle to call one of the log methods without providing a ServiceRefer-
ence object, it is recommended that the caller supply the ServiceReference argument whenever ap-
propriate, because it provides important context information to the operator in the event of prob-
lems.

The following example demonstrates the use of a log method to write a message into the log.

logService.log(
 myServiceReference,
 LogService.LOG_INFO,
 "myService is up and running"
);

In the example, the myServiceReference parameter identifies the service associated with the log re-
quest. The specified level, LogService.LOG_INFO , indicates that this message is informational.

The following example code records error conditions as log messages.

try {
 FileInputStream fis = new FileInputStream("myFile");
 int b;
 while ((b = fis.read()) != -1) {
 ...
 }
 fis.close();
}
catch (IOException exception) {
 logService.log(
 myServiceReference,

Log Service Specification Version 1.3 Log Level and Error Severity

OSGi Compendium Release 6 Page 35

 LogService.LOG_ERROR,
 "Cannot access file",
 exception);
}

Notice that in addition to the error message, the exception itself is also logged. Providing this infor-
mation can significantly simplify problem determination by the Operator.

101.3 Log Level and Error Severity
The log methods expect a log level indicating error severity, which can be used to filter log messages
when they are retrieved. The severity levels are defined in the LogService interface.

Callers must supply the log levels that they deem appropriate when making log requests.

The following table lists the log levels.

Table 101.1 Log Levels

Level Descriptions
LOG_DEBUG Used for problem determination and may be irrelevant to anyone but the bun-

dle developer.
LOG_ERROR Indicates the bundle or service may not be functional. Action should be taken

to correct this situation.
LOG_INFO May be the result of any change in the bundle or service and does not indicate a

problem.
LOG_WARNING Indicates a bundle or service is still functioning but may experience problems

in the future because of the warning condition.

101.4 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log. The Log Reader Service is a
service that bundle developers can use to retrieve information contained in this log, and receive no-
tifications about LogEntry objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far into the past the log entries
go. Additionally, some log entries may not be recorded in the log in order to save space. In particu-
lar, LOG_DEBUG log entries may not be recorded. Note that this rule is implementation-dependent.
Some implementations may allow a configurable policy to ignore certain LogEntry object types.

The LogReaderService interface defines these methods for retrieving log entries.

• getLog() - This method retrieves past log entries as an enumeration with the most recent entry
first.

• addLogListener(LogListener) - This method is used to subscribe to the Log Reader Service in or-
der to receive log messages as they occur. Unlike the previously recorded log entries, all log mes-
sages must be sent to subscribers of the Log Reader Service as they are recorded.

A subscriber to the Log Reader Service must implement the LogListener interface.

After a subscription to the Log Reader Service has been started, the subscriber's
LogListener. logged method must be called with a Log-Entry object for the message each time a
message is logged.

The LogListener interface defines the following method:

Log Entry Interface Log Service Specification Version 1.3

Page 36 OSGi Compendium Release 6

• logged(LogEntry) - This method is called for each Log-Entry object created. A Log Reader Service
implementation must not filter entries to the LogListener interface as it is allowed to do for its
log. A LogListener object should see all LogEntry objects that are created.

The delivery of LogEntry objects to the LogListener object should be done asynchronously.

101.5 Log Entry Interface
The LogEntry interface abstracts a log entry. It is a record of the information that was passed when
an event was logged, and consists of a superset of information which can be passed through the
LogService methods. The LogEntry interface defines these methods to retrieve information related
to Log-Entry objects:

• getBundle() - This method returns the Bundle object related to a Log-Entry object.
• getException() - This method returns the exception related to a Log-Entry object. In some imple-

mentations, the returned exception may not be the original exception. To avoid references to a
bundle defined exception class, thus preventing an uninstalled bundle from being garbage col-
lected, the Log Service may return an exception object of an implementation defined Throwable
subclass. This object will attempt to return as much information as possible, such as the message
and stack trace, from the original exception object .

• getLevel() - This method returns the severity level related to a Log-Entry object.
• getMessage() - This method returns the message related to a Log-Entry object.
• getServiceReference() - This method returns the ServiceReference object of the service related

to a Log-Entry object.
• getTime() - This method returns the time that the log entry was created.

101.6 Mapping of Events
Implementations of a Log Service must log Framework-generated events and map the information
to LogEntry objects in a consistent way. Framework events must be treated exactly the same as other
logged events and distributed to all LogListener objects that are associated with the Log Reader Ser-
vice. The following sections define the mapping for the three different event types: Bundle, Service,
and Framework.

101.6.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to the following table.

Table 101.2 Mapping of Bundle Events to Log Entries

Log Entry method Information about Bundle Event
getLevel() LOG_INFO
getBundle() Identifies the bundle to which the event happened. In other words, it

identifies the bundle that was installed, started, stopped, updated, or
uninstalled. This identification is obtained by calling getBundle() on the
BundleEvent object.

getException() nul l
getServiceReference() nul l

Log Service Specification Version 1.3 Mapping of Events

OSGi Compendium Release 6 Page 37

Log Entry method Information about Bundle Event
getMessage() The message depends on the event type:

• INSTALLED - "BundleEvent INSTALLED"
• STARTED - "BundleEvent STARTED"
• STOPPED - "BundleEvent STOPPED"
• UPDATED - "BundleEvent UPDATED"
• UNINSTALLED - "BundleEvent UNINSTALLED"
• RESOLVED - "BundleEvent RESOLVED"
• UNRESOLVED - "BundleEvent UNRESOLVED"

101.6.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to the following table.

Table 101.3 Mapping of Service Events to Log Entries

Log Entry method Information about Service Event
getLevel() LOG_INFO , except for the ServiceEvent.MODIFIED event. This event can

happen frequently and contains relatively little information. It must be
logged with a level of LOG_DEBUG .

getBundle() Identifies the bundle that registered the service associated with this event.
It is obtained by calling getServiceReference() .getBundle() on the Ser-
viceEvent object.

getException() nul l
getServiceReference() Identifies a reference to the service associated with the event. It is ob-

tained by calling getServiceReference() on the ServiceEvent object.
getMessage() This message depends on the actual event type. The messages are mapped

as follows:

• REGISTERED - "ServiceEvent REGISTERED"
• MODIFIED - "ServiceEvent MODIFIED"
• UNREGISTERING - "ServiceEvent UNREGISTERING"

101.6.3 Framework Events Mapping
A Framework Event is mapped to a LogEntry object according to the following table.

Table 101.4 Mapping of Framework Event to Log Entries

Log Entry method Information about Framework Event
getLevel() LOG_INFO , except for the FrameworkEvent.ERROR event. This event rep-

resents an error and is logged with a level of LOG_ERROR .
getBundle() Identifies the bundle associated with the event. This may be the system

bundle. It is obtained by calling getBundle() on the FrameworkEvent ob-
ject.

getException() Identifies the exception associated with the error. This will be null for
event types other than ERROR. It is obtained by calling getThrowable() on
the FrameworkEvent object.

getServiceReference() nul l

Mapping of Events Log Service Specification Version 1.3

Page 38 OSGi Compendium Release 6

Log Entry method Information about Framework Event
getMessage() This message depends on the actual event type. The messages are mapped

as follows:

• STARTED - "FrameworkEvent STARTED"
• ERROR - "FrameworkEvent ERROR"
• PACKAGES_REFRESHED - "FrameworkEvent PACKAGES REFRESHED"
• STARTLEVEL_CHANGED - "FrameworkEvent STARTLEVEL CHANGED"
• WARNING - "FrameworkEvent WARNING"
• INFO - "FrameworkEvent INFO"

101.6.4 Log Events
Log events must be delivered by the Log Service implementation to the Event Admin service (if
present) asynchronously under the topic:

org/osgi/service/log/LogEntry/<event type>

The logging level is used as event type:

LOG_ERROR
LOG_WARNING
LOG_INFO
LOG_DEBUG
LOG_OTHER (when event is not recognized)

The properties of a log event are:

• bundle. id - (Long) The source bundle's id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if not nul l .
• bundle - (Bundle) The source bundle.
• log. level - (Integer) The log level.
• message - (Str ing) The log message.
• t imestamp - (Long) The log entry's timestamp.
• log.entry - (LogEntry) The LogEntry object.

If the log entry has an associated Exception:

• exception.class - (Str ing) The fully-qualified class name of the attached exception. Only set if the
getException method returns a non-nul l value.

• exception.message - (Str ing) The message of the attached Exception. Only set if the Exception
message is not nul l .

• exception - (Throwable) The Exception returned by the getException method.

If the getServiceReference method returns a non- nul l value:

• service - (ServiceReference) The result of the getServiceReference method.
• service. id - (Long) The id of the service.
• service.pid - (Str ing) The service's persistent identity. Only set if the service.pid service property

is not nul l .
• service.objectClass - (Str ing[]) The object class of the service object.

Log Service Specification Version 1.3 Security

OSGi Compendium Release 6 Page 39

101.7 Security
The Log Service should only be implemented by trusted bundles. This bundle requires
ServicePermission[LogService|LogReaderService, REGISTER] . Virtually all bundles should get
ServicePermission[LogService, GET] . The ServicePermission[LogReaderService, GET] should only
be assigned to trusted bundles.

101.8 org.osgi.service.log

Log Service Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. log; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. log; vers ion="[1.3,1 .4)"

101.8.1 Summary

• LogEntry - Provides methods to access the information contained in an individual Log Service
log entry.

• LogListener - Subscribes to LogEntry objects from the LogReaderService .
• LogReaderService - Provides methods to retrieve LogEntry objects from the log.
• LogService - Provides methods for bundles to write messages to the log.

101.8.2 public interface LogEntry
Provides methods to access the information contained in an individual Log Service log entry.

A LogEntry object may be acquired from the LogReaderService.getLog method or by registering a
LogListener object.

See Also LogReaderService.getLog, LogListener

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface

101.8.2.1 public Bundle getBundle()

□ Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; nul l if no bundle is associated with this LogEntry ob-
ject.

101.8.2.2 public Throwable getException()

□ Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original exception. To avoid ref-
erences to a bundle defined exception class, thus preventing an uninstalled bundle from being
garbage collected, the Log Service may return an exception object of an implementation defined
Throwable subclass. The returned object will attempt to provide as much information as possible
from the original exception object such as the message and stack trace.

org.osgi.service.log Log Service Specification Version 1.3

Page 40 OSGi Compendium Release 6

Returns Throwable object of the exception associated with this LogEntry ;nul l if no exception is associated
with this LogEntry object.

101.8.2.3 public int getLevel()

□ Returns the severity level of this LogEntry object.

This is one of the severity levels defined by the LogService interface.

Returns Severity level of this LogEntry object.

See Also LogService.LOG_ERROR, LogService.LOG_WARNING, LogService.LOG_INFO,
LogService.LOG_DEBUG

101.8.2.4 public String getMessage()

□ Returns the human readable message associated with this LogEntry object.

Returns Str ing containing the message associated with this LogEntry object.

101.8.2.5 public ServiceReference getServiceReference()

□ Returns the ServiceReference object for the service associated with this LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry object; nul l if no ServiceRefer-
ence object was provided.

101.8.2.6 public long getTime()

□ Returns the value of currentTimeMil l is() at the time this LogEntry object was created.

Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMil l is()

101.8.3 public interface LogListener
extends EventListener
Subscribes to LogEntry objects from the LogReaderService .

A LogListener object may be registered with the Log Reader Service using the
LogReaderService.addLogListener method. After the listener is registered, the logged method will
be called for each LogEntry object created. The LogListener object may be unregistered by calling the
LogReaderService.removeLogListener method.

See Also LogReaderService, LogEntry, LogReaderService.addLogListener(LogListener),
LogReaderService.removeLogListener(LogListener)

Concurrency Thread-safe

101.8.3.1 public void logged(LogEntry entry)

entry A LogEntry object containing log information.

□ Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as possible.

See Also LogEntry

101.8.4 public interface LogReaderService
Provides methods to retrieve LogEntry objects from the log.

There are two ways to retrieve LogEntry objects:

• The primary way to retrieve LogEntry objects is to register a LogListener object whose
LogListener. logged method will be called for each entry added to the log.

Log Service Specification Version 1.3 org.osgi.service.log

OSGi Compendium Release 6 Page 41

• To retrieve past LogEntry objects, the getLog method can be called which will return an Enumer-
at ion of all LogEntry objects in the log.

See Also LogEntry, LogListener, LogListener.logged(LogEntry)

Concurrency Thread-safe

101.8.4.1 public void addLogListener(LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive LogEntry objects.

□ Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service. The
LogListener. logged(LogEntry) method will be called for each LogEntry object placed into the log.

When a bundle which registers a LogListener object is stopped or otherwise releases the Log Reader
Service, the Log Reader Service must remove all of the bundle's listeners.

If this Log Reader Service's list of listeners already contains a listener l such that (l==l istener) , this
method does nothing.

See Also LogListener, LogEntry, LogListener.logged(LogEntry)

101.8.4.2 public Enumeration getLog()

□ Returns an Enumeration of all LogEntry objects in the log.

Each element of the enumeration is a LogEntry object, ordered with the most recent entry first.
Whether the enumeration is of all LogEntry objects since the Log Service was started or some recent
past is implementation-specific. Also implementation-specific is whether informational and debug
LogEntry objects are included in the enumeration.

Returns An Enumeration of all LogEntry objects in the log.

101.8.4.3 public void removeLogListener(LogListener listener)

listener A LogListener object to unregister.

□ Unsubscribes to LogEntry objects.

This method unregisters a LogListener object from the Log Reader Service.

If l istener is not contained in this Log Reader Service's list of listeners, this method does nothing.

See Also LogListener

101.8.5 public interface LogService
Provides methods for bundles to write messages to the log.

LogService methods are provided to log messages; optionally with a ServiceReference object or an
exception.

Bundles must log messages in the OSGi environment with a severity level according to the follow-
ing hierarchy:

1. LOG_ERROR
2. LOG_WARNING
3. LOG_INFO
4. LOG_DEBUG

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface

org.osgi.service.log Log Service Specification Version 1.3

Page 42 OSGi Compendium Release 6

101.8.5.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to anyone but the bundle
developer.

101.8.5.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.

101.8.5.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and does not indicate a prob-
lem.

101.8.5.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may experience problems in the
future because of the warning condition.

101.8.5.5 public void log(int level,String message)

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

□ Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

101.8.5.6 public void log(int level,String message,Throwable exception)

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message The human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

□ Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

101.8.5.7 public void log(ServiceReference sr,int level,String message)

sr The ServiceReference object of the service that this message is associated with or nul l .

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

□ Logs a message associated with a specific ServiceReference object.

The Throwable field of the LogEntry will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

Log Service Specification Version 1.3 org.osgi.service.log

OSGi Compendium Release 6 Page 43

101.8.5.8 public void log(ServiceReference sr,int level,String message,Throwable exception)

sr The ServiceReference object of the service that this message is associated with.

level The severity of the message. This should be one of the defined log levels but may be any integer that
is interpreted in a user defined way.

message Human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

□ Logs a message with an exception associated and a ServiceReference object.

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG

org.osgi.service.log Log Service Specification Version 1.3

Page 44 OSGi Compendium Release 6

Http Service Specification Version 1.2 Introduction

OSGi Compendium Release 6 Page 45

102 Http Service Specification

Version 1.2

102.1 Introduction
An OSGi framework normally provides users with access to services on the Internet and other net-
works. This access allows users to remotely retrieve information from, and send control to, services
in an OSGi framework using a standard web browser.

Bundle developers typically need to develop communication and user interface solutions for stan-
dard technologies such as HTTP, HTML, XML, and servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets - A servlet is a Java object which implements the Java Servlet API. Registering a
servlet in the Framework gives it control over some part of the Http Service URI name-space.

• Registering resources - Registering a resource allows HTML files, image files, and other static re-
sources to be made visible in the Http Service URI name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols if these protocols can
conform to the semantics of the javax.servlet API. This additional support is necessary because the
Http Service is closely related to [3] Java Servlet Technology. Http Service implementations must sup-
port at least version 2.1 of the Java Servlet API.

102.1.1 Entities
This specification defines the following interfaces which a bundle developer can implement collec-
tively as an Http Service or use individually:

• HttpContext - Allows bundles to provide information for a servlet or resource registration.
• HttpService - Allows other bundles in the Framework to dynamically register and unregister re-

sources and servlets into the Http Service URI name-space.
• NamespaceException - Is thrown to indicate an error with the caller's request to register a servlet

or resource into the Http Service URI name-space.

Registering Servlets Http Service Specification Version 1.2

Page 46 OSGi Compendium Release 6

Figure 102.1 Http Service Overview Diagram

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http.
HttpServlet
Request

javax.servlet.http.
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception

102.2 Registering Servlets
javax.servlet .Servlet objects can be registered with the Http Service by using the
HttpService interface. For this purpose, the HttpService interface defines the method
registerServlet(Str ing, javax.servlet .Servlet ,Dict ionary,HttpContext) .

For example, if the Http Service implementation is listening to port 80 on the machine
www.acme.com and the Servlet object is registered with the name "/servlet" , then the Servlet
object's service method is called when the following URL is used from a web browser:

http://www.acme.com/servlet?name=bugs

All Servlet objects and resource registrations share the same name-space. If an attempt is made
to register a resource or Servlet object under the same name as a currently registered resource or
Servlet object, a NamespaceException is thrown. See Mapping HTTP Requests to Servlet and Resource
Registrations on page 49 for more information about the handling of the Http Service name-
space.

Each Servlet registration must be accompanied with an HttpContext object. This object provides
the handling of resources, media typing, and a method to handle authentication of remote requests.
See Authentication on page 52.

For convenience, a default HttpContext object is provided by the Http Service and can be obtained
with createDefaultHttpContext() . Passing a nul l parameter to the registration method achieves the
same effect.

Servlet objects require a ServletContext object. This object provides a number of functions to access
the Http Service Java Servlet environment. It is created by the implementation of the Http Service
for each unique HttpContext object with which a Servlet object is registered. Thus, Servlet objects
registered with the same HttpContext object must also share the same ServletContext object.

Http Service Specification Version 1.2 Registering Servlets

OSGi Compendium Release 6 Page 47

Servlet objects are initialized by the Http Service when they are registered and bound to that specif-
ic Http Service. The initialization is done by calling the Servlet object's Servlet . init(ServletConfig)
method. The ServletConfig parameter provides access to the initialization parameters specified
when the Servlet object was registered.

Therefore, the same Servlet instance must not be reused for registration with another Http Service,
nor can it be registered under multiple names. Unique instances are required for each registration.

The following example code demonstrates the use of the registerServlet method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
 String name = "<not set>";

 public void init(ServletConfig config) {
 this.name = (String)
 config.getInitParameter("name");
 }

 public void doGet(
 HttpServletRequest req,
 HttpServletResponse rsp
) throws IOException {
 rsp.setContentType("text/plain");
 req.getWriter().println(this.name);
 }
};

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null // use default context
);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
getHttpService().unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called

This example registers the servlet, myServlet , at alias: /servletAl ias . Future requests for http://
www.acme.com/servletAl ias maps to the servlet, myServlet , whose service method is called to
process the request. (The service method is called in the HttpServlet base class and dispatched to a
doGet , doPut , doPost , doOptions , doTrace , or doDelete call depending on the HTTP request method
used.)

Registering Resources Http Service Specification Version 1.2

Page 48 OSGi Compendium Release 6

102.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies, applets, etc. Resources do
not require any handling from the bundle. They are transferred directly from their source - usually
the JAR file that contains the code for the bundle - to the requester using HTTP.

Resources could be handled by Servlet objects as explained in Registering Servlets on page
46. Transferring a resource over HTTP, however, would require very similar Servlet
objects for each bundle. To prevent this redundancy, resources can be registered directly
with the Http Service via the HttpService interface. This HttpService interface defines the
registerResources(Str ing,Str ing,HttpContext)method for registering a resource into the Http Ser-
vice URI name-space.

The first parameter is the external alias under which the resource is registered with the Http Ser-
vice. The second parameter is an internal prefix to map this resource to the bundle's name-space.
When a request is received, the HttpService object must remove the external alias from the URI, re-
place it with the internal prefix, and call the getResource(Str ing) method with this new name on
the associated HttpContext object. The HttpContext object is further used to get the MIME type of
the resource and to authenticate the request.

Resources are returned as a java.net.URL object. The Http Service must read from this URL object and
transfer the content to the initiator of the HTTP request.

This return type was chosen because it matches the return type of the
java. lang.Class.getResource(Str ing resource) method. This method can retrieve resources direct-
ly from the same place as the one from which the class was loaded - often a package directory in the
JAR file of the bundle. This method makes it very convenient to retrieve resources from the bundle
that are contained in the package.

The following example code demonstrates the use of the register Resources method:

package com.acme;
...
HttpContext context = new HttpContext() {
 public boolean handleSecurity(
 HttpServletRequest request,
 HttpServletResponse response
) throws IOException {
 return true;
 }

 public URL getResource(String name) {
 return getClass().getResource(name);
 }

 public String getMimeType(String name) {
 return null;
 }
};

getHttpService().registerResources (
 "/files",
 "www",
 context
);
...

Http Service Specification Version 1.2 Mapping HTTP Requests to Servlet and Resource Registrations

OSGi Compendium Release 6 Page 49

getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for resources below this name-
space are transferred to the HttpContext object with an internal name of www/<name> . This exam-
ple uses the Class.get Resource(Str ing) method. Because the internal name does not start with a "/",
it must map to a resource in the "com/acme/www" directory of the JAR file. If the internal name did
start with a "/", the package name would not have to be prefixed and the JAR file would be searched
from the root. Consult the java. lang.Class.getResource(Str ing) method for more information.

In the example, a request for http://www.acme.com/fi les/myfi le .html must map to the name "com/
acme/www/myfi le .html" which is in the bundle's JAR file.

More sophisticated implementations of the getResource(Str ing) method could filter the input
name, restricting the resources that may be returned or map the input name onto the file system (if
the security implications of this action are acceptable).

Alternatively, the resource registration could have used a default HttpContext object, as demonstrat-
ed in the following call to registerResources :

getHttpService().registerResources(
 "/files",
 "/com/acme/www",
 null
);

In this case, the Http Service implementation would call the createDefaultHttpContext()
method and use its return value as the HttpContext argument for the registerResources method.
The default implementation must map the resource request to the bundle's resource, using
Bundle.getResource(Str ing) . In the case of the previous example, however, the internal name must
now specify the full path to the directory containing the resource files in the JAR file. No automatic
prefixing of the package name is done.

The getMimeType(Str ing) implementation of the default HttpContext object should
rely on the default mapping provided by the Http Service by returning nul l . Its
handleSecurity(HttpServletRequest,HttpServletResponse) may implement an authentication
mechanism that is implementation-dependent.

102.4 Mapping HTTP Requests to Servlet and Resource
Registrations
When an HTTP request comes in from a client, the Http Service checks to see if the requested URI
matches any registered aliases. A URI matches only if the path part of the URI is exactly the same
string. Matching is case sensitive.

If it does match, a matching registration takes place, which is processed as follows:

1. If the registration corresponds to a servlet, the authorization is verified by calling the handleSe-
curity method of the associated HttpContext object. See Authentication on page 52. If the re-
quest is authorized, the servlet must be called by its service method to complete the HTTP re-
quest.

2. If the registration corresponds to a resource, the authorization is verified by calling the han-
dleSecurity method of the associated HttpContext object. See Authentication on page 52. If
the request is authorized, a target resource name is constructed from the requested URI by sub-
stituting the alias from the registration with the internal name from the registration if the alias
is not "/". If the alias is "/", then the target resource name is constructed by prefixing the request-

The Default Http Context Object Http Service Specification Version 1.2

Page 50 OSGi Compendium Release 6

ed URI with the internal name. An internal name of "/" is considered to have the value of the
empty string ("") during this process.

3. The target resource name must be passed to the getResource method of the associated HttpCon-
text object.

4. If the returned URL object is not nul l , the Http Service must return the contents of the URL to the
client completing the HTTP request. The translated target name, as opposed to the original re-
quested URI, must also be used as the argument to HttpContext.getMimeType .

5. If the returned URL object is nul l , the Http Service continues as if there was no match.
6. If there is no match, the Http Service must attempt to match sub-strings of the requested URI to

registered aliases. The sub-strings of the requested URI are selected by removing the last "/" and
everything to the right of the last "/".

The Http Service must repeat this process until either a match is found or the sub-string is an empty
string. If the sub-string is empty and the alias "/" is registered, the request is considered to match the
alias "/" . Otherwise, the Http Service must return HttpServletResponse.SC_NOT_FOUND(404) to
the client.

For example, an HTTP request comes in with a request URI of "/fudd/bugs/foo.txt" , and the only
registered alias is "/fudd" . A search for "/fudd/bugs/foo.txt" will not match an alias. Therefore, the
Http Service will search for the alias "/fudd/bugs" and the alias "/fudd" . The latter search will result
in a match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the alias "/fudd" , and anoth-
er bundle tries to register the exactly the same alias, the second caller must receive a NamespaceEx-
ception and its resource or servlet must not be registered. It could, however, register a similar alias -
for example, "/fudd/bugs" , as long as no other registration for this alias already exists.

The following table shows some examples of the usage of the name-space.

Table 102.1 Examples of Name-space Mapping

Alias Internal Name URI getResource Parameter
/ (empty str ing) /fudd/bugs /fudd/bugs
/ / /fudd/bugs /fudd/bugs
/ /tmp /fudd/bugs /tmp/fudd/bugs
/fudd (empty str ing) /fudd/bugs /bugs
/fudd / /fudd/bugs /bugs
/fudd /tmp /fudd/bugs /tmp/bugs
/fudd tmp /fudd/bugs/x.gi f tmp/bugs/x.gi f
/fudd/bugs/x.gi f tmp/y.gi f /fudd/bugs/x.gi f tmp/y.gi f

102.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple implementations of the HttpCon-
text interface methods. Alternatively, the example could have used a default HttpContext object, as
demonstrated in the following call to registerServlet :

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null
);

Http Service Specification Version 1.2 Multipurpose Internet Mail Extension (MIME) Types

OSGi Compendium Release 6 Page 51

In this case, the Http Service implementation must call createDefault HttpContext and use the re-
turn value as the HttpContext argument.

If the default HttpContext object, and thus the ServletContext object, is to be shared by multiple
servlet registrations, the previous servlet registration example code needs to be changed to use the
same default HttpContext object. This change is demonstrated in the next example:

HttpContext defaultContext =
 getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 defaultContext
);

// defaultContext can be reused
// for further servlet registrations

102.6 Multipurpose Internet Mail Extension (MIME) Types
MIME defines an extensive set of headers and procedures to encode binary messages in US-ASCII
mails. For an overview of all the related RFCs, consult [4] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of the binary messages.
The type is defined by a string containing a general category (text, application, image, audio and
video, multipart, and message) followed by a "/" and a specific media type, as in the example, "text/
html" for HTML formatted text files. A MIME type string can be followed by additional specifiers by
separating key=value pairs with a semicolon (' ; ' \u003B). These specifiers can be used, for example,
to define character sets as follows:

text/plain ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined MIME media types.
This list can be found at [5] Assigned MIME Media Types. MIME media types are extendable, and
when any part of the type starts with the prefix "x-" , it is assumed to be vendor-specific and can be
used for testing. New types can be registered as described in [6] Registration Procedures for new MIME
media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header should contain a MIME
media type so that the browser can recognize the type and format the content correctly.

The source of the data must define the MIME media type for each transfer. Most operating systems
do not support types for files, but use conventions based on file names, such as the last part of the
file name after the last ".". This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of mapping common exten-
sions to media types based on file extensions.

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description
. jpg . jpeg image/jpeg JPEG Files
.g i f image/gif GIF Files
.css text/css Cascading Style Sheet Files
.txt text/plain Text Files

Authentication Http Service Specification Version 1.2

Page 52 OSGi Compendium Release 6

Extension MIME media type Description
.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language
.htm .html text/html Hyper Text Markup Language
.wbmp image/vnd.wap.wbmp Bitmaps for WAP

Only the bundle developer, however, knows exactly which files have what media type. The Http-
Context interface can therefore be used to map this knowledge to the media type. The HttpContext
class has the following method for this: getMimeType(Str ing) .

The implementation of this method should inspect the file name and use its internal knowledge to
map this name to a MIME media type.

Simple implementations can extract the extension and look up this extension in a table.

Returning nul l from this method allows the Http Service implementation to use its default mapping
mechanism.

102.7 Authentication
The Http Service has separated the authentication and authorization of a request from the execu-
tion of the request. This separation allows bundles to use available Servlet sub-classes while still
providing bundle specific authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method on the HttpContext object that is associated with the request URI. This method controls
whether the request is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the authentication mechanisms
of HTTP. See [7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. These mecha-
nisms normally interpret the headers and decide if the user identity is available, and if it is, whether
that user has authenticated itself correctly.

There are many different ways of authenticating users, and the handleSecurity method on the Http-
Context object can use whatever method it requires. If the method returns true , the request must
continue to be processed using the potentially modified HttpServletRequest and HttpServletRe-
sponse objects. If the method returns fa lse , the request must not be processed.

A common standard for HTTP is the basic authentication scheme that is not secure when used with
HTTP. Basic authentication passes the password in base 64 encoded strings that are trivial to decode
into clear text. Secure transport protocols like HTTPS use SSL to hide this information. With these
protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Authorizat ion header is set in the request, the method should set the WWW-Authenticate
header in the response. This header indicates the desired authentication mechanism and the
realm. For example, WWW-Authenticate: Basic realm="ACME" .

The header should be set with the response object that is given as a parameter to
the handleSecurity method. The handleSecurity method should set the status to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

2. Secure connections can be verified with the ServletRequest.getScheme() method. This method
returns, for example, "https" for an SSL connection; the handleSecurity method can use this and
other information to decide if the connection's security level is acceptable. If not, the handleSe-
curity method should set the status to HttpServletResponse.SC_FORBIDDEN (403) and return
fa lse .

Http Service Specification Version 1.2 Security

OSGi Compendium Release 6 Page 53

3. Next, the request must be authenticated. When basic authentication is used, the Authorizat ion
header is available in the request and should be parsed to find the user and password. See [7] RFC
2617: HTTP Authentication: Basic and Digest Access Authentication for more information.

If the user cannot be authenticated, the status of the response object should be set to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

4. The authentication mechanism that is actually used and the identity of the authenticated user
can be of interest to the Servlet object. Therefore, the implementation of the handleSecurity
method should set this information in the request object using the ServletRequest.setAttr ibute
method. This specification has defined a number of OSGi-specific attribute names for this pur-
pose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentication. A Servlet may re-

trieve the value of this attribute by calling the HttpServletRequest.getAuthType method.
This attribute name is org.osgi .service.http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Servlet may retrieve the
value of this attribute by calling the HttpServletRequest.getRemoteUser method. This at-
tribute name is org.osgi .service.http.authenticat ion.remote.user .

• AUTHORIZATION - If a User Admin service is available in the environment, then the
handleSecurity method should set this attribute with the Authorizat ion object ob-
tained from the User Admin service. Such an object encapsulates the authentica-
tion of its remote user. A Servlet may retrieve the value of this attribute by calling
ServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This header name is
org.osgi .service.useradmin.authorizat ion .

5. Once the request is authenticated and any attributes are set, the handleSecurity method should
return true . This return indicates to the Http Service that the request is authorized and pro-
cessing may continue. If the request is for a Servlet, the Http Service must then call the service
method on the Servlet object.

102.8 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

102.8.1 Accessing Resources with the Default Http Context
The Http Service must be granted AdminPermission[*,RESOURCE] so that bundles may use a de-
fault HttpContext object. This is necessary because the implementation of the default HttpContext
object must call Bundle.getResource to access the resources of a bundle and this method requires
the caller to have AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation
is privileged. The resulting URL object may then be passed to the Http Service as the result of a
HttpContext.getResource call. No further permission checks are performed when accessing bundle
resource URL objects, so the Http Service does not need to be granted any additional permissions.

102.8.2 Accessing Other Types of Resources
In order to access resources that were not registered using the default HttpContext object, the Http
Service must be granted sufficient privileges to access these resources. For example, if the getRe-
source method of the registered HttpContext object returns a file URL, the Http Service requires the
corresponding Fi lePermission to read the file. Similarly, if the getResource method of the registered
HttpContext object returns an HTTP URL, the Http Service requires the corresponding SocketPer-
mission to connect to the resource.

Configuration Properties Http Service Specification Version 1.2

Page 54 OSGi Compendium Release 6

Therefore, in most cases, the Http Service should be a privileged service that is granted sufficient
permission to serve any bundle's resources, no matter where these resources are located. Therefore,
the Http Service must capture the AccessControlContext object of the bundle registering resources
or a servlet, and then use the captured AccessControlContext object when accessing resources re-
turned by the registered HttpContext object. This situation prevents a bundle from registering re-
sources that it does not have permission to access.

Therefore, the Http Service should follow a scheme like the following example. When a resource or
servlet is registered, it should capture the context.

AccessControlContext acc =
 AccessController.getContext();

When a URL returned by the getResource method of the associated HttpContext object is called, the
Http Service must call the getResource method in a doPriv i leged construct using the AccessCon-
trolContext object of the registering bundle:

AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 ...
 }
 }, acc);

The Http Service must only use the captured AccessControlContext when accessing resource URL
objects.

102.8.3 Servlet and HttpContext objects
This specification does not require that the Http Service is granted All Permission or wraps calls to
the Servlet and Http Context objects in a doPriv i leged block. Therefore, it is the responsibility of the
Servlet and Http Context implementations to use a doPriv i leged block when performing privileged
operations.

102.9 Configuration Properties
If the Http Service does not have its port values configured through some other means, the Http Ser-
vice implementation should use the following properties to determine the port values upon which
to listen.

The following OSGi environment properties are used to specify default HTTP ports:

• org.osgi .service.http.port - This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure - This property specifies the port used for servlets and re-
sources accessible via HTTPS. The default value for this property is 443.

102.10 org.osgi.service.http

Http Service Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Compendium Release 6 Page 55

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,1 .3)"

102.10.1 Summary

• HttpContext - Context for HTTP Requests.
• HttpService - The Http Service allows other bundles in the OSGi environment to dynamically

register resources and servlets into the URI namespace of Http Service.
• NamespaceException - A NamespaceException is thrown to indicate an error with the caller's

request to register a servlet or resources into the URI namespace of the Http Service.

102.10.2 public interface HttpContext
Context for HTTP Requests.

This service defines methods that the Http Service may call to get information for a request.

Servlets may be associated with an HttpContext service. Servlets that are associated using the same
HttpContext object will share the same ServletContext object.

If no HttpContext service is associated, a default HttpContext is used. The behavior of the methods
on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the bundle of the servlet service. This method

calls the servlet bundle's Bundle.getResource method, and returns the appropriate URL to access
the resource. On a Java runtime environment that supports permissions, the Http Service needs
to be granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

102.10.2.1 public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"

HttpServletRequest attribute specifying the scheme used in authentication. The value of
the attribute can be retrieved by HttpServletRequest.getAuthType . This attribute name is
org.osgi .service.http.authenticat ion.type .

Since 1.1

102.10.2.2 public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"

HttpServletRequest attribute specifying the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This attribute name is
org.osgi .service.useradmin.authorizat ion .

Since 1.1

102.10.2.3 public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"

HttpServletRequest attribute specifying the name of the authenticated user. The value of
the attribute can be retrieved by HttpServletRequest.getRemoteUser . This attribute name is
org.osgi .service.http.authenticat ion.remote.user .

Since 1.1

102.10.2.4 public String getMimeType(String name)

name The name for which to determine the MIME type.

org.osgi.service.http Http Service Specification Version 1.2

Page 56 OSGi Compendium Release 6

□ Maps a name to a MIME type.

Called by the Http Service to determine the MIME type for the specified name. For servlets, the Http
Service will call this method to support the ServletContext method getMimeType . For resources,
the Http Service will call this method to determine the MIME type for the Content-Type header in
the response.

Returns The MIME type (e.g. text/html) of the specified name or nul l to indicate that the Http Service should
determine the MIME type itself.

102.10.2.5 public URL getResource(String name)

name the name of the requested resource

□ Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet registrations, Http
Service will call this method to support the ServletContext methods getResource and ge-
tResourceAsStream . For resource registrations, Http Service will call this method to lo-
cate the named resource. The context can control from where resources come. For ex-
ample, the resource can be mapped to a file in the bundle's persistent storage area via
bundleContext.getDataFi le(name).toURL() or to a resource in the context's bundle via
getClass() .getResource(name)

Returns URL that Http Service can use to read the resource or nul l if the resource does not exist.

102.10.2.6 public boolean handleSecurity(HttpServletRequest request,HttpServletResponse response) throws
IOException

request The HTTP request.

response The HTTP response.

□ Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request. This method controls
whether the request is processed in the normal manner or an error is returned.

If the request requires authentication and the Authorization header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication (available at http://www.ietf.org/rfc/rfc2617.txt).

If the request requires a secure connection and the getScheme method in the request does not re-
turn 'https' or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return fa lse .

When this method returns fa lse , the Http Service will send the response back to the client, thereby
completing the request. When this method returns true , the Http Service will proceed with servic-
ing the request.

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must
set the AUTHORIZATION request attribute to the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, fa lse if the request should not be serviced and Http Service
will send the response back to the client.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Compendium Release 6 Page 57

Throws IOException– may be thrown by this method. If this occurs, the Http Service will terminate the re-
quest and close the socket.

102.10.3 public interface HttpService
The Http Service allows other bundles in the OSGi environment to dynamically register resources
and servlets into the URI namespace of Http Service. A bundle may later unregister its resources or
servlets.

See Also HttpContext

No Implement Consumers of this API must not implement this interface

102.10.3.1 public HttpContext createDefaultHttpContext()

□ Creates a default HttpContext for registering servlets or resources with the HttpService, a new Http-
Context object is created each time this method is called.

The behavior of the methods on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the context bundle; this method calls the con-

text bundle's Bundle.getResource method, and returns the appropriate URL to access the re-
source. On a Java runtime environment that supports permissions, the Http Service needs to be
granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

Returns a default HttpContext object.

Since 1.1

102.10.3.2 public void registerResources(String alias,String name,HttpContext context) throws NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or nul l if a default HttpContext is to be created
and used.

□ Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped. An alias must begin with slash ('/') and must not end with slash ('/'), with the exception
that an alias of the form "/" is used to denote the root alias. The name parameter must also not end
with slash ('/') with the exception that a name of the form "/" is used to denote the root of the bundle.
See the specification text for details on how HTTP requests are mapped to servlet and resource regis-
trations.

For example, suppose the resource name /tmp is registered to the alias /files. A request for /files/
foo.txt will map to the resource name /tmp/foo.txt.

 httpservice.registerResources("/files", "/tmp", context);

The Http Service will call the HttpContext argument to map resource names to URLs and MIME
types and to handle security for requests. If the HttpContext argument is nul l , a default HttpContext
is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

I l legalArgumentException– if any of the parameters are invalid

org.osgi.service.http Http Service Specification Version 1.2

Page 58 OSGi Compendium Release 6

102.10.3.3 public void registerServlet(String alias,Servlet servlet,Dictionary initparams,HttpContext context) throws
ServletException, NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or nul l if there are none. This argument is used by the
servlet's ServletConfig object.

context the HttpContext object for the registered servlet, or nul l if a default HttpContext is to be created and
used.

□ Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped.

An alias must begin with slash ('/') and must not end with slash ('/'), with the exception that an alias
of the form "/" is used to denote the root alias. See the specification text for details on how HTTP re-
quests are mapped to servlet and resource registrations.

The Http Service will call the servlet's in it method before returning.

 httpService.registerServlet("/myservlet", servlet, initparams, context);

Servlets registered with the same HttpContext object will share the same ServletContext .
The Http Service will call the context argument to support the ServletContext methods
getResource ,getResourceAsStream and getMimeType , and to handle security for requests. If the
context argument is nul l , a default HttpContext object is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

javax.servlet .ServletException– if the servlet's in it method throws an exception, or the given servlet
object has already been registered at a different alias.

I l legalArgumentException– if any of the arguments are invalid

102.10.3.4 public void unregister(String alias)

alias name in the URI name-space of the registration to unregister

□ Unregisters a previous registration done by registerServlet or registerResources methods.

After this call, the registered alias in the URI name-space will no longer be available. If the registra-
tion was for a servlet, the Http Service must call the destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise "unget"s the Http Service
without calling unregister(String) then Http Service must automatically unregister the registration.
However, if the registration was for a servlet, the destroy method of the servlet will not be called in
this case since the bundle may be stopped. unregister(String) must be explicitly called to cause the
destroy method of the servlet to be called. This can be done in the BundleActivator.stop method of
the bundle registering the servlet.

Throws I l legalArgumentException– if there is no registration for the alias or the calling bundle was not the
bundle which registered the alias.

102.10.4 public class NamespaceException
extends Exception
A NamespaceException is thrown to indicate an error with the caller's request to register a servlet
or resources into the URI namespace of the Http Service. This exception indicates that the requested
alias already is in use.

Http Service Specification Version 1.2 References

OSGi Compendium Release 6 Page 59

102.10.4.1 public NamespaceException(String message)

message the detail message

□ Construct a NamespaceException object with a detail message.

102.10.4.2 public NamespaceException(String message,Throwable cause)

message The detail message.

cause The nested exception.

□ Construct a NamespaceException object with a detail message and a nested exception.

102.10.4.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

102.10.4.4 public Throwable getException()

□ Returns the nested exception.

This method predates the general purpose exception chaining mechanism. The getCause() method
is now the preferred means of obtaining this information.

Returns The result of calling getCause() .

102.10.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

102.11 References
[1] HTTP 1.0 Specification RFC-1945

http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specification RFC-2616
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[3] Java Servlet Technology
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

[4] MIME Multipurpose Internet Mail Extension
http://www.mhonarc.org/~ehood/MIME/MIME.html

[5] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

[6] Registration Procedures for new MIME media types
http://www.ietf.org/rfc/rfc2048.txt

[7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt

References Http Service Specification Version 1.2

Page 60 OSGi Compendium Release 6

Device Access Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 61

103 Device Access Specification

Version 1.1

103.1 Introduction
A Framework is a meeting point for services and devices from many different vendors: a meeting
point where users add and cancel service subscriptions, newly installed services find their corre-
sponding input and output devices, and device drivers connect to their hardware.

In an OSGi Framework, these activities will dynamically take place while the Framework is run-
ning. Technologies such as USB and IEEE 1394 explicitly support plugging and unplugging devices
at any time, and wireless technologies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi Framework, particularly those re-
lating to devices. When all of the possible services and device requirements are factored in, each OS-
Gi Framework will be unique. Therefore, automated mechanisms are needed that can be extended
and customized, in order to minimize the configuration needs of the OSGi environment.

The Device Access specification supports the coordination of automatic detection and attachment
of existing devices on an OSGi Framework, facilitates hot-plugging and -unplugging of new devices,
and downloads and installs device drivers on demand.

This specification, however, deliberately does not prescribe any particular device or network tech-
nology, and mentioned technologies are used as examples only. Nor does it specify a particular de-
vice discovery method. Rather, this specification focuses on the attachment of devices supplied by
different vendors. It emphasizes the development of standardized device interfaces to be defined in
device categories, although no such device categories are defined in this specification.

103.1.1 Essentials

• Embedded Devices - OSGi bundles will likely run in embedded devices. This environment implies
limited possibility for user interaction, and low-end devices will probably have resource limita-
tions.

• Remote Administration - OSGi environments must support administration by a remote service
provider.

• Vendor Neutrality - OSGi-compliant driver bundles will be supplied by different vendors; each dri-
ver bundle must be well-defined, documented, and replaceable.

• Continuous Operation - OSGi environments will be running for extended periods without being
restarted, possibly continuously, requiring stable operation and stable resource consumption.

• Dynamic Updates - As much as possible, driver bundles must be individually replaceable without
affecting unrelated bundles. In particular, the process of updating a bundle should not require a
restart of the whole OSGi Framework or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementations in order for them to
be OSGi-compliant. Implementations must support the following capabilities:

• Hot-Plugging - Plugging and unplugging of devices at any time if the underlying hardware and
drivers allow it.

• Legacy Systems - Device technologies which do not implement the automatic detection of
plugged and unplugged devices.

Introduction Device Access Specification Version 1.1

Page 62 OSGi Compendium Release 6

• Dynamic Device Driver Loading - Loading new driver bundles on demand with no prior device-spe-
cific knowledge of the Device service.

• Multiple Device Representations - Devices to be accessed from multiple levels of abstraction.
• Deep Trees - Connections of devices in a tree of mixed network technologies of arbitrary depth.
• Topology Independence - Separation of the interfaces of a device from where and how it is attached.
• Complex Devices - Multifunction devices and devices that have multiple configurations.

103.1.2 Operation
This specification defines the behavior of a device manager (which is not a service as might be ex-
pected). This device manager detects registration of Device services and is responsible for associat-
ing these devices with an appropriate Driver service. These tasks are done with the help of Driver
Locator services and the Driver Selector service that allow a device manager to find a Driver bundle
and install it.

103.1.3 Entities
The main entities of the Device Access specification are:

• Device Manager - The bundle that controls the initiation of the attachment process behind the
scenes.

• Device Category - Defines how a Driver service and a Device service can cooperate.
• Driver - Competes for attaching Device services of its recognized device category. See Driver Ser-

vices on page 67.
• Device - A representation of a physical device or other entity that can be attached by a Driver ser-

vice. See Device Services on page 63.
• DriverLocator - Assists in locating bundles that provide a Driver service. See Driver Locator Service

on page 73.
• DriverSelector - Assists in selecting which Driver service is best suited to a Device service. See The

Driver Selector Service on page 76.

Figure 103.1 show the classes and their relationships.

Device Access Specification Version 1.1 Device Services

OSGi Compendium Release 6 Page 63

Figure 103.1 Device Access Class Overview

Device Manager
impl

Device or
Device_
Category set

<<interface>>
Driver
Locator

<<interface>>
Driver
Selector

a Driver impl

<<interface>>
Driver

a Driver
Locator impl

<<interface>>
Match

a Driver
Selector impl

a Device impl
0..n1

1

1

1

0..n

listens to all
device registrations

collects all drivers
and matches
them to devices

0..n

1

attaches device and
possible refines 0..n

0..1

0..n

1 1

0..1

 driver located by

associates
driver with

match value
for device

refines or uses external

best driver
selected by

device driver
bundle

(provided by application or
vendor specific)

Driver Selector
bundle

Driver Locator
bundle

device manager
(provided by vendor)

downloads
a bundle1

1

(provided by operator)

103.2 Device Services
A Device service represents some form of a device. It can represent a hardware device, but that is not
a requirement. Device services differ widely: some represent individual physical devices and others
represent complete networks. Several Device services can even simultaneously represent the same
physical device at different levels of abstraction. For example:

• A USB network.
• A device attached on the USB network.
• The same device recognized as a USB to Ethernet bridge.
• A device discovered on the Ethernet using Salutation.
• The same device recognized as a simple printer.
• The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB mouse can be considered as:

• A USB device which delivers information over the USB bus.
• A mouse device which delivers x and y coordinates and information about the state of its buttons.

Each representation has specific implications:

Device Services Device Access Specification Version 1.1

Page 64 OSGi Compendium Release 6

• That a particular device is a mouse is irrelevant to an application which provides management of
USB devices.

• That a mouse is attached to a USB bus or a serial port would be inconsequential to applications
that respond to mouse-like input.

Device services must belong to a defined device category, or else they can implement a generic service
which models a particular device, independent of its underlying technology. Examples of this type
of implementation could be Sensor or Actuator services.

A device category specifies the methods for communicating with a Device service, and enables in-
teroperability between bundles that are based on the same underlying technology. Generic Device
services will allow interoperability between bundles that are not coupled to specific device tech-
nologies.

For example, a device category is required for the USB, so that Driver bundles can be written that
communicate to the devices that are attached to the USB. If a printer is attached, it should also be
available as a generic Printer service defined in a Printer service specification, indistinguishable
from a Printer service attached to a parallel port. Generic categories, such as a Printer service, should
also be described in a Device Category.

It is expected that most Device service objects will actually represent a physical device in some
form, but that is not a requirement of this specification. A Device service is represented as a normal
service in the OSGi Framework and all coordination and activities are performed upon Framework
services. This specification does not limit a bundle developer from using Framework mechanisms
for services that are not related to physical devices.

103.2.1 Device Service Registration
A Device service is defined as a normal service registered with the Framework that either:

• Registers a service object under the interface org.osgi .service.Device with the Framework, or
• Sets the DEVICE_CATEGORY property in the registration. The value of DEVICE_CATEGORY is an

array of Str ing objects of all the device categories that the device belongs to. These strings are de-
fined in the associated device category.

If this document mentions a Device service, it is meant to refer to services registered with the name
org.osgi .service.device.Device or services registered with the DEVICE_CATEGORY property set.

When a Device service is registered, additional properties may be set that describe the device to the
device manager and potentially to the end users. The following properties have their semantics de-
fined in this specification:

• DEVICE_CATEGORY - A marker property indicating that this service must be regarded as a Device
service by the device manager. Its value is of type Str ing[] , and its meaning is defined in the asso-
ciated device category specification.

• DEVICE_DESCRIPTION - Describes the device to an end user. Its value is of type Str ing .
• DEVICE_SERIAL - A unique serial number for this device. If the device hardware contains a ser-

ial number, the driver bundle is encouraged to specify it as this property. Different Device ser-
vices representing the same physical hardware at different abstraction levels should set the same
DEVICE_SERIAL , thus simplifying identification. Its value is of type Str ing .

• service.pid - Service Persistent ID (PID), defined in org.osgi .f ramework.Constants . Device ser-
vices should set this property. It must be unique among all registered services. Even different
abstraction levels of the same device must use different PIDs. The service PIDs must be repro-
ducible, so that every time the same hardware is plugged in, the same PIDs are used.

103.2.2 Device Service Attachment
When a Device service is registered with the Framework, the device manager is responsible for find-
ing a suitable Driver service and instructing it to attach to the newly registered Device service. The

Device Access Specification Version 1.1 Device Category Specifications

OSGi Compendium Release 6 Page 65

Device service itself is passive: it only registers a Device service with the Framework and then waits
until it is called.

The actual communication with the underlying physical device is not defined in the Device in-
terface because it differs significantly between different types of devices. The Driver service is re-
sponsible for attaching the device in a device type-specific manner. The rules and interfaces for this
process must be defined in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device service remains unat-
tached. In that case, if the service object implements the Device interface, it must receive a call to
the noDriverFound() method. The Device service can wait until a new driver is installed, or it can
unregister and attempt to register again with different properties that describe a more generic de-
vice or try a different configuration.

103.2.2.1 Idle Device Service

The main purpose of the device manager is to try to attach drivers to idle devices. For this purpose,
a Device service is considered idle if no bundle that itself has registered a Driver service is using the
Device service.

103.2.2.2 Device Service Unregistration

When a Device service is unregistered, no immediate action is required by the device manager. The
normal service of unregistering events, provided by the Framework, takes care of propagating the
unregistration information to affected drivers. Drivers must take the appropriate action to release
this Device service and perform any necessary cleanup, as described in their device category specifi-
cation.

The device manager may, however, take a device unregistration as an indication that driver bundles
may have become idle and are thus eligible for removal. It is therefore important for Device services
to unregister their service object when the underlying entity becomes unavailable.

103.3 Device Category Specifications
A device category specifies the rules and interfaces needed for the communication between a Device
service and a Driver service. Only Device services and Driver services of the same device category
can communicate and cooperate.

The Device Access service specification is limited to the attachment of Device services by Driver ser-
vices, and does not enumerate different device categories.

Other specifications must specify a number of device categories before this specification can be
made operational. Without a set of defined device categories, no inter-operability can be achieved.

Device categories are related to a specific device technology, such as USB, IEEE 1394, JINI, UPnP, Sa-
lutation, CEBus, Lonworks, and others. The purpose of a device category specification is to make all
Device services of that category conform to an agreed interface, so that, for example, a USB Driver
service of vendor A can control Device services from vendor B attached to a USB bus.

This specification is limited to defining the guidelines for device category definitions only. Device
categories may be defined by the OSGi organization or by external specification bodies - for exam-
ple, when these bodies are associated with a specific device technology.

103.3.1 Device Category Guidelines
A device category definition comprises the following elements:

• An interface that all devices belonging to this category must implement. This interface should
lay out the rules of how to communicate with the underlying device. The specification body may
define its own device interfaces (or classes) or leverage existing ones. For example, a serial port

Device Category Specifications Device Access Specification Version 1.1

Page 66 OSGi Compendium Release 6

device category could use the javax.comm.SerialPort interface which is defined in [1] Java Com-
munications API.

When registering a device belonging to this category with the Framework, the interface or class
name for this category must be included in the registration.

• A set of service registration properties, their data types, and semantics, each of which must be de-
clared as either MANDATORY or OPTIONAL for this device category.

• A range of match values specific to this device category. Matching is explained later in The Device
Attachment Algorithm on page 77.

103.3.2 Sample Device Category Specification
The following is a partial example of a fictitious device category:

public interface /* com.acme.widget.*/ WidgetDevice{
 int MATCH_SERIAL = 10;
 int MATCH_VERSION = 8;
 int MATCH_MODEL = 6;
 int MATCH_MAKE = 4;
 int MATCH_CLASS = 2;
 void sendPacket(byte [] data);
 byte [] receivePacket(long timeout);
}

Devices in this category must implement the interface com.acme.widget.WidgetDevice to receive
attachments from Driver services in this category.

Device properties for this fictitious category are defined in the following table.

Table 103.1 Example Device Category Properties, M=Mandatory, O=Optional

Property name M/O Type Value
DEVICE_CATEGORY M String[] {"Widget"}
com.acme.class M Str ing A class description of this device. For

example "audio", "video", "ser ia l", etc.
An actual device category specification
should contain an exhaustive list and de-
fine a process to add new classes.

com.acme.model M Str ing A definition of the model. This is usually
vendor specific. For example "Mouse".

com.acme.manufacturer M Str ing Manufacturer of this device, for example
"ACME Widget Division".

com.acme.revis ion O Str ing Revision number. For example, "42".
com.acme.ser ia l O Str ing A serial number. For example

"SN6751293-12-2112/A".

103.3.3 Match Example
Driver services and Device services are connected via a matching process that is explained in The
Device Attachment Algorithm on page 77. The Driver service plays a pivotal role in this matching
process. It must inspect the Device service (from its ServiceReference object) that has just been reg-
istered and decide if it potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The scale of this match value
must be defined in the device category so as to allow Driver services to match on a fair basis. The
scale must start at least at 1 and go upwards.

Device Access Specification Version 1.1 Driver Services

OSGi Compendium Release 6 Page 67

Driver services for this sample device category must return one of the match codes defined in the
com.acme.widget.WidgetDevice interface or Device.MATCH_NONE if the Device service is not rec-
ognized. The device category must define the exact rules for the match codes in the device category
specification. In this example, a small range from 2 to 10 (MATCH_NONE is 0) is defined for Widget-
Device devices. They are named in the WidgetDevice interface for convenience and have the follow-
ing semantics.

Table 103.2 Sample Device Category Match Scale

Match name Value Description
MATCH_SERIAL 10 An exact match, including the serial number.
MATCH_VERSION 8 Matches the right class, make model, and version.
MATCH_MODEL 6 Matches the right class and make model.
MATCH_MAKE 4 Matches the make.
MATCH_CLASS 2 Only matches the class.

A Driver service should use the constants to return when it decides how closely the Device ser-
vice matches its suitability. For example, if it matches the exact serial number, it should return
MATCH_SERIAL .

103.4 Driver Services
A Driver service is responsible for attaching to suitable Device services under control of the device
manager. Before it can attach a Device service, however, it must compete with other Driver services
for control.

If a Driver service wins the competition, it must attach the device in a device category-specific way.
After that, it can perform its intended functionality. This functionality is not defined here nor in the
device category; this specification only describes the behavior of the Device service, not how the
Driver service uses it to implement its intended functionality. A Driver service may register one or
more new Device services of another device category or a generic service which models a more re-
fined form of the device.

Both refined Device services as well as generic services should be defined in a Device Category. See
Device Category Specifications on page 65.

103.4.1 Driver Bundles
A Driver service is, like all services, implemented in a bundle, and is recognized by the device man-
ager by registering one or more Driver service objects with the Framework.

Such bundles containing one or more Driver services are called driver bundles. The device manager
must be aware of the fact that the cardinality of the relationship between bundles and Driver ser-
vices is 1:1...*.

A driver bundle must register at least one Driver service in its BundleActivator.start implementa-
tion.

103.4.2 Driver Taxonomy
Device Drivers may belong to one of the following categories:

• Base Drivers (Discovery, Pure Discovery and Normal)
• Refining Drivers
• Network Drivers

Driver Services Device Access Specification Version 1.1

Page 68 OSGi Compendium Release 6

• Composite Drivers
• Referring Drivers
• Bridging Drivers
• Multiplexing Drivers
• Pure Consuming Drivers

This list is not definitive, and a Driver service is not required to fit into one of these categories. The
purpose of this taxonomy is to show the different topologies that have been considered for the De-
vice Access service specification.

Figure 103.2 Legend for Device Driver Services Taxonomy

bold

plain

Device service

Hardware

Driver

Association

Key part

Illustrative

Network

103.4.2.1 Base Drivers

The first category of device drivers are called base drivers because they provide the lowest-level rep-
resentation of a physical device. The distinguishing factor is that they are not registered as Driver
services because they do not have to compete for access to their underlying technology.

Figure 103.3 Base Driver Types

Parallel port service

Physical hardware
SLP, UPnP

Base driver

Printer service

JINI, Salutation,
SLP, UPnP

Pure Discovery
Base driver

Printer service

Hardware with
discovery: USB,

IEEE 1394,

 Discovery
Base driver

Base drivers discover physical devices using code not specified here (for example, through notifica-
tions from a device driver in native code) and then register corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical device, a Device service
is then registered. Drivers supporting a discovery mechanism are called discovery base drivers.

An example of a discovery base driver is a USB driver. Discovered USB devices are registered with
the Framework as a generic USB Device service. The USB specification (see [2] USB Specification) de-
fines a tightly integrated discovery method. Further, devices are individually addressed; no provi-
sion exists for broadcasting a message to all devices attached to the USB bus. Therefore, there is no
reason to expose the USB network itself; instead, a discovery base driver can register the individual
devices as they are discovered.

Not all technologies support a discovery mechanism. For example, most serial ports do not support
detection, and it is often not even possible to detect whether a device is attached to a serial port.

Device Access Specification Version 1.1 Driver Services

OSGi Compendium Release 6 Page 69

Although each driver bundle should perform discovery on its own, a driver for a non-discoverable
serial port requires external help - either through a user interface or by allowing the Configuration
Admin service to configure it.

It is possible for the driver bundle to combine automatic discovery of Plug and Play-compliant de-
vices with manual configuration when non-compliant devices are plugged in.

103.4.2.2 Refining Drivers

The second category of device drivers are called refining drivers. Refining drivers provide a refined
view of a physical device that is already represented by another Device service registered with the
Framework. Refining drivers register a Driver service with the Framework. This Driver service is
used by the device manager to attach the refining driver to a less refined Device service that is regis-
tered as a result of events within the Framework itself.

Figure 103.4 Refining Driver Diagram

Mouse service

USB Device

Base driver

Refining driver

An example of a refining driver is a mouse driver, which is attached to the generic USB Device ser-
vice representing a physical mouse. It then registers a new Device service which represents it as a
Mouse service, defined elsewhere.

The majority of drivers fall into the refining driver type.

103.4.2.3 Network Drivers

An Internet Protocol (IP) capable network such as Ethernet supports individually addressable de-
vices and allows broadcasts, but does not define an intrinsic discovery protocol. In this case, the en-
tire network should be exposed as a single Device service.

Figure 103.5 Network Driver diagram

IP Network driver

drivers and other services
that use the network service
to discover devices

network

Associated with
(also for other
devices)

103.4.2.4 Composite Drivers

Complex devices can often be broken down into several parts. Drivers that attach to a single service
and then register multiple Device services are called composite drivers. For example, a USB speaker

Driver Services Device Access Specification Version 1.1

Page 70 OSGi Compendium Release 6

containing software-accessible buttons can be registered by its driver as two separate Device ser-
vices: an Audio Device service and a Button Device service.

Figure 103.6 Composite Driver structure

Audio Device

USB Device

Physical USB bus

Base driver

Composite driver

Button Device

This approach can greatly reduce the number of interfaces needed, as well as enhance reusability.

103.4.2.5 Referring Drivers

A referring driver is actually not a driver in the sense that it controls Device services. Instead, it acts
as an intermediary to help locate the correct driver bundle. This process is explained in detail in The
Device Attachment Algorithm on page 77.

A referring driver implements the call to the attach method to inspect the Device service, and de-
cides which Driver bundle would be able to attach to the device. This process can actually involve
connecting to the physical device and communicating with it. The attach method then returns a
Str ing object that indicates the DRIVER_ID of another driver bundle. This process is called a referral.

For example, a vendor ACME can implement one driver bundle that specializes in recognizing all
of the devices the vendor produces. The referring driver bundle does not contain code to control the
device - it contains only sufficient logic to recognize the assortment of devices. This referring dri-
ver can be small, yet can still identify a large product line. This approach can drastically reduce the
amount of downloading and matching needed to find the correct driver bundle.

103.4.2.6 Bridging Drivers

A bridging driver registers a Device service from one device category but attaches it to a Device ser-
vice from another device category.

Figure 103.7 Bridging Driver Structure

Ethernet Device

USB device

Bridging driver

Ethernet device drivers

For example, USB to Ethernet bridges exist that allow connection to an Ethernet network through a
USB device. In this case, the top level of the USB part of the Device service stack would be an Ether-
net Device service. But the same Ethernet Device service can also be the bottom layer of an Ethernet
layer of the Device service stack. A few layers up, a bridge could connect into yet another network.

Device Access Specification Version 1.1 Driver Services

OSGi Compendium Release 6 Page 71

The stacking depth of Device services has no limit, and the same drivers could in fact appear at dif-
ferent levels in the same Device service stack. The graph of drivers-to-Device services roughly mir-
rors the hardware connections.

103.4.2.7 Multiplexing Drivers

A multiplexing driver attaches a number of Device services and aggregates them in a new Device ser-
vice.

Figure 103.8 Multiplexing Driver Structure

 USB Mouse

Multiplexing Driver

Cursor Position

 Remote
Control

Graphic Tablet

USB Network Serial Port

For example, assume that a system has a mouse on USB, a graphic tablet on a serial port, and a re-
mote control facility. Each of these would be registered as a service with the Framework. A multi-
plexing driver can attach all three, and can merge the different positions in a central Cursor Position
service.

103.4.2.8 Pure Consuming Drivers

A pure consuming driver bundle will attach to devices without registering a refined version.

Figure 103.9 Pure Consuming Driver Structure

Pure Consuming Driver

USB Serial Port

USB Base Driver

USB Network

For example, one driver bundle could decide to handle all serial ports through javax.comm instead
of registering them as services. When a USB serial port is plugged in, one or more Driver services
are attached, resulting in a Device service stack with a Serial Port Device service. A pure consum-
ing driver may then attach to the Serial Port Device service and register a new serial port with the
javax.comm.* registry instead of the Framework service registry. This registration effectively trans-
fers the device from the OSGi environment into another environment.

103.4.2.9 Other Driver Types

It should be noted that any bundle installed in the OSGi environment may get and use a Device ser-
vice without having to register a Driver service.

The following functionality is offered to those bundles that do register a Driver service and conform
to the this specification:

Driver Services Device Access Specification Version 1.1

Page 72 OSGi Compendium Release 6

• The bundles can be installed and uninstalled on demand.
• Attachment to the Device service is only initiated after the winning the competition with other

drivers.

103.4.3 Driver Service Registration
Drivers are recognized by registering a Driver service with the Framework. This event makes the
device manager aware of the existence of the Driver service. A Driver service registration must
have a DRIVER_ID property whose value is a Str ing object, uniquely identifying the driver to the de-
vice manager. The device manager must use the DRIVER_ID to prevent the installation of duplicate
copies of the same driver bundle.

Therefore, this DRIVER_ID must:

• Depend only on the specific behavior of the driver, and thus be independent of unrelated aspects
like its location or mechanism of downloading.

• Start with the reversed form of the domain name of the company that implements it: for exam-
ple, com.acme.widget.1 .1 .

• Differ from the DRIVER_ID of drivers with different behavior. Thus, it must also be different for
each revision of the same driver bundle so they may be distinguished.

When a new Driver service is registered, the Device Attachment Algorithm must be applied to each
idle Device service. This requirement gives the new Driver service a chance to compete with other
Driver services for attaching to idle devices. The techniques outlined in Optimizations on page 80
can provide significant shortcuts for this situation.

As a result, the Driver service object can receive match and attach requests before the method which
registered the service has returned.

This specification does not define any method for new Driver services to steal already attached de-
vices. Once a Device service has been attached by a Driver service, it can only be released by the Dri-
ver service itself.

103.4.4 Driver Service Unregistration
When a Driver service is unregistered, it must release all Device services to which it is attached.
Thus, all its attached Device services become idle. The device manager must gather all of these idle
Device services and try to re-attach them. This condition gives other Driver services a chance to take
over the refinement of devices after the unregistering driver. The techniques outlined in Optimiza-
tions on page 80 can provide significant shortcuts for this situation.

A Driver service that is installed by the device manager must remain registered as long as the dri-
ver bundle is active. Therefore, a Driver service should only be unregistered if the driver bundle is
stopping, an occurrence which may precede its being uninstalled or updated. Driver services should
thus not unregister in an attempt to minimize resource consumption. Such optimizations can easily
introduce race conditions with the device manager.

103.4.5 Driver Service Methods
The Driver interface consists of the following methods:

• match(ServiceReference) - This method is called by the device manager to find out how well this
Driver service matches the Device service as indicated by the ServiceReference argument. The
value returned here is specific for a device category. If this Device service is of another device cat-
egory, the value Device.MATCH_NONE must be returned. Higher values indicate a better match.
For the exact matching algorithm, see The Device Attachment Algorithm on page 77.

Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results so that results can be cached by the device manager.

Device Access Specification Version 1.1 Driver Locator Service

OSGi Compendium Release 6 Page 73

• attach(ServiceReference) - If the device manager decides that a Driver service should be attached
to a Device service, it must call this method on the Driver service object. Once this method is
called, the Device service is regarded as attached to that Driver service, and no other Driver ser-
vice must be called to attach to the Device service. The Device service must remain owned by the
Driver service until the Driver bundle is stopped. No unattach method exists.

The attach method should return nul l when the Device service is correctly attached. A refer-
ring driver (see Referring Drivers on page 70) can return a Str ing object that specifies the
DRIVER_ID of a driver that can handle this Device service. In this case, the Device service is not at-
tached and the device manager must attempt to install a Driver service with the same DRIVER_ID
via a Driver Locator service. The attach method must be deterministic as described in the previ-
ous method.

103.4.6 Idle Driver Bundles
An idle Driver bundle is a bundle with a registered Driver service, and is not attached to any Device
service. Idle Driver bundles are consuming resources in the OSGi Framework. The device manager
should uninstall bundles that it has installed and which are idle.

103.5 Driver Locator Service
The device manager must automatically install Driver bundles, which are obtained from Driver Lo-
cator services, when new Device services are registered.

A Driver Locator service encapsulates the knowledge of how to fetch the Driver bundles needed for
a specific Device service. This selection is made on the properties that are registered with a device:
for example, DEVICE_CATEGORY and any other properties registered with the Device service regis-
tration.

The purpose of the Driver Locator service is to separate the mechanism from the policy. The deci-
sion to install a new bundle is made by the device manager (the mechanism), but a Driver Locator
service decides which bundle to install and from where the bundle is downloaded (the policy).

Installing bundles has many consequences for the security of the system, and this process is also
sensitive to network setup and other configuration details. Using Driver Locator services allows the
Operator to choose a strategy that best fits its needs.

Driver services are identified by the DRIVER_ID property. Driver Locator services use this particular
ID to identify the bundles that can be installed. Driver ID properties have uniqueness requirements
as specified in Device Service Registration on page 64. This uniqueness allows the device manager
to maintain a list of Driver services and prevent unnecessary installs.

An OSGi Framework can have several different Driver Locator services installed. The device manag-
er must consult all of them and use the combined result set, after pruning duplicates based on the
DRIVER_ID values.

103.5.1 The DriverLocator Interface
The DriverLocator interface allows suitable driver bundles to be located, downloaded, and installed
on demand, even when completely unknown devices are detected.

It has the following methods:

• f indDrivers(Dict ionary) - This method returns an array of driver IDs that potentially match a ser-
vice described by the properties in the Dictionary object. A driver ID is the Str ing object that is
registered by a Driver service under the DRIVER_ID property.

• loadDriver(Str ing) - This method returns an InputStream object that can be used to download
the bundle containing the Driver service as specified by the driver ID argument. If the Driver Lo-

Driver Locator Service Device Access Specification Version 1.1

Page 74 OSGi Compendium Release 6

cator service cannot download such a bundle, it should return nul l . Once this bundle is down-
loaded and installed in the Framework, it must register a Driver service with the DRIVER_ID prop-
erty set to the value of the Str ing argument.

103.5.2 A Driver Example
The following example shows a very minimal Driver service implementation. It consists of two
classes. The first class is SerialWidget . This class tracks a single WidgetDevice from Sample Device
Category Specification on page 66. It registers a javax.comm.SerialPort service, which is a gener-
al serial port specification that could also be implemented from other device categories like USB, a
COM port, etc. It is created when the SerialWidgetDriver object is requested to attach a WidgetDe-
vice by the device manager. It registers a new javax.comm.SerialPort service in its constructor.

The org.osgi .ut i l .t racker.ServiceTracker is extended to handle the Framework events that are need-
ed to simplify tracking this service. The removedService method of this class is overridden to unreg-
ister the SerialPort when the underlying WidgetDevice is unregistered.

package com.acme.widget;
import org.osgi.service.device.*;
import org.osgi.framework.*;
import org.osgi.util.tracker.*;

class SerialWidget extends ServiceTracker
 implements javax.comm.SerialPort,
 org.osgi.service.device.Constants {
 ServiceRegistration registration;

 SerialWidget(BundleContext c, ServiceReference r) {
 super(c, r, null);
 open();
 }

 public Object addingService(ServiceReference ref) {
 WidgetDevice dev = (WidgetDevice)
 context.getService(ref);
 registration = context.registerService(
 javax.comm.SerialPort.class.getName(),
 this,
 null);
 return dev;
 }

 public void removedService(ServiceReference ref,
 Object service) {
 registration.unregister();
 context.ungetService(ref);
 }
 ... methods for javax.comm.SerialPort that are
 ... converted to underlying WidgetDevice
}

A SerialWidgetDriverobject is registered with the Framework in the Bundle Activator start method
under the Driver interface. The device manager must call the match method for each idle Device ser-
vice that is registered. If it is chosen by the device manager to control this Device service, a new Se-
r ia lWidget is created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implementsDriver {

Device Access Specification Version 1.1 Driver Locator Service

OSGi Compendium Release 6 Page 75

 BundleContext context;

 String spec =
 "(&"
 +" (objectclass=com.acme.widget.WidgetDevice)"
 +" (DEVICE_CATEGORY=WidgetDevice)"
 +" (com.acme.class=Serial)"
 +")";

 Filter filter;

 SerialWidgetDriver(BundleContext context)
 throws Exception {
 this.context = context;
 filter = context.createFilter(spec);
 }
 public int match(ServiceReference d) {
 if (filter.match(d))
 return WidgetDevice.MATCH_CLASS;
 else
 return Device.MATCH_NONE;
 }
 public synchronized String attach(ServiceReference r){
 new SerialWidget(context, r);
 }
}

The Driver Selector Service Device Access Specification Version 1.1

Page 76 OSGi Compendium Release 6

103.6 The Driver Selector Service
The purpose of the Driver Selector service is to customize the selection of the best Driver service
from a set of suitable Driver bundles. The device manager has a default algorithm as described in
The Device Attachment Algorithm on page 77. When this algorithm is not sufficient and requires
customizing by the operator, a bundle providing a Driver Selector service can be installed in the
Framework. This service must be used by the device manager as the final arbiter when selecting the
best match for a Device service.

The Driver Selector service is a singleton; only one such service is recognized by the device man-
ager. The Framework method BundleContext.getServiceReference must be used to obtain a Dri-
ver Selector service. In the erroneous case that multiple Driver Selector services are registered, the
service.ranking property will thus define which service is actually used.

A device manager implementation must invoke the method select(ServiceReference,Match[]) .
This method receives a Service Reference to the Device service and an array of Match objects. Each
Match object contains a link to the ServiceReference object of a Driver service and the result of the
match value returned from a previous call to Driver.match . The Driver Selector service should in-
spect the array of Match objects and use some means to decide which Driver service is best suited.
The index of the best match should be returned. If none of the Match objects describe a possible Dri-
ver service, the implementation must return DriverSelector.SELECT_NONE (-1) .

103.7 Device Manager
Device Access is controlled by the device manager in the background. The device manager is respon-
sible for initiating all actions in response to the registration, modification, and unregistration of
Device services and Driver services, using Driver Locator services and a Driver Selector service as
helpers.

The device manager detects the registration of Device services and coordinates their attachment
with a suitable Driver service. Potential Driver services do not have to be active in the Framework to
be eligible. The device manager must use Driver Locator services to find bundles that might be suit-
able for the detected Device service and that are not currently installed. This selection is done via a
DRIVER_ID property that is unique for each Driver service.

The device manager must install and start these bundles with the help of a Driver Locator service.
This activity must result in the registration of one or more Driver services. All available Driver ser-
vices, installed by the device manager and also others, then participate in a bidding process. The Dri-
ver service can inspect the Device service through its ServiceReference object to find out how well
this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it is used to decide which
of the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with tie breaks defined on the
service.ranking and service. id properties. The selected Driver service is then asked to attach the De-
vice service.

If no Driver service is suitable, the Device service remains idle. When new Driver bundles are in-
stalled, these idle Device services must be reattached.

The device manager must reattach a Device service if, at a later time, a Driver service is unregistered
due to an uninstallation or update. At the same time, however, it should prevent superfluous and
non-optimal reattachments. The device manager should also garbage-collect driver bundles it in-
stalled which are no longer used.

Device Access Specification Version 1.1 Device Manager

OSGi Compendium Release 6 Page 77

The device manager is a singleton. Only one device manager may exist, and it must have no public
interface.

103.7.1 Device Manager Startup
To prevent race conditions during Framework startup, the device manager must monitor the state
of Device services and Driver services immediately when it is started. The device manager must not,
however, begin attaching Device services until the Framework has been fully started, to prevent su-
perfluous or non-optimal attachments.

The Framework has completed starting when the FrameworkEvent.STARTED event has been pub-
lished. Publication of that event indicates that Framework has finished all its initialization and
all bundles are started. If the device manager is started after the Framework has been initialized, it
should detect the state of the Framework by examining the state of the system bundle.

103.7.2 The Device Attachment Algorithm
A key responsibility of the device manager is to attach refining drivers to idle devices. The following
diagram illustrates the device attachment algorithm.

Device Manager Device Access Specification Version 1.1

Page 78 OSGi Compendium Release 6

Figure 103.10 Device Attachment Algorithm

Idle Device

For each DriverLocator

findDriversA

For each DRIVER ID

Try to loadBFor each Driver not excluded

C match

Nothing

Selector

Try selector
D

Nothing attachedAttach completed

Default selection

Attach

Cleanup

Try to load

Add the driver to
the exclusion list

Device

noDriverFound

Cleanup

E

F

K

I

K

G

H

Device Access Specification Version 1.1 Device Manager

OSGi Compendium Release 6 Page 79

103.7.3 Legend

Table 103.3 Driver attachment algorithm

Step Description
A DriverLocator.f indDrivers is called for each registered Driver Locator service, passing

the properties of the newly detected Device service. Each method call returns zero or
more DRIVER_ID values (identifiers of particular driver bundles).

If the f indDrivers method throws an exception, it is ignored, and processing contin-
ues with the next Driver Locator service. See Optimizations on page 80 for further
guidance on handling exceptions.

B For each found DRIVER_ID that does not correspond to an already registered Driver
service, the device manager calls DriverLocator. loadDriver to return an InputStream
containing the driver bundle. Each call to loadDriver is directed to one of the Driver
Locator services that mentioned the DRIVER_ID in step A. If the loadDriver method
fails, the other Driver Locator objects are tried. If they all fail, the driver bundle is ig-
nored.

If this method succeeds, the device manager installs and starts the driver bundle. Dri-
ver bundles must register their Driver services synchronously during bundle activa-
tion.

C For each Driver service, except those on the exclusion list, call its Driver.match
method, passing the ServiceReference object to the Device service.

Collect all successful matches - that is, those whose return values are greater than
Device.MATCH_NONE - in a list of active matches. A match call that throws an ex-
ception is considered unsuccessful and is not added to the list.

D If there is a Driver Selector service, the device manager calls the
DriverSelector.select method, passing the array of active Match objects.

If the Driver Selector service returns the index of one of the Match objects from the
array, its associated Driver service is selected for attaching the Device service. If the
Driver Selector service returns DriverSelector.SELECT_NONE , no Driver service
must be considered for attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid result, the de-
fault selection algorithm is used.

Only one Driver Selector service is used, even if there is more than one registered in
the Framework. See The Driver Selector Service on page 76.

E The winner is the one with the highest match value. Tie breakers are respectively:

• Highest service.ranking property.
• Lowest service. id property.

F The selected Driver service's attach method is called. If the attach method returns
nul l , the Device service has been successfully attached. If the attach method returns
a Str ing object, it is interpreted as a referral to another Driver service and processing
continues at G. See Referring Drivers on page 70.

If an exception is thrown, the Driver service has failed, and the algorithm proceeds
to try another Driver service after excluding this one from further consideration at
Step H.

Device Manager Device Access Specification Version 1.1

Page 80 OSGi Compendium Release 6

Step Description
G The device manager attempts to load the referred driver bundle in a manner simi-

lar to Step B, except that it is unknown which Driver Locator service to use. There-
fore, the loadDriver method must be called on each Driver Locator service until one
succeeds (or they all fail). If one succeeds, the device manager installs and starts the
driver bundle. The driver bundle must register a Driver service during its activation
which must be added to the list of Driver services in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new referral
adds an entry to the exclusion list, which in turn disqualifies another driver from
further matching, the algorithm cannot loop indefinitely. This list is maintained for
the duration of this algorithm. The next time a new Device service is processed, the
exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is checked to
see whether it implements the Device interface. If so, the noDriverFound method is
called. Note that this action may cause the Device service to unregister and possibly
a new Device service (or services) to be registered in its place. Each new Device ser-
vice registration must restart the algorithm from the beginning.

K Whether an attachment was successful or not, the algorithm may have installed a
number of driver bundles. The device manager should remove any idle driver bun-
dles that it installed.

103.7.4 Optimizations
Optimizations are explicitly allowed and even recommended for an implementation of a device
manager. Implementations may use the following assumptions:

• Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results.

• The device manager may cache match values and referrals. Therefore, optimizations in the de-
vice attachment algorithm based on this assumption are allowed.

• The device manager may delay loading a driver bundle until it is needed. For example, a delay
could occur when that DRIVER_ID 's match values are cached.

• The results of calls to DriverLocator and DriverSelector methods are not required to be determin-
istic, and must not be cached by the device manager.

• Thrown exceptions must not be cached. Exceptions are considered transient failures, and the de-
vice manager must always retry a method call even if it has thrown an exception on a previous
invocation with the same arguments.

103.7.5 Driver Bundle Reclamation
The device manager may remove driver bundles it has installed at any time, provided that all the
Driver services in that bundle are idle. This recommended practice prevents unused driver bundles
from accumulating over time. Removing driver bundles too soon, however, may cause unnecessary
installs and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified matching algorithm is not
guaranteed to terminate unless the device manager takes reclamation into account.

For example, assume that a new Device service triggers the attachment algorithm. A driver bundle
recommended by a Driver Locator service is loaded. It does not match, so the Device service remains
idle. The device manager is eager to reclaim space, and unloads the driver bundle. The disappear-
ance of the Driver service causes the device manager to reattach idle devices. Because it has not kept
a record of its previous activities, it tries to reattach the same device, which closes the loop.

On systems where the device manager implements driver bundle reclamation, all refining drivers
should be loaded through Driver Locator services. This recommendation is intended to prevent the

Device Access Specification Version 1.1 Security

OSGi Compendium Release 6 Page 81

device manager from erroneously uninstalling pre-installed driver bundles that cannot later be rein-
stalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on previously stored infor-
mation to determine which driver bundles were pre-installed and which were dynamically installed
and thus are eligible for removal. The device manager may persistently store cachable information
for optimization, but must be able to cold start without any persistent information and still be able
to manage an existing connection state, satisfying all of the requirements in this specification.

103.7.6 Handling Driver Bundle Updates
It is not straightforward to determine whether a driver bundle is being updated when the UN-
REGISTER event for a Driver service is received. In order to facilitate this distinction, the device man-
ager should wait for a period of time after the unregistration for one of the following events to oc-
cur:

• A BundleEvent.UNINSTALLED event for the driver bundle.
• A ServiceEvent.REGISTERED event for another Driver service registered by the driver bundle.

If the driver bundle is uninstalled, or if neither of the above events are received within the allotted
time period, the driver is assumed to be inactive. The appropriate waiting period is implementa-
tion-dependent and will vary for different installations. As a general rule, this period should be long
enough to allow a driver to be stopped, updated, and restarted under normal conditions, and short
enough not to cause unnecessary delays in reattaching devices. The actual time should be config-
urable.

103.7.7 Simultaneous Device Service and Driver Service Registration
The device attachment algorithm may discover new driver bundles that were installed outside its
direct control, which requires executing the device attachment algorithm recursively. However, in
this case, the appearance of the new driver bundles should be queued until completion of the cur-
rent device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment in time.

The following example sequence illustrates this process when a Driver service is registered:

• Collect the set of all idle devices.
• Apply the device attachment algorithm to each device in the set.
• If no Driver services were registered during the execution of the device attachment algorithm,

processing terminates.
• Otherwise, restart this process.

103.8 Security
The device manager is the only privileged bundle in the Device Access specification and requires
the org.osgi .f ramework.AdminPermission with the LIFECYCLE action to install and uninstall driver
bundles.

The device manager itself should be free from any knowledge of policies and should not actively set
bundle permissions. Rather, if permissions must be set, it is up to the Management Agent to listen to
synchronous bundle events and set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because they deliver the content of
a bundle to the privileged device manager and could potentially insert a Trojan horse into the envi-
ronment. Therefore, Driver Locator bundles need the ServicePermission[DriverLocator, REGISTER]

org.osgi.service.device Device Access Specification Version 1.1

Page 82 OSGi Compendium Release 6

to register Driver Locator services, and the operator should exercise prudence in assigning this Ser-
vicePermission .

Bundles with Driver Selector services only require ServicePermission[DriverSelector, REGISTER]
to register the DriverSelector service. The Driver Selector service can play a crucial role in the selec-
tion of a suitable Driver service, but it has no means to define a specific bundle itself.

103.9 org.osgi.service.device

Device Access Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.device; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.device; vers ion="[1.1 ,1 .2)"

103.9.1 Summary

• Constants - This interface defines standard names for property keys associated with Device and
Driver services.

• Device - Interface for identifying device services.
• Driver - A Driver service object must be registered by each Driver bundle wishing to attach to

Device services provided by other drivers.
• DriverLocator - A Driver Locator service can find and load device driver bundles given a proper-

ty set.
• DriverSelector - When the device manager detects a new Device service, it calls all registered

Driver services to determine if anyone matches the Device service.
• Match - Instances of Match are used in the DriverSelector.select(ServiceReference, Match[])

method to identify Driver services matching a Device service.

103.9.2 public interface Constants
This interface defines standard names for property keys associated with Device and Driver services.

The values associated with these keys are of type java. lang.Str ing , unless otherwise stated.

See Also Device, Driver

Since 1.1

No Implement Consumers of this API must not implement this interface

103.9.2.1 public static final String DEVICE_CATEGORY = "DEVICE_CATEGORY"

Property (named "DEVICE_CATEGORY") containing a human readable description of the device cat-
egories implemented by a device. This property is of type Str ing[]

Services registered with this property will be treated as devices and discovered by the device manag-
er

103.9.2.2 public static final String DEVICE_DESCRIPTION = "DEVICE_DESCRIPTION"

Property (named "DEVICE_DESCRIPTION") containing a human readable string describing the ac-
tual hardware device.

Device Access Specification Version 1.1 org.osgi.service.device

OSGi Compendium Release 6 Page 83

103.9.2.3 public static final String DEVICE_SERIAL = "DEVICE_SERIAL"

Property (named "DEVICE_SERIAL") specifying a device's serial number.

103.9.2.4 public static final String DRIVER_ID = "DRIVER_ID"

Property (named "DRIVER_ID") identifying a driver.

A DRIVER_ID should start with the reversed domain name of the company that implemented the
driver (e.g., com.acme), and must meet the following requirements:

• It must be independent of the location from where it is obtained.
• It must be independent of the DriverLocator service that downloaded it.
• It must be unique.
• It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered with it.

103.9.3 public interface Device
Interface for identifying device services.

A service must implement this interface or use the Constants.DEVICE_CATEGORY registration
property to indicate that it is a device. Any services implementing this interface or registered with
the DEVICE_CATEGORY property will be discovered by the device manager.

Device services implementing this interface give the device manager the opportunity to indicate to
the device that no drivers were found that could (further) refine it. In this case, the device manager
calls the noDriverFound() method on the Device object.

Specialized device implementations will extend this interface by adding methods appropriate to
their device category to it.

See Also Driver

Concurrency Thread-safe

103.9.3.1 public static final int MATCH_NONE = 0

Return value from Driver.match(ServiceReference) indicating that the driver cannot refine the de-
vice presented to it by the device manager. The value is zero.

103.9.3.2 public void noDriverFound()

□ Indicates to this Device object that the device manager has failed to attach any drivers to it.

If this Device object can be configured differently, the driver that registered this Device object may
unregister it and register a different Device service instead.

103.9.4 public interface Driver
A Driver service object must be registered by each Driver bundle wishing to attach to Device ser-
vices provided by other drivers. For each newly discovered Device object, the device manager enters
a bidding phase. The Driver object whose match(ServiceReference) method bids the highest for a
particular Device object will be instructed by the device manager to attach to the Device object.

See Also Device, DriverLocator

Concurrency Thread-safe

103.9.4.1 public String attach(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to attach to

□ Attaches this Driver service to the Device service represented by the given ServiceReference object.

org.osgi.service.device Device Access Specification Version 1.1

Page 84 OSGi Compendium Release 6

A return value of nul l indicates that this Driver service has successfully attached to the given Device
service. If this Driver service is unable to attach to the given Device service, but knows of a more
suitable Driver service, it must return the DRIVER_ID of that Driver service. This allows for the im-
plementation of referring drivers whose only purpose is to refer to other drivers capable of handling
a given Device service.

After having attached to the Device service, this driver may register the underlying device as a new
service exposing driver-specific functionality.

This method is called by the device manager.

Returns nul l if this Driver service has successfully attached to the given Device service, or the DRIVER_ID of a
more suitable driver

Throws Exception– if the driver cannot attach to the given device and does not know of a more suitable dri-
ver

103.9.4.2 public int match(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to match

□ Checks whether this Driver service can be attached to the Device service. The Device service is rep-
resented by the given ServiceReference and returns a value indicating how well this driver can sup-
port the given Device service, or Device.MATCH_NONE if it cannot support the given Device ser-
vice at all.

The return value must be one of the possible match values defined in the device category definition
for the given Device service, or Device.MATCH_NONE if the category of the Device service is not rec-
ognized.

In order to make its decision, this Driver service may examine the properties associated with the
given Device service, or may get the referenced service object (representing the actual physical de-
vice) to talk to it, as long as it ungets the service and returns the physical device to a normal state be-
fore this method returns.

A Driver service must always return the same match code whenever it is presented with the same
Device service.

The match function is called by the device manager during the matching process.

Returns value indicating how well this driver can support the given Device service, or
Device.MATCH_NONE if it cannot support the Device service at all

Throws Exception– if this Driver service cannot examine the Device service

103.9.5 public interface DriverLocator
A Driver Locator service can find and load device driver bundles given a property set. Each driver is
represented by a unique DRIVER_ID .

Driver Locator services provide the mechanism for dynamically downloading new device driver
bundles into an OSGi environment. They are supplied by providers and encapsulate all provider-
specific details related to the location and acquisition of driver bundles.

See Also Driver

Concurrency Thread-safe

103.9.5.1 public String[] findDrivers(Dictionary props)

props the properties of the device for which a driver is sought

□ Returns an array of DRIVER_ID strings of drivers capable of attaching to a device with the given
properties.

The property keys in the specified Dictionary objects are case-insensitive.

Device Access Specification Version 1.1 org.osgi.service.device

OSGi Compendium Release 6 Page 85

Returns array of driver DRIVER_ID strings of drivers capable of attaching to a Device service with the given
properties, or nul l if this Driver Locator service does not know of any such drivers

103.9.5.2 public InputStream loadDriver(String id) throws IOException

id the DRIVER_ID of the driver that needs to be installed.

□ Get an InputStream from which the driver bundle providing a driver with the giving DRIVER_ID can
be installed.

Returns An InputStream object from which the driver bundle can be installed or nul l if the driver with the
given ID cannot be located

Throws IOException– the input stream for the bundle cannot be created

103.9.6 public interface DriverSelector
When the device manager detects a new Device service, it calls all registered Driver services to de-
termine if anyone matches the Device service. If at least one Driver service matches, the device man-
ager must choose one. If there is a Driver Selector service registered with the Framework, the device
manager will ask it to make the selection. If there is no Driver Selector service, or if it returns an in-
valid result, or throws an Exception , the device manager uses the default selection strategy.

Since 1.1

Concurrency Thread-safe

103.9.6.1 public static final int SELECT_NONE = -1

Return value from DriverSelector.select , if no Driver service should be attached to the Device ser-
vice. The value is -1.

103.9.6.2 public int select(ServiceReference reference,Match[] matches)

reference the ServiceReference object of the Device service.

matches the array of all non-zero matches.

□ Select one of the matching Driver services. The device manager calls this method if there is at
least one driver bidding for a device. Only Driver services that have responded with nonzero (not
Device.MATCH_NONE) match values will be included in the list.

Returns index into the array of Match objects, or SELECT_NONE if no Driver service should be attached

103.9.7 public interface Match
Instances of Match are used in the DriverSelector.select(ServiceReference, Match[]) method to identi-
fy Driver services matching a Device service.

See Also DriverSelector

Since 1.1

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface

103.9.7.1 public ServiceReference getDriver()

□ Return the reference to a Driver service.

Returns ServiceReference object to a Driver service.

103.9.7.2 public int getMatchValue()

□ Return the match value of this object.

Returns the match value returned by this Driver service.

References Device Access Specification Version 1.1

Page 86 OSGi Compendium Release 6

103.10 References

[1] Java Communications API
http://www.oracle.com/technetwork/java/index-jsp-141752.html

[2] USB Specification
http://www.usb.org

[3] Universal Plug and Play
http://www.upnp.org

[4] Jini, Service Discovery and Usage
http://en.wikipedia.org/wiki/Jini

Configuration Admin Service Specification Version 1.5 Introduction

OSGi Compendium Release 6 Page 87

104 Configuration Admin Service
Specification

Version 1.5

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi framework.
It allows an Operator to configure deployed bundles. Configuring is the process of defining the con-
figuration data for bundles and assuring that those bundles receive that data when they are active in
the OSGi framework.

Figure 104.1 Configuration Admin Service Overview

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration
data

Configuration
Admin

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service spec-
ification:

• Local Configuration - The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection - The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy - The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented - The Configuration Admin service must support the creation and deletion of in-
stances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices - The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

Introduction Configuration Admin Service Specification Version 1.5

Page 88 OSGi Compendium Release 6

• Remote versus Local Management - The Configuration Admin service must allow for a remotely
managed OSGi framework, and must not assume that con-figuration information is stored local-
ly. Nor should it assume that the Configuration Admin service is always done remotely. Both im-
plementation approaches should be viable.

• Availability - The OSGi environment is a dynamic environment that must run continuously
(24/7/365). Configuration updates must happen dynamically and should not require restarting of
the system or bundles.

• Immediate Response - Changes in configuration should be reflected immediately.
• Execution Environment - The Configuration Admin service will not require more than an environ-

ment that fulfills the minimal execution requirements.
• Communications - The Configuration Admin service should not assume "always-on" connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability - The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs - Bundles in need of configuration data should have a simple way of obtain-
ing it. Most bundles have this need and the code to accept this data. Additionally, updates should
be simple from the perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle implementing the Config-
uration Admin service and in favor of bundles that need configuration information. The reason
for this choice is that normal bundles will outnumber Configuration Admin bundles.

• Regions - It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

• Shared Information - It should be possible to share configuration data between bundles.

104.1.2 Entities

• Configuration information - The information needed by a bundle before it can provide its intended
functionality.

• Configuration dictionary - The configuration information when it is passed to the target service. It
consists of a Dictionary object with a number of properties and identifiers.

• Configuring Bundle - A bundle that modifies the configuration information through the Config-
uration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target - The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

• Configuration Admin Service - This service is responsible for supplying configuration target bun-
dles with their configuration information. It maintains a database with configuration informa-
tion, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

• Managed Service - A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

• Managed Service Factory - A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

Configuration Admin Service Specification Version 1.5 Configuration Targets

OSGi Compendium Release 6 Page 89

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services - Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dictio-
nary, which is passed to the Configuration Target.

Figure 104.2 Overall Service Diagram

Configuration
Admin Impl.

Configuration
Admin

Configuration
Listener

Managed
Service

Managed
Service Factory

Configuration
Plugin

104.1.3 Synopsis
This specification is based on the concept of a Configuration Admin service that manages the con-
figuration of an OSGi framework. It maintains a database of Configurat ion objects, locally or re-
motely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

• Managed Service - A service registered with this interface receives its configuration dictionary from
the database or receives nul l when no such configuration exists.

• Managed Service Factory - Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the Man-
agedService and ManagedServiceFactory classes. Both receive configuration information from the
Configuration Admin service and are treated similarly in most respects. Therefore, this specification
refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-
one relationship always exists between the configuration dictionary and the configurable entity in
the Managed Service. There can be multiple Managed Service targets registered with the same PID
but a Managed Service can only configure a single entity in each given Managed Service.

The Persistent Identity Configuration Admin Service Specification Version 1.5

Page 90 OSGi Compendium Release 6

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configurat ion object. Therefore, a Managed Service Factory
can have multiple associated Configurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

Framework Service
Registry ManagedService ManagedServiceFactory

Management layer

Service layer

A Configuration target updates the target when the underlying Configuration object is created, up-
dated, or deleted. However, it is not called back when the Configuration Admin service is shutdown
or the service is ungotten.

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when
its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it regis-
ters, depending on the current configuration. The Managed Service Factory is informed of config-
uration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID)
as defined in the Framework's service layer. Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is defined in the Frame-
work in org.osgi .f ramework.Constants.SERVICE_PID .

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are
to be shared between Bundles then the location of the Configuration must be a multi-location, see
Location Binding on page 93.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted
with a PID. For example, when installing an alarm system, the user needs to identify the different
components to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The fol-
lowing sections define some schemes for common cases. These schemes are not required, but bun-
dle developers are urged to use them to achieve consistency.

Configuration Admin Service Specification Version 1.5 The Persistent Identity

OSGi Compendium Release 6 Page 91

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a full stop ('.' \u002E) are re-
served for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description
USB USB.0123-0002-9909873 idVendor (hex 4)

idProduct (hex 4)

iSerialNumber (decimal)

Universal Serial Bus. Use the standard
device descriptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with : separators IEEE 802 MAC address (Token Ring,

Ethernet,...)
ONE ONE.06-00000021E461 Family (hex 2) and serial number in-

cluding CRC (hex 6)
1-wire bus of Dallas Semiconductor

COM COM.krups-brewer-12323 serial number or type name of device Serial ports

104.3.2 Targeted PIDs
PIDs are defined as primary keys for the configuration object; any target that uses the PID in its ser-
vice registration (and has the proper permissions if security is on) will receive the configuration as-
sociated with it, regardless of the bundle that registered the target service. Though in general the
PID is designed to ignore the bundle, there are a number of cases where the bundle becomes rele-
vant. The most typical case is where a bundle is available in different versions. Each version will re-
quest the same PID and will get therefore configured identically.

Targeted PIDs are specially formatted PIDs that are interpreted by the Configuration Admin service.
Targeted PIDs work both as a normal Managed Service PID and as a Managed Service Factory PID. In
the case of factories, the targeted PID is the Factory PID since the other PID is chosen by CM for each
instance.

The target PID scopes the applicability of the PID to a limited set of target bundles. The syntax of a
target pid is:

target-pid ::= PID
 ('|' symbolic-name ('|' version ('|' location)?)?)?

Targets never register with a target PID, target PIDs should only be used when creating, getting, or
deleting a Configuration through the Configuration Admin service. The target PID is still the prima-
ry key of the Configuration and is thus in itself a PID. The distinction is only made when the Config-
uration Admin must update a target service. Instead of using the non-target PID as the primary key
it must first search if there exists a target PID in the Configuration store that matches the requested
target PID.

The Persistent Identity Configuration Admin Service Specification Version 1.5

Page 92 OSGi Compendium Release 6

When a target registers and needs to be updated the Configuration Admin must first find the Con-
figuration with the best matching PID. It must logically take the requested PID, append it with the
bundle symbolic name, the bundle version, and the bundle location. The version must be formatted
canonically, that is, according to the toStr ing() method of the Version class. The rules for best match-
ing are then as follows:

Look for a Configuration, in the given order, with a key of:

 <pid>|<bsn>|<version>|<location>
 <pid>|<bsn>|<version>
 <pid>|<bsn>
 <pid>

For example:

 com.example.web.WebConf|com.acme.example|3.2.0|http://www.xyz.com/acme.jar
 com.example.web.WebConf|com.acme.example|3.2.0
 com.example.web.WebConf|com.acme.example
 com.example.web.WebConf

If a registered target service has a PID that contains a vertical line (' | ' \u007c) | then the value must
be taken as is and must not be interpreted as a targeted PID.

The service.pid configuration property for a targeted PID configuration must always be set
to the targeted PID. That is, if the PID is com.example.web.WebConf and the targeted PID
com.example.web.WebConf|com.acme.example|3.2.0 then the property in the Configuration dic-
tionary must be the targeted PID.

If a Configuration with a targeted PID is deleted or a Configuration with a new targeted PID is added
then all targets that would be stale must be reevaluated against the new situation and updated ac-
cordingly if they are no longer bound against the best matching target PID.

104.3.3 Extenders and Targeted PIDs
Extenders like Declarative Services use Configurations but bypass the general Managed Service or
Managed Service Factory method. It is the responsibility of these extenders to access the Configura-
tions using the targeted PIDs.

Since getting a Configuration tends to create that Configuration it is necessary for these extenders
to use the l istConfigurat ions(Str ing) method to find out if a more targeted Configuration exists.
There are many ways the extender can find the most targeted PID. For example, the following code
gets the most targeted PID for a given bundle.

String mostTargeted(String key, String pid, Bundle bundle) throws Exception {
 String bsn = bundle.getSymbolicName();
 Version version = bundle.getVersion();
 String location = bundle.getLocation();
 String f = String.format("(|(%1$s=%2$s)(%1$s=%2$s|%3$s)" +
 "(%1$s=%2$s|%3$s|%4$s)(%1$s=%2$s|%3$s|%4$s|%5$s))",
 key, pid, bsn, version, location);

 Configuration[] configurations = cm.listConfigurations(f);
 if (configurations == null)
 return null;

 String largest = null;
 for (Configuration c : configurations) {
 String s = (String) c.getProperties().get(key);
 if ((largest == null) || (largest.length() < s.length()))

Configuration Admin Service Specification Version 1.5 The Configuration Object

OSGi Compendium Release 6 Page 93

 largest = s;
 }
 return largest;
}

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that con-
figure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configura-
tion target service with a PID service property. See The Persistent Identity on page 90 for more in-
formation about PIDs.

During registration, the Configuration Admin service must detect these configuration target ser-
vices and hand over their configuration dictionary via a callback. If this configuration dictionary is
subsequently modified, the modified dictionary is handed over to the configuration target with the
same callback.

The Configurat ion object is primarily a set of properties that can be updated by a Management
Agent, user interfaces on the OSGi framework, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the Man-
agedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same
as the PID given to a Managed Service.

104.4.1 Location Binding
When a Configurat ion object is created with either getConfigurat ion(Str ing) or
createFactoryConfigurat ion(Str ing) , it becomes bound to the location of the calling bundle. This lo-
cation is obtained with the getBundleLocation() method.

Location binding is a security feature that assures that only management bundles can modify con-
figuration data, and other bundles can only modify their own configuration data. A Security Excep-
tion is thrown if a bundle does not have Configurat ionPermission[location, CONFIGURE] .

The two argument versions of getConfigurat ion(Str ing,Str ing) and
createFactoryConfigurat ion(Str ing,Str ing) take a location Str ing as their second argument. These
methods require the correct permission, and they create Configurat ion objects bound to the speci-
fied location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target's Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= '?' symbolic-name?

For example

?com.acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

• Single-Location - If c. locat ion is not a multi-location then a Bundle only has visibility if the
Bundle's location exactly matches c. locat ion . In this case there is never a security check.

• Multi-Location - If c. locat ion is a multi-location (that is, starts with a question mark):

The Configuration Object Configuration Admin Service Specification Version 1.5

Page 94 OSGi Compendium Release 6

• Security Off - The Bundle always has visibility
• Security On - The target's Bundle must have Configurat ionPermission[c . locat ion, TARGET]

as defined by the Bundle's hasPermission method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ? . The TARGET action is only ap-
plicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a mul-
ti-location (starting with a ?).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration's location changes then it must immediately
be deleted from the perspective of that target. That is, the target must see a deletion (Managed Ser-
vice Factory) or an update with nul l (Managed Service). If a configuration target gains visibility then
the target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

104.4.2 Dynamic Binding
Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bun-
dles to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must
at least have Configurat ionPermission[?, CONFIGURE] when security is on, it is also possible to
use Configurat ionPermission[?*, CONFIGURE] to not limit the management agent. See Regions on
page 105 for some examples of using the locations in isolation scenarios.

A nul l location parameter can be used to create Configurat ion objects that are not yet bound. In
this case, the Configuration becomes bound to a specific location the first time that it is com-
pared to a Bundle's location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configurat ion object's the bundle location
must be set to nul l again so it can be bound again to another bundle.

104.4.3 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of Primary Property Types specified in OSGi Core Release 6 Fil-
ter Syntax.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

property-name ::= public | private
public ::= symbolic-name // See General Syntax in Core Framework
private ::= '.' symbolic-name

Configuration Admin Service Specification Version 1.5 The Configuration Object

OSGi Compendium Release 6 Page 95

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbol ic-name production uses a very minimal character set.

Bundles must not use nested lists or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See Metatype Service Specification on
page 131.

Property values that are collections may have an ordering that must be preserved when persisting
the configuration so that later access to the property value will see the preserved ordering of the col-
lection.

104.4.4 Property Propagation
A configuration target should copy the public configuration properties (properties whose name
does not start with a '.' or \u002E) of the Dictionary object argument in updated(Dict ionary) into the
service properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service reg-
istry more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration prop-
erties.

104.4.5 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the config-
uration dictionary. If these properties are also set by a configuring bundle or a plug-in, they must
always be overridden before they are given to the target service, see Configuration Plugin on page
108. Therefore, the receiving bundle or plug-in can assume that the following properties are de-
fined by the Configuration Admin service and not by the configuring bundle:

• service.pid - Set to the PID of the associated Configurat ion object. This is the full the targeted PID
if a targeted PID is used, see Targeted PIDs on page 91.

• service.factoryPid - Only set for a Managed Service Factory. It is then set to the PID of the associ-
ated Managed Service Factory. This is the full the targeted PID if a targeted PID is used.

• service.bundleLocation - Set to the location of the Configurat ion object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the get-
Propert ies method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi .f ramework.Constants and the Con-
figurat ionAdmin interface. These service properties are all of type Str ing .

104.4.6 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configurat ion object must implement the equals and hashCode methods in such a way
that two Configurat ion objects are equal when their PID is equal.

Managed Service Configuration Admin Service Specification Version 1.5

Page 96 OSGi Compendium Release 6

104.5 Managed Service
A Managed Service is used by a bundle that needs one or more configuration dictionaries. It there-
fore registers the Managed Service with one or more PIDs and is thus associated with one Configu-
rat ion object in the Configuration Admin service for each registered PID. A bundle can register any
number of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton - A single entity in the bundle that needs to be configured.
• Externally Detected Devices - Each device that is detected causes a registration of an associated

ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

A Managed Service may be registered with more than one PID and therefore be associated with mul-
tiple Configuration objects, one for each PID. Using multiple PIDs for a Managed Service is not rec-
ommended. For example, when a configuration is deleted for a Managed Service there is no way to
identify which PID is associated with the deleted configuration.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local config-
uration information. A Printer service needs to be configured for its local role: location, access list,
and so on.

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the config-
uration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive ap-
propriate configuration information.

Configuration Admin Service Specification Version 1.5 Managed Service

OSGi Compendium Release 6 Page 97

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally im-
plements the MetaTypeProvider interface to provide information about the property types. See Meta
Typing on page 110.

When this registration is detected by the Configuration Admin service, the following steps must oc-
cur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion ob-
ject for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dict ionary) with a
nul l parameter.

• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible according to the prior rules. For this rea-
son, a Managed Service must always get a callback when it registers and the Configuration Ad-
min service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 93.

If the Managed Service is registered with more than one PID and more than one PID has no configu-
ration information available, then updated(Dict ionary) will be called multiple times with a nul l pa-
rameter.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initial-
ization in a synchronized method without interference from the Configuration Admin service call-
back. Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Figure 104.4 Managed Service Configuration Action Diagram

Client Bundle Framework

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread

Configuration
Admin

The updated method may throw a Configurat ionException . This object must describe the problem
and what property caused the exception.

Managed Service Configuration Admin Service Specification Version 1.5

Page 98 OSGi Compendium Release 6

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry
for a short period before they are replaced by the properties of the actual configuration dictionary.
Care should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use
of a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Figure 104.5 PIDs and External Associations

Configuration
Admin Impl

16.1

com.
acme

name=Erica
size=8
name=Elmer
size=42

database pid=com.acme

4.102 name=Christer
size=2

Managed Service

PID configuration

pid=4.102

no associated PID registered

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin
service will retrieve the properties name=Elmer and size=42 from its database. The properties are
stored in a Dictionary object and then given to the Managed Service with the updated(Dict ionary)
method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the net-
work name on which it should register.

class SampleManagedService implements ManagedService{
 Dictionary properties;
 ServiceRegistration registration;
 Console console;

 public void start(
 BundleContext context) throws Exception {
 properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,
 "com.acme.console");

 registration = context.registerService(

Configuration Admin Service Specification Version 1.5 Managed Service Factory

OSGi Compendium Release 6 Page 99

 ManagedService.class.getName(),
 this,
 properties
);
 }

 public synchronized void updated(Dictionary np) {
 if (np != null) {
 properties = np;
 properties.put(
 Constants.SERVICE_PID, "com.acme.console");
 }

 if (console == null)
 console = new Console();

 int port = ((Integer)properties.get("port"))
 .intValue();

 String network = (String) properties.get("network");
 console.setPort(port, network);
 registration.setProperties(properties);
 }
 ... further methods
}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a nul l argument on a thread that is different from that on
which the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated and visible Configurat ion object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instan-
tiate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined
by a bundle that registers a Managed Service Factory.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external enti-
ty associated with the configuration information but can potentially be instantiated multiple times.

Managed Service Factory Configuration Admin Service Specification Version 1.5

Page 100 OSGi Compendium Release 6

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has - a function likely to be re-
quired for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration in-
formation for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Con-
figuration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to partici-
pate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Man-
aged Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory
PID, which is the PID of the associated Managed Service Factory. It is used to group all Managed Ser-
vice Factory configuration dictionaries together.

When a Configurat ion object for a Managed Service Factory is creat-
ed (Configurat ionAdmin.createFactoryConfigurat ion(Str ing,Str ing) or
createFactoryConfigurat ion(Str ing)), a new unique PID is created for this object by the Configura-
tion Admin service. The scheme used for this PID is defined by the Configuration Admin service and
is unrelated to the factory PID, which is chosen by the registering bundle.

When the Configuration Admin service detects the registration of a Managed Service Factory, it
must find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first ar-

Configuration Admin Service Specification Version 1.5 Managed Service Factory

OSGi Compendium Release 6 Page 101

gument is the PID of the Configurat ion object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Config-
uration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin ser-
vice should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

Client bundle Framework

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration
for a new
instance

get pid

for each found pid

MUST be on another thread

Configuration
Admin

A Managed Service Factory has only one update method: updated(Str ing,Dict ionary) . This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which
case it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(Str ing,Dict ionary) method may throw a Configurat ionException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking or-
der.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(Str ing)
method is called. The argument is the PID for this instance. The implementation of the Managed
Service Factory must remove all information and stop any behavior associated with that PID. If a
service was registered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

Managed Service Factory Configuration Admin Service Specification Version 1.5

Page 102 OSGi Compendium Release 6

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds
three Configurat ion objects for which the factory PID is equal to com.acme.emai l . It must call
updated(Str ing,Dict ionary) for each of these Configurat ion objects on the newly registered Man-
agedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a EMail-
Fetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer (PID=16.2).

• The EMailFetcher objects are registered under the Topic interface so their results can be viewed
by an online display.

If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object be-
cause the Configuration Admin service must guarantee its suitability for this purpose.

Figure 104.7 Managed Service Factory Example

Configuration
Admin

MailFetchFactory
pid=com.acme.email

pid=16.1
name=erica

OSGi Service
Registry

registration
events

pid=16.1
name=erica
pid=16.2
name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service
Factory

factory pid
= com.acme
.email

factory pid
= eric.mf

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can
run simultaneously. This approach is very similar to the example for the Managed Service, but high-
lights the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory{
 Hashtable consoles = new Hashtable();
 BundleContext context;
 public void start(BundleContext context)
 throws Exception {
 this.context = context;
 Hashtable local = new Hashtable();
 local.put(Constants.SERVICE_PID,"com.acme.console");
 context.registerService(
 ManagedServiceFactory.class.getName(),

Configuration Admin Service Specification Version 1.5 Configuration Admin Service

OSGi Compendium Release 6 Page 103

 this,
 local);
 }

 public void updated(String pid, Dictionary config){
 Console console = (Console) consoles.get(pid);
 if (console == null) {
 console = new Console(context);
 consoles.put(pid, console);
 }

 int port = getInt(config, "port", 2011);
 String network = getString(
 config,
 "network",
 null /*all*/
);
 console.setPort(port, network);
 }

 public void deleted(String pid) {
 Console console = (Console) consoles.get(pid);
 if (console != null) {
 consoles.remove(pid);
 console.close();
 }
 }
}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configurat ion objects as-
sociated with specific configuration targets. Configurat ion objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or the bundles configuring
their own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configurat ion objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConfigurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfigurat ion method must atomically create and persistently store an ob-
ject if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) - This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to configure an-
other bundle. Therefore, this management bundle needs the right permission. The first argument

Configuration Admin Service Configuration Admin Service Specification Version 1.5

Page 104 OSGi Compendium Release 6

is the PID and the second argument is the location identifier of the targeted ManagedService ob-
ject.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l be-
cause the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two methods to create a new instance of a Managed Service
Factory:

• createFactoryConfigurat ion(Str ing) - This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the target-
ed ManagedServiceFactory object. This factory PID can be obtained from the returned Configura-
t ion object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to
configure another bundle's ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.

Creating a new factory configuration must not initiate a callback to the Managed Service Factory up-
dated method until the properties are set in the Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(Str ing) . The argu-
ment is a Str ing object with a filter expression. This filter expression has the same syntax as the
Framework Fi l ter class. For example:

(&(size=42)(service.factoryPid=*osgi*))

The Configuration Admin service must only return Configurations that are visible to the calling
bundle, see Location Binding on page 93.

A single Configurat ion object is identified with a PID, and can be obtained with
l istConfigurat ions(Str ing) if it is visible. nul l is returned in both cases when there are no visible
Configurat ion objects.

The PIDs that are filtered on can be targeted PIDs, see Targeted PIDs on page 91.

104.7.4 Updating a Configuration
The process of updating a Configurat ion object is the same for Managed Services and Managed Ser-
vice Factories. First, l istConfigurat ions(Str ing) or getConfigurat ion(Str ing) should be used to get a
Configurat ion object. The properties can be obtained with Configurat ion.getPropert ies . When no
update has occurred since this object was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration Admin ser-
vice must first store the configuration information and then call all configuration targets that
have visibility with the updated method: either the ManagedService.updated(Dict ionary) or
ManagedServiceFactory.updated(Str ing,Dict ionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility. Each update of the Configuration properties must update a counter in
the Configuration object after the data has been persisted but before the target(s) have been updated
and any events are sent out. This counter is available from the getChangeCount() method.

The update method calls in Configurat ion objects are not executed synchronously with the related
target services updated method. The updated method must be called asynchronously. The Configu-

Configuration Admin Service Specification Version 1.5 Configuration Admin Service

OSGi Compendium Release 6 Page 105

ration Admin service, however, must have updated the persistent storage before the update method
returns.

The update method must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

104.7.5 Using Multi-Locations
Sharing configuration between different bundles can be done using multi-locations, see Location
Binding on page 93. A multi-location for a Configuration enables this Configuration to be deliv-
ered to any bundle that has visibility to that configuration. It is also possible that Bundles are inter-
ested in multiple PIDs for one target service, for this reason they can register multiple PIDs for one
service.

For example, a number of bundles require access to the URL of a remote host, associated with the
PID com.acme.host . A manager, aware that this PID is used by different bundles, would need to
specify a location for the Configuration that allows delivery to any bundle. A multi-location, any lo-
cation starting with a question mark achieves this. The part after the question mark has only use if
the system runs with security, it allows the implementation of regions, see Regions on page 105. In
this example a single question mark is used because any Bundle can receive this Configuration. The
manager's code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:

service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;
public void updated(Dictionary d) {
 if (d.get("service.pid").equals("com.acme.host"))
 this.url = new URL(d.get("host"));
 if (d.get("service.pid").equals("com.acme.system"))

}

104.7.6 Regions
In certain cases it is necessary to isolate bundles from each other. This will require that the configu-
ration can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration's location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 93,
and security it is possible to limit access to a Configuration by using a location name. A Bundle can
only receive a Configuration when it has Configurat ionPermission [location name, TARGET] . It is
therefore possible to create region by choosing a region name for the location. A management agent

Configuration Admin Service Configuration Admin Service Specification Version 1.5

Page 106 OSGi Compendium Release 6

then requires Configurat ionPermission [?region-name, CONFIGURE] and a Bundle in the region re-
quires Configurat ionPermission [?region-name, TARGET] .

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configura-
tion. With a multi-location, the Configuration is delivered to any bundle that has the appropriate
permission. Therefore, if regions are used, no manager should have Configurat ionPermission[*,
CONFIGURE] because it would be able to configure anybody. This permission would enable the
manager to set the location to any region or set the location to nul l . All managers must be restrict-
ed to a permission like Configurat ionPermission[?com.acme.region.*,CONFIGURE] . The resource
name for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can
be used to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme . It has the following permission:

Configurat ionPermission[?com.acme.*,CONFIGURE]

The manager requires multi-location updates for com.acme.* (the last full stop is required in this
wildcarding). For the CONFIGURE action the question mark must be specified in the resource name.
The bundles in the region have the permission:

Configurat ionPermission["?com.acme.alpha",TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration c = admin.getConfiguration("com.acme.host", "?com.acme.alpha");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

Another, similar, example with two regions:

• system
• appl icat ion

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system,CONFIGURE]
ConfigurationPermission[?application,CONFIGURE]

A Bundle in the appl icat ion region can have the following permissions:

ConfigurationPermission[?application,TARGET]

This managed bundle therefore has only visibility to configurations in the appl icat ion region.

104.7.7 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the tar-
get service's updated or deleted method is called. Only services that have received the configuration
dictionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configura-
t ion object by a call to ManagedServiceFactory.deleted(Str ing) method. It should then remove the
associated instance. The ManagedServiceFactory.deleted(Str ing) call must be done asynchronously
with respect to Configurat ion.delete() .

Configuration Admin Service Specification Version 1.5 Configuration Events

OSGi Compendium Release 6 Page 107

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default
values, or to unregister a service. This method is called asynchronously from the delete method.

The update method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

104.7.8 Updating a Bundle's Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).
Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service's updated method.

As a rule, to update its own configuration, a bundle's user interface should only update the config-
uration information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation's perspective, appear similar for internal updates, remote
management updates, and initialization.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where Configuration Listener services are registered with the service
registry.

There are two types of Configuration Listener services:

• Configurat ionListener - The default Configuration Listener receives events asynchronously from
the method that initiated the event and on another thread.

• SynchronousConfigurat ionListener - A Synchronous Configuration Listener is guaranteed to be
called on the same thread as the method call that initiated the event.

The Configuration Listener service will receive Configurat ionEvent objects if important changes
take place. The Configuration Admin service must call the configurat ionEvent(Configurat ionEvent)
method with such an event. Configuration Events must be delivered in order for each listener as
they are generated. The way events must be delivered is the same as described in Delivering Events of
OSGi Core Release 6.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the
factory PID is nul l , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configurat ion object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED - The Configurat ion object is deleted.
• CM_UPDATED - The Configurat ion object is updated.
• CM_LOCATION_CHANGED - The location of the Configurat ion object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must be delivered asynchronously by the Configuration Admin implementa-
tion, if present. The topic of a configuration event must be:

org/osgi/service/cm/ConfigurationEvent/<eventtype>

Configuration Plugin Configuration Admin Service Specification Version 1.5

Page 108 OSGi Compendium Release 6

The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

• cm.factoryPid - (Str ing) The factory PID of the associated Configurat ion object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid - (Str ing) The PID of the associated Configurat ion object.
• service - (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id - (Long) The Configuration Admin service's ID.
• service.objectClass - (Str ing[]) The Configuration Admin service's object class (which must in-

clude org.osgi .service.cm.Configurat ionAdmin)
• service.pid - (Str ing) The Configuration Admin service's persistent identity, if set.

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must on-
ly be called when an update takes place while it is registered and there is a valid dictionary. The plu-
gin is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method:
modifyConfigurat ion(ServiceReference,Dict ionary) . This method inspects or modifies configura-
tion data.

All plug-ins in the service registry must be traversed and called before the properties are passed to
the configuration target service. Each Configuration Plugin object gets a chance to inspect the exist-
ing data, look at the target object, which can be a ManagedService object or a ManagedServiceFac-
tory object, and modify the properties of the configuration dictionary. The changes made by a plug-
in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly intend-
ed to provide functions that leverage the Framework service registry. The changes made by the plug-
in should normally not be validated. However, the Configuration Admin must ignore changes to the
automatic properties as described in Automatic Properties on page 95.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the
general requirement that the service should propagate the public properties it receives from the
Configuration Admin service to the service registry.

Configuration Admin Service Specification Version 1.5 Configuration Plugin

OSGi Compendium Release 6 Page 109

Figure 104.8 Order of Configuration Plugin Services

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

modifyConfiguration()update()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value
is the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a Configurat ionPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the list of the target ser-
vice be updated. The bundle which registered the Configuration Plugin service, therefore, wants
to set the service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even ob-
tain the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions
in the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the up-
date method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The Configurat ionPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configura-
tion Admin service must call updated on the target service with the new service.to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

Meta Typing Configuration Admin Service Specification Version 1.5

Page 110 OSGi Compendium Release 6

The Configurat ionPlugin interface must also allow plugins to detect configuration updates to the
service via the callback. This ability allows them to synchronize the configuration updates with
transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appro-
priate Configurat ion object from the Configuration Admin service and call the update() method
(the no parameter version) on this object. This call forces an update with the current configuration
dictionary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description
< 0 The Configuration Plugin service should not modify properties and must

be called before any modifications are made.
>= 0 && <= 1000 The Configuration Plugin service modifies the configuration data. The

calling order should be based on the value of the service.cmRanking prop-
erty.

> 1000 The Configuration Plugin service should not modify data and is called af-
ter all modifications are made.

104.10 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration Ad-
min service.

When a Managed Service or Managed Service Factory is registered, the service object may also im-
plement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification cannot describe nested arrays and lists or arrays/lists of mixed type.

This specification does not address how the metatype is made available to a management system
due to the many open issues regarding remote management.

Configuration Admin Service Specification Version 1.5 Security

OSGi Compendium Release 6 Page 111

104.11 Security

104.11.1 Configuration Permission
Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . For all other situations the Configuration Admin
must verify that the configuring and to be updated bundles have a Configuration Permission that
matches the Configuration's location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actu-
al configuration location using the OSGi Filter sub-string matching. The question mark for multi-lo-
cations is part of the given resource name. The Configure Permission has the following actions:

• CONFIGURE - Can manage matching configurations
• TARGET - Can be updated with a matching configuration

To be able to set the location to nul l requires a Configurat ionPermission[*, CONFIGURE] .

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin's
deny model.

104.11.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]
ConfigurationPermission[... , TARGET]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]
ConfigurationPermission[... , TARGET]

Configuration Plugin:

ServicePermission[..ConfigurationPlugin,REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener,REGISTER]

The Configuration Admin service must have ServicePermission[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService | Man-
agedServiceFactory | Configurat ionPlugin, GET] . No other bundle should be allowed to

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 112 OSGi Compendium Release 6

have GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService | Man-
agedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermission[Configurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Configurat ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also reg-
istered under another interface, it is possible, although inappropriate, for a bundle other than
the Configuration Admin service implementation to call the updated method. Security-aware
bundles can avoid this problem by having their updated methods check that the caller has
Configurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need ServicePermission[Configurat ionAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE]is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires Configurat ionPermission[location,CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

104.11.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not de-
fine specific values but allow a range of values. For example, a bundle could listen to ports above
1024 freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1. Stop the bundle.
2. Update the appropriate Configurat ion object via the Configuration Admin service.
3. Update the permissions in the Framework.
4. Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

104.12 org.osgi.service.cm

Configuration Admin Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 113

Import-Package: org.osgi .service.cm; version="[1.5,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cm; version="[1.5,1 .6)"

104.12.1 Summary

• Configurat ion - The configuration information for a ManagedService or ManagedServiceFacto-
ry object.

• Configurat ionAdmin - Service for administering configuration data.
• Configurat ionEvent - A Configuration Event.
• Configurat ionException - An Exception class to inform the Configuration Admin service of

problems with configuration data.
• Configurat ionListener - Listener for Configuration Events.
• Configurat ionPermission - Indicates a bundle's authority to configure bundles or be updated by

Configuration Admin.
• Configurat ionPlugin - A service interface for processing configuration dictionary before the up-

date.
• ManagedService - A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory - Manage multiple service instances.
• SynchronousConfigurat ionListener - Synchronous Listener for Configuration Events.

104.12.2 Permissions

104.12.2.1 Configuration

• setBundleLocation(Str ing)
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l or if location is nul l

• getBundleLocation()
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l

104.12.2.2 ConfigurationAdmin

• createFactoryConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if location is nul l

• getConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getConfigurat ion(Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• l istConfigurat ions(Str ing)
• Configurat ionPermission[c. locat ion,CONFIGURE] - Only configurations c are returned for

which the caller has this permission

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 114 OSGi Compendium Release 6

104.12.2.3 ManagedService

• updated(Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.12.2.4 ManagedServiceFactory

• updated(Str ing,Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.12.3 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Con-
figuration Admin service uses this interface to represent the configuration information for a Man-
agedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case must be preserved from the last set key/value.

A configuration can be bound to a specific bundle or to a region of bundles using the location. In
its simplest form the location is the location of the target bundle that registered a Managed Ser-
vice or a Managed Service Factory. However, if the location starts with ? then the location indi-
cates multiple delivery. In such a case the configuration must be delivered to all targets. If securi-
ty is on, the Configuration Permission can be used to restrict the targets that receive updates. The
Configuration Admin must only update a target when the configuration location matches the lo-
cation of the target's bundle or the target bundle has a Configuration Permission with the action
ConfigurationPermission.TARGET and a name that matches the configuration location. The name
in the permission may contain wildcards ('* ') to match the location using the same substring
matching rules as Filter. Bundles can always create, manipulate, and be updated from configura-
tions that have a location that matches their bundle location.

If a configuration's location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term "factory configura-
tion" is used.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.12.3.1 public void delete() throws IOException

□ Delete this Configurat ion object. Removes this configuration object from the persistent store. Notify
asynchronously the corresponding Managed Service or Managed Service Factory. A ManagedService
object is notified by a call to its updated method with a nul l properties argument. A ManagedSer-
viceFactory object is notified by a call to its deleted method.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_DELETED event.

Throws IOException– If delete fails.

I l legalStateException– If this configuration has been deleted.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 115

104.12.3.2 public boolean equals(Object other)

other Configurat ion object to compare against

□ Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.

104.12.3.3 public String getBundleLocation()

□ Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or nul l if it is not yet bound to a bundle location or region. If the location starts with ? then the con-
figuration is delivered to all targets and not restricted to a single bundle.

Returns location to which this configuration is bound, or nul l .

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l

104.12.3.4 public long getChangeCount()

□ Get the change count. Each Configuration must maintain a change counter that is incremented
with a positive value every time the configuration is updated and its properties are stored. The
counter must be incremented before the targets are updated and events are sent out.

Returns A monotonically increasing value reflecting changes in this Configuration.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.5

104.12.3.5 public String getFactoryPid()

□ For a factory configuration return the PID of the corresponding Managed Service Factory, else return
nul l .

Returns factory PID or nul l

Throws I l legalStateException– If this configuration has been deleted.

104.12.3.6 public String getPid()

□ Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws I l legalStateException– if this configuration has been deleted

104.12.3.7 public Dictionary<String,Object> getProperties()

□ Return the properties of this Configurat ion object. The Dictionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the re-
turned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the getBundle-
Location() method.

Throws I l legalStateException– If this configuration has been deleted.

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 116 OSGi Compendium Release 6

104.12.3.8 public int hashCode()

□ Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID's are the same.

Returns hash code for this Configuration object

104.12.3.9 public void setBundleLocation(String location)

location a location, region, or nul l

□ Bind this Configurat ion object to the specified location. If the location parameter is nul l then the
Configurat ion object will not be bound to a location/region. It will be set to the bundle's location be-
fore the first time a Managed Service/Managed Service Factory receives this Configurat ion object via
the updated method and before any plugins are called. The bundle location or region will be set per-
sistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with nul l . If this configuration becomes
visible then they must be updated with this configuration.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_LOCATION_CHANGED
event.

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l or if location is nul l

104.12.3.10 public void update(Dictionary<String,?> properties) throws IOException

properties the new set of properties for this configuration

□ Update the properties of this Configurat ion object. Stores the properties in persistent storage after
adding or overwriting the following properties:

• "service.pid" : is set to be the PID of this configuration.
• "service.factoryPid" : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration oc-
curs.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_UPDATED event.

Throws IOException– if update cannot be made persistent

I l legalArgumentException– if the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

104.12.3.11 public void update() throws IOException

□ Update the Configurat ion object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 117

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its Configurat ionPlugin object.

Throws IOException– if update cannot access the properties in persistent storage

I l legalStateException– If this configuration has been deleted.

See Also ConfigurationPlugin

104.12.4 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configurat ion objects. The actual configuration data is a Dictionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about "things/services" whose existence is de-
fined externally, e.g. a specific printer. Factories are intended for "things/services" that can be created
any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persis-
tent storage for a configuration object whose service.pid property matches the PID service property
(service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dictionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks
its storage for configuration objects whose service.factoryPid property matches the PID ser-
vice property of the Managed Service Factory. For each such Configurat ion objects, it calls the
ManagedServiceFactory.updated method asynchronously with the new properties. The calls to
the updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other
bundles requires Configurat ionPermission[location,CONFIGURE] , where location is the configura-
tion location.

Configurat ion objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configurat ion object must be unbound, that is
its location field is set back to nul l .

If target's bundle location matches the configuration location it is always updated.

If the configuration location starts with ? , that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle
must have Configuration Permission[location,TARGET], where location matches given the configu-

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 118 OSGi Compendium Release 6

ration location with wildcards as in the Filter substring match. The security must be verified using
the org.osgi.framework.Bundle.hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and securi-
ty is active then the Configuration Admin service must not do the normal callback.

The method descriptions of this class refer to a concept of "the calling bundle". This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of Configurat ionAdmin must use a org.osgi.framework.ServiceFactory to support
this concept.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.12.4.1 public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"

Configuration property naming the location of the bundle that is associated with a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for se-
curity reason. The property's value is of type Str ing .

Since 1.1

104.12.4.2 public static final String SERVICE_FACTORYPID = "service.factoryPid"

Configuration property naming the Factory PID in the configuration dictionary. The property's val-
ue is of type Str ing .

Since 1.1

104.12.4.3 public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only
see the factory configurations that they are bound to or have the proper permission.

Returns A new Configurat ion object.

Throws IOException– if access to persistent storage fails.

104.12.4.4 public Configuration createFactoryConfiguration(String factoryPid,String location) throws IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is nul l it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper per-
mission.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 119

Returns a new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if location is nul l

104.12.4.5 public Configuration getConfiguration(String pid,String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

□ Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

104.12.4.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

□ Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object
for this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l .
Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

104.12.4.7 public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

□ List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- nul l properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned Configura-
t ion objects.

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 120 OSGi Compendium Release 6

When there is no security on then all configurations can be returned. If security is on, the caller
must have ConfigurationPermission[location,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can test any configuration
properties including the following:

• service.pid - the persistent identity
• service.factoryPid - the factory PID, if applicable
• service.bundleLocation - the bundle location

The filter can also be nul l , meaning that all Configurat ion objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren't any.

Throws IOException– if access to persistent storage fails

Inval idSyntaxException– if the filter string is invalid

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – Only configurations c are returned for which
the caller has this permission

104.12.5 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered Configurat ionListener service objects.
ConfigurationEvents must be delivered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Additional event types may be defined in the future.

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no
sensitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2

Concurrency Immutable

104.12.5.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This Configurat ionEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configuration.delete() successfully deletes a configuration.

104.12.5.2 public static final int CM_LOCATION_CHANGED = 3

The location of a Configurat ion has been changed.

This Configurat ionEvent type that indicates that the location of a Configurat ion object has been
changed. An event is fired when a call to Configuration.setBundleLocation(String) successfully
changes the location.

Since 1.4

104.12.5.3 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 121

This Configurat ionEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configuration.update(Dictionary) successfully changes a
configuration.

104.12.5.4 public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference,int type,String
factoryPid,String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.

type The event type. See getType().

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedSer-
viceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

pid The pid of the associated configuration.

□ Constructs a Configurat ionEvent object from the given ServiceReference object, event type, and
pids.

104.12.5.5 public String getFactoryPid()

□ Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Man-
agedServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

104.12.5.6 public String getPid()

□ Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.

104.12.5.7 public ServiceReference<ConfigurationAdmin> getReference()

□ Return the ServiceReference object of the Configuration Admin service that created this event.

Returns The ServiceReference object for the Configuration Admin service that created this event.

104.12.5.8 public int getType()

□ Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Returns The type of this event.

104.12.6 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.

104.12.6.1 public ConfigurationException(String property,String reason)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

□ Create a Configurat ionException object.

104.12.6.2 public ConfigurationException(String property,String reason,Throwable cause)

property name of the property that caused the problem, nul l if no specific property was the cause

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 122 OSGi Compendium Release 6

reason reason for failure

cause The cause of this exception.

□ Create a Configurat ionException object.

Since 1.2

104.12.6.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

104.12.6.4 public String getProperty()

□ Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem

104.12.6.5 public String getReason()

□ Return the reason for this exception.

Returns reason of the failure

104.12.6.6 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

104.12.7 public interface ConfigurationListener
Listener for Configuration Events. When a Configurat ionEvent is fired, it is asynchronously deliv-
ered to all Configurat ionListeners.

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configurat ion object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermission[Configurat ionListener,REGISTER] to register a Configurat ionListener service.

Since 1.2

Concurrency Thread-safe

104.12.7.1 public void configurationEvent(ConfigurationEvent event)

event The Configurat ionEvent .

□ Receives notification of a Configuration that has changed.

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 123

104.12.8 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle's authority to configure bundles or be updated by Configuration Admin.

Since 1.2

Concurrency Thread-safe

104.12.8.1 public static final String CONFIGURE = "configure"

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string "configure".

104.12.8.2 public static final String TARGET = "target"

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The ac-
tion string "target".

Since 1.4

104.12.8.3 public ConfigurationPermission(String name,String actions)

name Name of the permission. Wildcards ('* ') are allowed in the name. During implies(Permission), the
name is matched to the requested permission using the substring matching rules used by Filters.

actions Comma separated list of CONFIGURE, TARGET (case insensitive).

□ Create a new ConfigurationPermission.

104.12.8.4 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Determines the equality of two Configurat ionPermission objects.

Two Configurat ionPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermission ; fa lse otherwise.

104.12.8.5 public String getActions()

□ Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present Configurat ionPermission actions in the following order: "configure", "target"

Returns Canonical string representation of the Configurat ionPermission actions.

104.12.8.6 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

104.12.8.7 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a Configurat ionPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

104.12.8.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermissions.

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 124 OSGi Compendium Release 6

Returns A new PermissionCol lect ion object.

104.12.9 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before
they reach the Managed Service or Managed Service Factory. The Configuration Admin service will
detect registrations of Configuration Plugin services and must call these services every time before
it calls the ManagedService or ManagedServiceFactory updated method. The Configuration Plug-
in service thus has the opportunity to view and modify the properties before they are passed to the
Managed Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.

The Integer service.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Inte-
ger zero. The service.cmRanking property determines the order in which plugins are invoked. Low-
er ranked plugins are called before higher ranked ones. In the event of more than one plugin having
the same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with service.cmRanking < 0 or service.cmRanking > 1000 should not make
modifications to the properties.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entire-
ly implementation defined.

A plugin may optionally specify a cm.target registration property whose value is the PID of the
Managed Service or Managed Service Factory whose configuration updates the plugin is intended
to intercept. The plugin will then only be called with configuration updates that are targeted at the
Managed Service or Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

Concurrency Thread-safe

104.12.9.1 public static final String CM_RANKING = "service.cmRanking"

A service property to specify the order in which plugins are invoked. This property contains an In-
teger ranking of the plugin. Not specifying this registration property, or setting it to something oth-
er than an Integer , is the same as setting it to the Integer zero. This property determines the order in
which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2

104.12.9.2 public static final String CM_TARGET = "cm.target"

A service property to limit the Managed Service or Managed Service Factory configuration dictio-
naries a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configu-
ration Admin service must call a Configuration Plugin service only when this property is not set, or
the target service's PID is listed in this property.

104.12.9.3 public void modifyConfiguration(ServiceReference<?> reference,Dictionary<String,Object> properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the "service.bundleLocation" proper-
ty. The value of this property may be obtained from the Configurat ion.getBundleLocation method.

□ View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 125

order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 .

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

A Configuration Plugin will only be called for properties from configurations that have a location
for which the Configuration Plugin has permission when security is active. When security is not ac-
tive, no filtering is done.

104.12.10 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a
PID.

If the Configuration Admin service has a Configurat ion object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that Configura-
t ion object.

If it has no such Configurat ion object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is
called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configu-
ration information.

 class SerialPort implements ManagedService {

 ServiceRegistration registration;
 Hashtable configuration;
 CommPortIdentifier id;

 synchronized void open(CommPortIdentifier id,
 BundleContext context) {
 this.id = id;
 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 getDefaults()
);
 }

 Hashtable getDefaults() {
 Hashtable defaults = new Hashtable();
 defaults.put("port", id.getName());
 defaults.put("product", "unknown");
 defaults.put("baud", "9600");
 defaults.put(Constants.SERVICE_PID,

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 126 OSGi Compendium Release 6

 "com.acme.serialport." + id.getName());
 return defaults;
 }

 public synchronized void updated(
 Dictionary configuration) {
 if (configuration == null)
 registration.setProperties(getDefaults());
 else {
 setSpeed(configuration.get("baud"));
 registration.setProperties(configuration);
 }
 }
 ...
 }

As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on,
a Managed Service can have Configuration Permission to also be updated for other locations.

Concurrency Thread-safe

104.12.10.1 public void updated(Dictionary<String,?> properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

□ Update the configuration for a Managed Service.

When the implementation of updated(Dict ionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can al-
low a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that ini-
tiated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by
deleting the configuration if the configuration is no longer visible and updating when it becomes
visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configura-
tion, then the bundle must be called back with a nul l to signal that CM is active but there is no data.

Throws Configurat ionException– when the update fails

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.12.11 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-

Configuration Admin Service Specification Version 1.5 org.osgi.service.cm

OSGi Compendium Release 6 Page 127

menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin
service, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen be-
fore, it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are de-
fined by the Managed Service Factory. However, if the factory instance is registered as a service ob-
ject with the service registry, its PID should match the PID of the corresponding Configurat ion ob-
ject (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

 class SerialPortFactory
 implements ManagedServiceFactory {
 ServiceRegistration registration;
 Hashtable ports;
 void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,
 "com.acme.serialportfactory");
 registration = context.registerService(
 ManagedServiceFactory.class.getName(),
 this,
 properties
);
 }
 public void updated(String pid,
 Dictionary properties) {
 String portName = (String) properties.get("port");
 SerialPortService port =
 (SerialPort) ports.get(pid);
 if (port == null) {
 port = new SerialPortService();
 ports.put(pid, port);
 port.open();
 }
 if (port.getPortName().equals(portName))
 return;
 port.setPortName(portName);
 }
 public void deleted(String pid) {
 SerialPortService port =
 (SerialPort) ports.get(pid);
 port.close();
 ports.remove(pid);
 }
 ...
 }

org.osgi.service.cm Configuration Admin Service Specification Version 1.5

Page 128 OSGi Compendium Release 6

Concurrency Thread-safe

104.12.11.1 public void deleted(String pid)

pid the PID of the service to be removed

□ Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(String, Dictionary).

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.

104.12.11.2 public String getName()

□ Return a descriptive name of this factory.

Returns the name for the factory, which might be localized

104.12.11.3 public void updated(String pid,Dictionary<String,?> properties) throws ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation"
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

□ Create a new instance, or update the configuration of an existing instance. If the PID of the Config-
urat ion object is new for the Managed Service Factory, then create a new factory instance, using the
configuration propert ies provided. Else, update the service instance with the provided propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should
be copied to its registry properties. This is not mandatory and security sensitive properties should
obviously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new ConfigurationException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place
during registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflect-
ed by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

Throws Configurat ionException– when the configuration properties are invalid.

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.12.12 public interface SynchronousConfigurationListener
extends ConfigurationListener
Synchronous Listener for Configuration Events. When a Configurat ionEvent is fired, it is synchro-
nously delivered to all SynchronousConfigurat ionListeners.

Configuration Admin Service Specification Version 1.5 Changes

OSGi Compendium Release 6 Page 129

SynchronousConfigurat ionListener objects are registered with the Framework service registry and
are synchronously notified with a Configurat ionEvent object when an event is fired.

SynchronousConfigurat ionListener objects can inspect the received Configurat ionEvent object to
determine its type, the PID of the Configurat ion object with which it is associated, and the Configu-
ration Admin service that fired the event.

Security Considerations. Bundles wishing to synchronously monitor configuration events will re-
quire ServicePermission[SynchronousConfigurat ionListener,REGISTER] to register a Synchronous-
Configurat ionListener service.

Since 1.5

Concurrency Thread-safe

104.13 Changes
• Clarified that collection property values may have an ordering that must be preserved.
• Changed vector references to list.
• Clarified that a if Managed Service is registered with more than one PID and more than one PID

has no configuration information available, then updated(Dict ionary) can be called multiple
time with a nul l parameter.

Changes Configuration Admin Service Specification Version 1.5

Page 130 OSGi Compendium Release 6

Metatype Service Specification Version 1.3 Introduction

OSGi Compendium Release 6 Page 131

105 Metatype Service Specification

Version 1.3

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers to describe attribute
types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type information of data that
they can use as arguments. The data is based on attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice of using the lan-
guage constructs to exchange data or using a technique based on attributes/properties that are based
on key/value pairs. Attributes provide an escape from the rigid type-safety requirements of modern
programming languages.

Type-safety works very well for software development environments in which multiple program-
mers work together on large applications or systems, but often lacks the flexibility needed to receive
structured data from the outside world.

The attribute paradigm has several characteristics that make this approach suitable when data
needs to be communicated between different entities which "speak" different languages. Attribut-
es are uncomplicated, resilient to change, and allow the receiver to dynamically adapt to different
types of data.

As an example, the OSGi framework Specifications define several attribute types which are used in
a Framework implementation, but which are also used and referenced by other OSGi specifications
such as the Configuration Admin Service Specification on page 87. A Configuration Admin service im-
plementation deploys attributes (key/value pairs) as configuration properties.

The Meta Type Service provides a unified access point to the Meta Type information that is associat-
ed with bundles. This Meta Type information can be defined by an XML resource in a bundle (OSGI-
INF/metatype directories must be scanned for any XML resources), it can come from the Meta Type
Provider service, or it can be obtained from Managed Service or Managed Service Factory services.

105.1.1 Essentials

• Conceptual model - The specification must have a conceptual model for how classes and attributes
are organized.

• Standards - The specification should be aligned with appropriate standards, and explained in situ-
ations where the specification is not aligned with, or cannot be mapped to, standards.

• Remote Management - Remote management should be taken into account.
• Size - Minimal overhead in size for a bundle using this specification is required.
• Localization - It must be possible to use this specification with different languages at the same

time. This ability allows servlets to serve information in the language selected in the browser.
• Type information - The definition of an attribute should contain the name (if it is required), the

cardinality, a label, a description, labels for enumerated values, and the Java class that should be
used for the values.

• Validation - It should be possible to validate the values of the attributes.

Attributes Model Metatype Service Specification Version 1.3

Page 132 OSGi Compendium Release 6

105.1.2 Entities

• Meta Type Service - A service that provides a unified access point for meta type information.
• Attribute - A key/value pair.
• PID - A unique persistent ID, defined in configuration management.
• Attribute Definition - Defines a description, name, help text, and type information of an attribute.
• Object Class Definition - Defines the type of a datum. It contains a description and name of the type

plus a set of Attr ibuteDefinit ion objects.
• Meta Type Provider - Provides access to the object classes that are available for this object. Access

uses the PID and a locale to find the best ObjectClassDefinit ion object.
• Meta Type Information - Provides meta type information for a bundle.

Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

Any bundleMeta Type Client

Meta Type
Service Impl

Metatype
xml resources

Any bundle

Meta Type
Service

Meta Type
Provider

Any bundle

Managed
Service
(Factory)

metatype.pid=...
metatype.factory.pid=...

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties. The purpose of the type
system is to allow reasonable User Interfaces to be constructed dynamically.

The type information is normally carried by the bundles themselves. Either by implementing the
MetaTypeProvider interface on the Managed Service or Managed Service Factory, by carrying one
or more XML resources that define a number of Meta Types in the OSGI-INF/metatype directories,
or registering a Meta Type Provider as a service. Additionally, a Meta Type service could have other
sources that are not defined in this specification.

The Meta Type Service provides unified access to Meta Types that are carried by the resident bun-
dles. The Meta Type Service collects this information from the bundles and provides uniform ac-
cess to it. A client can requests the Meta Type Information associated with a particular bundle. The
MetaTypeInformation object provides a list of ObjectClassDefinit ion objects for a bundle. These ob-
jects define all the information for a specific object class. An object class is a some descriptive infor-
mation and a set of named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent IDentity (PID). This speci-
fication does not specify what the PID means. One application is OSGi Configuration Management
where a PID is used by the Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Definition defines its type.

105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework registry. The usage of the
attributes in this specification and the Framework specification closely resemble the LDAP attribute

Metatype Service Specification Version 1.3 Object Class Definition

OSGi Compendium Release 6 Page 133

model. Therefore, the names used in this specification have been aligned with LDAP. Consequently,
the interfaces which are defined by this Specification are:

• Attr ibuteDefinit ion
• ObjectClassDefinit ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further information on ASN.1-defined at-
tributes and X.500 object classes and attributes, see [2] Understanding and Deploying LDAP Directory
services.

The LDAP attribute model assumes a global name-space for attributes, and object classes consist of
a number of attributes. So, if an object class inherits the same attribute from different parents, only
one copy of the attribute must become part of the object class definition. This name-space implies
that a given attribute, for example cn , should always be the common name and the type must al-
ways be a Str ing . An attribute cn cannot be an Integer in another object class definition. In this re-
spect, the OSGi approach towards attribute definitions is comparable with the LDAP attribute mod-
el.

105.3 Object Class Definition
The ObjectClassDefinit ion interface is used to group the attributes which are defined in Attr ibut-
eDefinit ion objects.

An ObjectClassDefinit ion object contains the information about the overall set of attributes and
has the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as LDAP/X.500 object classes.

In these standards the OSI Object Identifier (OID) is used to uniquely identify object classes. If
such an OID exists, (which can be requested at several standard organizations, and many compa-
nies already have a node in the tree) it can be returned here. Otherwise, a unique id should be re-
turned. This id can be a Java class name (reverse domain name) or can be generated with a GUID
algorithm. All LDAP-defined object classes already have an associated OID. It is strongly advised
to define the object classes from existing LDAP schemes which provide many preexisting OIDs.
Many such schemes exist ranging from postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or optional. Note that in X.500 the

mandatory or required status of an attribute is part of the object class definition and not of the at-
tribute definition.

• An icon, in different sizes.

105.4 Attribute Definition
The Attr ibuteDefinit ion interface provides the means to describe the data type of attributes.

The Attr ibuteDefinit ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the Framework for the attributes,
called the syntax in OSI terms, which can be obtained with the getType() method.

• Attr ibuteDefinit ion objects should use an ID that is similar to the OID as described in the ID field
for ObjectClassDefinit ion .

• A localized name intended to be used in user interfaces.

Meta Type Service Metatype Service Specification Version 1.3

Page 134 OSGi Compendium Release 6

• A localized description that defines the semantics of the attribute and possible constraints,
which should be usable for tooltips.

• An indication if this attribute should be stored as a unique value, a List , or an array of values, as
well as the maximum cardinality of the type.

• The data type, as limited by the Framework service registry attribute types.
• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in GUIs, allowing the user

to choose from a set.
• A default value (String[]). The return depends on the following cases:

• not specified - Return nul l if this attribute is not specified.
• cardinality = 0 - Return an array with one element.
• otherwise - Return an array with less or equal than the absolute value of cardinality, possibly

empty if the value is an empty string.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information that is associated with a
Bundle. It can get this information through the following means:

• Meta Type Resource - A bundle can provide one or more XML resources that are contained in its
JAR file. These resources contain an XML definition of meta types as well as to what PIDs these
Meta Types apply. These XML resources must reside in the OSGI-INF/metatype directories of the
bundle (including any fragments).

• Managed Service [Factory] objects - As defined in the configuration management specification,
ManagedService and ManagedServiceFactory service objects can optionally implement the
MetaTypeProvider interface. The Meta Type Service will only search for ManagedService and
ManagedServiceFactory service objects that implement MetaTypeProvider if no meta type re-
sources are found in the bundle.

• Meta Type Provider service - Bundles can register Meta Type Provider services to dynamically pro-
vide meta types for PIDs and factory PIDs.

Figure 105.2 Sources for Meta Types

<<service>>
Meta Type
Service

<<service>>
Meta Type
Provider

<<service>>
Managed Service
(Factory)

OSGI-INF/metatype
xml resource

... alternative
meta type
sources

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type information for bundles which
contain Meta Type resources or which provide MetaTypeProvider objects and/or services. If multi-
ple sources define the same Object Class Definition, the Meta Type service must select which source
to use. Meta Type Provider services must take precedence over Managed Service [Factory] objects im-
plementing MetaTypeProvider or Meta Type Resources.

The MetaTypeService interface has a single method:

Metatype Service Specification Version 1.3 Meta Type Service

OSGi Compendium Release 6 Page 135

• getMetaTypeInformation(Bundle) - Given a bundle, it must return the Meta Type Information
for that bundle, even if there is no meta type information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to ObjectClassDefinit ion
objects. The map is keyed by locale and PID. The list of maintained PIDs is available from the
MetaTypeInformation object with the following methods:

• getPids() - PIDs for which Meta Types are available.
• getFactoryPids() - PIDs associated with Managed Service Factory services.

These methods and their interaction with the Meta Type resource are described in Designate Element
on page 140.

The MetaTypeInformation interface extends the MetaTypeProvider interface. The MetaType-
Provider interface is used to access meta type information. It supports locale dependent information
so that the text used in Attr ibuteDefinit ion and ObjectClassDefinit ion objects can be adapted to dif-
ferent locales.

Which locales are supported by the MetaTypeProvider object are defined by the implementer or the
meta type resources. The list of available locales can be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefinit ion(Str ing,Str ing) - Get access to an ObjectClassDefinition object for the
given PID. The second parameter defines the locale.

• getLocales() - List the locales that are available.

Locale objects are represented in Str ing objects because not all profiles support Locale. The Str ing
holds the standard Locale presentation of:

locale = language ('_' country ('_' variation))
language ::= < defined by ISO 3166 >
country ::= < defined by ISO 639 >

For example, en , nl_BE , en_CA_posix are valid locales. The use of nul l for locale indicates that
java.ut i l .Locale.getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers the
org.osgi .service.metatype.MetaTypeService service and has a method to get a MetaTypeInforma-
tion object for a bundle.

Following is some sample code demonstrating how to print out all the Object Class Definitions and
Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts,Bundle b) {
 MetaTypeInformation mti =
 mts.getMetaTypeInformation(b);
 String [] pids = mti.getPids();
 String [] locales = mti.getLocales();

 for (int locale = 0; locale<locales.length; locale++) {
 System.out.println("Locale " + locales[locale]);
 for (int i=0; i< pids.length; i++) {
 ObjectClassDefinition ocd =
 mti.getObjectClassDefinition(pids[i], null);
 AttributeDefinition[] ads =
 ocd.getAttributeDefinitions(
 ObjectClassDefinition.ALL);
 for (int j=0; j< ads.length; j++) {

Meta Type Provider Service Metatype Service Specification Version 1.3

Page 136 OSGi Compendium Release 6

 System.out.println("OCD="+ocd.getName()
 + "AD="+ads[j].getName());
 }
 }
 }
}

105.6 Meta Type Provider Service
A Meta Type Provider service allows third party contributions to the internal Object Class Defini-
tion repository. A Meta Type Provider can contribute multiple PIDs, both factory and singleton PIDs.
A Meta Type Provider service must register with both or one of the following service properties:

• METATYPE_PID - (Str ing+) Provides a list of PIDs that this Meta Type Provider can provide Object
Class Definitions for. The listed PIDs are intended to be used as normal singleton PIDs used by
Managed Services.

• METATYPE_FACTORY_PID - (Str ing+) Provides a list of factory PIDs that this Meta Type Provider
can provide Object Class Definitions for. The listed PIDs are intended to be used as factory PIDs
used by Managed Service Factories.

The Object Class Definitions must originate from the bundle that registered the Meta Type Provider
service. Third party extenders should therefore use the bundle of their extendee. A Meta Type Ser-
vice must report these Object Class Definitions on the Meta Type Information of the registering
bundle, merged with any other information from that bundle.

The Meta Type Service must track these Meta Type Provider services and make their Meta Types
available as if they were provided on the Managed Service (Factory) services. The Meta Types must
become unavailable when the Meta Type Provider service is unregistered.

105.7 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these resources in the OSGI-INF/
metatype directory. The name of the resource must be a valid bundle entry path. All resources
in that directory must be meta type documents. Fragments can contain additional meta type re-
sources in the same directory and they must be taken into account when the meta type resources
are searched. A meta type resource must be encoded in UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism as described in the Core
module layer, see Localization, using the same property resource. However, it is possible to override
the property resource in the meta type definition resources with the local izat ion attribute of the
MetaData element.

The Meta Type Service must examine the bundle and its fragments to locate all localization
resources for the localization base name. From that list, the Meta Type Service derives the list
of locales which are available for the meta type information. This list can then be returned by
MetaTypeInformation.getLocales method. This list can change at any time because the bundle
could be refreshed. Clients should be prepared that this list changes after they received it.

Metatype Service Specification Version 1.3 Using the Meta Type Resources

OSGi Compendium Release 6 Page 137

105.7.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is not intended to be used
during runtime for validating meta type resources. The schema is intended to be used by tools and
external management systems.

The XML namespace for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.3.0

The namespace abbreviation should be metatype . That is, the following header should be:

<metatype:MetaData
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.3.0">

The file can be found in the osgi.jar file that can be downloaded from the www.osgi.org web site.

Figure 105.3 XML Schema Instance Structure (Type name = Element name)

MetaData

OCD

AD

Designate

Option

Icon

1

Object

Attribute

1

1 *

1 *

1

1

1

0..n

1

0..n

1

0..n

1

Value

1

0..n

0..n

0..n

0..n

The element structure of the XML file is:

MetaData ::= OCD* Designate*

OCD ::= AD* Icon*
AD ::= Option*

Designate ::= Object
Object ::= Attribute*

Attribute ::= Value*

The different elements are described in Table 105.1.

Using the Meta Type Resources Metatype Service Specification Version 1.3

Page 138 OSGi Compendium Release 6

Table 105.1 XML Schema for Meta Type resources

Attribute Deflt Type Method Description
MetaData Top Element
 local izat ion str ing Points to the Properties file that can lo-

calize this XML. See Localization in OSGi
Core Release 6.

OCD Object Class Definition
 name <> str ing getName() A human readable name that can be lo-

calized.
 descr ipt ion getDescr ipt ion() A human readable description of the

Object Class Definition that can be lo-
calized.

 id <> getID() A unique id, cannot be localized.
Designate An association between one PID and an

Object Class Definition. This element
designates a PID to be of a certain type.

 pid <> str ing The PID that is associated with an OCD .
This can be a reference to a factory or
singleton configuration object. The PID
can be a Targeted PID, if factoryPid is
not set or empty. Either pid or facto-
ryPid must be specified. See Designate El-
ement on page 140.

 factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory. If it
is not set or empty, it designates a sin-
gleton configuration. The PID can be a
Targeted PID. Either pid or factoryPid
must be specified. See Designate Element
on page 140.

 bundle str ing The value is used to set the location of
any configuration created using this
Meta Type resource. This may contain a
bundle location or a multi-location. In a
Meta Type resource, using the wildcard
value ('* ' \u002A) indicates the bundle
location of the bundle containing the
resource must be used as the location.
See Location Binding on page 93

This is an optional attribute but can be
mandatory in certain usage schemes,
for example the Autoconf Resource
Processor.

 optional false boolean If true , then this Designate element is
optional, errors during processing must
be ignored.

 merge false boolean If the PID refers to an existing configu-
ration, then merge the properties with
the existing properties if this attribute
is true . Otherwise, replace the proper-
ties.

Metatype Service Specification Version 1.3 Using the Meta Type Resources

OSGi Compendium Release 6 Page 139

Attribute Deflt Type Method Description
AD Attribute Definition
 name str ing getName() A localizable name for the Attribute De-

finition. descr ipt ion
 descr ipt ion str ing getDescr ipt ion() A localizable description for the At-

tribute Definition.
 id getID() The unique ID of the Attribute Defini-

tion.
 type str ing getType() The type of an attribute is an enumer-

ation of the different scalar types. The
string is mapped to one of the constants
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String ↔ STRING
Long ↔ LONG
Double ↔ DOUBLE
Float ↔ FLOAT
Integer ↔ INTEGER
Byte ↔ BYTE
Char ↔ CHARACTER
Boolean ↔ BOOLEAN
Short ↔ SHORT
Password ↔ PASSWORD

 cardinal ity 0 getCardinal ity() The number of elements an instance
can take. Positive numbers describe
an array ([]) and negative numbers de-
scribe a List object.

 min str ing val idate(Str ing) A validation value. This value is not
directly available from the Attr ibut-
eDefinit ion interface. However, the
val idate(Str ing) method must verify
this. The semantics of this field depend
on the type of this Attribute Definition.

 max str ing val idate(Str ing) A validation value. Similar to the min
field. When min or max are numbers,
attribute values with a numeric da-
ta type are valid if min <= value <=
max . Attribute values with a string (or
equivalent) data type are valid if min <=
value. length() <= max .

Using the Meta Type Resources Metatype Service Specification Version 1.3

Page 140 OSGi Compendium Release 6

Attribute Deflt Type Method Description
 default str ing getDefaultValue() The default value. A default is an ar-

ray of Str ing objects. The XML attribute
must contain a comma delimited list.
The default value is trimmed and es-
caped in the same way as described in
the val idate(Str ing) method. The empty
string is significant and must be seen as
an empty List or array if specified as the
default for an attribute with a cardinal-
ity that is not equal to zero. Default val-
ues must be valid or otherwise ignored.

 required true boolean Required attribute. The required at-
tribute indicates whether or not the at-
tribute key must appear within the con-
figuration dictionary to be valid.

Option One option label/value for the options
in an AD . Options are exclusive. The
val idate(Str ing) method must verify
that an attribute value matches one of
the option values when present.

 label <> str ing getOptionLabels() The label
 value <> str ing getOptionValues() The value
Icon An icon definition.
 resource <> str ing getIcon(int) The resource is a URL. The base URL is

assumed to be the root of the bundle
containing the XML file. That is, this
URL can reference another resource in
the bundle using a relative URL.

 size <> str ing getIcon(int) The number of pixels of the icon, maps
to the size parameter of the getIcon(int)
method.

Object A definition of an instance.
 ocdref <> str ing A reference to the id attribute of an

OCD element. That is, this attribute de-
fines the OCD type of this object.

Attr ibute A value for an attribute of an object.
 adref <> str ing A reference to the id of the AD in the

OCD as referenced by the parent Object .
 content str ing The content of the attributes. If this is

an array, the content must be separated
by commas (',' \u002C). Commas must
be escaped as described at the default at-
tribute of the AD element.

Value Holds a single value. This element can
be repeated multiple times under an At-
tribute

105.7.2 Designate Element
For the MetaType Service, the Designate definition is used to declare the available PIDs and factory
PIDs; the Attribute elements are never used by the MetaType service.

Metatype Service Specification Version 1.3 Using the Meta Type Resources

OSGi Compendium Release 6 Page 141

The getPids() method returns an array of PIDs that were specified in the pid attribute of the Object
elements. The getFactoryPids() method returns an array of the factoryPid attributes. For factories,
the related pid attribute is ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configuration and a factory con-
figuration.

 <Designate pid="com.acme.designate.1">
 <Object ocdref="com.acme.designate"/>
 </Designate>
 <Designate factoryPid="com.acme.designate.factory"
 bundle="*">
 <Object ocdref="com.acme.designate"/>
 </Designate>

Other schemes can embed the Object element in the Designate element to define actual instances
for the Configuration Admin service. In that case the pid attribute must be used together with the
factoryPid attribute. However, in that case an aliasing model is required because the Configuration
Admin service does not allow the creator to choose the Configurat ion object's PID.

105.7.3 Example Metadata File
This example defines a meta type file for a Person record, based on ISO attribute types. The ids that
are used are derived from ISO attributes.

<?xml version="1.0" encoding="UTF-8"?>
<MetaData
 xmlns="http://www.osgi.org/xmlns/metatype/v1.3.0"
 localization="person">
 <OCD name="%person" id="2.5.6.6"
 description="%person record">
 <AD name="%sex" id="2.5.4.12" type="Integer">
 <Option label="%male" value="1"/>
 <Option label="%female" value="0"/>
 </AD>
 <AD name="%sn" id="2.5.4.4" type="String"/>
 <AD name="%cn" id="2.5.4.3" type="String"/>
 <AD name="%seeAlso" id="2.5.4.34" type="String"
 cardinality="8"
 default="http://www.google.com,http://www.yahoo.com"/>
 <AD name="%telNumber" id="2.5.4.20" type="String"/>
 </OCD>

 <Designate pid="com.acme.addressbook">
 <Object ocdref="2.5.6.6"/>
 </Designate>
</MetaData>

Translations for this file, as indicated by the localization attribute must be stored in the root direc-
tory (e.g. person_du_NL.propert ies). The default localization base name for the properties is OSGI-
INF/l10n/bundle , but can be overridden by the manifest Bundle-Localization header and the local-
izat ion attribute of the Meta Data element. The property files have the base name of person . The
Dutch, French and English translations could look like:

person_du_NL.propert ies :

person=Persoon
person\ record=Persoons beschrijving

Meta Type Resource XML Schema Metatype Service Specification Version 1.3

Page 142 OSGi Compendium Release 6

cn=Naam
sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.propert ies :

person=Personne
person\ record=Description de la personne
cn=Nom
sn=Surnom
seeAlso=Reference
telNumber=Tel.
sex=Sexe
male=Homme
female=Femme

person_en_US.propert ies :

person=Person
person\ record=Person Record
cn=Name
sn=Sur Name
seeAlso=See Also
telNumber=Tel.
sex=Sex
male=Male
female=Female

105.7.4 Object Element
The OCD element can be used to describe the possible contents of a Dictionary object. In this case,
the attribute name is the key. The Object element can be used to assign a value to a Dictionary ob-
ject.

For example:

<Designate pid="com.acme.b">
 <Object ocdref="b">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
</Designate>

105.8 Meta Type Resource XML Schema
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.3.0"

Metatype Service Specification Version 1.3 Meta Type Resource XML Schema

OSGi Compendium Release 6 Page 143

 targetNamespace="http://www.osgi.org/xmlns/metatype/v1.3.0"
 version="1.3.0">

 <element name="MetaData" type="metatype:Tmetadata" />

 <complexType name="Tmetadata">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="OCD" type="metatype:Tocd" />
 <element name="Designate" type="metatype:Tdesignate" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="localization" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tocd">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="AD" type="metatype:Tad" />
 <element name="Icon" type="metatype:Ticon" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="required" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tad">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Option" type="metatype:Toption" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="optional" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <attribute name="type" type="metatype:Tscalar" use="required" />
 <attribute name="cardinality" type="int" use="optional"
 default="0" />
 <attribute name="min" type="string" use="optional" />
 <attribute name="max" type="string" use="optional" />
 <attribute name="default" type="string" use="optional" />
 <attribute name="required" type="boolean" use="optional"
 default="true" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tobject">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Attribute" type="metatype:Tattribute" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="ocdref" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tattribute">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Value" type="string" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="adref" type="string" use="required" />
 <attribute name="content" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

Meta Type Resource XML Schema Metatype Service Specification Version 1.3

Page 144 OSGi Compendium Release 6

 <complexType name="Tdesignate">
 <sequence>
 <element name="Object" type="metatype:Tobject" minOccurs="1"
 maxOccurs="1" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="pid" type="string" use="optional" />
 <attribute name="factoryPid" type="string" use="optional" />
 <attribute name="bundle" type="string" use="optional" />
 <attribute name="optional" type="boolean" default="false"
 use="optional" />
 <attribute name="merge" type="boolean" default="false"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="Tscalar">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 <enumeration value="Password" />
 </restriction>
 </simpleType>

 <complexType name="Toption">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="label" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Ticon">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="resource" type="string" use="required" />
 <attribute name="size" type="positiveInteger" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

Metatype Service Specification Version 1.3 Meta Type Annotations

OSGi Compendium Release 6 Page 145

105.9 Meta Type Annotations
A developer can use Meta Type Annotations on a Component Property Type, see Component Proper-
ty Types on page 330, or an interface to define an Object Class Definition in a type safe manner.
The Meta Type Annotations are CLASS retention annotations intended to be used during build time
to generate Meta Type Resources from the Java class files providing a convenient way to create the
Meta Type Resource XML documents.

Tools processing these annotations must always generate valid Meta Type Resource XML docu-
ments. If the Meta Type Annotations are used in a way that is not supported or in error, then the tool
must report the error to enable the developer to take corrective action.

105.9.1 ObjectClassDefinition Annotation
The ObjectClassDefinit ion annotation can be applied to a Component Property Type or an inter-
face. From that type, tooling can generate an OCD element. When applied to an interface, all the
methods inherited from supertypes are include as Attribute Definitions. The tool processing the an-
notations must be able to examine all the types in the hierarchy of the annotated type to generate
the Meta Type Resource. It is an error if the tool cannot examine a type in the hierarchy.

It is an error to apply the ObjectClassDefinit ion annotation to concrete and abstract class types. It is
also an error to apply it to an interface if any of the methods of the interface take arguments.

The ObjectClassDefinit ion annotation can be applied without defining any element values as de-
fault values for the ObjectClassDefinit ion annotation elements can be generated from the annotat-
ed type. For example:

@ObjectClassDefinition
@interface Config {
 boolean enabled();
 String[] names();
 String topic();
}

In the following larger example, the ObjectClassDefinit ion annotation defines the description and
name of the OCD which are to be localized using the specified resource as well as an icon resource.
Also, Attr ibuteDefinit ion annotations are applied to the methods to supply some non-default values
for the generated AD elements.

@ObjectClassDefinition(localization = "OSGI-INF/l10n/member",
 description = "%member.description",
 name = "%member.name"
 icon = @Icon(resource = "icon/member-32.png", size = 32))
@interface Member {
 @AttributeDefinition(type = AttributeType.PASSWORD,
 description = "%member.password.description",
 name = "%member.password.name")
 public String _password();

 @AttributeDefinition(options = {
 @Option(label = "%strategic", value = "strategic"),
 @Option(label = "%principal", value = "principal"),
 @Option(label = "%contributing", value = "contributing")
 },
 defaultValue = "contributing",
 description = "%member.membertype.description",

Meta Type Annotations Metatype Service Specification Version 1.3

Page 146 OSGi Compendium Release 6

 name = "%member.membertype.name")
 public String type();
}

105.9.2 AttributeDefinition Annotation
The Attr ibuteDefinit ion annotation is an optional annotation which can applied to the methods in
a type annotated by ObjectClassDefinit ion . Each method of the type annotated by ObjectClassDe-
finit ion is mapped to an AD child element of the OCD element in the generated Meta Type Resource
XML document. The Attr ibuteDefinit ion annotation only needs to be applied to a method if values
other than the defaults are desired.

The id of the Attribute Definition is generated from the method name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by another dollar sign in which
case the two consecutive dollar signs ("$$") are converted to a single dollar sign.

• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-
other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.

The generated id becomes the value of the id attribute of the AD element in the generated Meta Type
Resource XML document.

105.9.3 Designate Annotation
The Designate annotation can be applied to a Declarative Services component class to make the
connection between the pid of the component and an Object Class Definition. This annotation must
be used on a type that is also annotated with the Declarative Services Component annotation. The
component must only have a single PID which is used for the generated Designate element.

In the following example, the Designate annotation is applied to a Declarative Services component
and references the Object Class Definition type.

@ObjectClassDefinition(id="my.config.ocd")
@interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

@Component(configurationPid="my.component.pid")
@Designate(ocd = Config.class)
public class MyComponent {
 static final String DEFAULT_TOPIC_PREFIX = "topic.prefix";
 protected void activate(Config configuration) {
 String t = configuration.topic();
 }
}

Tools processing these annotations will generate a Designate element in the generated Meta Type
Resource XML document using the PID of the component and the id of the Object Class Definition.
For example:

<Designate pid="my.component.pid">
 <Object ocdref="my.config.ocd"/>
</Designate>

Metatype Service Specification Version 1.3 Limitations

OSGi Compendium Release 6 Page 147

105.10 Limitations
The OSGi MetaType specification is intended to be used for simple applications. It does not, there-
fore, support recursive data types, mixed types in arrays/lists, or nested arrays/lists.

105.11 Related Standards
One of the primary goals of this specification is to make metatype information available at run-
time with minimal overhead. Many related standards are applicable to metatypes; except for Java
beans, however, all other metatype standards are based on document formats (e.g. XML). In the OSGi
framework, document format standards are deemed unsuitable due to the overhead required in the
execution environment (they require a parser during run-time).

Another consideration is the applicability of these standards. Most of these standards were devel-
oped for management systems on platforms where resources are not necessarily a concern. In this
case, a metatype standard is normally used to describe the data structures needed to control some
other computer via a network. This other computer, however, does not require the metatype infor-
mation as it is implementing this information.

In some traditional cases, a management system uses the metatype information to control objects
in an OSGi framework. Therefore, the concepts and the syntax of the metatype information must be
mappable to these popular standards. Clearly, then, these standards must be able to describe objects
in an OSGi framework. This ability is usually not a problem, because the metatype languages used
by current management systems are very powerful.

105.12 Capabilities
Implementations of the Metatype Service specification must provide the following capabilities.

• A capability in the osgi . implementation namespace declaring a specification implementation
with the name METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint
for the org.osgi .service.metatype package. For example:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.metatype";
 version:Version="1.3";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.implementation Namespace on page
997.

• A capability in the osgi .extender namespace declaring an extender with the name
METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.metatype package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.metatype";
 version:Version="1.3";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.extender Namespace on page 993.

Security Considerations Metatype Service Specification Version 1.3

Page 148 OSGi Compendium Release 6

• A capability in the osgi .service namespace representing the MetaTypeService service. This capa-
bility must also declare a uses constraint for the org.osgi .service.metatype package. For exam-
ple:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.metatype.MetaTypeService";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

105.13 Security Considerations
Special security issues are not applicable for this specification.

105.14 org.osgi.service.metatype

Metatype Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.3,1 .4)"

105.14.1 Summary

• Attr ibuteDefinit ion - An interface to describe an attribute.
• MetaTypeInformation - A MetaType Information object is created by the MetaTypeService to re-

turn meta type information for a specific bundle.
• MetaTypeProvider - Provides access to metatypes.
• MetaTypeService - The MetaType Service can be used to obtain meta type information for a

bundle.
• ObjectClassDefinit ion - Description for the data type information of an objectclass.

105.14.2 public interface AttributeDefinition
An interface to describe an attribute.

An Attr ibuteDefinit ion object defines a description of the data type of a property/attribute.

Concurrency Thread-safe

105.14.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL type. Attributes of this type should be stored as BigDecimal , List<BigDecimal> or
BigDecimal[] objects depending on getCardinality().

Deprecated As of 1.1.

Metatype Service Specification Version 1.3 org.osgi.service.metatype

OSGi Compendium Release 6 Page 149

105.14.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER type. Attributes of this type should be stored as BigInteger , List<BigInteger> or
BigInteger[] objects, depending on the getCardinality() value.

Deprecated As of 1.1.

105.14.2.3 public static final int BOOLEAN = 11

The BOOLEAN type. Attributes of this type should be stored as Boolean , List<Boolean> or boolean[]
objects depending on getCardinality().

105.14.2.4 public static final int BYTE = 6

The BYTE type. Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depend-
ing on the getCardinality() value.

105.14.2.5 public static final int CHARACTER = 5

The CHARACTER type. Attributes of this type should be stored as Character , List<Character> or
char[] objects, depending on the getCardinality() value.

105.14.2.6 public static final int DOUBLE = 7

The DOUBLE type. Attributes of this type should be stored as Double , List<Double> or double[] ob-
jects, depending on the getCardinality() value.

105.14.2.7 public static final int FLOAT = 8

The FLOAT type. Attributes of this type should be stored as Float , List<Float> or f loat[] objects, de-
pending on the getCardinality() value.

105.14.2.8 public static final int INTEGER = 3

The INTEGER type. Attributes of this type should be stored as Integer , List< Integer> or int[] objects,
depending on the getCardinality() value.

105.14.2.9 public static final int LONG = 2

The LONG type. Attributes of this type should be stored as Long , List<Long> or long[] objects, de-
pending on the getCardinality() value.

105.14.2.10 public static final int PASSWORD = 12

The PASSWORD type. Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects
depending on getCardinality(). A PASSWORD must be treated as a string but the type can be used to
disguise the information when displayed to a user to prevent others from seeing it.

Since 1.2

105.14.2.11 public static final int SHORT = 4

The SHORT type. Attributes of this type should be stored as Short , List<Short> or short[] objects, de-
pending on the getCardinality() value.

105.14.2.12 public static final int STRING = 1

The STRING type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
getCardinality() value.

105.14.2.13 public int getCardinality()

□ Return the cardinality of this attribute. The OSGi environment handles multi valued attributes in
arrays ([]) or in List objects. The return value is defined as follows:

org.osgi.service.metatype Metatype Service Specification Version 1.3

Page 150 OSGi Compendium Release 6

 x = Integer.MIN_VALUE no limit, but use List
 x < 0 -x = max occurrences, store in List
 x > 0 x = max occurrences, store in array []
 x = Integer.MAX_VALUE no limit, but use array []
 x = 0 1 occurrence required

Returns The cardinality of this attribute.

105.14.2.14 public String[] getDefaultValue()

□ Return a default for this attribute. The object must be of the appropriate type as defined by the cardi-
nality and getType() . The return type is a list of Str ing objects that can be converted to the appropri-
ate type. The cardinality of the return array must follow the absolute cardinality of this type. For ex-
ample, if the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it must contain
0 or 1 elements. If it is -5, it must contain from 0 to max 5 elements. Note that the special case of a 0
cardinality, meaning a single value, does not allow arrays or lists of 0 elements.

Returns Return a default value or nul l if no default exists.

105.14.2.15 public String getDescription()

□ Return a description of this attribute. The description may be localized and must describe the se-
mantics of this type and any constraints.

Returns The localized description of the definition.

105.14.2.16 public String getID()

□ Unique identity for this attribute. Attributes share a global namespace in the registry. For example,
an attribute cn or commonName must always be a Str ing and the semantics are always a name of
some object. They share this aspect with LDAP/X.500 attributes. In these standards the OSI Object
Identifier (OID) is used to uniquely identify an attribute. If such an OID exists, (which can be re-
quested at several standard organizations and many companies already have a node in the tree) it
can be returned here. Otherwise, a unique id should be returned which can be a Java class name (re-
verse domain name) or generated with a GUID algorithm. Note that all LDAP defined attributes al-
ready have an OID. It is strongly advised to define the attributes from existing LDAP schemes which
will give the OID. Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id or oid

105.14.2.17 public String getName()

□ Get the name of the attribute. This name may be localized.

Returns The localized name of the definition.

105.14.2.18 public String[] getOptionLabels()

□ Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associated with getOption-
Values . The labels returned here are ordered in the same way as the values in that method.

If the function returns nul l , there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. That is, for each index i in
getOptionLabels , i in getOptionValues() should be the associated value.

For example, if an attribute can have the value male, female, unknown, this list can return (for
dutch) new Str ing[] { "Man", "Vrouw", "Onbekend" } .

Returns A list values

Metatype Service Specification Version 1.3 org.osgi.service.metatype

OSGi Compendium Release 6 Page 151

105.14.2.19 public String[] getOptionValues()

□ Return a list of option values that this attribute can take.

If the function returns nul l , there are no option values available.

Each value must be acceptable to validate() (return "") and must be a Str ing object that can be con-
verted to the data type defined by getType() for this attribute.

This list must be in the same sequence as getOptionLabels() . That is, for each index i in getOption-
Values , i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list can return new
Str ing[] { "male", " female", "unknown" } .

Returns A list values

105.14.2.20 public int getType()

□ Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING,LONG,INTEGER, SHORT, CHARACTER, BYTE,DOUBLE,FLOAT, BOOLEAN, PASSWORD.

Returns The type for this attribute.

105.14.2.21 public String validate(String value)

value The value before turning it into the basic data type. If the cardinality indicates a multi-valued at-
tribute then the given string must be escaped.

□ Validate an attribute in Str ing form. An attribute might be further constrained in value. This
method will attempt to validate the attribute according to these constraints. It can return three dif-
ferent values:

 null No validation present
 "" No problems detected
 "..." A localized description of why the value is wrong

If the cardinality of this attribute is multi-valued then this string must be interpreted as a comma
delimited string. The complete value must be trimmed from white space as well as spaces around
commas. Commas (',' \u002C) and spaces (' ' \u0020) and backslashes (' \ ' \u005C) can be escaped
with another backslash. Escaped spaces must not be trimmed. For example:

 value=" a\,b,b\,c,\ c\\,d " => ["a,b", "b,c", " c\", "d"]

Returns nul l , "", or another string

105.14.3 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return meta type information
for a specific bundle.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.3.1 public Bundle getBundle()

□ Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.

org.osgi.service.metatype Metatype Service Specification Version 1.3

Page 152 OSGi Compendium Release 6

105.14.3.2 public String[] getFactoryPids()

□ Return the Factory PIDs (for ManagedServiceFactories) for which ObjectClassDefinition informa-
tion is available.

Returns Array of Factory PIDs.

105.14.3.3 public String[] getPids()

□ Return the PIDs (for ManagedServices) for which ObjectClassDefinition information is available.

Returns Array of PIDs.

105.14.4 public interface MetaTypeProvider
Provides access to metatypes. This interface can be implemented on a Managed Service or Managed
Service Factory as well as registered as a service. When registered as a service, it must be registered
with a METATYPE_FACTORY_PID or METATYPE_PID service property (or both). Any PID men-
tioned in either of these factories must be a valid argument to the getObjectClassDefinition(String,
String) method.

Concurrency Thread-safe

105.14.4.1 public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given factory
PIDs. The type of this service property is Str ing+ .

Since 1.2

105.14.4.2 public static final String METATYPE_PID = "metatype.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given PIDs. The
type of this service property is Str ing+ .

Since 1.2

105.14.4.3 public String[] getLocales()

□ Return a list of available locales. The results must be names that consists of language [_ country [_
variation]] as is customary in the Locale class.

Returns An array of locale strings or nul l if there is no locale specific localization can be found.

105.14.4.4 public ObjectClassDefinition getObjectClassDefinition(String id,String locale)

id The ID of the requested object class. This can be a pid or factory pid returned by getPids or getFacto-
ryPids.

locale The locale of the definition or nul l for default locale.

□ Returns an object class definition for the specified id localized to the specified locale.

The locale parameter must be a name that consists of language ["_" country ["_" var iat ion]] as is cus-
tomary in the Locale class. This Locale class is not used because certain profiles do not contain it.

Returns A ObjectClassDefinit ion object.

Throws I l legalArgumentException– If the id or locale arguments are not valid

105.14.5 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a bundle. The MetaType Ser-
vice will examine the specified bundle for meta type documents to create the returned MetaTypeIn-
formation object.

Metatype Service Specification Version 1.3 org.osgi.service.metatype

OSGi Compendium Release 6 Page 153

If the specified bundle does not contain any meta type documents, then a MetaTypeInformation ob-
ject will be returned that wrappers any ManagedService or ManagedServiceFactory services regis-
tered by the specified bundle that implement MetaTypeProvider . Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta type documents or which
provide their own MetaTypeProvider objects.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.5.1 public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"

Capability name for meta type document processors.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.metatype)(version>=1.3)(!(version>=2.0)))"

Since 1.3

105.14.5.2 public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"

Location of meta type documents. The MetaType Service will process each entry in the meta type
documents directory.

105.14.5.3 public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

bundle The bundle for which meta type information is requested.

□ Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.

105.14.6 public interface ObjectClassDefinition
Description for the data type information of an objectclass.

Concurrency Thread-safe

105.14.6.1 public static final int ALL = -1

Argument for getAttr ibuteDefinit ions(int) .

ALL indicates that all the definitions are returned. The value is -1.

105.14.6.2 public static final int OPTIONAL = 2

Argument for getAttr ibuteDefinit ions(int) .

OPTIONAL indicates that only the optional definitions are returned. The value is 2.

105.14.6.3 public static final int REQUIRED = 1

Argument for getAttr ibuteDefinit ions(int) .

REQUIRED indicates that only the required definitions are returned. The value is 1.

105.14.6.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL ,REQUIRED ,OPTIONAL

□ Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL ,REQUIRED or the OP-
TIONAL attributes.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 154 OSGi Compendium Release 6

Returns An array of attribute definitions or nul l if no attributes are selected

105.14.6.5 public String getDescription()

□ Return a description of this object class. The description may be localized.

Returns The description of this object class.

105.14.6.6 public InputStream getIcon(int size) throws IOException

size Requested size of an icon. For example, a 16x16 pixel icon has a size of 16

□ Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The returned icon maybe
larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or nul l

Throws IOException– If the InputStream cannot be returned.

105.14.6.7 public String getID()

□ Return the id of this object class.

ObjectDefint ion objects share a global namespace in the registry. They share this aspect with LDAP/
X.500 attributes. In these standards the OSI Object Identifier (OID) is used to uniquely identify ob-
ject classes. If such an OID exists, (which can be requested at several standard organizations and
many companies already have a node in the tree) it can be returned here. Otherwise, a unique id
should be returned which can be a java class name (reverse domain name) or generated with a GUID
algorithm. Note that all LDAP defined object classes already have an OID associated. It is strongly
advised to define the object classes from existing LDAP schemes which will give the OID for free.
Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id of this object class.

105.14.6.8 public String getName()

□ Return the name of this object class. The name may be localized.

Returns The name of this object class.

105.15 org.osgi.service.metatype.annotations

Metatype Annotations Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.metatype.annotations; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.metatype.annotations; vers ion="[1.3,1 .4)"

105.15.1 Summary

• Attr ibuteDefinit ion - Attr ibuteDefinit ion information for the annotated method.
• Attr ibuteType - Attribute types for the AttributeDefinition annotation.

Metatype Service Specification Version 1.3 org.osgi.service.metatype.annotations

OSGi Compendium Release 6 Page 155

• Designate - Generate a Designate element in the Meta Type Resource for an ObjectClassDefini-
tion using the annotated Declarative Services component.

• Icon - Icon information for an ObjectClassDefinition.
• ObjectClassDefinit ion - Generate a Meta Type Resource using the annotated type.
• Option - Option information for an AttributeDefinition.

105.15.2 @AttributeDefinition
Attr ibuteDefinit ion information for the annotated method.

Each method of a type annotated by ObjectClassDefinition has an implied AttributeDefinition an-
notation. This annotation is only used to specify non-default AttributeDefinition information.

The id of this AttributeDefinition is generated from the name of the annotated method. The anno-
tated method name is processed from left to right changing each character as follows:

• A dollar sign ('$ ' \u0024) is removed unless it is followed by another dollar sign in which case the
two consecutive dollar signs ('$$') are changed to a single dollar sign.

• A low line ('_ ' \u005F) is changed to a full stop ('.' \u002E) unless is it followed by another low
line in which case the two consecutive low lines ('__ ') are changed to a single low line.

• All other characters are unchanged.

This id is the value of the id attribute of the generate AD element and is used as the name of the cor-
responding configuration property.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The AD element of a Meta Type Resource.

Retention CLASS

Target METHOD

105.15.2.1 String name default ""

□ The human readable name of this AttributeDefinition.

If not specified, the name of this AttributeDefinition is derived from the name of the annotated
method. For example, low line ('_ ' \u005F) and dollar sign ('$ ' \u0024) are replaced with space (' '
\u0020) and space is inserted between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the AD element of a Meta Type Resource.

105.15.2.2 String description default ""

□ The human readable description of this AttributeDefinition.

If not specified, the description of this AttributeDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the AD element of a Meta Type Resource.

105.15.2.3 AttributeType type default STRING

□ The type of this AttributeDefinition.

This must be one of the defined attributes types.

If not specified, the type is derived from the return type of the annotated method. Return types of
Class and Enum are mapped to STRING. If the return type is List , Set , Collect ion , I terable or some
type which can be determined at annotation processing time to

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 156 OSGi Compendium Release 6

1. be a subtype of Collect ion and
2. have a public no argument constructor,

then the type is derived from the generic type. For example, a return type of List<Str ing> will be
mapped to STRING. A return type of a single dimensional array is supported and the type is the
component type of the array. Multi dimensional arrays are not supported. Annotation return types
are not supported. Any unrecognized type is mapped to STRING. A tool processing the annotation
should declare an error for unsupported return types.

See Also The type attr ibute of the AD element of a Meta Type Resource.

105.15.2.4 int cardinality default 0

□ The cardinality of this AttributeDefinition.

If not specified, the cardinality is derived from the return type of the annotated method. For an array
return type, the cardinality is a large positive value. If the return type is List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

the cardinality is a large negative value. Otherwise, the cardinality is 0.

See Also The cardinal ity attr ibute of the AD element of a Meta Type Resource.

105.15.2.5 String min default ""

□ The minimum value for this AttributeDefinition.

If not specified, there is no minimum value.

See Also The min attr ibute of the AD element of a Meta Type Resource.

105.15.2.6 String max default ""

□ The maximum value for this AttributeDefinition.

If not specified, there is no maximum value.

See Also The max attr ibute of the AD element of a Meta Type Resource.

105.15.2.7 String[] defaultValue default {}

□ The default value for this AttributeDefinition.

The specified values are concatenated into a comma delimited list to become the value of the de-
fault attribute of the generated AD element.

If not specified and the annotated method is an annotation element that has a default value, then
the value of this element is the default value of the annotated element. Otherwise, there is no de-
fault value.

See Also The default attr ibute of the AD element of a Meta Type Resource.

105.15.2.8 boolean required default true

□ The required value for this AttributeDefinition.

If not specified, the value is true .

See Also The required attr ibute of the AD element of a Meta Type Resource.

105.15.2.9 Option[] options default {}

□ The option information for this AttributeDefinition.

Metatype Service Specification Version 1.3 org.osgi.service.metatype.annotations

OSGi Compendium Release 6 Page 157

For each specified Option, an Option element is generated for this AttributeDefinition.

If not specified, the option information is derived from the return type of the annotated method. If
the return type is an enum , a single dimensional array of an enum , or a List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

with a generic type of an enum , then the value of this element has an Option for each value of the
enum . The label and value of each Option are set to the name of the corresponding enum value. Oth-
erwise, no Option elements will be generated.

See Also The Option element of a Meta Type Resource.

105.15.3 enum AttributeType
Attribute types for the AttributeDefinition annotation.

See Also AttributeDefinition.type()

105.15.3.1 STRING

The Str ing type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
cardinality value.

105.15.3.2 LONG

The Long type.

Attributes of this type should be stored as Long , List<Long> or long[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.3 INTEGER

The Integer type.

Attributes of this type should be stored as Integer , List< Integer> or int[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.4 SHORT

The Short type.

Attributes of this type should be stored as Short , List<Short> or short[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.5 CHARACTER

The Character type.

Attributes of this type should be stored as Character , List<Character> or char[] objects, depending
on the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.6 BYTE

The Byte type.

Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.7 DOUBLE

The Double type.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 158 OSGi Compendium Release 6

Attributes of this type should be stored as Double , List<Double> or double[] objects, depending on
the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.8 FLOAT

The Float type.

Attributes of this type should be stored as Float , List<Float> or f loat[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.9 BOOLEAN

The Boolean type.

Attributes of this type should be stored as Boolean , List<Boolean> or boolean[] objects depending on
Attr ibuteDefinit ion#cardinal ity() cardinal ity .

105.15.3.10 PASSWORD

The Password type.

Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects depending on cardi-
nality.

A Password must be treated as a Str ing but the type can be used to disguise the information when
displayed to a user to prevent it from being seen.

105.15.4 @Designate
Generate a Designate element in the Meta Type Resource for an ObjectClassDefinition using the an-
notated Declarative Services component.

This annotation must be used on a type that is also annotated with the Declarative Services Compo-
nent annotation. The component must only have a single PID which is used for the generated Des-
ignate element.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The Designate element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.4.1 Class<?> ocd

□ The type of the ObjectClassDefinition for this Designate.

The specified type must be annotated with ObjectClassDefinition.

See Also The ocdref attr ibute of the Designate element of a Meta Type Resource.

105.15.4.2 boolean factory default false

□ Specifies whether this Designate is for a factory PID.

If fa lse , then the PID value from the annotated component will be used in the pid attribute of the
generated Designate element. If true , then the PID value from the annotated component will be
used in the factoryPid attribute of the generated Designate element.

See Also The pid and factoryPid attr ibutes of the Designate element of a Meta Type Resource.

105.15.5 @Icon
Icon information for an ObjectClassDefinition.

Metatype Service Specification Version 1.3 org.osgi.service.metatype.annotations

OSGi Compendium Release 6 Page 159

See Also ObjectClassDefinition.icon()

Retention CLASS

Target

105.15.5.1 String resource

□ The resource name for this Icon.

The resource is a URL. The resource URL can be relative to the root of the bundle containing the
Meta Type Resource.

If the resource begins with the percent sign ('%' \u0025), the resource can be localized.

See Also The resource attr ibute of the Icon element of a Meta Type Resource.

105.15.5.2 int size

□ The pixel size of this Icon.

For example, 32 represents a 32x32 icon.

See Also The s ize attr ibute of the Icon element of a Meta Type Resource.

105.15.6 @ObjectClassDefinition
Generate a Meta Type Resource using the annotated type.

This annotation can be used without defining any element values since defaults can be generated
from the annotated type. Each method of the annotated type has an implied AttributeDefinition an-
notation if not explicitly annotated.

This annotation may only be used on annotation types and interface types. Use on concrete or ab-
stract class types is unsupported. If applied to an interface then all methods inherited from super
types are included as attributes.

This annotation is not processed at runtime. It must be processed by tools and used to generate a
Meta Type Resource document for the bundle.

See Also The OCD element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.6.1 String id default ""

□ The id of this ObjectClassDefinition.

If not specified, the id of this ObjectClassDefinition is the fully qualified name of the annotated type
using the dollar sign ('$ ' \u0024) to separate nested class names from the name of their enclosing
class. The id is not to be confused with a PID which can be specified by the pid() or factoryPid() ele-
ment.

See Also The id attr ibute of the OCD element of a Meta Type Resource.

105.15.6.2 String name default ""

□ The human readable name of this ObjectClassDefinition.

If not specified, the name of this ObjectClassDefinition is derived from the id(). For example, low
line ('_ ' \u005F) and dollar sign ('$ ' \u0024) are replaced with space (' ' \u0020) and space is inserted
between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the OCD element of a Meta Type Resource.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.3

Page 160 OSGi Compendium Release 6

105.15.6.3 String description default ""

□ The human readable description of this ObjectClassDefinition.

If not specified, the description of this ObjectClassDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the OCD element of a Meta Type Resource.

105.15.6.4 String localization default ""

□ The localization resource of this ObjectClassDefinition.

This refers to a resource property entry in the bundle that can be augmented with locale informa-
tion. If not specified, the localization resource for this ObjectClassDefinition is the string "OSGI-INF/
l10n/" followed by the id().

See Also The local izat ion attr ibute of the MetaData element of a Meta Type Resource.

105.15.6.5 String[] pid default {}

□ The PIDs associated with this ObjectClassDefinition.

For each specified PID, a Designate element with a pid attribute is generated that references this Ob-
jectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

See Also The pid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.6 String[] factoryPid default {}

□ The factory PIDs associated with this ObjectClassDefinition.

For each specified factory PID, a Designate element with a factoryPid attribute is generated that ref-
erences this ObjectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

See Also The factoryPid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.7 Icon[] icon default {}

□ The icon resources associated with this ObjectClassDefinition.

For each specified Icon, an Icon element is generated for this ObjectClassDefinition. If not specified,
no Icon elements will be generated.

See Also The Icon element of a Meta Type Resource.

105.15.7 @Option
Option information for an AttributeDefinition.

See Also AttributeDefinition.options()

Retention CLASS

Target

105.15.7.1 String label default ""

□ The human readable label of this Option.

If not specified, the label of this Option is the empty string.

If the label begins with the percent sign ('%' \u0025), the label can be localized.

Metatype Service Specification Version 1.3 References

OSGi Compendium Release 6 Page 161

See Also The label attr ibute of the Option element of a Meta Type Resource.

105.15.7.2 String value

□ The value of this Option.

See Also The value attr ibute of the Option element of a Meta Type Resource.

105.16 References

[1] LDAP.
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

[2] Understanding and Deploying LDAP Directory services
Timothy Howes, et al. ISBN 1-57870-070-1, MacMillan Technical publishing.

105.17 Changes
• Changed vector references to list.
• Updates schema to 1.3.0. This includes changing Char to Character to conform with other OSGi

schema and allowing some more flexibility in ordering of elements.
• Clarified that Meta Type Service will only search for ManagedService and ManagedServiceFacto-

ry service objects that implement MetaTypeProvider if no meta type resources are found in the
bundle.

• Clarify that if multiple sources define the same Object Class Definition, that Meta Type Provider
services must take precedence over Managed Service [Factory] objects implementing MetaType-
Provider or Meta Type Resources.

• The Meta Type Resource schema is updated to allow an OCD element to contain zero AD ele-
ments.

• New Meta Type Annotations. See Meta Type Annotations on page 145.
• Added capabilities that Metatype Service specification implementations must provide. See Capa-

bilities on page 147.

Changes Metatype Service Specification Version 1.3

Page 162 OSGi Compendium Release 6

PreferencesService Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 163

106 PreferencesService Specification

Version 1.1

106.1 Introduction
Many bundles need to save some data persistently - in other words, the data is required to survive
the stopping and restarting of the bundle and OSGi Framework. In some cases, the data is specific
to a particular user. For example, imagine a bundle that implements some kind of game. User specif-
ic persistent data could include things like the user's preferred difficulty level for playing the game.
Some data is not specific to a user, which we call system data. An example would be a table of high
scores for the game.

Bundles which need to persist data in an OSGi environment can use the file system via
org.osgi .f ramework.BundleContext.getDataFi le . A file system, however, can store only bytes and
characters, and provides no direct support for named values and different data types.

A popular class used to address this problem for Java applications is the java.ut i l .Propert ies class.
This class allows data to be stored as key/value pairs, called properties. For example, a property could
have a name com.acme.fudd and a value of elmer . The Propert ies class has rudimentary support for
storage and retrieving with its load and store methods. The Propert ies class, however, has the fol-
lowing limitations:

• Does not support a naming hierarchy.
• Only supports Str ing property values.
• Does not allow its content to be easily stored in a back-end system.
• Has no user name-space management.

Since the Propert ies class was introduced in Java 1.0, efforts have been undertaken to replace it with
a more sophisticated mechanism. One of these efforts is this Preferences Service specification.

106.1.1 Essentials
The focus of this specification is simplicity, not reliable access to stored data. This specification does
not define a general database service with transactions and atomicity guarantees. Instead, it is opti-
mized to deliver the stored information when needed, but it will return defaults, instead of throw-
ing an exception, when the back-end store is not available. This approach may reduce the reliabili-
ty of the data, but it makes the service easier to use, and allows for a variety of compact and efficient
implementations.

This API is made easier to use by the fact that many bundles can be written to ignore any problems
that the Preferences Service may have in accessing the back-end store, if there is one. These bundles
will mostly or exclusively use the methods of the Preferences interface which are not declared to
throw a BackingStoreException .

This service only supports the storage of scalar values and byte arrays. It is not intended for storing large
data objects like documents or images. No standard limits are placed on the size of data objects
which can be stored, but implementations are expected to be optimized for the handling of small
objects.

A hierarchical naming model is supported, in contrast to the flat model of the Propert ies class. A hi-
erarchical model maps naturally to many computing problems. For example, maintaining informa-

Introduction PreferencesService Specification Version 1.1

Page 164 OSGi Compendium Release 6

tion about the positions of adjustable seats in a car requires information for each seat. In a hierarchy,
this information can be modeled as a node per seat.

A potential benefit of the Preferences Service is that it allows user specific preferences data to be
kept in a well defined place, so that a user management system could locate it. This benefit could be
useful for such operations as cleaning up files when a user is removed from the system, or to allow a
user's preferences to be cloned for a new user.

The Preferences Service does not provide a mechanism to allow one bundle to access the preferences
data of another. If a bundle wishes to allow another bundle to access its preferences data, it can pass
a Preferences or PreferencesService object to that bundle.

The Preferences Service is not intended to provide configuration management functionality. For in-
formation regarding Configuration Management, refer to the Configuration Admin Service Specifica-
tion on page 87.

106.1.2 Entities
The PreferencesService is a relatively simple service. It provides access to the different roots of Pref-
erences trees. A single system root node and any number of user root nodes are supported. Each node
of such a tree is an object that implements the Preferences interface.

This Preferences interface provides methods for traversing the tree, as well as methods for access-
ing the properties of the node. This interface also contains the methods to flush data into persistent
storage, and to synchronize the in-memory data cache with the persistent storage.

All nodes except root nodes have a parent. Nodes can have multiple children.

Figure 106.1 Preferences Class Diagram

Preferences Node
implementation

<<interface>>
Preferences
Service

<<interface>>
Preferences

Preferences
Service
implementation

a bundle

root system node

root user nodes

1

1

1

0..n

0..n 1nodes

user name

node name

Bundle
Preferences

Backing Store
Exception

parent

0..n

1

1:n bundle - service

bundle id

106.1.3 Operation
The purpose of the Preferences Service specification is to allow bundles to store and retrieve prop-
erties stored in a tree of nodes, where each node implements the Preferences interface. The Prefer-
encesService interface allows a bundle to create or obtain a Preferences tree for system properties,
as well as a Preferences tree for each user of the bundle.

PreferencesService Specification Version 1.1 Preferences Interface

OSGi Compendium Release 6 Page 165

This specification allows for implementations where the data is stored locally on the Framework or
remotely on a back-end system.

106.2 Preferences Interface
Preferences is an interface that defines the methods to manipulate a node and the tree to which it
belongs. A Preferences object contains:

• A set of properties in the form of key/value pairs.
• A parent node.
• A number of child nodes.

106.2.1 Hierarchies
A valid Preferences object always belongs to a tree. A tree is identified by its root node. In such a tree,
a Preferences object always has a single parent, except for a root node which has a nul l parent.

The root node of a tree can be found by recursively calling the parent() method of a node until nul l is
returned. The nodes that are traversed this way are called the ancestors of a node.

Each Preferences object has a private name-space for child nodes. Each child node has a name
that must be unique among its siblings. Child nodes are created by getting a child node with the
node(Str ing) method. The Str ing argument of this call contains a path name. Path names are ex-
plained in the next section.

Child nodes can have child nodes recursively. These objects are called the descendants of a node.

Descendants are automatically created when they are obtained from a Preferences object, includ-
ing any intermediate nodes that are necessary for the given path. If this automatic creation is not de-
sired, the nodeExists(Str ing) method can be used to determine if a node already exists.

Figure 106.2 Categorization of nodes in a tree

root

parent

current

children

ancestors

descendants

tree

106.2.2 Naming
Each node has a name relative to its parent. A name may consist of Unicode characters except for
the solidus (' / ' \u002F). There are no special names, like ". ." or "." .

Empty names are reserved for root nodes. Node names that are directly created by a bundle must al-
ways contain at least one character.

Preferences node names and property keys are case sensitive: for example, "org.osgi" and "oRg.oSgI"
are two distinct names.

The Preferences Service supports different roots, so there is no absolute root for the Preferences Ser-
vice. This concept is similar to the Windows Registry that also supports a number of roots.

A path consists of one or more node names, separated by a solidus (' / ' \u002F). Paths beginning with
a solidus (' / ' \u002F) are called absolute paths while other paths are called relative paths. Paths cannot

Preferences Interface PreferencesService Specification Version 1.1

Page 166 OSGi Compendium Release 6

end with a solidus (' / ' \u002F) except for the special case of the root node which has absolute path
"/" .

Path names are always associated with a specific node; this node is called the current node in the fol-
lowing descriptions. Paths identify nodes as follows.

• Absolute path - The first "/" is removed from the path, and the remainder of the path is interpreted
as a relative path from the tree's root node.

• Relative path -
• If the path is the empty string, it identifies the current node.
• If the path is a name (does not contain a "/"), then it identifies the child node with that name.
• Otherwise, the first name from the path identifies a child of the current node. The name and

solidus (' / ' \u002F) are then removed from the path, and the remainder of the path is inter-
preted as a relative path from the child node.

106.2.3 Tree Traversal Methods
A tree can be traversed and modified with the following methods:

• chi ldrenNames() - Returns the names of the child nodes.
• parent() - Returns the parent node.
• removeNode() - Removes this node and all its descendants.
• node(Str ing) - Returns a Preferences object, which is created if it does not already exist. The para-

meter is an absolute or relative path.
• nodeExists(Str ing) - Returns true if the Preferences object identified by the path parameter exists.

106.2.4 Properties
Each Preferences node has a set of key/value pairs called properties. These properties consist of:

• Key - A key is a Str ing object and case sensitive.
• The name-space of these keys is separate from that of the child nodes. A Preferences node could

have both a child node named fudd and a property named fudd .
• Value - A value can always be stored and retrieved as a Str ing object. Therefore, it must be possi-

ble to encode/decode all values into/from Str ing objects (though it is not required to store them
as such, an implementation is free to store and retrieve the value in any possible way as long as
the Str ing semantics are maintained). A number of methods are available to store and retrieve
values as primitive types. These methods are provided both for the convenience of the user of the
Preferences interface, and to allow an implementation the option of storing the values in a more
compact form.

All the keys that are defined in a Preferences object can be obtained with the keys() method. The
clear() method can be used to clear all properties from a Preferences object. A single property can be
removed with the remove(Str ing) method.

106.2.5 Storing and Retrieving Properties
The Preferences interface has a number of methods for storing and retrieving property values based
on their key. All the put* methods take as parameters a key and a value. All the get* methods take
as parameters a key and a default value.

• put(Str ing,Str ing) , get(Str ing,Str ing)
• putBoolean(Str ing,boolean) , getBoolean(Str ing,boolean)
• putInt(Str ing, int) , getInt(Str ing, int)
• putLong(Str ing, long) , getLong(Str ing, long)
• putFloat(Str ing,f loat) , getFloat(Str ing,f loat)

PreferencesService Specification Version 1.1 Concurrency

OSGi Compendium Release 6 Page 167

• putDouble(Str ing,double) , getDouble(Str ing,double)
• putByteArray(Str ing,byte[]) , getByteArray(Str ing,byte[])

The methods act as if all the values are stored as Str ing objects, even though implementations may
use different representations for the different types. For example, a property can be written as a
Str ing object and read back as a f loat , providing that the string can be parsed as a valid Java f loat
object. In the event of a parsing error, the get* methods do not raise exceptions, but instead return
their default parameters.

106.2.6 Defaults
All get* methods take a default value as a parameter. The reasons for having such a default are:

• When a property for a Preferences object has not been set, the default is returned instead. In
most cases, the bundle developer does not have to distinguish whether or not a property exists.

• A best effort strategy has been a specific design choice for this specification. The bundle developer
should not have to react when the back-end store is not available. In those cases, the default val-
ue is returned without further notice.

Bundle developers who want to assure that the back-end store is available should call the f lush or
sync method. Either of these methods will throw a BackingStoreException if the back-end store
is not available.

106.3 Concurrency
This specification specifically allows an implementation to modify Preferences objects in a back-
end store. If the back-end store is shared by multiple processes, concurrent updates may cause differ-
ences between the back-end store and the in-memory Preferences objects.

Bundle developers can partly control this concurrency with the f lush() and sync() method. Both
methods operate on a Preferences object.

The f lush method performs the following actions:

• Stores (makes persistent) any ancestors (including the current node) that do not exist in the per-
sistent store.

• Stores any properties which have been modified in this node since the last time it was flushed.
• Removes from the persistent store any child nodes that were removed from this object since the

last time it was flushed.
• Flushes all existing child nodes.

The sync method will first flush, and then ensure that any changes that have been made to the cur-
rent node and its descendants in the back-end store (by some other process) take effect. For exam-
ple, it could fetch all the descendants into a local cache, or it could clear all the descendants from the
cache so that they will be read from the back-end store as required.

If either method fails, a BackingStoreException is thrown.

The f lush or sync methods provide no atomicity guarantee. When updates to the same back-end
store are done concurrently by two different processes, the result may be that changes made by dif-
ferent processes are intermingled. To avoid this problem, implementations may simply provide a
dedicated section (or name-space) in the back-end store for each OSGi environment, so that clashes
do not arise, in which case there is no reason for bundle programmers to ever call sync .

In cases where sync is used, the bundle programmer needs to take into account that changes from
different processes may become intermingled, and the level of granularity that can be assumed is
the individual property level. Hence, for example, if two properties need to be kept in lockstep, so

PreferencesService Interface PreferencesService Specification Version 1.1

Page 168 OSGi Compendium Release 6

that one should not be changed without a corresponding change to the other, consider combining
them into a single property, which would then need to be parsed into its two constituent parts.

106.4 PreferencesService Interface
The PreferencesService is obtained from the Framework's service registry in the normal way. Its
purpose is to provide access to Preferences root nodes.

A Preferences Service maintains a system root and a number of user roots. User roots are automati-
cally created, if necessary, when they are requested. Roots are maintained on a per bundle basis. For
example, a user root called elmer in one bundle is distinct from a user root with the same name in
another bundle. Also, each bundle has its own system root. Implementations should use a Service-
Factory service object to create a separate PreferencesService object for each bundle.

The precise description of user and system will vary from one bundle to another. The Preference Ser-
vice only provides a mechanism, the bundle may use this mechanism in any desired way.

The PreferencesService interface has the following methods to access the system root and user
roots:

• getSystemPreferences() - Return a Preferences object that is the root of the system preferences
tree.

• getUserPreferences(Str ing) - Return a Preferences object associated with the user name that is
given as argument. If the user does not exist, a new root is created atomically.

• getUsers() - Return an array of the names of all the users for whom a Preferences tree exists.

106.5 Cleanup
The Preferences Service must listen for bundle uninstall events, and remove all the preferences data
for the bundle that is being uninstalled. The Preferences Service must use the bundle id for the asso-
ciation and not the location.

It also must handle the possibility of a bundle getting uninstalled while the Preferences Service is
stopped. Therefore, it must check on startup whether preferences data exists for any bundle which
is not currently installed. If it does, that data must be removed.

106.6 org.osgi.service.prefs

Preferences Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.prefs ; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.prefs ; vers ion="[1.1 ,1 .2)"

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 6 Page 169

106.6.1 Summary

• BackingStoreException - Thrown to indicate that a preferences operation could not complete
because of a failure in the backing store, or a failure to contact the backing store.

• Preferences - A node in a hierarchical collection of preference data.
• PreferencesService - The Preferences Service.

106.6.2 public class BackingStoreException
extends Exception
Thrown to indicate that a preferences operation could not complete because of a failure in the back-
ing store, or a failure to contact the backing store.

106.6.2.1 public BackingStoreException(String message)

message The detail message.

□ Constructs a BackingStoreException with the specified detail message.

106.6.2.2 public BackingStoreException(String message,Throwable cause)

message The detail message.

cause The cause of the exception. May be nul l .

□ Constructs a BackingStoreException with the specified detail message.

Since 1.1

106.6.2.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.1

106.6.2.4 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.1

106.6.3 public interface Preferences
A node in a hierarchical collection of preference data.

This interface allows applications to store and retrieve user and system preference data. This data
is stored persistently in an implementation-dependent backing store. Typical implementations in-
clude flat files, OS-specific registries, directory servers and SQL databases.

For each bundle, there is a separate tree of nodes for each user, and one for system preferences. The
precise description of "user" and "system" will vary from one bundle to another. Typical information
stored in the user preference tree might include font choice, and color choice for a bundle which in-
teracts with the user via a servlet. Typical information stored in the system preference tree might in-
clude installation data, or things like high score information for a game program.

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 170 OSGi Compendium Release 6

Nodes in a preference tree are named in a similar fashion to directories in a hierarchical file system.
Every node in a preference tree has a node name (which is not necessarily unique), a unique absolute
path name , and a path name relative to each ancestor including itself.

The root node has a node name of the empty Str ing object (""). Every other node has an arbitrary
node name, specified at the time it is created. The only restrictions on this name are that it cannot
be the empty string, and it cannot contain the slash character ('/').

The root node has an absolute path name of "/" . Children of the root node have absolute path names
of "/" + <node name> . All other nodes have absolute path names of <parent's absolute path name> + "/"
+ <node name> . Note that all absolute path names begin with the slash character.

A node n 's path name relative to its ancestor a is simply the string that must be appended to a 's
absolute path name in order to form n 's absolute path name, with the initial slash character (if
present) removed. Note that:

• No relative path names begin with the slash character.
• Every node's path name relative to itself is the empty string.
• Every node's path name relative to its parent is its node name (except for the root node, which

does not have a parent).
• Every node's path name relative to the root is its absolute path name with the initial slash char-

acter removed.

Note finally that:

• No path name contains multiple consecutive slash characters.
• No path name with the exception of the root's absolute path name end in the slash character.
• Any string that conforms to these two rules is a valid path name.

Each Preference node has zero or more properties associated with it, where a property consists of a
name and a value. The bundle writer is free to choose any appropriate names for properties. Their
values can be of type Str ing ,long ,int ,boolean , byte[] , f loat , or double but they can always be ac-
cessed as if they were Str ing objects.

All node name and property name comparisons are case-sensitive.

All of the methods that modify preference data are permitted to operate asynchronously; they may
return immediately, and changes will eventually propagate to the persistent backing store, with an
implementation-dependent delay. The f lush method may be used to synchronously force updates to
the backing store.

Implementations must automatically attempt to flush to the backing store any pending updates for
a bundle's preferences when the bundle is stopped or otherwise ungets the Preferences Service.

The methods in this class may be invoked concurrently by multiple threads in a single Java Virtu-
al Machine (JVM) without the need for external synchronization, and the results will be equivalent
to some serial execution. If this class is used concurrently by multiple JVMs that store their prefer-
ence data in the same backing store, the data store will not be corrupted, but no other guarantees are
made concerning the consistency of the preference data.

No Implement Consumers of this API must not implement this interface

106.6.3.1 public String absolutePath()

□ Returns this node's absolute path name. Note that:

• Root node - The path name of the root node is "/" .
• Slash at end - Path names other than that of the root node may not end in slash (' / ').
• Unusual names -"." and ". ." have no special significance in path names.

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 6 Page 171

• Illegal names - The only illegal path names are those that contain multiple consecutive slashes,
or that end in slash and are not the root.

Returns this node's absolute path name.

106.6.3.2 public String[] childrenNames() throws BackingStoreException

□ Returns the names of the children of this node. (The returned array will be of size zero if this node
has no children and not nul l !)

Returns the names of the children of this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.3 public void clear() throws BackingStoreException

□ Removes all of the properties (key-value associations) in this node. This call has no effect on any de-
scendants of this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also remove(String)

106.6.3.4 public void flush() throws BackingStoreException

□ Forces any changes in the contents of this node and its descendants to the persistent store.

Once this method returns successfully, it is safe to assume that all changes made in the subtree root-
ed at this node prior to the method invocation have become permanent.

Implementations are free to flush changes into the persistent store at any time. They do not need to
wait for this method to be called.

When a flush occurs on a newly created node, it is made persistent, as are any ancestors (and descen-
dants) that have yet to be made persistent. Note however that any properties value changes in ances-
tors are not guaranteed to be made persistent.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also sync()

106.6.3.5 public String get(String key,String def)

key key whose associated value is to be returned.

def the value to be returned in the event that this node has no value associated with key or the backing
store is inaccessible.

□ Returns the value associated with the specified key in this node. Returns the specified default if there
is no value associated with the key , or the backing store is inaccessible.

Returns the value associated with key , or def if no value is associated with key .

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 172 OSGi Compendium Release 6

NullPointerException– if key is nul l . (A nul l default is permitted.)

106.6.3.6 public boolean getBoolean(String key,boolean def)

key key whose associated value is to be returned as a boolean .

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a boolean or the backing store is inaccessible.

□ Returns the boolean value represented by the Str ing object associated with the specified key in this
node. Valid strings are "true", which represents true , and "false", which represents fa lse . Case is ig-
nored, so, for example, "TRUE" and "False" are also valid. This method is intended for use in conjunc-
tion with the putBoolean(String, boolean) method.

Returns the specified default if there is no value associated with the key , the backing store is inacces-
sible, or if the associated value is something other than "true" or "false", ignoring case.

Returns the boolean value represented by the Str ing object associated with key in this node, or nul l if the as-
sociated value does not exist or cannot be interpreted as a boolean .

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also get(String,String), putBoolean(String,boolean)

106.6.3.7 public byte[] getByteArray(String key,byte[] def)

key key whose associated value is to be returned as a byte[] object.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a byte[] type, or the backing store is inaccessible.

□ Returns the byte[] value represented by the Str ing object associated with the specified key in
this node. Valid Str ing objects are Base64 encoded binary data, as defined in RFC 2045 [http://
www.ietf.org/rfc/rfc2045.txt], Section 6.8, with one minor change: the string must consist solely of
characters from the Base64 Alphabet ; no newline characters or extraneous characters are permitted.
This method is intended for use in conjunction with the putByteArray(String, byte[]) method.

Returns the specified default if there is no value associated with the key , the backing store is inacces-
sible, or if the associated value is not a valid Base64 encoded byte array (as defined above).

Returns the byte[] value represented by the Str ing object associated with key in this node, or def if the associ-
ated value does not exist or cannot be interpreted as a byte[] .

Throws NullPointerException– if key is nul l . (A nul l value for def is permitted.)

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also get(String,String), putByteArray(String,byte[])

106.6.3.8 public double getDouble(String key,double def)

key key whose associated value is to be returned as a double value.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a double type or the backing store is inaccessible.

□ Returns the double value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to a double value as by Double.parseDouble(Str ing) . Returns
the specified default if there is no value associated with the key , the backing store is inaccessible, or
if Double.parseDouble(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putDouble method.

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 6 Page 173

Returns the double value represented by the Str ing object associated with key in this node, or def if the asso-
ciated value does not exist or cannot be interpreted as a double type.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

NullPointerException– if key is nul l .

See Also putDouble(String,double), get(String,String)

106.6.3.9 public float getFloat(String key,float def)

key key whose associated value is to be returned as a f loat value.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a f loat type or the backing store is inaccessible.

□ Returns the float value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to a f loat value as by Float.parseFloat(Str ing) . Returns the
specified default if there is no value associated with the key , the backing store is inaccessible, or
if Float.parseFloat(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putFloat(String, float) method.

Returns the f loat value represented by the string associated with key in this node, or def if the associated val-
ue does not exist or cannot be interpreted as a f loat type.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

NullPointerException– if key is nul l .

See Also putFloat(String,float), get(String,String)

106.6.3.10 public int getInt(String key,int def)

key key whose associated value is to be returned as an int .

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as an int or the backing store is inaccessible.

□ Returns the int value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to an int as by Integer.parseInt(Str ing) . Returns the spec-
ified default if there is no value associated with the key , the backing store is inaccessible, or if
Integer.parseInt(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putInt(String, int) method.

Returns the int value represented by the Str ing object associated with key in this node, or def if the associated
value does not exist or cannot be interpreted as an int type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also putInt(String,int), get(String,String)

106.6.3.11 public long getLong(String key,long def)

key key whose associated value is to be returned as a long value.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a long type or the backing store is inaccessible.

□ Returns the long value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to a long as by Long.parseLong(Str ing) . Returns the spec-
ified default if there is no value associated with the key , the backing store is inaccessible, or if

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 174 OSGi Compendium Release 6

Long.parseLong(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putLong(String, long) method.

Returns the long value represented by the Str ing object associated with key in this node, or def if the associat-
ed value does not exist or cannot be interpreted as a long type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also putLong(String,long), get(String,String)

106.6.3.12 public String[] keys() throws BackingStoreException

□ Returns all of the keys that have an associated value in this node. (The returned array will be of size
zero if this node has no preferences and not nul l !)

Returns an array of the keys that have an associated value in this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.13 public String name()

□ Returns this node's name, relative to its parent.

Returns this node's name, relative to its parent.

106.6.3.14 public Preferences node(String pathName)

pathName the path name of the Preferences object to return.

□ Returns a named Preferences object (node), creating it and any of its ancestors if they do not already
exist. Accepts a relative or absolute pathname. Absolute pathnames (which begin with ' / ') are inter-
preted relative to the root of this node. Relative pathnames (which begin with any character other
than ' / ') are interpreted relative to this node itself. The empty string ("") is a valid relative pathname,
referring to this node itself.

If the returned node did not exist prior to this call, this node and any ancestors that were created by
this call are not guaranteed to become persistent until the f lush method is called on the returned
node (or one of its descendants).

Returns the specified Preferences object.

Throws I l legalArgumentException– if the path name is invalid.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

NullPointerException– if path name is nul l .

See Also flush()

106.6.3.15 public boolean nodeExists(String pathName) throws BackingStoreException

pathName the path name of the node whose existence is to be checked.

□ Returns true if the named node exists. Accepts a relative or absolute pathname. Absolute pathnames
(which begin with ' / ') are interpreted relative to the root of this node. Relative pathnames (which
begin with any character other than ' / ') are interpreted relative to this node itself. The pathname ""
is valid, and refers to this node itself.

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 6 Page 175

If this node (or an ancestor) has already been removed with the removeNode() method, it is legal to
invoke this method, but only with the pathname "" ; the invocation will return fa lse . Thus, the id-
iom p.nodeExists("") may be used to test whether p has been removed.

Returns true if the specified node exists.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method and pathname is not the empty string ("").

I l legalArgumentException– if the path name is invalid (i.e., it contains multiple consecutive slash
characters, or ends with a slash character and is more than one character long).

106.6.3.16 public Preferences parent()

□ Returns the parent of this node, or nul l if this is the root.

Returns the parent of this node.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.17 public void put(String key,String value)

key key with which the specified value is to be associated.

value value to be associated with the specified key.

□ Associates the specified value with the specified key in this node.

Throws NullPointerException– if key or value is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.18 public void putBoolean(String key,boolean value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified boolean value with the specified key in this
node. The associated string is "true" if the value is true , and "false" if it is fa lse . This method is in-
tended for use in conjunction with the getBoolean(String, boolean) method.

Implementor's note: it is not necessary that the value be represented by a string in the backing store.
If the backing store supports boolean values, it is not unreasonable to use them. This implementa-
tion detail is not visible through the Preferences API, which allows the value to be read as a boolean
(with getBoolean) or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getBoolean(String,boolean), get(String,String)

106.6.3.19 public void putByteArray(String key,byte[] value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified byte[] with the specified key in this node.
The associated Str ing object the Base64 encoding of the byte[] , as defined in RFC 2045 [http://
www.ietf.org/rfc/rfc2045.txt], Section 6.8, with one minor change: the string will consist solely of

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 176 OSGi Compendium Release 6

characters from the Base64 Alphabet ; it will not contain any newline characters. This method is in-
tended for use in conjunction with the getByteArray(String, byte[]) method.

Implementor's note: it is not necessary that the value be represented by a Str ing type in the back-
ing store. If the backing store supports byte[] values, it is not unreasonable to use them. This imple-
mentation detail is not visible through the Preferences API, which allows the value to be read as an
a byte[] object (with getByteArray) or a Str ing object (with get).

Throws NullPointerException– if key or value is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getByteArray(String,byte[]), get(String,String)

106.6.3.20 public void putDouble(String key,double value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified double value with the specified key in this
node. The associated Str ing object is the one that would be returned if the double value were
passed to Double.toStr ing(double) . This method is intended for use in conjunction with the
getDouble(String, double) method

Implementor's note: it is not necessary that the value be represented by a string in the backing store.
If the backing store supports double values, it is not unreasonable to use them. This implementa-
tion detail is not visible through the Preferences API, which allows the value to be read as a double
(with getDouble) or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getDouble(String,double)

106.6.3.21 public void putFloat(String key,float value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified f loat value with the specified key in this node.
The associated Str ing object is the one that would be returned if the f loat value were passed to
Float.toStr ing(float) . This method is intended for use in conjunction with the getFloat(String, float)
method.

Implementor's note: it is not necessary that the value be represented by a string in the backing store.
If the backing store supports f loat values, it is not unreasonable to use them. This implementation
detail is not visible through the Preferences API, which allows the value to be read as a f loat (with
getFloat) or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getFloat(String,float)

106.6.3.22 public void putInt(String key,int value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 6 Page 177

□ Associates a Str ing object representing the specified int value with the specified key in this
node. The associated string is the one that would be returned if the int value were passed to
Integer.toStr ing(int) . This method is intended for use in conjunction with getInt(String, int)
method.

Implementor's note: it is not necessary that the property value be represented by a Str ing object in
the backing store. If the backing store supports integer values, it is not unreasonable to use them.
This implementation detail is not visible through the Preferences API, which allows the value to be
read as an int (with getInt or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getInt(String,int)

106.6.3.23 public void putLong(String key,long value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified long value with the specified key in this node.
The associated Str ing object is the one that would be returned if the long value were passed to
Long.toStr ing(long) . This method is intended for use in conjunction with the getLong(String, long)
method.

Implementor's note: it is not necessary that the value be represented by a Str ing type in the backing
store. If the backing store supports long values, it is not unreasonable to use them. This implemen-
tation detail is not visible through the Preferences API, which allows the value to be read as a long
(with getLong or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getLong(String,long)

106.6.3.24 public void remove(String key)

key key whose mapping is to be removed from this node.

□ Removes the value associated with the specified key in this node, if any.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also get(String,String)

106.6.3.25 public void removeNode() throws BackingStoreException

□ Removes this node and all of its descendants, invalidating any properties contained in the removed
nodes. Once a node has been removed, attempting any method other than name() ,absolutePath()
or nodeExists("") on the corresponding Preferences instance will fail with an I l legalStateException .
(The methods defined on Object can still be invoked on a node after it has been removed; they will
not throw I l legalStateException .)

The removal is not guaranteed to be persistent until the f lush method is called on the parent of this
node.

Throws I l legalStateException– if this node (or an ancestor) has already been removed with the removeN-
ode() method.

References PreferencesService Specification Version 1.1

Page 178 OSGi Compendium Release 6

BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

See Also flush()

106.6.3.26 public void sync() throws BackingStoreException

□ Ensures that future reads from this node and its descendants reflect any changes that were com-
mitted to the persistent store (from any VM) prior to the sync invocation. As a side-effect, forces
any changes in the contents of this node and its descendants to the persistent store, as if the f lush
method had been invoked on this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also flush()

106.6.4 public interface PreferencesService
The Preferences Service.

Each bundle using this service has its own set of preference trees: one for system preferences, and
one for each user.

A PreferencesService object is specific to the bundle which obtained it from the service registry. If
a bundle wishes to allow another bundle to access its preferences, it should pass its PreferencesSer-
vice object to that bundle.

No Implement Consumers of this API must not implement this interface

106.6.4.1 public Preferences getSystemPreferences()

□ Returns the root system node for the calling bundle.

Returns The root system node for the calling bundle.

106.6.4.2 public Preferences getUserPreferences(String name)

name The user for which to return the preference root node.

□ Returns the root node for the specified user and the calling bundle.

Returns The root node for the specified user and the calling bundle.

106.6.4.3 public String[] getUsers()

□ Returns the names of users for which node trees exist.

Returns The names of users for which node trees exist.

106.7 References

[1] JSR 10 Preferences API
http://www.jcp.org/jsr/detail/10.jsp

[2] RFC 2045 Base 64 encoding
http://www.ietf.org/rfc/rfc2045.txt

User Admin Service Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 179

107 User Admin Service Specification

Version 1.1

107.1 Introduction
OSGi frameworks are often used in places where end users or devices initiate actions. These kinds
of actions inevitably create a need for authenticating the initiator. Authenticating can be done in
many different ways, including with passwords, one-time token cards, biometrics, and certificates.

Once the initiator is authenticated, it is necessary to verify that this principal is authorized to per-
form the requested action. This authorization can only be decided by the operator of the OSGi envi-
ronment, and thus requires administration.

The User Admin service provides this type of functionality. Bundles can use the User Admin service
to authenticate an initiator and represent this authentication as an Authorizat ion object. Bundles
that execute actions on behalf of this user can use the Authorizat ion object to verify if that user is
authorized.

The User Admin service provides authorization based on who runs the code, instead of using the Ja-
va code-based permission model. See [1] The Java Security Architecture for JDK 1.2. It performs a role
similar to [2] Java Authentication and Authorization Service.

107.1.1 Essentials

• Authentication - A large number of authentication schemes already exist, and more will be devel-
oped. The User Admin service must be flexible enough to adapt to the many different authentica-
tion schemes that can be run on a computer system.

• Authorization - All bundles should use the User Admin service to authenticate users and to find
out if those users are authorized. It is therefore paramount that a bundle can find out authoriza-
tion information with little effort.

• Security - Detailed security, based on the Framework security model, is needed to provide safe ac-
cess to the User Admin service. It should allow limited access to the credentials and other proper-
ties.

• Extensibility - Other bundles should be able to build on the User Admin service. It should be possi-
ble to examine the information from this service and get real-time notifications of changes.

• Properties - The User Admin service must maintain a persistent database of users. It must be possi-
ble to use this database to hold more information about this user.

• Administration - Administering authorizations for each possible action and initiator is time-con-
suming and error-prone. It is therefore necessary to have mechanisms to group end users and
make it simple to assign authorizations to all members of a group at one time.

107.1.2 Entities
This Specification defines the following User Admin service entities:

• User Admin - This interface manages a database of named roles which can be used for authoriza-
tion and authentication purposes.

• Role - This interface exposes the characteristics shared by all roles: a name, a type, and a set of
properties.

Introduction User Admin Service Specification Version 1.1

Page 180 OSGi Compendium Release 6

• User - This interface (which extends Role) is used to represent any entity which may have creden-
tials associated with it. These credentials can be used to authenticate an initiator.

• Group - This interface (which extends User) is used to contain an aggregation of named Role ob-
jects (Group or User objects).

• Authorization - This interface encapsulates an authorization context on which bundles can base
authorization decisions.

• User Admin Event - This class is used to represent a role change event.
• User Admin Listener - This interface provides a listener for events of type UserAdminEvent that

can be registered as a service.
• User Admin Permission - This permission is needed to configure and access the roles managed by a

User Admin service.
• Role.USER_ANYONE - This is a special User object that represents any user, it implies all

other User objects. It is also used when a Group is used with only basic members. The
Role.USER_ANYONE is then the only required member.

Figure 107.1 User Admin Service, org.osgi.service.useradmin

<<interface>>
User Admin

<<interface>>
Role

<<interface>>
Group

User Admin
Event

<<interface>>
Authorization

<<interface>>
User Admin
Listener

<<interface>>
User

User Admin
Permission

User Admin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation perform action

consult for
authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

ba
sic

 m
em

be
r

re
qu

ire
d

m
em

be
r

107.1.3 Operation
An Operator uses the User Admin service to define OSGi framework users and configure them with
properties, credentials, and roles.

A Role object represents the initiator of a request (human or otherwise). This specification defines
two types of roles:

User Admin Service Specification Version 1.1 Authentication

OSGi Compendium Release 6 Page 181

• User - A User object can be configured with credentials, such as a password, and properties, such
as address, telephone number, and so on.

• Group - A Group object is an aggregation of basic and required roles. Basic and required roles are
used in the authorization phase.

An OSGi framework can have several entry points, each of which will be responsible for authen-
ticating incoming requests. An example of an entry point is the Http Service, which delegates au-
thentication of incoming requests to the handleSecurity method of the HttpContext object that was
specified when the target servlet or resource of the request was registered.

The OSGi framework entry points should use the information in the User Admin service to authen-
ticate incoming requests, such as a password stored in the private credentials or the use of a certifi-
cate.

A bundle can determine if a request for an action is authorized by looking for a Role object that has
the name of the requested action.

The bundle may execute the action if the Role object representing the initiator implies the Role ob-
ject representing the requested action.

For example, an initiator Role object X implies an action Group object A if:

• X implies at least one of A's basic members, and
• X implies all of A's required members.

An initiator Role object X implies an action User object A if:

• A and X are equal.

The Authorizat ion class handles this non-trivial logic. The User Admin service can capture the priv-
ileges of an authenticated User object into an Authorizat ion object. The Authorizat ion.hasRole
method checks if the authenticate User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can authenticate the initiator
and place an Authorizat ion object in the request header. The servlet calls the hasRole method on this
Authorizat ion object to verify that the initiator has the authority to perform a certain action. See Au-
thentication on page 52.

107.2 Authentication
The authentication phase determines if the initiator is actually the one it says it is. Mechanisms to
authenticate always need some information related to the user or the OSGi framework to authenti-
cate an external user. This information can consist of the following:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

107.2.1 Repository
The User Admin service offers a repository of Role objects. Each Role object has a unique name and a
set of properties that are readable by anyone, and are changeable when the changer has the UserAd-
minPermission . Additionally, User objects, a sub-interface of Role , also have a set of private protected
properties called credentials. Credentials are an extra set of properties that are used to authenticate
users and that are protected by UserAdminPermission .

Authentication User Admin Service Specification Version 1.1

Page 182 OSGi Compendium Release 6

Properties are accessed with the Role.getPropert ies() method and credentials with the
User.getCredentials()method. Both methods return a Dictionary object containing key/value pairs.
The keys are Str ing objects and the values of the Dictionary object are limited to Str ing or byte[] ob-
jects.

This specification does not define any standard keys for the properties or credentials. The keys de-
pend on the implementation of the authentication mechanism and are not formally defined by OS-
Gi specifications.

The repository can be searched for objects that have a unique property (key/value pair) with the
method UserAdmin.getUser(Str ing,Str ing) . This makes it easy to find a specific user related to a
specific authentication mechanism. For example, a secure card mechanism that generates unique
tokens could have a serial number identifying the user. The owner of the card could be found with
the method

User owner = useradmin.getUser(
 "secure-card-serial", "132456712-1212");

If multiple User objects have the same property (key and value), a nul l is returned.

There is a convenience method to verify that a user has a credential without actually getting the cre-
dential. This is the User.hasCredential(Str ing,Object) method.

Access to credentials is protected on a name basis by UserAdminPermission . Because properties can
be read by anyone with access to a User object, UserAdminPermission only protects change access to
properties.

107.2.2 Basic Authentication
The following example shows a very simple authentication algorithm based on passwords.

The vendor of the authentication bundle uses the property "com.acme.basic- id" to contain the
name of a user as it logs in. This property is used to locate the User object in the repository. Next, the
credential "com.acme.password" contains the password and is compared to the entered password. If
the password is correct, the User object is returned. In all other cases a SecurityException is thrown.

public User authenticate(
 UserAdmin ua, String name, String pwd)
 throws SecurityException {
 User user = ua.getUser("com.acme.basicid",
 username);
 if (user == null)
 throw new SecurityException("No such user");

 if (!user.hasCredential("com.acme.password", pwd))
 throw new SecurityException(
 "Invalid password");
 return user;
}

107.2.3 Certificates
Authentication based on certificates does not require a shared secret. Instead, a certificate contains a
name, a public key, and the signature of one or more signers.

The name in the certificate can be used to locate a User object in the repository. Locating a User ob-
ject, however, only identifies the initiator and does not authenticate it.

1. The first step to authenticate the initiator is to verify that it has the private key of the certificate.

User Admin Service Specification Version 1.1 Authorization

OSGi Compendium Release 6 Page 183

2. Next, the User Admin service must verify that it has a User object with the right property, for ex-
ample "com.acme.cert i f icate"="Fudd" .

3. The next step is to see if the certificate is signed by a trusted source. The bundle could use a cen-
tral list of trusted signers and only accept certificates signed by those sources. Alternatively, it
could require that the certificate itself is already stored in the repository under a unique key as a
byte[] in the credentials.

4. In any case, once the certificate is verified, the associated User object is authenticated.

107.3 Authorization
The User Admin service authorization architecture is a role-based model. In this model, every ac-
tion that can be performed by a bundle is associated with a role. Such a role is a Group object (called
group from now on) from the User Admin service repository. For example, if a servlet could be used
to activate the alarm system, there should be a group named AlarmSystemActivat ion .

The operator can administrate authorizations by populating the group with User objects (users) and
other groups. Groups are used to minimize the amount of administration required. For example, it is
easier to create one Administrators group and add administrative roles to it rather than individually
administer all users for each role. Such a group requires only one action to remove or add a user as
an administrator.

The authorization decision can now be made in two fundamentally different ways:

An initiator could be allowed to carry out an action (represented by a Group object) if it implied any
of the Group object's members. For example, the AlarmSystemActivat ion Group object contains an
Administrators and a Family Group object:

 Administrators = { Elmer, Pepe,Bugs }
 Family = { Elmer, Pepe, Daffy }

 AlarmSystemActivation = { Administrators, Family}

Any of the four members Elmer , Pepe , Daffy , or Bugs can activate the alarm system.

Alternatively, an initiator could be allowed to perform an action (represented by a Group object) if it
implied all the Group object's members. In this case, using the same AlarmSystemActivat ion group,
only Elmer and Pepe would be authorized to activate the alarm system, since Daffy and Bugs are not
members of both the Administrators and Family Group objects.

The User Admin service supports a combination of both strategies by defining both a set of basic
members (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs}
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
 required = { Administrators }
 basic = { Family }

The difference is made when Role objects are added to the Group object. To add a basic
member, use the Group.addMember(Role) method. To add a required member, use the
Group.addRequiredMember(Role) method.

Basic members define the set of members that can get access and required members reduce this set
by requiring the initiator to imply each required member.

A User object implies a Group object if it implies the following:

Authorization User Admin Service Specification Version 1.1

Page 184 OSGi Compendium Release 6

• All of the Group's required members, and
• At least one of the Group's basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the standard user
Role.USER_ANYONE can be obtained from the User Admin service and added to the Group object.
This Role object is implied by anybody and therefore does not affect the required members.

107.3.1 The Authorization Object
The complexity of authorization is hidden in an Authorizat ion class. Normally, the authenticator
should retrieve an Authorizat ion object from the User Admin service by passing the authenticated
User object as an argument. This Authorizat ion object is then passed to the bundle that performs
the action. This bundle checks the authorization with the Authorizat ion.hasRole(Str ing) method.
The performing bundle must pass the name of the action as an argument. The Authorizat ion object
checks whether the authenticated user implies the Role object, specifically a Group object, with the
given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {
 if (auth.hasRole("AlarmSystemActivation")) {
 // activate the alarm
 ...
 }
 else throw new SecurityException(
 "Not authorized to activate alarm");
}

107.3.2 Authorization Example
This section demonstrates a possible use of the User Admin service. The service has a flexible model
and many other schemes are possible.

Assume an Operator installs an OSGi framework. Bundles in this environment have defined the fol-
lowing action groups:

AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding

Installing and uninstalling bundles could potentially extend this set. Therefore, the Operator also
defines a number of groups that can be used to contain the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the Operator installs it in a household with the following residents and
buddies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Second, the user groups need
to be assigned to the action groups.

User Admin Service Specification Version 1.1 Repository Maintenance

OSGi Compendium Release 6 Page 185

The following tables show how the groups could be assigned.

Table 107.1 Example Groups with Basic and Required Members

Groups Elmer Fudd Marvin Pepe Daffy Foghorn
Residents Basic Basic Basic Basic - -
Buddies - - - - Basic Basic
Chi ldren - - Basic Basic - -
Adults Basic Basic - - - -
Administrators Basic - - - - -

Table 107.2 Example Action Groups with their Basic and Required Members

Groups Residents Buddies Children Adults Admin
AlarmSystemControl Basic - - - Required
InternetAccess Basic - - Required -
TemperatureControl Basic - - Required -
PhotoAlbumEdit Basic - Basic Basic -
PhotoAlbumView Basic Basic - - -
PortForwarding Basic - - - Required

107.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository of User and Group objects.
It contains methods to create new Group and User objects with the createRole(Str ing, int) method.
The method is prepared so that the same signature can be used to create new types of roles in the fu-
ture. The interface also contains a method to remove a Role object.

The existing configuration can be obtained with methods that list all Role objects using a filter argu-
ment. This filter, which has the same syntax as the Framework filter, must only return the Role ob-
jects for which the filter matches the properties.

Several utility methods simplify getting User objects depending on their properties.

107.5 User Admin Events
Changes in the User Admin service can be determined in real time. Each User Admin service imple-
mentation must send a UserAdminEvent object to any service in the Framework service registry that
is registered under the UserAdminListener interface. This event must be send asynchronously from
the cause of the event. The way events must be delivered is the same as described in Delivering Events
of OSGi Core Release 6.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener{
 public void roleChanged(UserAdminEvent event) {
 ...
 }
}
public class MyActivator
 implements BundleActivator {
 public void start(BundleContext context) {
 context.registerService(
 UserAdminListener.class.getName(),

Security User Admin Service Specification Version 1.1

Page 186 OSGi Compendium Release 6

 new Listener(), null);
 }
 public void stop(BundleContext context) {}
}

It is not necessary to unregister the listener object when the bundle is stopped because the Frame-
work automatically unregisters it. Once registered, the UserAdminListener object must be notified
of all changes to the role repository.

107.5.1 Event Admin and User Admin Change Events
User Admin events must be delivered asynchronously to the Event Admin service by the implemen-
tation, if present. The topic of a User Admin Event is:

org/osgi/service/useradmin/UserAdmin/<eventtype>

The following event types are supported:

ROLE_CREATED
ROLE_CHANGED
ROLE_REMOVED

All User Admin Events must have the following properties:

• event - (UserAdminEvent) The event that was broadcast by the User Admin service.
• role - (Role) The Role object that was created, modified or removed.
• role.name - (Str ing) The name of the role.
• role.type - (Integer) One of ROLE, USER or GROUP .
• service - (ServiceReference) The Service Reference of the User Admin service.
• service. id - (Long) The User Admin service's ID.
• service.objectClass - (Str ing[]) The User Admin service's object class (which must include

org.osgi .service.useradmin.UserAdmin)
• service.pid - (Str ing) The User Admin service's persistent identity

107.6 Security
The User Admin service is related to the security model of the OSGi framework, but is complemen-
tary to the [1] The Java Security Architecture for JDK 1.2. The final permission of most code should be
the intersection of the Java 2 Permissions, which are based on the code that is executing, and the
User Admin service authorization, which is based on the user for whom the code runs.

107.6.1 User Admin Permission
The User Admin service defines the UserAdminPermission class that can be used to restrict bundles
in accessing credentials. This permission class has the following actions:

• changeProperty - This permission is required to modify properties. The name of the permission
is the prefix of the property name.

• changeCredential - This action permits changing credentials. The name of the permission is the
prefix of the name of the credential.

• getCredential - This action permits getting credentials. The name of the permission is the prefix
of the credential.

If the name of the permission is "admin" , it allows the owner to administer the repository. No action
is associated with the permission in that case.

User Admin Service Specification Version 1.1 Relation to JAAS

OSGi Compendium Release 6 Page 187

Otherwise, the permission name is used to match the property name. This name may end with a
".*" string to indicate a wildcard. For example, com.acme.* matches com.acme.fudd.elmer and
com.acme.bugs .

107.7 Relation to JAAS
At a glance, the Java Authorization and Authentication Service (JAAS) seems to be a very suitable
model for user administration. The OSGi organization, however, decided to develop an independent
User Admin service because JAAS was not deemed applicable. The reasons for this include depen-
dency on Java SE version 1.3 ("JDK 1.3") and existing mechanisms in the previous OSGi Service Gate-
way 1.0 specification.

107.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the java.security.DomainCombiner interface, which
provides a means to dynamically update the Protect ionDomain objects affiliated with an Access-
ControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the SubjectDomainCombiner object,
which implements the DomainCombiner interface, is used to update Protect ionDomain objects. The
permissions of Protect ionDomain objects depend on where code came from and who signed it, with
permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the OSGi framework being
available only with JDK 1.3, which was not deemed acceptable.

107.7.2 Existing OSGi Mechanism
JAAS provides a pluggable authentication architecture, which enables applications and their under-
lying authentication services to remain independent from each other.

The Http Service already provides a similar feature by allowing servlet and resource registrations to
be supported by an HttpContext object, which uses a callback mechanism to perform any required
authentication checks before granting access to the servlet or resource. This way, the registering
bundle has complete control on a per-servlet and per-resource basis over which authentication pro-
tocol to use, how the credentials presented by the remote requester are to be validated, and who
should be granted access to the servlet or resource.

107.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. JAAS could then be implement-
ed in an OSGi environment. At that time, the User Admin service will still be needed and will pro-
vide complementary services in the following ways:

• The authorization component relies on group membership information to be stored and man-
aged outside JAAS. JAAS does not manage persistent information, so the User Admin service can
be a provider of group information when principals are assigned to a Subject object.

• The authorization component allows for credentials to be collected and verified, but a repository
is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to JAAS. The only aspect JAAS
will remove from the User Admin service is the need for the Authorizat ion interface.

107.8 org.osgi.service.useradmin

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 188 OSGi Compendium Release 6

User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,1 .2)"

107.8.1 Summary

• Authorizat ion - The Authorizat ion interface encapsulates an authorization context on which
bundles can base authorization decisions, where appropriate.

• Group - A named grouping of roles (Role objects).
• Role - The base interface for Role objects managed by the User Admin service.
• User - A User role managed by a User Admin service.
• UserAdmin - This interface is used to manage a database of named Role objects, which can be

used for authentication and authorization purposes.
• UserAdminEvent - Role change event.
• UserAdminListener - Listener for UserAdminEvents.
• UserAdminPermission - Permission to configure and access the Role objects managed by a User

Admin service.

107.8.2 public interface Authorization
The Authorizat ion interface encapsulates an authorization context on which bundles can base au-
thorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations with roles. Before granti-
ng access to a restricted resource or operation, a bundle will check if the Authorizat ion object passed
to it possess the required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the UserAdmin.getAuthorization(User) method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorizat ion objects. Hence, a service must on-
ly accept Authorizat ion objects from bundles that has been authorized to use the service using code
based (or Java 2) permissions.

In some cases it is useful to use ServicePermission to do the code based access control. A service bas-
ing user access control on Authorizat ion objects passed to it, will then require that a calling bundle
has the ServicePermission to get the service in question. This is the most convenient way. The OSGi
environment will do the code based permission check when the calling bundle attempts to get the
service from the service registry.

Example: A servlet using a service on a user's behalf. The bundle with the servlet must be given the
ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more fine-grained. A service
might allow all bundles to get it, but require certain code based permissions for some of its methods.

Example: A servlet using a service on a user's behalf, where some service functionality is open to
anyone, and some is restricted by code based permissions. When a restricted method is called (e.g.,
one handing over an Authorizat ion object), the service explicitly checks that the calling bundle has
permission to make the call.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 6 Page 189

No Implement Consumers of this API must not implement this interface

107.8.2.1 public String getName()

□ Gets the name of the User that this Authorizat ion context was created for.

Returns The name of the User object that this Authorizat ion context was created for, or nul l if no user was
specified when this Authorizat ion context was created.

107.8.2.2 public String[] getRoles()

□ Gets the names of all roles implied by this Authorizat ion context.

Returns The names of all roles implied by this Authorizat ion context, or nul l if no roles are in the context.
The predefined role user.anyone will not be included in this list.

107.8.2.3 public boolean hasRole(String name)

name The name of the role to check for.

□ Checks if the role with the specified name is implied by this Authorizat ion context.

Bundles must define globally unique role names that are associated with the privilege of accessing
restricted resources or operations. Operators will grant users access to these resources, by creating a
Group object for each role and adding User objects to it.

Returns true if this Authorizat ion context implies the specified role, otherwise fa lse .

107.8.3 public interface Group
extends User
A named grouping of roles (Role objects).

Whether or not a given Authorizat ion context implies a Group object depends on the members of
that Group object.

A Group object can have two kinds of members: basic and required . A Group object is implied by an
Authorizat ion context if all of its required members are implied and at least one of its basic members
is implied.

A Group object must contain at least one basic member in order to be implied. In other words, a
Group object without any basic member roles is never implied by any Authorizat ion context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects, which means that it is pos-
sible to create circular implications. Loop detection is instead done when roles are checked. The se-
mantics is that if a role depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be implied is motivated by the
following example:

 group foo
 required members: marketing
 basic members: alice, bob

Privileged operations that require membership in "foo" can be performed only by "alice" and "bob",
who are in marketing.

If "alice" and "bob" ever transfer to a different department, anybody in marketing will be able to as-
sume the "foo" role, which certainly must be prevented. Requiring that "foo" (or any Group object for
that matter) must have at least one basic member accomplishes that.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 190 OSGi Compendium Release 6

However, this would make it impossible for a Group object to be implied by just its required mem-
bers. An example where this implication might be useful is the following declaration: "Any citizen
who is an adult is allowed to vote." An intuitive configuration of "voter" would be:

 group voter
 required members: citizen, adult
 basic members:

However, according to the above rule, the "voter" role could never be assumed by anybody, since
it lacks any basic members. In order to address this issue a predefined role named "user.anyone"
can be specified, which is always implied. The desired implication of the "voter" group can then be
achieved by specifying "user.anyone" as its basic member, as follows:

 group voter
 required members: citizen, adult
 basic members: user.anyone

No Implement Consumers of this API must not implement this interface

107.8.3.1 public boolean addMember(Role role)

role The role to add as a basic member.

□ Adds the specified Role object as a basic member to this Group object.

Returns true if the given role could be added as a basic member, and fa lse if this Group object already con-
tains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.2 public boolean addRequiredMember(Role role)

role The Role object to add as a required member.

□ Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and fa lse if this Group object al-
ready contains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.3 public Role[] getMembers()

□ Gets the basic members of this Group object.

Returns The basic members of this Group object, or nul l if this Group object does not contain any basic mem-
bers.

107.8.3.4 public Role[] getRequiredMembers()

□ Gets the required members of this Group object.

Returns The required members of this Group object, or nul l if this Group object does not contain any required
members.

107.8.3.5 public boolean removeMember(Role role)

role The Role object to remove from this Group object.

□ Removes the specified Role object from this Group object.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 6 Page 191

Returns true if the Role object could be removed, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.4 public interface Role
The base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name, a type, and a set of prop-
erties.

Properties represent public information about the Role object that can be read by anyone. Specific
UserAdminPermission objects are required to change a Role object's properties.

Role object properties are Dictionary objects. Changes to these objects are propagated to the User Ad-
min service and made persistent.

Every User Admin service contains a set of predefined Role objects that are always present
and cannot be removed. All predefined Role objects are of type ROLE . This version of the
org.osgi .service.useradmin package defines a single predefined role named "user.anyone", which is
inherited by any other role. Other predefined roles may be added in the future. Since "user.anyone"
is a Role object that has properties associated with it that can be read and modified. Access to these
properties and their use is application specific and is controlled using UserAdminPermission in the
same way that properties for other Role objects are.

No Implement Consumers of this API must not implement this interface

107.8.4.1 public static final int GROUP = 2

The type of a Group role.

The value of GROUP is 2.

107.8.4.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.

107.8.4.3 public static final int USER = 1

The type of a User role.

The value of USER is 1.

107.8.4.4 public static final String USER_ANYONE = "user.anyone"

The name of the predefined role, user.anyone, that all users and groups belong to.

Since 1.1

107.8.4.5 public String getName()

□ Returns the name of this role.

Returns The role's name.

107.8.4.6 public Dictionary getProperties()

□ Returns a Dictionary of the (public) properties of this Role object. Any changes to the returned Dic-
t ionary will change the properties of this Role object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListener objects.

Only objects of type Str ing may be used as property keys, and only objects of type Str ing or byte[]
may be used as property values. Any other types will cause an exception of type I l legalArgumentEx-
ception to be raised.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 192 OSGi Compendium Release 6

In order to add, change, or remove a property in the returned Dictionary , a UserAdminPermission
named after the property name (or a prefix of it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.

107.8.4.7 public int getType()

□ Returns the type of this role.

Returns The role's type.

107.8.5 public interface User
extends Role
A User role managed by a User Admin service.

In this context, the term "user" is not limited to just human beings. Instead, it refers to any entity
that may have any number of credentials associated with it that it may use to authenticate itself.

In general, User objects are associated with a specific User Admin service (namely the one that creat-
ed them), and cannot be used with other User Admin services.

A User object may have credentials (and properties, inherited from the Role class) associated with it.
Specific UserAdminPermission objects are required to read or change a User object's credentials.

Credentials are Dictionary objects and have semantics that are similar to the properties in the Role
class.

No Implement Consumers of this API must not implement this interface

107.8.5.1 public Dictionary getCredentials()

□ Returns a Dictionary of the credentials of this User object. Any changes to the returned Dictionary
object will change the credentials of this User object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListeners objects.

Only objects of type Str ing may be used as credential keys, and only objects of type Str ing or of type
byte[] may be used as credential values. Any other types will cause an exception of type I l legalArgu-
mentException to be raised.

In order to retrieve a credential from the returned Dictionary object, a UserAdminPermission named
after the credential name (or a prefix of it) with action getCredential is required.

In order to add or remove a credential from the returned Dictionary object, a UserAdminPermission
named after the credential name (or a prefix of it) with action changeCredential is required.

Returns Dictionary object containing the credentials of this User object.

107.8.5.2 public boolean hasCredential(String key,Object value)

key The credential key .

value The credential value .

□ Checks to see if this User object has a credential with the specified key set to the specified value .

If the specified credential value is not of type Str ing or byte[] , it is ignored, that is, fa lse is returned
(as opposed to an I l legalArgumentException being raised).

Returns true if this user has the specified credential; fa lse otherwise.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion named after the credential key (or a prefix of it) with action getCredential .

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 6 Page 193

107.8.6 public interface UserAdmin
This interface is used to manage a database of named Role objects, which can be used for authentica-
tion and authorization purposes.

This version of the User Admin service defines two types of Role objects: "User" and "Group". Each
type of role is represented by an int constant and an interface. The range of positive integers is re-
served for new types of roles that may be added in the future. When defining proprietary role types,
negative constant values must be used.

Every role has a name and a type.

A User object can be configured with credentials (e.g., a password) and properties (e.g., a street ad-
dress, phone number, etc.).

A Group object represents an aggregation of User and Group objects. In other words, the members of
a Group object are roles themselves.

Every User Admin service manages and maintains its own namespace of Role objects, in which each
Role object has a unique name.

No Implement Consumers of this API must not implement this interface

107.8.6.1 public Role createRole(String name,int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Role.USER type or Role.GROUP type.

□ Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type UserAdminEvent.ROLE_CREATED is
broadcast to any UserAdminListener object.

Returns The newly created Role object, or nul l if a role with the given name already exists.

Throws I l legalArgumentException– if type is invalid.

SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.6.2 public Authorization getAuthorization(User user)

user The User object to create an Authorizat ion object for, or nul l for the anonymous user.

□ Creates an Authorizat ion object that encapsulates the specified User object and the Role objects it
possesses. The nul l user is interpreted as the anonymous user. The anonymous user represents a user
that has not been authenticated. An Authorizat ion object for an anonymous user will be unnamed,
and will only imply groups that user.anyone implies.

Returns the Authorizat ion object for the specified User object.

107.8.6.3 public Role getRole(String name)

name The name of the Role object to get.

□ Gets the Role object with the given name from this User Admin service.

Returns The requested Role object, or nul l if this User Admin service does not have a Role object with the giv-
en name .

107.8.6.4 public Role[] getRoles(String filter) throws InvalidSyntaxException

filter The filter criteria to match.

□ Gets the Role objects managed by this User Admin service that have properties matching the speci-
fied LDAP filter criteria. See org.osgi .f ramework.Fi l ter for a description of the filter syntax. If a nul l
filter is specified, all Role objects managed by this User Admin service are returned.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 194 OSGi Compendium Release 6

Returns The Role objects managed by this User Admin service whose properties match the specified filter
criteria, or all Role objects if a nul l filter is specified. If no roles match the filter, nul l will be returned.

Throws Inval idSyntaxException– If the filter is not well formed.

107.8.6.5 public User getUser(String key,String value)

key The property key to look for.

value The property value to compare with.

□ Gets the user with the given property key -value pair from the User Admin service database. This is a
convenience method for retrieving a User object based on a property for which every User object is
supposed to have a unique value (within the scope of this User Admin service), such as for example
a X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching users are found, nul l is re-
turned.

107.8.6.6 public boolean removeRole(String name)

name The name of the Role object to remove.

□ Removes the Role object with the given name from this User Admin service and all groups it is a
member of.

If the Role object was removed, a UserAdminEvent object of type UserAdminEvent.ROLE_REMOVED
is broadcast to any UserAdminListener object.

Returns true If a Role object with the given name is present in this User Admin service and could be re-
moved, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.7 public class UserAdminEvent
Role change event.

UserAdminEvent objects are delivered asynchronously to any UserAdminListener objects when a
change occurs in any of the Role objects managed by a User Admin service.

A type code is used to identify the event. The following event types are defined: ROLE_CREATED
type, ROLE_CHANGED type, and ROLE_REMOVED type. Additional event types may be defined in
the future.

See Also UserAdmin, UserAdminListener

107.8.7.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.

107.8.7.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.

107.8.7.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 6 Page 195

107.8.7.4 public UserAdminEvent(ServiceReference ref,int type,Role role)

ref The ServiceReference object of the User Admin service that generated this event.

type The event type.

role The Role object on which this event occurred.

□ Constructs a UserAdminEvent object from the given ServiceReference object, event type, and Role
object.

107.8.7.5 public Role getRole()

□ Gets the Role object this event was generated for.

Returns The Role object this event was generated for.

107.8.7.6 public ServiceReference getServiceReference()

□ Gets the ServiceReference object of the User Admin service that generated this event.

Returns The User Admin service's ServiceReference object.

107.8.7.7 public int getType()

□ Returns the type of this event.

The type values are ROLE_CREATED type, ROLE_CHANGED type, and ROLE_REMOVED type.

Returns The event type.

107.8.8 public interface UserAdminListener
Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service registry and notified with a
UserAdminEvent object when a Role object has been created, removed, or modified.

UserAdminListener objects can further inspect the received UserAdminEvent object to determine its
type, the Role object it occurred on, and the User Admin service that generated it.

See Also UserAdmin, UserAdminEvent

107.8.8.1 public void roleChanged(UserAdminEvent event)

event The UserAdminEvent object.

□ Receives notification that a Role object has been created, removed, or modified.

107.8.9 public final class UserAdminPermission
extends BasicPermission
Permission to configure and access the Role objects managed by a User Admin service.

This class represents access to the Role objects managed by a User Admin service and their proper-
ties and credentials (in the case of User objects).

The permission name is the name (or name prefix) of a property or credential. The naming con-
vention follows the hierarchical property naming convention. Also, an asterisk may appear
at the end of the name, following a ".", or by itself, to signify a wildcard match. For example:
"org.osgi.security.protocol.*" or "*" is valid, but "*protocol" or "a*b" are not valid.

The UserAdminPermission with the reserved name "admin" represents the permission required for
creating and removing Role objects in the User Admin service, as well as adding and removing mem-
bers in a Group object. This UserAdminPermission does not have any actions associated with it.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 196 OSGi Compendium Release 6

The actions to be granted are passed to the constructor in a string containing a list of one or more
comma-separated keywords. The possible keywords are: changeProperty ,changeCredential , and
getCredential . Their meaning is defined as follows:

 action
 changeProperty Permission to change (i.e., add and remove)
 Role object properties whose names start with
 the name argument specified in the constructor.
 changeCredential Permission to change (i.e., add and remove)
 User object credentials whose names start
 with the name argument specified in the constructor.
 getCredential Permission to retrieve and check for the
 existence of User object credentials whose names
 start with the name argument specified in the
 constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user administration bundle a num-
ber of UserAdminPermission object:

 (org.osgi.service.useradmin.UserAdminPermission "admin")
 (org.osgi.service.useradmin.UserAdminPermission "com.foo.*"
 "changeProperty,getCredential,changeCredential")
 (org.osgi.service.useradmin.UserAdminPermission "user.*"
 "changeProperty,changeCredential")

The first permission statement grants the bundle the permission to perform any User Admin service
operations of type "admin", that is, create and remove roles and configure Group objects.

The second permission statement grants the bundle the permission to change any properties as well
as get and change any credentials whose names start with com.foo. .

The third permission statement grants the bundle the permission to change any properties and cre-
dentials whose names start with user. . This means that the bundle is allowed to change, but not re-
trieve any credentials with the given prefix.

The following policy entry empowers the Http Service bundle to perform user authentication:

 grant codeBase "${jars}http.jar" {
 permission org.osgi.service.useradmin.UserAdminPermission
 "user.password", "getCredential";
 };

The permission statement grants the Http Service bundle the permission to validate any password
credentials (for authentication purposes), but the bundle is not allowed to change any properties or
credentials.

Concurrency Thread-safe

107.8.9.1 public static final String ADMIN = "admin"

The permission name "admin".

107.8.9.2 public static final String CHANGE_CREDENTIAL = "changeCredential"

The action string "changeCredential".

107.8.9.3 public static final String CHANGE_PROPERTY = "changeProperty"

The action string "changeProperty".

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 6 Page 197

107.8.9.4 public static final String GET_CREDENTIAL = "getCredential"

The action string "getCredential".

107.8.9.5 public UserAdminPermission(String name,String actions)

name the name of this UserAdminPermission

actions the action string.

□ Creates a new UserAdminPermission with the specified name and actions. name is either
the reserved string "admin" or the name of a credential or property, and actions contains
a comma-separated list of the actions granted on the specified name. Valid actions are
changeProperty ,changeCredential , and getCredential.

Throws I l legalArgumentException– If name equals "admin" and actions are specified.

107.8.9.6 public boolean equals(Object obj)

obj the object to be compared for equality with this object.

□ Checks two UserAdminPermission objects for equality. Checks that obj is a UserAdminPermission ,
and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and actions as this UserAdmin-
Permission object.

107.8.9.7 public String getActions()

□ Returns the canonical string representation of the actions, separated by comma.

Returns the canonical string representation of the actions.

107.8.9.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

107.8.9.9 public boolean implies(Permission p)

p the permission to check against.

□ Checks if this UserAdminPermission object "implies" the specified permission.

More specifically, this method returns true if:

• p is an instanceof UserAdminPermission ,
• p's actions are a proper subset of this object's actions, and
• p's name is implied by this object's name. For example, "java.*" implies "java.home".

Returns true if the specified permission is implied by this object; fa lse otherwise.

107.8.9.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing UserAdminPermission objects.

Returns a new PermissionCol lect ion object suitable for storing UserAdminPermission objects.

107.8.9.11 public String toString()

□ Returns a string describing this UserAdminPermission object. This string must be in PermissionInfo
encoded format.

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi .service.permissionadmin.PermissionInfo.getEncoded()

References User Admin Service Specification Version 1.1

Page 198 OSGi Compendium Release 6

107.9 References

[1] The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998

[2] Java Authentication and Authorization Service
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Wire Admin Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 199

108 Wire Admin Service Specification

Version 1.0

108.1 Introduction
The Wire Admin service is an administrative service that is used to control a wiring topology in the
OSGi Framework. It is intended to be used by user interfaces or management programs that control
the wiring of services in an OSGi Framework.

The Wire Admin service plays a crucial role in minimizing the amount of context-specific knowl-
edge required by bundles when used in a large array of configurations. The Wire Admin service ful-
fills this role by dynamically wiring services together. Bundles participate in this wiring process by
registering services that produce or consume data. The Wire Admin service wires the services that
produce data to services which consume data.

The purpose of wiring services together is to allow configurable cooperation of bundles in an OSGi
Framework. For example, a temperature sensor can be connected to a heating module to provide a
controlled system.

The Wire Admin service is a very important OSGi configuration service and is designed to cooperate
closely with the Configuration Admin service, as defined in Configuration Admin Service Specification
on page 87.

108.1.1 Wire Admin Service Essentials

• Topology Management - Provide a comprehensive mechanism to link data-producing components
with data-consuming components in an OSGi environment.

• Configuration Management - Contains configuration data in order to allow either party to adapt to
the special needs of the wire.

• Data Type Handling - Facilitate the negotiation of the data type to be used for data transfer be-
tween producers of data and consumers of data. Consumers and producers must be able to han-
dle multiple data types for data exchanges using a preferred order.

• Composites - Support producers and consumers that can handle a large number of data items.
• Security - Separate connected parties from each other. Each party must not be required to hold the

service object of the other party.
• Simplicity - The interfaces should be designed so that both parties, the Producer and the Con-

sumer services, should be easy to implement.

108.1.2 Wire Admin Service Entities

• Producer - A service object that generates information to be used by a Consumer service.
• Consumer - A service object that receives information generated by a Producer service.
• Wire - An object created by the Wire Admin service that defines an association between a Produc-

er service and a Consumer service. Multiple Wire objects can exist between the same Producer
and Consumer pair.

• WireAdmin - The service that provides methods to create, update, remove, and list Wire objects.
• WireAdminListener - A service that receives events from the Wire Admin service when the Wire

object is manipulated or used.

Introduction Wire Admin Service Specification Version 1.0

Page 200 OSGi Compendium Release 6

• WireAdminEvent - The event that is sent to a WireAdminListener object, describing the details of
what happened.

• Configuration Properties - Properties that are associated with a Wire object and that contain identi-
ty and configuration information set by the administrator of the Wire Admin service.

• PID - The Persistent IDentity as defined in the Configuration Admin specification.
• Flavors - The different data types that can be used to exchange information between Producer

and Consumer services.
• Composite Producer/Consumer - A Producer/Consumer service that can generate/accept different

kinds of values.
• Envelope - An interface for objects that can identify a value that is transferred over the wire. Enve-

lope objects contain also a scope name that is used to verify access permissions.
• Scope - A set of names that categorizes the kind of values contained in Envelope objects for securi-

ty and selection purposes.
• Basic Envelope - A concrete implementation of the Envelope interface.
• WirePermission - A Permission sub-class that is used to verify if a Consumer service or Producer

service has permission for specific scope names.
• Composite Identity - A name that is agreed between a composite Consumer and Producer service to

identify the kind of objects that they can exchange.

Wire Admin Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 201

Figure 108.1 Class Diagram, org.osgi.service.wireadmin

0,1

0..*

poll

<<interface>>
Wire

<<interface>>
Wire Admin

<<interface>>
Consumer

1 maintains

<<interface>>
Producer

Wire Admin
Event

<<interface>>
Wire Admin
Listener

Wire Admin impl.

Producer impl. Consumer impl.Wire Admin
Listener impl.

Wire impl
(persistent)

0..*

listens to

sends out events

Administrating UI

adm
inisters

0..*

0,10..*

1

<<interface>>
Envelope

Basic
Envelope

polled

scope
security check

Wire
Permission

verify scope

java.security.
BasicPermission

up
da

te

up
da

te
d

108.1.3 Operation Summary
The Wire Admin service maintains a set of persistent Wire objects. A Wire object contains a Persis-
tent IDentity (PID) for a Consumer service and a PID for a Producer service. (Wire objects can there-
fore be created when the Producer or Consumer service is not registered.)

If both those Producer and Consumer services are registered with the Framework, they are connect-
ed by the Wire Admin service. The Wire Admin service calls a method on each service object and
provides the list of Wire objects to which they are connected.

When a Producer service has new information, it should send this information to each of the con-
nected Wire objects. Each Wire object then must check the filtering and security. If both filtering
and security allow the transfer, the Producer service should inform the associated Consumer service
with the new information. The Consumer services can also poll a Wire object for an new value at
any time.

When a Consumer or Producer service is unregistered from the OSGi Framework, the other object
in the association is informed that the Wire object is no longer valid.

Producer Service Wire Admin Service Specification Version 1.0

Page 202 OSGi Compendium Release 6

Administrative applications can use the Wire Admin service to create and delete wires. These
changes are immediately reflected in the current topology and are broadcast to Wire Admin Listen-
er services.

Figure 108.2 An Example Wiring Scheme in an OSGi Environment

Producer

Consumer

Bundle

Wire object

Actuator

Sensor

External conn.

External source

converter

108.2 Producer Service
A Producer is a service that can produce a sequence of data objects. For example, a Producer service
can produce, among others, the following type of objects:

• Measurement objects that represent a sensor measurement such as temperature, movement, or
humidity.

• A Str ing object containing information for user consumption, such as headlines.
• A Date object indicating the occurrence of a periodic event.
• Position information.
• Envelope objects containing status items which can be any type.

108.2.1 Producer Properties
A Producer service must be registered with the OSGi Framework under the interface name
org.osgi .service.wireadmin.Producer . The following service properties must be set:

• service.pid - The value of this property, also known as the PID, defines the Persistent IDentity of
a service. A Producer service must always use the same PID value whenever it is registered. The
PID value allows the Wire Admin service to consistently identify the Producer service and create
a persistent Wire object that links a Producer service to a Consumer service. See [1] Design Patterns
specification for the rules regarding PIDs.

• wireadmin.producer.f lavors - The value of this property is an array of Class objects (Class[]) that
are the classes of the objects the service can produce. See Flavors on page 214 for more infor-
mation about the data type negotiation between Producer and Consumer services.

• wireadmin.producer.f i l ters - This property indicates to the Wire Admin service that this Produc-
er service performs its own update filtering, meaning that the consumer can limit the number of
update calls with a filter expression. This does not modify the data; it only determines whether
an update via the wire occurs. If this property is not set, the Wire object must filter according to

Wire Admin Service Specification Version 1.0 Producer Service

OSGi Compendium Release 6 Page 203

the description in Composite objects on page 208. This service registration property does not
need to have a specific value.

• wireadmin.producer.scope - Only for a composite Producer service, a list of scope names that de-
fine the scope of this Producer service, as explained in Scope on page 209.

• wireadmin.producer.composite - List the composite identities of Consumer services with which
this Producer service can interoperate. This property is of type Str ing[] . A composite Consumer
service can inter-operate with a composite Producer service when there is at least one name that
occurs in both the Consumer service's array and the Producer service's array for this property.

108.2.2 Connections
The Wire Admin service connects a Producer service and a Consumer service by creating a Wire
object. If the Consumer and Producer services that are bound to a Wire object are registered with
the Framework, the Wire Admin service must call the consumersConnected(Wire[]) method on
the Producer service object. Every change in the Wire Admin service that affects the Wire object
to which a Producer service is connected must result in a call to this method. This requirement
ensures that the Producer object is informed of its role in the wiring topology. If the Producer ser-
vice has no Wire objects attached when it is registered, the Wire Admin service must always call
consumersConnected(nul l) . This situation implies that a Producer service can assume it always gets
called back from the Wire Admin service when it registers.

108.2.3 Producer Example
The following example shows a clock producer service that sends out a Date object every second.

public class Clock extends Thread implementsProducer {
 Wire wires[];
 BundleContext context;
 boolean quit;

 Clock(BundleContext context) {
 this.context = context;
 start();
 }
 public synchronized void run() {
 Hashtable p = new Hashtable();
 p.put(org.osgi.service.wireadmin.WireConstants.
 WIREADMIN_PRODUCER_FLAVORS,
 new Class[] { Date.class });
 p.put(org.osgi.framework.Constants.SERVICE_PID,
 "com.acme.clock");
 context.registerService(
 Producer.class.getName(),this,p);

 while(! quit)
 try {
 Date now = new Date();
 for(int i=0; wires!=null && i<wires.length;i++)
 wires[i].update(now);
 wait(1000);
 }
 catch(InterruptedException ie) {
 /* will recheck quit */
 }
 }
 public void synchronized consumersConnected(Wire wires[])

Consumer Service Wire Admin Service Specification Version 1.0

Page 204 OSGi Compendium Release 6

 {
 this.wires = wires;
 }
 public Object polled(Wire wire) { return new Date(); }
 ...
}

108.2.4 Push and Pull
Communication between Consumer and Producer services can be initiated in one of the following
ways.

• The Producer service calls the update(Object) method on the Wire object. The Wire object imple-
mentation must then call the updated(Wire,Object) method on the Consumer service, if the fil-
tering allows this.

• The Consumer service can call pol l() on the Wire object. The Wire object must then call
pol led(Wire) on the Producer object. Update filtering must not apply to polling.

108.2.5 Producers and Flavors
Consumer services can only understand specific data types, and are therefore restricted in what da-
ta they can process. The acceptable object classes, the flavors, are communicated by the Consumer
service to the Wire Admin service using the Consumer service's service registration properties. The
method getFlavors() on the Wire object returns this list of classes. This list is an ordered list in which
the first class is the data type that is the most preferred data type supported by the Consumer ser-
vice. The last class is the least preferred data type. The Producer service must attempt to convert
its data into one of the data types according to the preferred order, or will return nul l from the pol l
method to the Consumer service if none of the types are recognized.

Classes cannot be easily compared for equivalence. Sub-classes and interfaces allow classes to mas-
querade as other classes. The Class. isAssignableFrom(Class) method verifies whether a class is type
compatible, as in the following example:

Object polled(Wire wire) {
 Class clazzes[] = wire.getFlavors();
 for (int i=0; i<clazzes.length; i++) {
 Class clazz = clazzes[i];
 if (clazz.isAssignableFrom(Date.class))
 return new Date();
 if (clazz.isAssignableFrom(String.class))
 return new Date().toString();
 }
 return null;
}

The order of the i f statements defines the preferences of the Producer object. Preferred data types
are checked first. This order normally works as expected but in rare cases, sub-classes can change it.
Normally, however, that is not a problem.

108.3 Consumer Service
A Consumer service is a service that receives information from one or more Producer services and is
wired to Producer services by the Wire Admin service. Typical Consumer services are as follows:

• The control of an actuator, such as a heating element, oven, or electric shades
• A display

Wire Admin Service Specification Version 1.0 Consumer Service

OSGi Compendium Release 6 Page 205

• A log
• A state controller such as an alarm system

108.3.1 Consumer Properties
A Consumer service must be registered with the OSGi Framework under the interface name
org.osgi .service.wireadmin.Consumer . The following service properties must be set:

• service.pid - The value of this property, also known as the PID, defines the Persistent IDentity of
a service. A Consumer service must always use the same PID value whenever it is registered. The
PID value allows the Wire Admin service to consistently identify the Consumer service and cre-
ate a persistent Wire object that links a Producer service to a Consumer service. See the Configu-
ration Admin specification for the rules regarding PIDs.

• wireadmin.consumer.f lavors - The value of this property is an array of Class objects (Class[]) that
are the acceptable classes of the objects the service can process. See Flavors on page 214 for
more information about the data type negotiation between Producer and Consumer services.

• wireadmin.consumer.scope - Only for a composite Consumer service, a list of scope names that
define the scope of this Consumer service, as explained in Scope on page 209.

• wireadmin.consumer.composite - List the composite identities of Producer services that this
Consumer service can interoperate with. This property is of type Str ing[] . A composite Con-
sumer service can interoperate with a composite Producer service when at least one name occurs
in both the Consumer service's array and the Producer service's array for this property.

108.3.2 Connections
When a Consumer service is registered and a Wire object exists that associates it to a registered Pro-
ducer service, the producersConnected(Wire[]) method is called on the Consumer service.

Every change in the Wire Admin service that affects a Wire object to which a Consumer service is
connected must result in a call to the producersConnected(Wire[]) method. This rule ensures that
the Consumer object is informed of its role in the wiring topology. If the Consumer service has no
Wire objects attached, the argument to the producersConnected(Wire[]) method must be nul l . This
method must also be called when a Producer service registers for the first time and no Wire objects
are available.

108.3.3 Consumer Example
For example, a service can implement a Consumer service that logs all objects that are sent to it in
order to allow debugging of a wiring topology.

public class LogConsumer implements Consumer{
 public LogConsumer(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(
 Constants.SERVICE_PID, "com.acme.logconsumer");
 ht.put(WireConstants.WIREADMIN_CONSUMER_FLAVORS,
 new Class[] { Object.class });
 context.registerService(Consumer.class.getName(),
 this, ht);
 }
 public void updated(Wire wire, Object o) {
 getLog().log(LogService.LOG_INFO, o.toString());
 }
 public void producersConnected(Wire [] wires) {}
 LogService getLog() { ... }
}

Implementation issues Wire Admin Service Specification Version 1.0

Page 206 OSGi Compendium Release 6

108.3.4 Polling or Receiving a Value
When the Producer service produces a new value, it calls the update(Object) method on the Wire
object, which in turn calls the updated(Wire,Object) method on the Consumer service object. When
the Consumer service needs a value immediately, it can call the pol l() method on the Wire object
which in turn calls the pol led(Wire) method on the Producer service.

If the pol l() method on the Wire object is called and the Producer is unregistered, it must return a
nul l value.

108.3.5 Consumers and Flavors
Producer objects send objects of different data types through Wire objects. A Consumer service ob-
ject should offer a list of preferred data types (classes) in its service registration properties. The Pro-
ducer service, however, can still send a nul l object or an object that is not of the preferred types.
Therefore, the Consumer service must check the data type and take the appropriate action. If an ob-
ject type is incompatible, then a log message should be logged to allow the operator to correct the
situation.

The following example illustrates how a Consumer service can handle objects of type Date , Mea-
surement , and Str ing .

void process(Object in) {
 if (in instanceof Date)
 processDate((Date) in);
 else if (in instanceof Measurement)
 processMeasurement((Measurement) in);
 else if (in instanceof String)
 processString((String) in);
 else
 processError(in);
}

108.4 Implementation issues
The Wire Admin service can call the consumersConnected or producersConnected methods during
the registration of the Consumer or Producer service. Care should be taken in this method call so
that no variables are used that are not yet set, such as the ServiceRegistrat ion object that is returned
from the registration. The same is true for the updated or pol led callback because setting the Wire
objects on the Producer service causes such a callback from the consumersConnected or producer-
sConnected method.

A Wire Admin service must call the producersConnected and consumersConnected method asyn-
chronously from the registrations, meaning that the Consumer or Producer service can use synchro-
nized to restrict access to critical variables.

When the Wire Admin service is stopped, it must disconnect all connected consumers and produc-
ers by calling producersConnected and consumersConnected with a nul l for the wires parameter.

108.5 Wire Properties
A Wire object has a set of properties (a Dictionary object) that configure the association between
a Consumer service and a Producer service. The type and usage of the keys, as well as the allowed
types for the values are defined in Configuration Properties on page 94.

The Wire properties are explained in the following table.

Wire Admin Service Specification Version 1.0 Wire Properties

OSGi Compendium Release 6 Page 207

Table 108.1 Standard Wire Properties

Constant Description
WIREADMIN_PID The value of this property is a unique Persistent IDentity

as defined in chapter Configuration Admin Service Specifica-
tion on page 87. This PID must be automatically created by
the Wire Admin service for each new Wire object.

WIREADMIN_PRODUCER_PID The value of the property is the PID of the Producer ser-
vice.

WIREADMIN_CONSUMER_PID The value of this property is the PID of the Consumer ser-
vice.

WIREADMIN_FILTER The value of this property is an OSGi filter string that is
used to control the update of produced values.

This filter can contain a number of attributes as explained
in Wire Flow Control on page 211.

The properties associated with a Wire object are not limited to the ones defined in Table 108.1. The
Dictionary object can also be used for configuring both Consumer services and Producer services.
Both services receive the Wire object and can inspect the properties and adapt their behavior accord-
ingly.

108.5.1 Display Service Example
In the following example, the properties of a Wire object, which are set by the Operator or User, are
used to configure a Producer service that monitors a user's email account regularly and sends a mes-
sage when the user has received email. This WireMai l service is illustrated as follows:

public class WireMail extends Thread
 implements Producer {
 Wire wires[];
 BundleContext context;
 boolean quit;

 public void start(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(Constants.SERVICE_PID, "com.acme.wiremail");
 ht.put(WireConstants.WIREADMIN_PRODUCER_FLAVORS,
 new Class[] { Integer.class });
 context.registerService(this,
 Producer.class.getName(),
 ht);
 }
 public synchronized void consumersConnected(
 Wire wires[]) {
 this.wires = wires;
 }
 public Object polled(Wire wire) {
 Dictionary p = wire.getProperties();
 // The password should be
 // obtained from User Admin Service
 int n = getNrMails(
 p.get("userid"),
 p.get("mailhost"));
 return new Integer(n);

Composite objects Wire Admin Service Specification Version 1.0

Page 208 OSGi Compendium Release 6

 }
 public synchronized void run() {
 while (!quit)
 try {
 for (int i=0; wires != null && i<wires.length;i++)
 wires[i].update(polled(wires[i]));

 wait(150000);
 }
 catch(InterruptedException e) { break; }
 }
 ...
}

108.6 Composite objects
A Producer and/or Consumer service for each information item is usually the best solution. This so-
lution is not feasible, however, when there are hundreds or thousands of information items. Each
registered Consumer or Producer service carries the overhead of the registration, which may over-
whelm a Framework implementation on smaller platforms.

When the size of the platform is an issue, a Producer and a Consumer service should abstract a larg-
er number of information items. These Consumer and Producer services are called composite.

Figure 108.3 Composite Producer Example

wire
multiplexed

Composite Producer and Consumer services should register respectively the
WIREADMIN_PRODUCER_COMPOSITE and WIREADMIN_CONSUMER_COMPOSITE composite identity
property with their service registration. These properties should contain a list of composite identi-
ties. These identities are not defined here, but are up to a mutual agreement between the Consumer
and Producer service. For example, a composite identity could be MOST-1.5 or GSM-Phase2-Termi-
nal . The name may follow any scheme but will usually have some version information embedded.
The composite identity properties are used to match Consumer and Producer services with each
other during configuration of the Wire Admin service. A Consumer and Producer service should in-
ter-operate when at least one equal composite identity is listed in both the Producer and Consumer
composite identity service property.

Composite producers/consumers must identify the kind of objects that are transferred over the Wire
object, where kind refers to the intent of the object, not the data type. For example, a Producer service
can represent the status of a door-lock and the status of a window as a boolean . If the status of the
window is transferred as a boolean to the Consumer service, how would it know that this boolean
represents the window and not the door-lock

To avoid this confusion, the Wire Admin service includes an Envelope interface. The purpose of the
Envelope interface is to associate a value object with:

• An identification object
• A scope name

Wire Admin Service Specification Version 1.0 Composite objects

OSGi Compendium Release 6 Page 209

Figure 108.4 Envelope

<<interface>>
Envelope

Basic
Envelope

Object Stringscope
name

identification

Impl.
identification
object

108.6.1 Identification
The Envelope object's identification object is used to identify the value carried in the Envelope ob-
ject. Each unique kind of value must have its own unique identification object. For example, a left-
front-window should have a different identification object than a rear-window.

The identification is of type Object . Using the Object class allows Str ing objects to be used, but al-
so makes it possible to use more complex objects. These objects can convey information in a way
that is mutually agreed between the Producer and Consumer service. For example, its type may dif-
fer depending on each kind of value so that the Visitor pattern, see [1] Design Patterns, can be used. Or
it may contain specific information that makes the Envelope object easier to dispatch for the Con-
sumer service.

108.6.2 Scope
The scope name is a Str ing object that categorizes the Envelope object. The scope name is used to lim-
it the kind of objects that can be exchanged between composite Producer and Consumer services,
depending on security settings.

The name-space for this scope should be mutually agreed between the Consumer and Producer ser-
vices a priori. For the Wire Admin service, the scope name is an opaque string. Its syntax is specified
in Scope name syntax on page 211.

Both composite Producer and Consumer services must add a list of their supported scope names to
the service registration properties. This list is called the scope of that service. A Consumer service
must add this scope property with the name of WIREADMIN_CONSUMER_SCOPE , a Producer ser-
vice must add this scope property with the name WIREADMIN_PRODUCER_SCOPE . The type of this
property must be a Str ing[] object.

Not registering this property by the Consumer or the Producer service indicates to the Wire Ad-
min service that any Wire object connected to that service must return nul l for the Wire.getScope()
method. This case must be interpreted by the Consumer or Producer service that no scope verifica-
tion is taking place. Secure Producer services should not produce values for this Wire object and se-
cure Consumer services should not accept values.

It is also allowed to register with a wildcard, indicating that all scope names are supported. In that
case, the WIREADMIN_SCOPE_ALL (which is Str ing[] { "*" }) should be registered as the scope of the
service. The Wire object's scope is then fully defined by the other service connected to the Wire ob-
ject.

The following example shows how a scope is registered.

static String [] scope = { "DoorLock", "DoorOpen","VIN" };

public void start(BundleContext context) {
 Dictionary properties = new Hashtable();
 properties.put(
 WireConstants.WIREADMIN_CONSUMER_SCOPE,

Composite objects Wire Admin Service Specification Version 1.0

Page 210 OSGi Compendium Release 6

 scope);
 properties.put(WireConstants.WIREADMIN_CONSUMER_PID,
 "com.acme.composite.consumer");
 properties.put(
 WireConstants.WIREADMIN_CONSUMER_COMPOSITE,
 new String[] { "OSGiSP-R3" });
 context.registerService(Consumer.class.getName(),
 new AcmeConsumer(),
 properties);
}

Both a composite Consumer and Producer service must register a scope to receive scope support
from the Wire object. These two scopes must be converted into a single Wire object's scope and scope
names in this list must be checked for the appropriate permissions. This resulting scope is available
from the Wire.getScope() method.

If no scope is set by either the Producer or the Consumer service the result must be nul l . In that case,
the Producer or Consumer service must assume that no security checking is in place. A secure Con-
sumer or Producer service should then refuse to operate with that Wire object.

Otherwise, the resulting scope is the intersection of the Consumer and Producer service scope
where each name in the scope, called m , must be implied by a WirePermission[m,CONSUME] of the
Consumer service, and WirePermission[m,PRODUCE] of the Producer service.

If either the Producer or Consumer service has registered a wildcard scope then it must not restrict
the list of the other service, except for the permission check. If both the Producer and Consumer ser-
vice registered a wild-card, the resulting list must be WIREADMIN_SCOPE_ALL (Str ing[]{"*"}).

For example, the Consumer service has registered a scope of {A,B,C} and has
WirePermission[*,CONSUME] . The Producer service has registered a scope of {B,C,E} and has
WirePermission[C|E, PRODUCE,] . The resulting scope is then {C} . The following table shows this
and more examples.

Table 108.2 Examples of scope calculation. C=Consumer, P=Producer, p=WirePermission, s=scope

Cs Cp Ps Pp Wire Scope
nul l nul l nul l
{A,B,C} * nul l nul l
nul l {C,D,E} nul l
{A,B,C} B|C {A,B,C} A|B {B}
* * {A,B,C} A|B|C {A,B,C}
* * * * {*}
{A,B,C} A|B|C {A,B,C} X {}
{A,B,C} * {B,C,E} C|E {C}

The Wire object's scope must be calculated only once, when both the Producer and Consumer ser-
vice become connected. When a Producer or Consumer service subsequently modifies its scope,
the Wire object must not modify the original scope. A Consumer and a Produce service can thus as-
sume that the scope does not change after the producersConnected method or consumersConnect-
ed method has been called.

108.6.3 Access Control
When an Envelope object is used as argument in Wire.update(Object) then the Wire object must
verify that the Envelope object's scope name is included in the Wire object's scope. If this is not the
case, the update must be ignored (the updated method on the Consumer service must not be called).

Wire Admin Service Specification Version 1.0 Wire Flow Control

OSGi Compendium Release 6 Page 211

A composite Producer represents a number of values, which is different from a normal Producer
that can always return a single object from the pol l method. A composite Producer must therefore
return an array of Envelope objects (Envelope[]). This array must contain Envelope objects for all
the values that are in the Wire object's scope. It is permitted to return all possible values for the Pro-
ducer because the Wire object must remove all Envelope objects that have a scope name not listed in
the Wire object's scope.

108.6.4 Composites and Flavors
Composite Producer and Consumer services must always use a flavor of the Envelope class. The da-
ta types of the values must be associated with the scope name or identification and mutually agreed
between the Consumer and Producer services.

Flavors and Envelope objects both represent categories of different values. Flavors, however, are dif-
ferent Java classes that represent the same kind of value. For example, the tire pressure of the left
front wheel could be passed as a Float , an Integer , or a Measurement object. Whatever data type is
chosen, it is still the tire pressure of the left front wheel. The Envelope object represents the kind of
object, for example the right front wheel tire pressure, or the left rear wheel.

108.6.5 Scope name syntax
Scope names are normal Str ing objects and can, in principle, contain any Unicode character. In use,
scope names can be a full wildcard ('*') but they cannot be partially wildcarded for matching scopes.

Scope names are used with the WirePermission class that extends java.security.BasicPermission .
The BasicPermission class implements the impl ies method and performs the name matching. The
wildcard matching of this class is based on the concept of names where the constituents of the
name are separated with a period ('.'): for example, org.osgi .service.http.port .

Scope names must therefore follow the rules for fully qualified Java class names. For example,
door. lock is a correct scope name while door-lock is not.

108.7 Wire Flow Control
The WIREADMIN_FILTER property contains a filter expression (as defined in the OSGi Framework
Fi l ter class) that is used to limit the number of updates to the Consumer service. This is necessary
because information can arrive at a much greater rate than can be processed by a Consumer ser-
vice. For example, a single CAN bus (the electronic control bus used in current cars) in a car can eas-
ily deliver hundreds of measurements per second to an OSGi based controller. Most of these mea-
surements are not relevant to the OSGi bundles, at least not all the time. For example, a bundle that
maintains an indicator for the presence of frost is only interested in measurements when the out-
side temperature passes the 4 degrees Celsius mark.

Limiting the number of updates from a Producer service can make a significant difference in perfor-
mance (meaning that less hardware is needed). For example, a vendor can implement the filter in
native code and remove unnecessary updates prior to processing in the Java Virtual Machine (JVM).
This is depicted in Figure 108.5 on page 212.

Wire Flow Control Wire Admin Service Specification Version 1.0

Page 212 OSGi Compendium Release 6

Figure 108.5 Filtering of Updates

ControllerCAN bus

Filter

Actuator

Sensor

Filter from wire properties

Producer Consumer Bundle

Wire object

External connection

Native code

The filter can use any combination of the following attributes in a filter to implement many com-
mon filtering schemes:

Table 108.3 Filter Attribute Names

Constant Description
WIREVALUE_CURRENT Current value of the data from the Producer service.
WIREVALUE_PREVIOUS Previous data value that was reported to the Consumer ser-

vice.
WIREVALUE_DELTA_ABSOLUTE The actual positive difference between the previous data

value and the current data value. For example, if the previ-
ous data value was 3 and the current data value is -0.5, then
the absolute delta is 3.5. This filter attribute is not set when
the current or previous value is not a number.

WIREVALUE_DELTA_RELATIVE The absolute (meaning always positive) relative change be-
tween the current and the previous data values, calculated
with the following formula: |previous-current|/ |current| .
For example, if the previous value was 3 and the new value
is 5, then the relative delta is |3-5|/ |5 | = 0.4 . This filter at-
tribute is not set when the current or previous value is not
a number.

WIREVALUE_ELAPSED The time in milliseconds between the last time the Con-
sumer . updated(Wire,Object) returned and the time the
filter is evaluated.

Filter attributes can be used to implement many common filtering schemes that limit the num-
ber of updates that are sent to a Consumer service. The Wire Admin service specification requires
that updates to a Consumer service are always filtered if the WIREADMIN_FILTER Wire property is
present. Producer services that wish to perform the filtering themselves should register with a ser-
vice property WIREADMIN_PRODUCER_FILTERS . Filtering must be performed by the Wire object for
all other Producer services.

Filtering for composite Producer services is not supported. When a filter is set on a Wire object, the
Wire must still perform the filtering (which is limited to time filtering because an Envelope object
is not a magnitude), but this approach may lose relevant information because the objects are of a dif-
ferent kind. For example, an update of every 500 ms could miss all speed updates because there is a
wheel pressure update that resets the elapsed time. Producer services should, however, still imple-
ment a filtering scheme that could use proprietary attributes to filter on different kind of objects.

Wire Admin Service Specification Version 1.0 Wire Flow Control

OSGi Compendium Release 6 Page 213

108.7.1 Filtering by Time
The simplest filter mechanism is based on time. The wirevalue.elapsed attribute contains the
amount of milliseconds that have passed since the last update to the associated Consumer service.
The following example filter expression illustrates how the updates can be limited to approximate-
ly 40 times per minute (once every 1500 ms).

(wirevalue.elapsed>=1500)

Figure 108.6 depicts this example graphically.

Figure 108.6 Elapsed Time Change

temperature

t

elapsed

n n + 1

update

108.7.2 Filtering by Change
A Consumer service is often not interested in an update if the data value has not changed. The fol-
lowing filter expression shows how a Consumer service can limit the updates from a temperature
sensor to be sent only when the temperature has changed at least 1 °K.

(wirevalue.delta.absolute>=1)

Figure 108.7 depicts a band that is created by the absolute delta between the previous data value and
the current data value. The Consumer is only notified with the updated(Wire,Object) method when
a data value is outside of this band.

Figure 108.7 Absolute Delta

temperature

t

n + 1n

absolute delta band

update

n + 2

The delta may also be relative. For example, if a car is moving slowly, then updates for the speed of
the car are interesting even for small variations. When a car is moving at a high rate of speed, up-
dates are only interesting for larger variations in speed. The following example shows how the up-
dates can be limited to data value changes of at least 10%.

(wirevalue.delta.relative>=0.1)

Figure 108.8 on page 214 depicts a relative band. Notice that the size of the band is directly pro-
portional to the size of the sample value.

Flavors Wire Admin Service Specification Version 1.0

Page 214 OSGi Compendium Release 6

Figure 108.8 Relative Delta (not to scale)

temperature

t

n + 1n

relative delta band

update

108.7.3 Hysteresis
A thermostat is a control device that usually has a hysteresis, which means that a heater should be
switched on below a certain specified low temperature and should be switched off at a specified
high temperature, where high > low. This is graphically depicted in Figure 108.9 on page 214. The
specified acceptable temperatures reduce the amount of start/stops of the heater.

Figure 108.9 Hysteresis

high

low

off

on

temperature
high

temperature
low

A Consumer service that controls the heater is only interested in events at the top and bottom of the
hysteresis. If the specified high value is 250 °K and the specified low value is 249 °K, the following
filter illustrates this concept:

(|(&(wirevalue.previous<=250)(wirevalue.current>250))
 (&(wirevalue.previous>=249)(wirevalue.current<249))
)

108.8 Flavors
Both Consumer and Producer services should register with a property describing the classes of the
data types they can consume or produce respectively. The classes are the flavors that the service sup-
ports. The purpose of flavors is to allow an administrative user interface bundle to connect Con-
sumer and Producer services. Bundles should only create a connection when there is at least one
class shared between the flavors from a Consumer service and a Producer service. Producer services
are responsible for selecting the preferred object type from the list of the object types preferred by
the Consumer service. If the Producer service cannot convert its data to any of the flavors listed by
the Consumer service, nul l should be used instead.

108.9 Converters
A converter is a bundle that registers a Consumer and a Producer service that are related and per-
forms data conversions. Data values delivered to the Consumer service are processed and transferred

Wire Admin Service Specification Version 1.0 Wire Admin Service Implementation

OSGi Compendium Release 6 Page 215

via the related Producer service. The Producer service sends the converted data to other Consumer
services. This is shown in Figure 108.10.

Figure 108.10 Converter (for legend see Figure 108.2)

converter

108.10 Wire Admin Service Implementation
The Wire Admin service is the administrative service that is used to control the wiring topology in
the OSGi Framework. It contains methods to create or update wires, delete wires, and list existing
wires. It is intended to be used by user interfaces or management programs that control the wiring
topology of the OSGi Framework.

The createWire(Str ing,Str ing,Dict ionary) method is used to associate a Producer service with a Con-
sumer service. The method always creates and returns a new object. It is therefore possible to create
multiple, distinct wires between a Producer and a Consumer service. The properties can be used to
create multiple associations between Producer and Consumer services in that act in different ways.

The properties of a Wire object can be updated with the update(Object) method. This method must
update the properties in the Wire object and must notify the associated Consumer and Produc-
er services if they are registered. Wire objects that are no longer needed can be removed with the
deleteWire(Wire) method. All these methods are in the WireAdmin class and not in the Wire class for
security reasons. See Security on page 218.

The getWires(Str ing) method returns an array of Wire objects (or nul l). All objects are returned
when the filter argument is nul l . Specifying a filter argument limits the returned objects. The filter
uses the same syntax as the Framework Filter specification. This filter is applied to the properties of
the Wire object and only Wire objects that match this filter are returned.

The following example shows how the getWires method can be used to print the PIDs of Producer
services that are wired to a specific Consumer service.

String f = "(wireadmin.consumer.pid=com.acme.x)";
Wire [] wires = getWireAdmin().getWires(f);
for (int i=0; wires != null && i < wires.length;i++)
 System.out.println(
 wires[i].getProperties().get(
 "wireadmin.producer.pid")
);

108.11 Wire Admin Listener Service Events
The Wire Admin service has an extensive list of events that it can deliver. The events allow other
bundles to track changes in the topology as they happen. For example, a graphic user interface pro-
gram can use the events to show when Wire objects become connected, when these objects are delet-
ed, and when data flows over a Wire object.

A bundle that is interested in such events must register a WireAdminListener service object with a
special Integer property WIREADMIN_EVENTS (" wireadmin.events"). This Integer object contains a

Wire Admin Listener Service Events Wire Admin Service Specification Version 1.0

Page 216 OSGi Compendium Release 6

bitmap of all the events in which this Wire Admin Listener service is interested (events have associ-
ated constants that can be OR'd together). A Wire Admin service must not deliver events to the Wire
Admin Listener service when that event type is not in the bitmap. If no such property is registered,
no events are delivered to the Wire Admin Listener service.

The WireAdminListener interface has only one method: wireAdminEvent(WireAdminEvent) . The ar-
gument is a WireAdminEvent object that contains the event type and associated data.

A WireAdminEvent object can be sent asynchronously but must be ordered for each Wire Admin Lis-
tener service. The way events must be delivered is the same as described in Delivering Events of OSGi
Core Release 6. Wire Admin Listener services must not assume that the state reflected by the event is
still true when they receive the event.

The following types are defined for a WireEvent object:

Table 108.4 Events

Event type Description
WIRE_CREATED A new Wire object has been created.
WIRE_CONNECTED Both the Producer service and the Consumer service are

registered but may not have executed their respective con-
nectedProducers/connectedConsumers methods.

WIRE_UPDATED The Wire object's properties have been updated.
WIRE_TRACE The Consumer has seen a new value, either after the Pro-

ducer service has called the Wire . update(Object) method
and the value was not filtered, or the Producer service has
returned from the pol led(Wire) method.

WIRE_DISCONNECTED The Producer service or Consumer service have become
unregistered and the Wire object is no longer connected.

WIRE_DELETED The Wire object is deleted from the repository and is no
longer available from the getWires method.

CONSUMER_EXCEPTION The Consumer service generated an exception and the ex-
ception is included in the event.

PRODUCER_EXCEPTION The Producer service generated an exception in a callback
and the exception is included in the event.

108.11.1 Event Admin Service Events
Wire admin events must be sent asynchronously to the Event Admin service by the Wire Admin im-
plementation, if present. The topic of a Wire Admin Event is one of the following:

org/osgi/service/wireadmin/WireAdminEvent/<eventtype>

The following event types are supported:

WIRE_CREATED
WIRE_CONNECTED
WIRE_UPDATED
WIRE_TRACE
WIRE_DISCONNECTED
WIRE_DELETED
PRODUCER_EXCEPTION
CONSUMER_EXCEPTION

The properties of a wire admin event are the following.

• event - (WireAdminEvent) The WireAdminEvent object broadcast by the Wire Admin service.

Wire Admin Service Specification Version 1.0 Connecting External Entities

OSGi Compendium Release 6 Page 217

If the getWire method returns a non nul l value:

• wire - (Wire) The Wire object returned by the getWire method.
• wire.f lavors - (Str ing[]) The names of the classes returned by the Wire getFlavors method.
• wire.scope - (Str ing[]) The scope of the Wire object, as returned by its getScope method.
• wire.connected - (Boolean) The result of the Wire isConnected method.
• wire.val id - (Boolean) The result of the Wire isVal id method.

If the getThrowable method does not return nul l :

• exception - (Throwable) The Exception returned by the getThrowable method.
• exception.class - (Str ing) The fully-qualified class name of the related Exception.
• exception.message - (Str ing) The message of the related Exception
• service - (ServiceReference) The Service Reference of the Wire Admin service.
• service. id - (Long) The service id of the WireAdmin service.
• service.objectClass - (Str ing[]) The Wire Admin service's object class (which must include

org.osgi .service.wireadmin.WireAdmin)
• service.pid - (Str ing) The Wire Admin service's PID.

108.12 Connecting External Entities
The Wire Admin service can be used to control the topology of consumers and producers that are
services, as well as external entities. For example, a video camera controlled over an IEEE 1394B bus
can be registered as a Producer service in the Framework's service registry and a TV, also connected
to this bus, can be registered as a Consumer service. It would be very inefficient to stream the video
data through the OSGi environment. Therefore, the Wire Admin service can be used to supply the
external addressing information to the camera and the monitor to make a direct connection outside
the OSGi environment. The Wire Admin service provides a uniform mechanism to connect both ex-
ternal entities and internal entities.

Figure 108.11 Connecting External Entities

camera

monitor

OSGi Framework

Wire defining
the connection

IEEE 1394B

A Consumer service and a Producer service associated with a Wire object receive enough informa-
tion to establish a direct link because the PIDs of both services are in the Wire object's properties.
This situation, however, does not guarantee compatibility between Producer and the Consumer ser-
vice. It is therefore recommended that flavors are used to ensure this compatibility. Producer ser-
vices that participate in an external addressing scheme, like IEEE 1394B, should have a flavor that

Related Standards Wire Admin Service Specification Version 1.0

Page 218 OSGi Compendium Release 6

reflects this address. In this case, there should then for example be a IEEE 1394B address class. Con-
sumer services that participate in this external addressing scheme should only accept data of this
flavor.

The OSGi Device Access Specification on page 61, defines the concept of a device category. This is a de-
scription of what classes and properties are used in a specific device category: for example, a UPnP
device category that defines the interface that must be used to register for a UPnP device, among
other things.

Device category descriptions should include a section that addresses the external wiring issue. This
section should include what objects are send over the wire to exchange addressing information.

108.13 Related Standards

108.13.1 Java Beans
The Wire Admin service leverages the component architecture that the Framework service registry
offers. Java Beans attempt to achieve similar goals. Java Beans are classes that follow a number of rec-
ommendations that allow them to be configured at run time. The techniques that are used by Java
Beans during configuration are serialization and the construction of adapter classes.

Creating adapter classes in a resource constrained OSGi Framework was considered too heavy
weight. Also, the dynamic nature of the OSGi environment, where services are registered and unreg-
istered continuously, creates a mismatch between the intended target area of Java Beans and the OS-
Gi Framework.

Also, Java Beans can freely communicate once they have a reference to each other. This freedom
makes it impossible to control the communication between Java Beans.

This Wire Admin service specification was developed because it is lightweight and leverages the
unique characteristics of the OSGi Framework. The concept of a Wire object that acts as an interme-
diate between the Producer and Consumer service allows the implementation of a security policy
because both parties cannot communicate directly.

108.14 Security

108.14.1 Separation of Consumer and Producer Services
The Consumer and Producer service never directly communicate with each other. All com-
munication takes place through a Wire object. This allows a Wire Admin service implementa-
tion to control the security aspects of creating a connection, and implies that the Wire Admin
service must be a trusted service in a secure environment. Only one bundle should have the
ServicePermission[WireAdmin, REGISTER] .

ServicePermission[Producer|Consumer, REGISTER] should not be restricted.
ServicePermission[Producer|Consumer,GET] must be limited to trusted bundles (the Wire Admin
service implementation) because a bundle with this permission can call such services and access in-
formation that it should not be able to access.

108.14.2 Using Wire Admin Service
This specification assumes that only a few applications require access to the Wire Admin service.
The WireAdmin interface contains all the security sensitive methods that create, update, and remove
Wire objects. (This is the reason that the update and delete methods are on the WireAdmin interface
and not on the Wire interface). ServicePermission[WireAdmin,GET] should therefore only be given
to trusted bundles that can manage the topology.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 219

108.14.3 Wire Permission
Composite Producer and Consumer services can be restricted in their use of scope names. This re-
striction is managed with the WirePermission class. A WirePermission consists of a scope name and
the action CONSUME or PRODUCE . The name used with the WirePermission may contain wild-cards
as specified in the java.security.BasicPermission class.

108.15 org.osgi.service.wireadmin

Wire Admin Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.wireadmin; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.wireadmin; vers ion="[1.0,1.1)"

108.15.1 Summary

• BasicEnvelope - BasicEnvelope is an implementation of the Envelope interface
• Consumer - Data Consumer, a service that can receive updated values from Producer services.
• Envelope - Identifies a contained value.
• Producer - Data Producer, a service that can generate values to be used by Consumer services.
• Wire - A connection between a Producer service and a Consumer service.
• WireAdmin - Wire Administration service.
• WireAdminEvent - A Wire Admin Event.
• WireAdminListener - Listener for Wire Admin Events.
• WireConstants - Defines standard names for Wire properties, wire filter attributes, Consumer

and Producer service properties.
• WirePermission - Permission for the scope of a Wire object.

108.15.2 public class BasicEnvelope
implements Envelope
BasicEnvelope is an implementation of the Envelope interface

Concurrency Immutable

108.15.2.1 public BasicEnvelope(Object value,Object identification,String scope)

value Content of this envelope, may be nul l .

identification Identifying object for this Envelope object, must not be nul l

scope Scope name for this object, must not be nul l

□ Constructor.

See Also Envelope

108.15.2.2 public Object getIdentification()

See Also org.osgi.service.wireadmin.Envelope.getIdentification()

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 220 OSGi Compendium Release 6

108.15.2.3 public String getScope()

See Also org.osgi.service.wireadmin.Envelope.getScope()

108.15.2.4 public Object getValue()

See Also org.osgi.service.wireadmin.Envelope.getValue()

108.15.3 public interface Consumer
Data Consumer, a service that can receive updated values from Producer services.

Service objects registered under the Consumer interface are expected to consume values from a Pro-
ducer service via a Wire object. A Consumer service may poll the Producer service by calling the
Wire.poll() method. The Consumer service will also receive an updated value when called at it's
updated(Wire, Object) method. The Producer service should have coerced the value to be an in-
stance of one of the types specified by the Wire.getFlavors() method, or one of their subclasses.

Consumer service objects must register with a service.pid and a
WireConstants.WIREADMIN_CONSUMER_FLAVORS property. It is recommended that Consumer
service objects also register with a service.descr ipt ion property.

If an Exception is thrown by any of the Consumer methods, a WireAdminEvent of type
WireAdminEvent.CONSUMER_EXCEPTION is broadcast by the Wire Admin service.

Security Considerations - Data consuming bundles will require
ServicePermission[Consumer,REGISTER] . In general, only the Wire Admin service bundle should
have this permission. Thus only the Wire Admin service may directly call a Consumer service. Care
must be taken in the sharing of Wire objects with other bundles.

Consumer services must be registered with their scope when they can receive different types of ob-
jects from the Producer service. The Consumer service should have WirePermission for each of these
scope names.

108.15.3.1 public void producersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Consumer service is connect-
ed. May be nul l if the Consumer service is not currently connected to any Wire objects.

□ Update the list of Wire objects to which this Consumer service is connected.

This method is called when the Consumer service is first registered and subsequently whenever a
Wire associated with this Consumer service becomes connected, is modified or becomes disconnect-
ed.

The Wire Admin service must call this method asynchronously. This implies that implementors of
Consumer can be assured that the callback will not take place during registration when they exe-
cute the registration in a synchronized method.

108.15.3.2 public void updated(Wire wire,Object value)

wire The Wire object which is delivering the updated value.

value The updated value. The value should be an instance of one of the types specified by the
Wire.getFlavors() method.

□ Update the value. This Consumer service is called by the Wire object with an updated value from the
Producer service.

Note: This method may be called by a Wire object prior to this object being notified that it is con-
nected to that Wire object (via the producersConnected(Wire[]) method).

When the Consumer service can receive Envelope objects, it must have registered all scope names
together with the service object, and each of those names must be permitted by the bundle's

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 221

WirePermission . If an Envelope object is delivered with the updated method, then the Consumer ser-
vice should assume that the security check has been performed.

108.15.4 public interface Envelope
Identifies a contained value. An Envelope object combines a status value, an identification object
and a scope name. The Envelope object allows the use of standard Java types when a Producer ser-
vice can produce more than one kind of object. The Envelope object allows the Consumer service
to recognize the kind of object that is received. For example, a door lock could be represented by a
Boolean object. If the Producer service would send such a Boolean object, then the Consumer service
would not know what door the Boolean object represented. The Envelope object contains an iden-
tification object so the Consumer service can discriminate between different kinds of values. The
identification object may be a simple Str ing object, but it can also be a domain specific object that is
mutually agreed by the Producer and the Consumer service. This object can then contain relevant
information that makes the identification easier.

The scope name of the envelope is used for security. The Wire object must verify that any Enve-
lope object send through the update method or coming from the pol l method has a scope name
that matches the permissions of both the Producer service and the Consumer service involved. The
wireadmin package also contains a class BasicEnvelope that implements the methods of this inter-
face.

See Also WirePermission, BasicEnvelope

108.15.4.1 public Object getIdentification()

□ Return the identification of this Envelope object. An identification may be of any Java type. The type
must be mutually agreed between the Consumer and Producer services.

Returns an object which identifies the status item in the address space of the composite producer, must not
be null.

108.15.4.2 public String getScope()

□ Return the scope name of this Envelope object. Scope names are used to restrict the communication
between the Producer and Consumer services. Only Envelopes objects with a scope name that is per-
mitted for the Producer and the Consumer services must be passed through a Wire object.

Returns the security scope for the status item, must not be null.

108.15.4.3 public Object getValue()

□ Return the value associated with this Envelope object.

Returns the value of the status item, or nul l when no item is associated with this object.

108.15.5 public interface Producer
Data Producer, a service that can generate values to be used by Consumer services.

Service objects registered under the Producer interface are expected to produce values (internally
generated or from external sensors). The value can be of different types. When delivering a value to
a Wire object, the Producer service should coerce the value to be an instance of one of the types spec-
ified by Wire.getFlavors(). The classes are specified in order of preference.

When the data represented by the Producer object changes, this object should send the updated
value by calling the update method on each of Wire objects passed in the most recent call to this
object's consumersConnected(Wire[]) method. These Wire objects will pass the value on to the asso-
ciated Consumer service object.

The Producer service may use the information in the Wire object's properties to schedule the deliv-
ery of values to the Wire object.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 222 OSGi Compendium Release 6

Producer service objects must register with a service.pid and a
WireConstants.WIREADMIN_PRODUCER_FLAVORS property. It is recommended that a Producer
service object also registers with a service.descr ipt ion property. Producer service objects must regis-
ter with a WireConstants.WIREADMIN_PRODUCER_FILTERS property if the Producer service will
be performing filtering instead of the Wire object.

If an exception is thrown by a Producer object method, a WireAdminEvent of type
WireAdminEvent.PRODUCER_EXCEPTION is broadcast by the Wire Admin service.

Security Considerations. Data producing bundles will require
ServicePermission[Producer,REGISTER] to register a Producer service. In general, only the Wire Ad-
min service should have ServicePermission[Producer,GET] . Thus only the Wire Admin service may
directly call a Producer service. Care must be taken in the sharing of Wire objects with other bun-
dles.

Producer services must be registered with scope names when they can send different types of ob-
jects (composite) to the Consumer service. The Producer service should have WirePermission for
each of these scope names.

108.15.5.1 public void consumersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Producer service is connected.
May be nul l if the Producer is not currently connected to any Wire objects.

□ Update the list of Wire objects to which this Producer object is connected.

This method is called when the Producer service is first registered and subsequently whenever a
Wire associated with this Producer becomes connected, is modified or becomes disconnected.

The Wire Admin service must call this method asynchronously. This implies that implementors of
a Producer service can be assured that the callback will not take place during registration when they
execute the registration in a synchronized method.

108.15.5.2 public Object polled(Wire wire)

wire The Wire object which is polling this service.

□ Return the current value of this Producer object.

This method is called by a Wire object in response to the Consumer service calling the Wire object's
pol l method. The Producer should coerce the value to be an instance of one of the types specified by
Wire.getFlavors(). The types are specified in order of preference. The returned value should be as
new or newer than the last value furnished by this object.

Note: This method may be called by a Wire object prior to this object being notified that it is con-
nected to that Wire object (via the consumersConnected(Wire[]) method).

If the Producer service returns an Envelope object that has an impermissible scope name, then the
Wire object must ignore (or remove) the transfer.

If the Wire object has a scope set, the return value must be an array of Envelope objects (Envelope[]).
The Wire object must have removed any Envelope objects that have a scope name that is not in the
Wire object's scope.

Returns The current value of the Producer service or nul l if the value cannot be coerced into a compatible
type. Or an array of Envelope objects.

108.15.6 public interface Wire
A connection between a Producer service and a Consumer service.

A Wire object connects a Producer service to a Consumer service. Both the Producer and Consumer
services are identified by their unique service.pid values. The Producer and Consumer services may
communicate with each other via Wire objects that connect them. The Producer service may send

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 223

updated values to the Consumer service by calling the update(Object) method. The Consumer ser-
vice may request an updated value from the Producer service by calling the poll() method.

A Producer service and a Consumer service may be connected through multiple Wire objects.

Security Considerations. Wire objects are available to Producer and Consumer services connect-
ed to a given Wire object and to bundles which can access the WireAdmin service. A bundle must
have ServicePermission[WireAdmin,GET] to get the WireAdmin service to access all Wire ob-
jects. A bundle registering a Producer service or a Consumer service must have the appropriate
ServicePermission[Consumer|Producer,REGISTER] to register the service and will be passed Wire ob-
jects when the service object's consumersConnected or producersConnected method is called.

Scope. Each Wire object can have a scope set with the setScope method. This method should be
called by a Consumer service when it assumes a Producer service that is composite (supports multi-
ple information items). The names in the scope must be verified by the Wire object before it is used
in communication. The semantics of the names depend on the Producer service and must not be in-
terpreted by the Wire Admin service.

No Implement Consumers of this API must not implement this interface

108.15.6.1 public Class[] getFlavors()

□ Return the list of data types understood by the Consumer service connected to this Wire object. Note
that subclasses of the classes in this list are acceptable data types as well.

The list is the value of the WireConstants.WIREADMIN_CONSUMER_FLAVORS service property of
the Consumer service object connected to this object. If no such property was registered or the type
of the property value is not Class[] , this method must return nul l .

Returns An array containing the list of classes understood by the Consumer service or nul l if the Wire is not
connected, or the consumer did not register a WireConstants.WIREADMIN_CONSUMER_FLAVORS
property or the value of the property is not of type Class[] .

108.15.6.2 public Object getLastValue()

□ Return the last value sent through this Wire object.

The returned value is the most recent, valid value passed to the update(Object) method or returned
by the poll() method of this object. If filtering is performed by this Wire object, this methods returns
the last value provided by the Producer service. This value may be an Envelope[] when the Producer
service uses scoping. If the return value is an Envelope object (or array), it must be verified that the
Consumer service has the proper WirePermission to see it.

Returns The last value passed though this Wire object or nul l if no valid values have been passed or the Con-
sumer service has no permission.

108.15.6.3 public Dictionary getProperties()

□ Return the wire properties for this Wire object.

Returns The properties for this Wire object. The returned Dictionary must be read only.

108.15.6.4 public String[] getScope()

□ Return the calculated scope of this Wire object. The purpose of the Wire object's scope is to allow
a Producer and/or Consumer service to produce/consume different types over a single Wire ob-
ject (this was deemed necessary for efficiency reasons). Both the Consumer service and the Pro-
ducer service must set an array of scope names (their scope) with the service registration property
WIREADMIN_PRODUCER_SCOPE , or WIREADMIN_CONSUMER_SCOPE when they can produce mul-
tiple types. If a Producer service can produce different types, it should set this property to the array
of scope names it can produce, the Consumer service must set the array of scope names it can con-
sume. The scope of a Wire object is defined as the intersection of permitted scope names of the Pro-
ducer service and Consumer service.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 224 OSGi Compendium Release 6

If neither the Consumer, or the Producer service registers scope names with its service registration,
then the Wire object's scope must be nul l .

The Wire object's scope must not change when a Producer or Consumer services modifies its scope.

A scope name is permitted for a Producer service when the registering bundle has
WirePermission[name,PRODUCE] , and for a Consumer service when the registering bundle has
WirePermission[name,CONSUME] .

If either Consumer service or Producer service has not set a WIREADMIN_*_SCOPE property, then
the returned value must be nul l .

If the scope is set, the Wire object must enforce the scope names when Envelope objects are used as a
parameter to update or returned from the pol l method. The Wire object must then remove all Enve-
lope objects with a scope name that is not permitted.

Returns A list of permitted scope names or null if the Produce or Consumer service has set no scope names.

108.15.6.5 public boolean hasScope(String name)

name The scope name

□ Return true if the given name is in this Wire object's scope.

Returns true if the name is listed in the permitted scope names

108.15.6.6 public boolean isConnected()

□ Return the connection state of this Wire object.

A Wire is connected after the Wire Admin service receives notification that the Producer service and
the Consumer service for this Wire object are both registered. This method will return true prior to
notifying the Producer and Consumer services via calls to their respective consumersConnected
and producersConnected methods.

A WireAdminEvent of type WireAdminEvent.WIRE_CONNECTED must be broadcast by the Wire
Admin service when the Wire becomes connected.

A Wire object is disconnected when either the Consumer or Producer service is unregistered or the
Wire object is deleted.

A WireAdminEvent of type WireAdminEvent.WIRE_DISCONNECTED must be broadcast by the
Wire Admin service when the Wire becomes disconnected.

Returns true if both the Producer and Consumer for this Wire object are connected to the Wire object; fa lse
otherwise.

108.15.6.7 public boolean isValid()

□ Return the state of this Wire object.

A connected Wire must always be disconnected before becoming invalid.

Returns fa lse if this Wire object is invalid because it has been deleted via WireAdmin.deleteWire(Wire); true
otherwise.

108.15.6.8 public Object poll()

□ Poll for an updated value.

This methods is normally called by the Consumer service to request an updated value from the Pro-
ducer service connected to this Wire object. This Wire object will call the Producer.polled(Wire)
method to obtain an updated value. If this Wire object is not connected, then the Producer service
must not be called.

If this Wire object has a scope, then this method must return an array of Envelope objects. The ob-
jects returned must match the scope of this object. The Wire object must remove all Envelope objects

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 225

with a scope name that is not in the Wire object's scope. Thus, the list of objects returned must only
contain Envelope objects with a permitted scope name. If the array becomes empty, nul l must be re-
turned.

A WireAdminEvent of type WireAdminEvent.WIRE_TRACE must be broadcast by the Wire Admin
service after the Producer service has been successfully called.

Returns A value whose type should be one of the types returned by getFlavors(),Envelope[] , or nul l if the
Wire object is not connected, the Producer service threw an exception, or the Producer service re-
turned a value which is not an instance of one of the types returned by getFlavors().

108.15.6.9 public void update(Object value)

value The updated value. The value should be an instance of one of the types returned by getFlavors().

□ Update the value.

This methods is called by the Producer service to notify the Consumer service connected to this Wire
object of an updated value.

If the properties of this Wire object contain a WireConstants.WIREADMIN_FILTER property, then
filtering is performed. If the Producer service connected to this Wire object was registered with the
service property WireConstants.WIREADMIN_PRODUCER_FILTERS, the Producer service will per-
form the filtering according to the rules specified for the filter. Otherwise, this Wire object will per-
form the filtering of the value.

If no filtering is done, or the filter indicates the updated value should be delivered to the Consumer
service, then this Wire object must call the Consumer.updated(Wire, Object) method with the updat-
ed value. If this Wire object is not connected, then the Consumer service must not be called and the
value is ignored.

If the value is an Envelope object, and the scope name is not permitted, then the Wire object must ig-
nore this call and not transfer the object to the Consumer service.

A WireAdminEvent of type WireAdminEvent.WIRE_TRACE must be broadcast by the Wire Admin
service after the Consumer service has been successfully called.

See Also WireConstants.WIREADMIN_FILTER

108.15.7 public interface WireAdmin
Wire Administration service.

This service can be used to create Wire objects connecting a Producer service and a Consumer ser-
vice. Wire objects also have wire properties that may be specified when a Wire object is created. The
Producer and Consumer services may use the Wire object's properties to manage or control their in-
teraction. The use of Wire object's properties by a Producer or Consumer services is optional.

Security Considerations. A bundle must have ServicePermission[WireAdmin,GET] to get the Wire
Admin service to create, modify, find, and delete Wire objects.

No Implement Consumers of this API must not implement this interface

108.15.7.1 public Wire createWire(String producerPID,String consumerPID,Dictionary properties)

producerPID The service.pid of the Producer service to be connected to the Wire object.

consumerPID The service.pid of the Consumer service to be connected to the Wire object.

properties The Wire object's properties. This argument may be nul l if the caller does not wish to define any Wire
object's properties.

□ Create a new Wire object that connects a Producer service to a Consumer service. The Producer ser-
vice and Consumer service do not have to be registered when the Wire object is created.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 226 OSGi Compendium Release 6

The Wire configuration data must be persistently stored. All Wire connections are reestablished
when the WireAdmin service is registered. A Wire can be permanently removed by using the
deleteWire(Wire) method.

The Wire object's properties must have case insensitive Str ing objects as keys (like the Framework).
However, the case of the key must be preserved.

The WireAdmin service must automatically add the following Wire properties:

• WireConstants.WIREADMIN_PID set to the value of the Wire object's persistent identity (PID).
This value is generated by the Wire Admin service when a Wire object is created.

• WireConstants.WIREADMIN_PRODUCER_PID set to the value of Producer service's PID.
• WireConstants.WIREADMIN_CONSUMER_PID set to the value of Consumer service's PID.

If the propert ies argument already contains any of these keys, then the supplied values are replaced
with the values assigned by the Wire Admin service.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent.WIRE_CREATED after the new Wire object becomes available from
getWires(String).

Returns The Wire object for this connection.

Throws I l legalArgumentException– If propert ies contains invalid wire types or case variants of the same
key name.

108.15.7.2 public void deleteWire(Wire wire)

wire The Wire object which is to be deleted.

□ Delete a Wire object.

The Wire object representing a connection between a Producer service and a Consumer service must
be removed. The persistently stored configuration data for the Wire object must destroyed. The Wire
object's method Wire.isValid() will return fa lse after it is deleted.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent.WIRE_DELETED after the Wire object becomes invalid.

108.15.7.3 public Wire[] getWires(String filter) throws InvalidSyntaxException

filter Filter string to select Wire objects or nul l to select all Wire objects.

□ Return the Wire objects that match the given f i l ter .

The list of available Wire objects is matched against the specified f i l ter .Wire objects which match
the f i l ter must be returned. These Wire objects are not necessarily connected. The Wire Admin ser-
vice should not return invalid Wire objects, but it is possible that a Wire object is deleted after it was
placed in the list.

The filter matches against the Wire object's properties including
WireConstants.WIREADMIN_PRODUCER_PID, WireConstants.WIREADMIN_CONSUMER_PID
and WireConstants.WIREADMIN_PID.

Returns An array of Wire objects which match the f i l ter or nul l if no Wire objects match the f i l ter .

Throws Inval idSyntaxException– If the specified f i l ter has an invalid syntax.

See Also org.osgi.framework.Filter

108.15.7.4 public void updateWire(Wire wire,Dictionary properties)

wire The Wire object which is to be updated.

properties The new Wire object's properties or nul l if no properties are required.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 227

□ Update the properties of a Wire object. The persistently stored configuration data for the Wire object
is updated with the new properties and then the Consumer and Producer services will be called at
the respective Consumer.producersConnected(Wire[]) and Producer.consumersConnected(Wire[])
methods.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent.WIRE_UPDATED after the updated properties are available from the Wire object.

Throws I l legalArgumentException– If propert ies contains invalid wire types or case variants of the same
key name.

108.15.8 public class WireAdminEvent
A Wire Admin Event.

WireAdminEvent objects are delivered to all registered WireAdminListener service objects which
specify an interest in the WireAdminEvent type. Events must be delivered in chronological order
with respect to each listener. For example, a WireAdminEvent of type WIRE_CONNECTED must be
delivered before a WireAdminEvent of type WIRE_DISCONNECTED for a particular Wire object.

A type code is used to identify the type of event. The following event types are defined:

• WIRE_CREATED
• WIRE_CONNECTED
• WIRE_UPDATED
• WIRE_TRACE
• WIRE_DISCONNECTED
• WIRE_DELETED
• PRODUCER_EXCEPTION
• CONSUMER_EXCEPTION

Additional event types may be defined in the future.

Event type values must be unique and disjoint bit values. Event types must be defined as a bit in a 32
bit integer and can thus be bitwise OR'ed together.

Security Considerations. WireAdminEvent objects contain Wire objects. Care must be taken in the
sharing of Wire objects with other bundles.

See Also WireAdminListener

Concurrency Immutable

108.15.8.1 public static final int CONSUMER_EXCEPTION = 2

A Consumer service method has thrown an exception.

This WireAdminEvent type indicates that a Consumer service method has thrown an exception.
The WireAdminEvent.getThrowable() method will return the exception that the Consumer service
method raised.

The value of CONSUMER_EXCEPTION is 0x00000002.

108.15.8.2 public static final int PRODUCER_EXCEPTION = 1

A Producer service method has thrown an exception.

This WireAdminEvent type indicates that a Producer service method has thrown an exception.
The WireAdminEvent.getThrowable() method will return the exception that the Producer service
method raised.

The value of PRODUCER_EXCEPTION is 0x00000001.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 228 OSGi Compendium Release 6

108.15.8.3 public static final int WIRE_CONNECTED = 32

The WireAdminEvent type that indicates that an existing Wire object has become connected. The
Consumer object and the Producer object that are associated with the Wire object have both been
registered and the Wire object is connected. See Wire.isConnected() for a description of the connect-
ed state. This event may come before the producersConnected and consumersConnected method
have returned or called to allow synchronous delivery of the events. Both methods can cause oth-
er WireAdminEvent s to take place and requiring this event to be send before these methods are re-
turned would mandate asynchronous delivery.

The value of WIRE_CONNECTED is 0x00000020.

108.15.8.4 public static final int WIRE_CREATED = 4

A Wire has been created.

This WireAdminEvent type that indicates that a new Wire object has been created. An event
is broadcast when WireAdmin.createWire(String, String, java.util.Dictionary) is called. The
WireAdminEvent.getWire() method will return the Wire object that has just been created.

The value of WIRE_CREATED is 0x00000004.

108.15.8.5 public static final int WIRE_DELETED = 16

A Wire has been deleted.

This WireAdminEvent type that indicates that an existing wire has been deleted. An event is broad-
cast when WireAdmin.deleteWire(Wire) is called with a valid wire. WireAdminEvent.getWire() will
return the Wire object that has just been deleted.

The value of WIRE_DELETED is 0x00000010.

108.15.8.6 public static final int WIRE_DISCONNECTED = 64

The WireAdminEvent type that indicates that an existing Wire object has become disconnected. The
Consumer object or/and Producer object is/are unregistered breaking the connection between the
two. See Wire.isConnected for a description of the connected state.

The value of WIRE_DISCONNECTED is 0x00000040.

108.15.8.7 public static final int WIRE_TRACE = 128

The WireAdminEvent type that indicates that a new value is transferred over the Wire object. This
event is sent after the Consumer service has been notified by calling the Consumer.updated(Wire,
Object) method or the Consumer service requested a new value with the Wire.poll() method. This
is an advisory event meaning that when this event is received, another update may already have oc-
curred and this the Wire.getLastValue() method returns a newer value then the value that was com-
municated for this event.

The value of WIRE_TRACE is 0x00000080.

108.15.8.8 public static final int WIRE_UPDATED = 8

A Wire has been updated.

This WireAdminEvent type that indicates that an existing Wire object has been updated with new
properties. An event is broadcast when WireAdmin.updateWire(Wire, java.util.Dictionary) is called
with a valid wire. The WireAdminEvent.getWire() method will return the Wire object that has just
been updated.

The value of WIRE_UPDATED is 0x00000008.

108.15.8.9 public WireAdminEvent(ServiceReference reference,int type,Wire wire,Throwable exception)

reference The ServiceReference object of the Wire Admin service that created this event.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 229

type The event type. See getType().

wire The Wire object associated with this event.

exception An exception associated with this event. This may be nul l if no exception is associated with this
event.

□ Constructs a WireAdminEvent object from the given ServiceReference object, event type, Wire object
and exception.

108.15.8.10 public ServiceReference getServiceReference()

□ Return the ServiceReference object of the Wire Admin service that created this event.

Returns The ServiceReference object for the Wire Admin service that created this event.

108.15.8.11 public Throwable getThrowable()

□ Returns the exception associated with the event, if any.

Returns An exception or nul l if no exception is associated with this event.

108.15.8.12 public int getType()

□ Return the type of this event.

The type values are:

• WIRE_CREATED
• WIRE_CONNECTED
• WIRE_UPDATED
• WIRE_TRACE
• WIRE_DISCONNECTED
• WIRE_DELETED
• PRODUCER_EXCEPTION
• CONSUMER_EXCEPTION

Returns The type of this event.

108.15.8.13 public Wire getWire()

□ Return the Wire object associated with this event.

Returns The Wire object associated with this event or nul l when no Wire object is associated with the event.

108.15.9 public interface WireAdminListener
Listener for Wire Admin Events.

WireAdminListener objects are registered with the Framework service registry and are notified with
a WireAdminEvent object when an event is broadcast.

WireAdminListener objects can inspect the received WireAdminEvent object to determine its type,
the Wire object with which it is associated, and the Wire Admin service that broadcasts the event.

WireAdminListener objects must be registered with a service property
WireConstants.WIREADMIN_EVENTS whose value is a bitwise OR of all the event types the listen-
er is interested in receiving.

For example:

 Integer mask = new Integer(WIRE_TRACE | WIRE_CONNECTED | WIRE_DISCONNECTED);
 Hashtable ht = new Hashtable();

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 230 OSGi Compendium Release 6

 ht.put(WIREADMIN_EVENTS, mask);
 context.registerService(WireAdminListener.class.getName(), this, ht);

If a WireAdminListener object is registered without a service property
WireConstants.WIREADMIN_EVENTS, then the WireAdminListener will receive no events.

Security Considerations. Bundles wishing to monitor WireAdminEvent objects will require
ServicePermission[WireAdminListener,REGISTER] to register a WireAdminListener service. Since
WireAdminEvent objects contain Wire objects, care must be taken in assigning permission to register
a WireAdminListener service.

See Also WireAdminEvent

108.15.9.1 public void wireAdminEvent(WireAdminEvent event)

event The WireAdminEvent object.

□ Receives notification of a broadcast WireAdminEvent object. The event object will be of an event
type specified in this WireAdminListener service's WireConstants.WIREADMIN_EVENTS service
property.

108.15.10 public interface WireConstants
Defines standard names for Wire properties, wire filter attributes, Consumer and Producer service
properties.

No Implement Consumers of this API must not implement this interface

108.15.10.1 public static final String WIREADMIN_CONSUMER_COMPOSITE = "wireadmin.consumer.composite"

A service registration property for a Consumer service that is composite. It contains the names of
the composite Producer services it can cooperate with. Inter-operability exists when any name in
this array matches any name in the array set by the Producer service. The type of this property must
be Str ing[] .

108.15.10.2 public static final String WIREADMIN_CONSUMER_FLAVORS = "wireadmin.consumer.flavors"

Service Registration property (named wireadmin.consumer.f lavors) specifying the list of data types
understood by this Consumer service.

The Consumer service object must be registered with this service property. The list must be in the
order of preference with the first type being the most preferred. The value of the property must be of
type Class[] .

108.15.10.3 public static final String WIREADMIN_CONSUMER_PID = "wireadmin.consumer.pid"

Wire property key (named wireadmin.consumer.pid) specifying the service.pid of the associated
Consumer service.

This wire property is automatically set by the Wire Admin service. The value of the property must
be of type Str ing .

108.15.10.4 public static final String WIREADMIN_CONSUMER_SCOPE = "wireadmin.consumer.scope"

Service registration property key (named wireadmin.consumer.scope) specifying a list of names
that may be used to define the scope of this Wire object. A Consumer service should set this service
property when it can produce more than one kind of value. This property is only used during reg-
istration, modifying the property must not have any effect of the Wire object's scope. Each name in
the given list mist have WirePermission[name,CONSUME] or else is ignored. The type of this service
registration property must be Str ing[] .

See Also Wire.getScope(), WIREADMIN_PRODUCER_SCOPE

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 231

108.15.10.5 public static final String WIREADMIN_EVENTS = "wireadmin.events"

Service Registration property (named wireadmin.events) specifying the WireAdminEvent type of in-
terest to a Wire Admin Listener service. The value of the property is a bitwise OR of all the WireAd-
minEvent types the Wire Admin Listener service wishes to receive and must be of type Integer .

See Also WireAdminEvent

108.15.10.6 public static final String WIREADMIN_FILTER = "wireadmin.filter"

Wire property key (named wireadmin.f i l ter) specifying a filter used to control the delivery rate of da-
ta between the Producer and the Consumer service.

This property should contain a filter as described in the Fi l ter class. The filter can be used to specify
when an updated value from the Producer service should be delivered to the Consumer service. In
many cases the Consumer service does not need to receive the data with the same rate that the Pro-
ducer service can generate data. This property can be used to control the delivery rate.

The filter can use a number of predefined attributes that can be used to control the delivery of new
data values. If the filter produces a match upon the wire filter attributes, the Consumer service
should be notified of the updated data value.

If the Producer service was registered with the WIREADMIN_PRODUCER_FILTERS service property
indicating that the Producer service will perform the data filtering then the Wire object will not per-
form data filtering. Otherwise, the Wire object must perform basic filtering. Basic filtering includes
supporting the following standard wire filter attributes:

• WIREVALUE_CURRENT - Current value
• WIREVALUE_PREVIOUS - Previous value
• WIREVALUE_DELTA_ABSOLUTE - Absolute delta
• WIREVALUE_DELTA_RELATIVE - Relative delta
• WIREVALUE_ELAPSED - Elapsed time

See Also org.osgi.framework.Filter

108.15.10.7 public static final String WIREADMIN_PID = "wireadmin.pid"

Wire property key (named wireadmin.pid) specifying the persistent identity (PID) of this Wire object.

Each Wire object has a PID to allow unique and persistent identification of a specific Wire object. The
PID must be generated by the WireAdmin service when the Wire object is created.

This wire property is automatically set by the Wire Admin service. The value of the property must
be of type Str ing .

108.15.10.8 public static final String WIREADMIN_PRODUCER_COMPOSITE = "wireadmin.producer.composite"

A service registration property for a Producer service that is composite. It contains the names of the
composite Consumer services it can inter-operate with. Inter-operability exists when any name in
this array matches any name in the array set by the Consumer service. The type of this property
must be Str ing[] .

108.15.10.9 public static final String WIREADMIN_PRODUCER_FILTERS = "wireadmin.producer.filters"

Service Registration property (named wireadmin.producer.f i l ters). A Producer service registered
with this property indicates to the Wire Admin service that the Producer service implements at
least the filtering as described for the WIREADMIN_FILTER property. If the Producer service is
not registered with this property, the Wire object must perform the basic filtering as described in
WIREADMIN_FILTER.

The type of the property value is not relevant. Only its presence is relevant.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 232 OSGi Compendium Release 6

108.15.10.10 public static final String WIREADMIN_PRODUCER_FLAVORS = "wireadmin.producer.flavors"

Service Registration property (named wireadmin.producer.f lavors) specifying the list of data types
available from this Producer service.

The Producer service object should be registered with this service property.

The value of the property must be of type Class[] .

108.15.10.11 public static final String WIREADMIN_PRODUCER_PID = "wireadmin.producer.pid"

Wire property key (named wireadmin.producer.pid) specifying the service.pid of the associated Pro-
ducer service.

This wire property is automatically set by the WireAdmin service. The value of the property must
be of type Str ing .

108.15.10.12 public static final String WIREADMIN_PRODUCER_SCOPE = "wireadmin.producer.scope"

Service registration property key (named wireadmin.producer.scope) specifying a list of names that
may be used to define the scope of this Wire object. A Producer service should set this service proper-
ty when it can produce more than one kind of value. This property is only used during registration,
modifying the property must not have any effect of the Wire object's scope. Each name in the given
list mist have WirePermission[name,PRODUCE] or else is ignored. The type of this service registra-
tion property must be Str ing[] .

See Also Wire.getScope(), WIREADMIN_CONSUMER_SCOPE

108.15.10.13 public static final String[] WIREADMIN_SCOPE_ALL

Matches all scope names.

108.15.10.14 public static final String WIREVALUE_CURRENT = "wirevalue.current"

Wire object's filter attribute (named wirevalue.current) representing the current value.

108.15.10.15 public static final String WIREVALUE_DELTA_ABSOLUTE = "wirevalue.delta.absolute"

Wire object's filter attribute (named wirevalue.delta.absolute) representing the absolute delta. The
absolute (always positive) difference between the last update and the current value (only when nu-
meric). This attribute must not be used when the values are not numeric.

108.15.10.16 public static final String WIREVALUE_DELTA_RELATIVE = "wirevalue.delta.relative"

Wire object's filter attribute (named wirevalue.delta.relat ive) representing the relative delta. The
relative difference is |previous -current |/| current | (only when numeric). This attribute must not be
used when the values are not numeric.

108.15.10.17 public static final String WIREVALUE_ELAPSED = "wirevalue.elapsed"

Wire object's filter attribute (named wirevalue.elapsed) representing the elapsed time, in ms, be-
tween this filter evaluation and the last update of the Consumer service.

108.15.10.18 public static final String WIREVALUE_PREVIOUS = "wirevalue.previous"

Wire object's filter attribute (named wirevalue.previous) representing the previous value.

108.15.11 public final class WirePermission
extends BasicPermission
Permission for the scope of a Wire object. When a Envelope object is used for communica-
tion with the pol l or update method, and the scope is set, then the Wire object must verify that
the Consumer service has WirePermission[name,CONSUME] and the Producer service has
WirePermission[name,PRODUCE] for all names in the scope.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 6 Page 233

The names are compared with the normal rules for permission names. This means that they may
end with a "*" to indicate wildcards. E.g. Door.* indicates all scope names starting with the string
"Door". The last period is required due to the implementations of the BasicPermission class.

Concurrency Thread-safe

108.15.11.1 public static final String CONSUME = "consume"

The action string for the consume action.

108.15.11.2 public static final String PRODUCE = "produce"

The action string for the produce action.

108.15.11.3 public WirePermission(String name,String actions)

name Wire name.

actions produce , consume (canonical order).

□ Create a new WirePermission with the given name (may be wildcard) and actions.

108.15.11.4 public boolean equals(Object obj)

obj The object to test for equality.

□ Determines the equality of two WirePermission objects. Checks that specified object has the same
name and actions as this WirePermission object.

Returns true if obj is a WirePermission , and has the same name and actions as this WirePermission object;
fa lse otherwise.

108.15.11.5 public String getActions()

□ Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing order: produce , consume .

Returns The canonical string representation of the actions.

108.15.11.6 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

108.15.11.7 public boolean implies(Permission p)

p The permission to check against.

□ Checks if this WirePermission object impl ies the specified permission.

More specifically, this method returns true if:

• p is an instanceof the WirePermission class,
• p's actions are a proper subset of this object's actions, and
• p's name is implied by this object's name. For example, java.* implies java.home .

Returns true if the specified permission is implied by this object; fa lse otherwise.

108.15.11.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing WirePermission objects.

Returns A new PermissionCol lect ion object suitable for storing WirePermission objects.

References Wire Admin Service Specification Version 1.0

Page 234 OSGi Compendium Release 6

108.15.11.9 public String toString()

□ Returns a string describing this WirePermission . The convention is to specify
the class name, the permission name, and the actions in the following format:
'(org.osgi.service.wireadmin.WirePermission "name" "actions")'.

Returns information about this Permission object.

108.16 References

[1] Design Patterns
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Addison Wesley, ISBN 0-201-63361

IO Connector Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 235

109 IO Connector Service
Specification

Version 1.0

109.1 Introduction
Communication is at the heart of OSGi Framework functionality. Therefore, a flexible and extend-
able communication API is needed: one that can handle all the complications that arise out of the
Reference Architecture. These obstacles could include different communication protocols based on
different networks, firewalls, intermittent connectivity, and others.

Therefore, this IO Connector Service specification adopts the [1] Java 2 Micro Edition (J2ME)
javax.microedit ion. io packages as a basic communications infrastructure. In J2ME, this API is also
called the Connector framework. A key aspect of this framework is that the connection is config-
ured by a single string, the URI.

In J2ME, the Connector framework can be extended by the vendor of the Virtual Machine, but can-
not be extended at run-time by other code. Therefore, this specification defines a service that adopts
the flexible model of the Connector framework, but allows bundles to extend the Connector Ser-
vices into different communication domains.

109.1.1 Essentials

• Abstract - Provide an intermediate layer that abstracts the actual protocol and devices from the
bundle using it.

• Extendable - Allow third-party bundles to extend the system with new protocols and devices.
• Layered - Allow a protocol to be layered on top of lower layer protocols or devices.
• Configurable - Allow the selection of an actual protocol/device by means of configuration data.
• Compatibility - Be compatible with existing standards.

109.1.2 Entities

• Connector Service - The service that performs the same function, creating connections from differ-
ent providers, as the static methods in the Connector framework of javax.microediton. io .

• Connection Factory - A service that extends the Connector service with more schemes.
• Scheme - A protocol or device that is supported in the Connector framework.

The Connector Framework IO Connector Service Specification Version 1.0

Page 236 OSGi Compendium Release 6

Figure 109.1 Class Diagram, org.osgi.service.io (jmi is javax.microedition.io)

<<interface>>
Connector
Service

jmi.Connector

<<interface>>
Connection
Factory

<<interface>>
jmi.Connection

<<interface>>
jmi.Input
Connection

<<interface>>
jmi.Output
Connection

<<interface>>
jmi.Stream
Connection

<<interface>>
jmi.Content
Connection

<<interface>>
jmi.Http
Connection

<<interface>>
jmi.Datagram
Connection

<<interface>>
jmi.StreamCon-
nectionNotifier

Connector impl.

Impl. of scheme
providers

Impl. of IO user

provides io scheme
0..*

1

connections
factory

0..*

0,1

uses Impl. of
Connection 10..*

javax.microedition.io

used as default

1

0,1

109.2 The Connector Framework
The [1] Java 2 Micro Edition specification introduces a package for communicating with back-end sys-
tems. The requirements for this package are very similar to the following OSGi requirements:

• Small footprint
• Allows many different implementations simultaneously
• Simple to use
• Simple configuration

The key design goal of the Connector framework is to allow an application to use a communication
mechanism/protocol without understanding implementation details.

An application passes a Uniform Resource Identifier (URI) to the java.microedit ion. io.Connector
class, and receives an object implementing one or more Connection interfaces. The
java.microedit ion. io.Connector class uses the scheme in the URI to locate the appropriate Connec-
tion Factory service. The remainder of the URI may contain parameters that are used by the Connec-
tion Factory service to establish the connection; for example, they may contain the baud rate for a
serial connection. Some examples:

• sms://+46705950899;expiry=24h;reply=yes;type=9
• datagram:// :53

IO Connector Service Specification Version 1.0 The Connector Framework

OSGi Compendium Release 6 Page 237

• socket://www.acme.com:5302
• comm://COM1;baudrate=9600;databits=9
• f i le :c :/autoexec.bat

The javax.microedit ion. io API itself does not prescribe any schemes. It is up to the imple-
menter of this package to include a number of extensions that provide the schemes. The
javax.microedit ion. io.Connector class dispatches a request to a class which provides an implemen-
tation of a Connection interface. J2ME does not specify how this dispatching takes place, but imple-
mentations usually offer a proprietary mechanism to connect user defined classes that can provide
new schemes.

The Connector framework defines a taxonomy of communication mechanisms with a
number of interfaces. For example, a javax.microedit ion. io. InputConnection interface in-
dicates that the connection supports the input stream semantics, such as an I/O port. A
javax.microedit ion. io.DatagramConnection interface indicates that communication should take
place with messages.

When a javax.microedit ion. io.Connector.open method is called, it returns a
javax.microedit ion. io.Connection object. The interfaces implemented by this object define the type
of the communication session. The following interfaces may be implemented:

• HttpConnection - A javax.microedit ion. io.ContentConnection with specific HTTP support.
• DatagramConnection - A connection that can be used to send and receive datagrams.
• OutputConnection - A connection that can be used for streaming output.
• InputConnection - A connection that can be used for streaming input.
• StreamConnection - A connection that is both input and output.
• StreamConnectionNotifier - Can be used to wait for incoming stream connection requests.
• ContentConnection - A javax.microedit ion. io.StreamConnection that provides information about

the type, encoding, and length of the information.

Bundles using this approach must indicate to the Operator what kind of interfaces they expect to
receive. The operator must then configure the bundle with a URI that contains the scheme and ap-
propriate options that match the bundle's expectations. Well-written bundles are flexible enough to
communicate with any of the types of javax.microedit ion. io.Connection interfaces they have spec-
ified. For example, a bundle should support javax.microedit ion. io. StreamConnection as well as
javax.microedit ion. io. DatagramConnection objects in the appropriate direction (input or output).

The following code example shows a bundle that sends an alarm message with the help of the
javax.microedit ion. io.Connector framework:

public class Alarm {
 String uri;
 public Alarm(String uri) { this.uri = uri; }
 private void send(byte[] msg) {
 while (true) try {
 Connection connection = Connector.open(uri);
 DataOutputStream dout = null;
 if (connection instanceof OutputConnection) {
 dout = ((OutputConnection)
 connection).openDataOutputStream();
 dout.write(msg);
 }
 else if (connection instanceof DatagramConnection){
 DatagramConnection dgc =
 (DatagramConnection) connection;
 Datagram datagram = dgc.newDatagram(

Connector Service IO Connector Service Specification Version 1.0

Page 238 OSGi Compendium Release 6

 msg, msg.length);
 dgc.send(datagram);
 } else {
 error("No configuration for alarm");
 return;
 }
 connection.close();
 } catch(Exception e) { ... }
 }
}

109.3 Connector Service
The javax.microedit ion. io.Connector framework matches the requirements for OSGi applications
very well. The actual creation of connections, however, is handled through static methods in the
javax.microedit ion. io.Connector class. This approach does not mesh well with the OSGi service reg-
istry and dynamic life-cycle management.

This specification therefore introduces the Connector Service. The methods of the
ConnectorService interface have the same signatures as the static methods of the
javax.microedit ion. io.Connector class.

Each javax.microedit ion. io.Connection object returned by a Connector Service must implement in-
terfaces from the javax.microedit ion. io package. Implementations must strictly follow the seman-
tics that are associated with these interfaces.

The Connector Service must provide all the schemes provided by the exporter of the
javax.microedit ion. io package. The Connection Factory services must have priority over schemes
implemented in the Java run-time environment. For example, if a Connection Factory provides the
http scheme and a built-in implementation exists, then the Connector Service must use the Connec-
tion Factory service with the http scheme.

Bundles that want to use the Connector Service should first obtain a ConnectorSer-
vice service object. This object contains open methods that should be called to get a new
javax.microedit ion. io.Connection object.

109.4 Providing New Schemes
The Connector Service must be able to be extended with the Connection Factory service. Bundles
that can provide new schemes must register a ConnectionFactory service object.

The Connector Service must listen for registrations of new ConnectionFactory service objects and
make the supplied schemes available to bundles that create connections.

Implementing a Connection Factory service requires implementing the following method:

• createConnection(Str ing, int ,boolean) - Creates a new connection object from the given URI.

The Connection Factory service must be registered with the IO_SCHEME property to indicate the
provided scheme to the Connector Service. The value of this property must be a Str ing[] .

If multiple Connection Factory services register with the same scheme, the Connector Service
should select the Connection Factory service with the highest value for the service.ranking service
registration property, or if more than one Connection Factory service has the highest value, the Con-
nection Factory service with the lowest service. id is selected.

IO Connector Service Specification Version 1.0 Execution Environment

OSGi Compendium Release 6 Page 239

The following example shows how a Connection Factory service may be implemented. The exam-
ple will return a javax.microedit ion. io. InputConnection object that returns the value of the URI af-
ter removing the scheme identifier.

public class ConnectionFactoryImpl
 implements BundleActivator, ConnectionFactory {
 public void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(IO_SCHEME, new String[]{"data"});
 context.registerService(
 ConnectorService.class.getName(),
 this, properties);
 }
 public void stop(BundleContext context) {}

 public Connection createConnection(
 String uri, int mode, boolean timeouts) {
 return new DataConnection(uri);
 }
}

class DataConnection
 implements javax.microedition.io.InputConnection {
 String uri;
 DataConnection(String uri) {this.uri = uri;}
 public DataInputStream openDataInputStream()
 throws IOException {
 return new DataInputStream(openInputStream());
 }

 public InputStream openInputStream() throws IOException {
 byte [] buf = uri.getBytes();
 return new ByteArrayInputStream(buf,5,buf.length-5);
 }
 public void close() {}
}

109.4.1 Orphaned Connection Objects
When a Connection Factory service is unregistered, it must close all Connection objects that are still
open. Closing these Connection objects should make these objects unusable, and they should subse-
quently throw an IOException when used.

Bundles should not unnecessarily hang onto objects they retrieved from services. Implementations
of Connection Factory services should program defensively and ensure that resource allocation is
minimized when a Connection object is closed.

109.5 Execution Environment
The javax.microedit ion. io package is available in J2ME configurations/profiles, but is not present in
J2SE, J2EE, and the OSGi minimum execution requirements.

Implementations of the Connector Service that are targeted for all environments should carry their
own implementation of the javax.microedit ion. io package and export it.

Security IO Connector Service Specification Version 1.0

Page 240 OSGi Compendium Release 6

109.6 Security
The OSGi Connector Service is a key service available in the Framework. A malicious bun-
dle which provides this service can spoof any communication. Therefore, it is paramount
that the ServicePermission[ConnectorService, REGISTER] is given only to a trusted bundle.
ServicePermission[ConnectorService,GET] may be handed to bundles that are allowed to commu-
nicate to the external world.

ServicePermission[ConnectionFactory, REGISTER] should also be restricted to
trusted bundles because they can implement specific protocols or access devices.
ServicePermission[ConnectionFactory,GET] should be limited to trusted bundles that implement
the Connector Service.

Implementations of Connection Factory services must perform all I/O operations within a privi-
leged region. For example, an implementation of the sms: scheme must have permission to access
the mobile phone, and should not require the bundle that opened the connection to have this per-
mission. Normally, the operations need to be implemented in a doPriv i leged method or in a separate
thread.

If a specific Connection Factory service needs more detailed permissions than provided by the OSGi
or Java 2, it may create a new specific Permission sub-class for its purpose.

109.7 org.osgi.service.io

IO Connector Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. io; vers ion="[1.0,2.0)", javax.microedit ion. io

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. io; vers ion="[1.0,1.1)", javax.microedit ion. io

109.7.1 Summary

• ConnectionFactory - A Connection Factory service is called by the implementation of the Con-
nector Service to create javax.microedit ion. io.Connection objects which implement the scheme
named by IO_SCHEME .

• ConnectorService - The Connector Service should be called to create and open
javax.microedit ion. io.Connection objects.

109.7.2 public interface ConnectionFactory
A Connection Factory service is called by the implementation of the Connector Service to create
javax.microedit ion. io.Connection objects which implement the scheme named by IO_SCHEME .
When a ConnectorService.open method is called, the implementation of the Connector Service
will examine the specified name for a scheme. The Connector Service will then look for a Connec-
tion Factory service which is registered with the service property IO_SCHEME which matches the
scheme. The createConnection(String, int, boolean) method of the selected Connection Factory will
then be called to create the actual Connection object.

IO Connector Service Specification Version 1.0 org.osgi.service.io

OSGi Compendium Release 6 Page 241

109.7.2.1 public static final String IO_SCHEME = "io.scheme"

Service property containing the scheme(s) for which this Connection Factory can create Connection
objects. This property is of type Str ing[] .

109.7.2.2 public Connection createConnection(String name,int mode,boolean timeouts) throws IOException

name The full URI passed to the ConnectorService.open method

mode The mode parameter passed to the ConnectorService.open method

timeouts The timeouts parameter passed to the ConnectorService.open method

□ Create a new Connection object for the specified URI.

Returns A new javax.microedit ion. io.Connection object.

Throws IOException– If a javax.microedit ion. io.Connection object cannot be created.

109.7.3 public interface ConnectorService
The Connector Service should be called to create and open javax.microedit ion. io.Connection ob-
jects. When an open* method is called, the implementation of the Connector Service will examine
the specified name for a scheme. The Connector Service will then look for a Connection Factory ser-
vice which is registered with the service property IO_SCHEME which matches the scheme. The cre-
ateConnection method of the selected Connection Factory will then be called to create the actual
Connection object.

If more than one Connection Factory service is registered for a particular scheme, the ser-
vice with the highest ranking (as specified in its service.ranking property) is called. If there
is a tie in ranking, the service with the lowest service ID (as specified in its service. id prop-
erty), that is the service that was registered first, is called. This is the same algorithm used by
BundleContext.getServiceReference .

109.7.3.1 public static final int READ = 1

Read access mode.

See Also javax.microedit ion. io.Connector.READ

109.7.3.2 public static final int READ_WRITE = 3

Read/Write access mode.

See Also javax.microedit ion. io.Connector.READ_WRITE

109.7.3.3 public static final int WRITE = 2

Write access mode.

See Also javax.microedit ion. io.Connector.WRITE

109.7.3.4 public Connection open(String name) throws IOException

name The URI for the connection.

□ Create and open a Connection object for the specified name.

Returns A new javax.microedit ion. io.Connection object.

Throws I l legalArgumentException– If a parameter is invalid.

javax.microedit ion. io.ConnectionNotFoundException– If the connection cannot be found.

IOException– If some other kind of I/O error occurs.

See Also javax.microedit ion. io.Connector.open(Str ing name)

org.osgi.service.io IO Connector Service Specification Version 1.0

Page 242 OSGi Compendium Release 6

109.7.3.5 public Connection open(String name,int mode) throws IOException

name The URI for the connection.

mode The access mode.

□ Create and open a Connection object for the specified name and access mode.

Returns A new javax.microedit ion. io.Connection object.

Throws I l legalArgumentException– If a parameter is invalid.

javax.microedit ion. io.ConnectionNotFoundException– If the connection cannot be found.

IOException– If some other kind of I/O error occurs.

See Also javax.microedit ion. io.Connector.open(Str ing name, int mode)

109.7.3.6 public Connection open(String name,int mode,boolean timeouts) throws IOException

name The URI for the connection.

mode The access mode.

timeouts A flag to indicate that the caller wants timeout exceptions.

□ Create and open a Connection object for the specified name, access mode and timeouts.

Returns A new javax.microedit ion. io.Connection object.

Throws I l legalArgumentException– If a parameter is invalid.

javax.microedit ion. io.ConnectionNotFoundException– If the connection cannot be found.

IOException– If some other kind of I/O error occurs.

See Also javax.microedit ion. io.Connector.open(Str ing name, int mode, boolean t imeouts)

109.7.3.7 public DataInputStream openDataInputStream(String name) throws IOException

name The URI for the connection.

□ Create and open a DataInputStream object for the specified name.

Returns A DataInputStream object.

Throws I l legalArgumentException– If a parameter is invalid.

javax.microedit ion. io.ConnectionNotFoundException– If the connection cannot be found.

IOException– If some other kind of I/O error occurs.

See Also javax.microedit ion. io.Connector.openDataInputStream(Str ing name)

109.7.3.8 public DataOutputStream openDataOutputStream(String name) throws IOException

name The URI for the connection.

□ Create and open a DataOutputStream object for the specified name.

Returns A DataOutputStream object.

Throws I l legalArgumentException– If a parameter is invalid.

javax.microedit ion. io.ConnectionNotFoundException– If the connection cannot be found.

IOException– If some other kind of I/O error occurs.

See Also javax.microedit ion. io.Connector.openDataOutputStream(Str ing name)

109.7.3.9 public InputStream openInputStream(String name) throws IOException

name The URI for the connection.

IO Connector Service Specification Version 1.0 References

OSGi Compendium Release 6 Page 243

□ Create and open an InputStream object for the specified name.

Returns An InputStream object.

Throws I l legalArgumentException– If a parameter is invalid.

javax.microedit ion. io.ConnectionNotFoundException– If the connection cannot be found.

IOException– If some other kind of I/O error occurs.

See Also javax.microedit ion. io.Connector.openInputStream(Str ing name)

109.7.3.10 public OutputStream openOutputStream(String name) throws IOException

name The URI for the connection.

□ Create and open an OutputStream object for the specified name.

Returns An OutputStream object.

Throws I l legalArgumentException– If a parameter is invalid.

javax.microedit ion. io.ConnectionNotFoundException– If the connection cannot be found.

IOException– If some other kind of I/O error occurs.

See Also javax.microedit ion. io.Connector.openOutputStream(Str ing name)

109.8 References

[1] Java 2 Micro Edition
http://www.oracle.com/technetwork/java/javame/index.html

[2] J2ME Foundation Profile
http://www.jcp.org/en/jsr/detailid=46

References IO Connector Service Specification Version 1.0

Page 244 OSGi Compendium Release 6

Initial Provisioning Specification Version 1.2 Introduction

OSGi Compendium Release 6 Page 245

110 Initial Provisioning Specification

Version 1.2

110.1 Introduction
To allow freedom regarding the choice of management protocol, the OSGi Specifications assumes
an architecture to remotely manage a OSGi framework with a Management Agent. The Manage-
ment Agent is implemented with a Management Bundle that can communicate with an unspecified
management protocol.

This specification defines how the Management Agent can make its way to the OSGi framework,
and gives a structured view of the problems and their corresponding resolution methods.

The purpose of this specification is to enable the management of a OSGi framework by an Operator,
and (optionally) to hand over the management of the OSGi framework later to another Operator.
This approach is in accordance with the OSGi remote management reference architecture.

This bootstrapping process requires the installation of a Management Agent, with appropriate con-
figuration data, in the OSGi framework.

This specification consists of a prologue, in which the principles of the Initial Provisioning are out-
lined, and a number of mappings to different mechanisms.

110.1.1 Essentials

• Policy Free - The proposed solution must be business model agnostic; none of the affected parties
(Operators, SPS Manufacturers, etc.) should be forced into any particular business model.

• Inter-operability - The Initial Provisioning must permit arbitrary inter-operability between man-
agement systems and OSGi frameworks. Any compliant Remote Manager should be able to man-
age any compliant OSGi framework, even in the absence of a prior business relationship. Adher-
ing to this requirement allows a particular Operator to manage a variety of makes and models of
OSGi framework Servers using a single management system of the Operator's choice. This rule
also gives the consumer the greatest choice when selecting an Operator.

• Flexible - The management process should be as open as possible, to allow innovation and special-
ization while still achieving interoperability.

110.1.2 Entities

• Provisioning Service - A service registered with the Framework that provides information about
the initial provisioning to the Management Agent.

• Provisioning Dictionary - A Dictionary object that is filled with information from the ZIP files that
are loaded during initial setup.

• RSH Protocol - An OSGi specific secure protocol based on HTTP.
• Management Agent - A bundle that is responsible for managing a OSGi framework under control

of a Remote Manager.

Procedure Initial Provisioning Specification Version 1.2

Page 246 OSGi Compendium Release 6

Figure 110.1 Initial Provisioning

<<interface>>
Provisioning
Service

Management
Agent impl.

Provisioning
Service impl.

java.net.URL

RSH URL handler HTTP/HTTPS
URL handler

URL FILE handler

is installed by

gets

uses protocol defined by setup information

110.2 Procedure
The following procedure should be executed by an OSGi Framework implementation that supports
this Initial Provisioning specification.

When the OSGi framework is first brought under management control, it must be provided with an
initial request URL in order to be provisioned. Either the end user or the manufacturer may provide
the initial request URL. How the initial request URL is transferred to the Framework is not specified,
but a mechanism might, for example, be a command line parameter when the framework is started.

When asked to start the Initial Provisioning, the OSGi framework will send a request to the manage-
ment system. This request is encoded in a URL, for example:

http://osgi.acme.com/remote-manager

This URL may use any protocol that is available on the OSGi framework Server. Many standard
protocols exist, but it is also possible to use a proprietary protocol. For example, software could be
present which can communicate with a smart card and could handle, for example, this URL:

smart-card://com1:0/7F20/6F38

Before the request URL is executed, the OSGi framework information is appended to the URL. This
information includes at least the OSGi framework Identifier, but may also contain proprietary infor-
mation, as long as the keys for this information do not conflict. Different URL schemes may use dif-
ferent methods of appending parameters; these details are specified in the mappings of this specifi-
cation to concrete protocols.

The result of the request must be a ZIP file. (The content type should be appl icat ion/zip). It is the re-
sponsibility of the underlying protocol to guarantee the integrity and authenticity of this ZIP file.

This ZIP file is unpacked and its entries (except bundle and bundle-url entries, described in Table
110.2) are placed in a Dictionary object. This Dictionary object is called the Provisioning Dictionary.
It must be made available from the Provisioning Service in the service registry. The names of the en-
tries in the ZIP file must not start with a solidus (' / ' \u002F).

Initial Provisioning Specification Version 1.2 Procedure

OSGi Compendium Release 6 Page 247

The ZIP file may contain only four types of dictionary entries: text , binary , bundle , or bundle-url .
The type of an entry can be specified in different ways. An Initial Provisioning service must look in
the following places to find the information about an entry's (MIME) type (in the given order):

1. The manifest header InitialProvisioning-Entries of the given ZIP file. This header is defined in
InitialProvisioning-Entries Manifest Header on page 249. If this header is present, but a given
entry's path is not named then try the next step.

2. The extension of the entry path name if one of .txt , . jar , .ur l extensions. See Table 110.1 on page
247 for the mapping of types, MIME types, and extensions.

3. The entry is assumed to be a binary type

The types can optionally be specified as a MIME type as defined in [7] MIME Types. The text and
bundle-url entries are translated into a Str ing object from an UTF-8 encoded byte array. All other en-
tries must be stored as a byte[] .

Table 110.1 Content types of provisioning ZIP file

Type MIME Type Ext Description
text MIME_STRING

text/plain;charset=utf-8

.txt Must be represented as a String object

binary MIME_BYTE_ARRAY

appl icat ion/octet-stream

not txt ,
.ur l , or
. jar

Must be represented as a byte array (byte[]).

bundle MIME_BUNDLE

appl icat ion/vnd.osgi .bundle

MIME_BUNDLE_ALT

appl icat ion/x-osgi-bundle

. jar Entries must be installed using
BundleContext. instal lBundle(Str ing, In-
putStream) , with the InputStream object
constructed from the contents of the ZIP
entry. The location must be the name of
the ZIP entry without leading solidus (' / '
\u002F). This entry must not be stored in
the Provisioning Dictionary.

If a bundle with this location name is al-
ready installed in this system, then this
bundle must be updated instead of in-
stalled.

The MIME_BUNDLE_ALT version is intend-
ed for backward compatibility, it specifies
the original MIME type for bundles before
there was an official IANA MIME type.

bundle-url MIME_BUNDLE_URL

text/x-osgi-bundle-url ;
charset=utf-8

.ur l The content of this entry is a string coded
in utf-8 . Entries must be installed using
BundleContext. instal lBundle(Str ing, In-
putStream) , with the InputStream object
created from the given URL. The location
must be the name of the ZIP entry with-
out leading solidus (' / ' \u002F). This entry
must not be stored in the Provisioning Dic-
tionary.

If a bundle with this location URL is already
installed in this system, then this bundle
must be updated instead of installed.

The Provisioning Service must install (but not start) all entries in the ZIP file that are typed with
bundle or bundle-url .

Procedure Initial Provisioning Specification Version 1.2

Page 248 OSGi Compendium Release 6

If an entry named PROVISIONING_START_BUNDLE is present in the Provisioning Dictionary, then
its content type must be text as defined in Table 110.1. The content of this entry must match the
bundle location of a previously loaded bundle. This designated bundle must be given AllPermission
and started.

If no PROVISIONING_START_BUNDLE entry is present in the Provisioning Dictionary, the Provision-
ing Dictionary should contain a reference to another ZIP file under the PROVISIONING_REFERENCE
key. If both keys are absent, no further action must take place.

If this PROVISIONING_REFERENCE key is present and holds a Str ing object that can be mapped to
a valid URL, then a new ZIP file must be retrieved from this URL. The PROVISIONING_REFERENCE
link may be repeated multiple times in successively loaded ZIP files.

Referring to a new ZIP file with such a URL allows a manufacturer to place a fixed reference inside
the OSGi framework Server (in a file or smart card) that will provide some platform identifying
information and then also immediately load the information from the management system. The
PROVISIONING_REFERENCE link may be repeated multiple times in successively loaded ZIP files.
The entry PROVISIONING_UPDATE_COUNT must be an Integer object that must be incremented on
every iteration.

Information retrieved while loading subsequent PROVISIONING_REFERENCE URLs may replace pre-
vious key/values in the Provisioning Dictionary, but must not erase unrecognized key/values. For ex-
ample, if an assignment has assigned the key proprietary-x , with a value '3', then later assignments
must not override this value, unless the later loaded ZIP file contains an entry with that name. All
these updates to the Provisioning Dictionary must be stored persistently. At the same time, each en-
try of type bundle or bundle-url (see Table 110.1) must be installed and not started.

Once the Management Agent has been started, the Initial Provisioning service has become opera-
tional. In this state, the Initial Provisioning service must react when the Provisioning Dictionary is
updated with a new PROVISIONING_REFERENCE property. If this key is set, it should start the cycle
again. For example, if the control of a OSGi framework needs to be transferred to another Remote
Manager, the Management Agent should set the PROVISIONING_REFERENCE to the location of this
new Remote Manager's Initial Provisioning ZIP file. This process is called re-provisioning.

If errors occur during this process, the Initial Provisioning service should try to notify the Service
User of the problem.

The previous description is depicted in Figure 110.2 as a flow chart.

Initial Provisioning Specification Version 1.2 Special Configurations

OSGi Compendium Release 6 Page 249

Figure 110.2 Flow chart installation Management Agent bundle

U = platform URL

provisioning

load ZIP file from U
into Provisioning

Dictionary

U = P. REFERENCE

Start
Management

Agent

install all bundles
with content type

bundle (-url)

PROVISIONING
START_BUNDLE set yes

no PROVISIONING
REFERENCE set

yes

no

operational

re-provisioning

The Management Agent may require configuration data that is specific to the OSGi framework in-
stance. If this data is available outside the Management Agent bundle, the merging of this data with
the Management Agent may take place in the OSGi framework. Transferring the data separately will
make it possible to simplify the implementation on the server side, as it is not necessary to create
personalized OSGi framework bundles. The PROVISIONING_AGENT_CONFIG key is reserved for this
purpose, but the Management Agent may use another key or mechanisms if so desired.

The PROVISIONING_SPID key must contain the OSGi framework Identifier.

110.2.1 InitialProvisioning-Entries Manifest Header
The InitialProvisioning-Entries manifest header optionally specifies the type of the entries in the
ZIP file. The syntax for this header is:

InitialProvisioning-Entries ::= ip-entry (',' ip-entry) *
ip-entry ::= path (';' parameter) *

The entry is the path name of a resource in the ZIP file. This InitialProvisioning-Entries header rec-
ognizes the following attribute:

• type - Gives the type of the dictionary entry. The type can have one of the following values: text ,
binary , bundle , or bundle-url

If the type parameter entry is not specified for an entry, then the type will be inferred from the ex-
tension of the entry, as defined in table Table 110.1 on page 247.

110.3 Special Configurations
The next section shows some examples of specially configured types of OSGi framework Servers
and how they are treated with the respect to the specifications in this document.

The Provisioning Service Initial Provisioning Specification Version 1.2

Page 250 OSGi Compendium Release 6

110.3.1 Branded OSGi framework Server
If a OSGi framework Operator is selling OSGi framework Servers branded exclusively for use with
their service, the provisioning will most likely be performed prior to shipping the OSGi frame-
work Server to the User. Typically the OSGi framework is configured with the Dictionary entry
PROVISIONING_REFERENCE pointing at a location controlled by the Operator.

Up-to-date bundles and additional configuration data must be loaded from that location at activa-
tion time. The OSGi framework is probably equipped with necessary security entities, like certifi-
cates, to enable secure downloads from the Operator's URL over open networks, if necessary.

110.3.2 Non-connected OSGi framework
Circumstances might exist in which the OSGi framework Server has no WAN connectivity, or
prefers not to depend on it for the purposes not covered by this specification.

The non-connected case can be implemented by specifying a f i le :// URL for the initial ZIP file (
PROVISIONING_REFERENCE). That f i le :// URL would name a local file containing the response that
would otherwise be received from a remote server.

The value for the Management Agent PROVISIONING_REFERENCE found in that file will be used as
input to the load process. The PROVISIONING_REFERENCE may point to a bundle file stored either
locally or remotely. No code changes are necessary for the non-connected scenario. The f i le :// URLs
must be specified, and the appropriate files must be created on the OSGi framework.

110.4 The Provisioning Service
Provisioning information is conveyed between bundles using the Provisioning Service, as defined
in the Provis ioningService interface. The Provisioning Dictionary is retrieved from the Provis ion-
ingService object using the getInformation() method. This is a read-only Dictionary object, any
changes to this Dictionary object must throw an UnsupportedOperationException .

The Provisioning Service provides a number of methods to update the Provisioning Dictionary.

• addInformation(Dict ionary) - Add all key/value pairs in the given Dictionary object to the Provi-
sioning Dictionary.

• addInformation(ZipInputStream) - It is also possible to add a ZIP file to the Provisioning Service
immediately. This will unpack the ZIP file and add the entries to the Provisioning Dictionary.
This method must install the bundles contained in the ZIP file as described in Procedure on page
246.

• setInformation(Dict ionary) - Set a new Provisioning Dictionary. This will remove all existing en-
tries.

Each of these method will increment the PROVISIONING_UPDATE_COUNT entry.

110.5 Management Agent Environment
The Management Agent should be written with great care to minimize dependencies on other pack-
ages and services, as all services in OSGi are optional. Some OSGi frameworks may have other bun-
dles pre-installed, so it is possible that there may be exported packages and services available. Mech-
anisms outside the current specification, however, must be used to discover these packages and ser-
vices before the Management Agent is installed.

The Provisioning Service must ensure that the Management Agent is running with AllPermission .
The Management Agent should check to see if the Permission Admin service is available, and es-
tablish the initial permissions as soon as possible to insure the security of the device when later

Initial Provisioning Specification Version 1.2 Mapping To File Scheme

OSGi Compendium Release 6 Page 251

bundles are installed. As the PermissionAdmin interfaces may not be present (it is an optional ser-
vice), the Management Agent should export the PermissionAdmin interfaces to ensure they can be
resolved.

Once started, the Management Agent may retrieve its configuration data from the Provisioning Ser-
vice by getting the byte[] object that corresponds to the PROVISIONING_AGENT_CONFIG key in the
Provisioning Dictionary. The structure of the configuration data is implementation specific.

The scope of this specification is to provide a mechanism to transmit the raw configuration data
to the Management Agent. The Management Agent bundle may alternatively be packaged with its
configuration data in the bundle, so it may not be necessary for the Management Agent bundle to
use the Provisioning Service at all.

Most likely, the Management Agent bundle will install other bundles to provision the OSGi frame-
work. Installing other bundles might even involve downloading a more full featured Management
Agent to replace the initial Management Agent.

110.6 Mapping To File Scheme
The f i le : scheme is the simplest and most completely supported scheme which can be used by the
Initial Provisioning specification. It can be used to store the configuration data and Management
Agent bundle on the OSGi framework Server, and avoids any outside communication.

If the initial request URL has a f i le scheme, no parameters should be appended, because the f i le :
scheme does not accept parameters.

110.6.1 Example With File Scheme
The manufacturer should prepare a ZIP file containing only one entry named
PROVISIONING_START_BUNDLE that contains a location string of an entry of type bundle or bun-
dle-url . For example, the following ZIP file demonstrates this:

provisioning.start.bundle text agent
agent bundle C0AF0E9B2AB..

The bundle may also be specified with a URL:

provisioning.start.bundle text http://acme.com/a.jar
agent bundle-url http://acme.com/a.jar

Upon startup, the framework is provided with the URL with the f i le : scheme that points to this ZIP
file:

file:/opt/osgi/ma.zip

110.7 Mapping To HTTP(S) Scheme
This section defines how HTTP and HTTPS URLs must be used with the Initial Provisioning specifi-
cation.

• HTTP - May be used when the data exchange takes place over networks that are secured by oth-
er means, such as a Virtual Private Network (VPN) or a physically isolated network. Otherwise,
HTTP is not a valid scheme because no authentication takes place.

• HTTPS - May be used if the OSGi framework is equipped with appropriate certificates.

HTTP and HTTPS share the following qualities:

Mapping To HTTP(S) Scheme Initial Provisioning Specification Version 1.2

Page 252 OSGi Compendium Release 6

• Both are well known and widely used
• Numerous implementations of the protocols exist
• Caching of the Management Agent will be desired in many implementations where limited

bandwidth is an issue. Both HTTP and HTTPS already contain an accepted protocol for caching.

Both HTTP and HTTPS must be used with the GET method. The response is a ZIP file, implying that
the response header Content-Type header must contain appl icat ion/zip.

110.7.1 HTTPS Certificates
In order to use HTTPS, certificates must be in place. These certificates, that are used to establish
trust towards the Operator, may be made available to the OSGi framework using the Provisioning
Service. The root certificate should be assigned to the Provisioning Dictionary before the HTTPS
provider is used. Additionally, the OSGi framework should be equipped with a OSGi framework cer-
tificate that allows the OSGi framework to properly authenticate itself towards the Operator. This
specification does not state how this certificate gets installed into the OSGi framework.

The root certificate is stored in the Provisioning Dictionary under the key:

PROVISIONING_ROOTX509

The Root X.509 Certificate holds certificates used to represent a handle to a common base for estab-
lishing trust. The certificates are typically used when authenticating a Remote Manager to the OSGi
framework. In this case, a Root X.509 certificate must be part of a certificate chain for the Operator's
certificate. The format of the certificate is defined in Certificate Encoding on page 252.

110.7.2 Certificate Encoding
Root certificates are X.509 certificates. Each individual certificate is stored as a byte[] object. This
byte[] object is encoded in the default Java manner, as follows:

• The original, binary certificate data is DER encoded
• The DER encoded data is encoded into base64 to make it text.
• The base64 encoded data is prefixed with

-----BEGIN CERTIFICATE-----

and suffixed with:

-----END CERTIFICATE-----

• If a record contains more than one certificate, they are simply appended one after the other, each
with a delimiting prefix and suffix.

The decoding of such a certificate may be done with the java.security.cert .Cert i f icateFactory class:

InputStream bis = new ByteArrayInputStream(x509);// byte[]
CertificateFactory cf =
 CertificateFactory.getInstance("X.509");
Collection c = cf.generateCertificates(bis);
Iterator i = c.iterator();
while (i.hasNext()) {
 Certificate cert = (Certificate)i.next();
 System.out.println(cert);
}

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme

OSGi Compendium Release 6 Page 253

110.7.3 URL Encoding
The URL must contain the OSGi framework Identity, and may contain more parameters. These para-
meters are encoded in the URL according to the HTTP(S) URL scheme. A base URL may be set by an
end user but the Provisioning Service must add the OSGi framework Identifier.

If the request URL already contains HTTP parameters (if there is a '?' in the request), the
service_platform_id is appended to this URL as an additional parameter. If, on the other hand, the
request URL does not contain any HTTP parameters, the service_platform_id will be appended to
the URL after a '?', becoming the first HTTP parameter. The following two examples show these two
variants:

http://server.operator.com/service-x? «
 foo=bar&service_platform_id=VIN:123456789

http://server.operator.com/service-x? «
 service_platform_id=VIN:123456789

Proper URL encoding must be applied when the URL contains characters that are not allowed. See
[6] RFC 2396 - Uniform Resource Identifier (URI).

110.8 Mapping To RSH Scheme
The RSH protocol is an OSGi-specific protocol, and is included in this specification because it is op-
timized for Initial Provisioning. It requires a shared secret between the management system and the
OSGi framework that is small enough to be entered by the Service User.

RSH bases authentication and encryption on Message Authentication Codes (MACs) that have been
derived from a secret that is shared between the OSGi framework and the Operator prior to the start
of the protocol execution.

The protocol is based on an ordinary HTTP GET request/response, in which the request must be
signed and the response must be encrypted and authenticated. Both the signature and encryption key are
derived from the shared secret using Hashed Message Access Codes (HMAC) functions.

As additional input to the HMAC calculations, one client-generated nonce and one server-generat-
ed nonce are used to prevent replay attacks. The nonces are fairly large random numbers that must
be generated in relation to each invocation of the protocol, in order to guarantee freshness. These
nonces are called cl ientfg (client-generated freshness guarantee) and serverfg (server-generated
freshness guarantee).

In order to separate the HMAC calculations for authentication and encryption, each is based on a
different constant value. These constants are called the authentication constant and the encryption con-
stant.

From an abstract perspective, the protocol may be described as follows.

• δ - Shared secret, 160 bits or more
• s - Server nonce, called servercfg , 128 bits
• c - Client nonce, called cl ientfg , 128 bits
• Ka - Authentication key, 160 bits
• Ke - Encryption key, 192 bits
• r - Response data
• e - Encrypted data
• E - Encryption constant, a byte[] of 05, 36, 54, 70, 00 (hex)
• A - Authentication constant, a byte[] of 00, 4f, 53, 47, 49 (hex)

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2

Page 254 OSGi Compendium Release 6

• M - Message material, used for Ke calculation.
• m - The calculated message authentication code.
• 3DES - Triple DES, encryption function, see [8] 3DES. The bytes of the key must be set to odd par-

ity. CBC mode must be used where the padding method is defined in [9] RFC 1423 Part III: Algo-
rithms, Modes, and Identifiers. In [11] Java Cryptography API (part of Java 1.4) this is addressed as
PKCS5Padding .

• IV - Initialization vector for 3DES.
• SHA1 - Secure Hash Algorithm to generate the Hashed Message Authentication Code, see [12]

SHA-1. The function takes a single parameter, the block to be worked upon.
• HMAC - The function that calculates a message authentication code, which must HMAC-SHA1.

HMAC-SHA1 is defined in [1] HMAC: Keyed-Hashing for Message Authentication. The HMAC func-
tion takes a key and a block to be worked upon as arguments. Note that the lower 16 bytes of the
result must be used.

• {} - Concatenates its arguments
• [] - Indicates access to a sub-part of a variable, in bytes. Index starts at one, not zero.

In each step, the emphasized server or client indicates the context of the calculation. If both are used
at the same time, each variable will have server or client as a subscript.

1. The client generates a random nonce, stores it and denotes it cl ientfg

c = nonce
2. The client sends the request with the cl ientfg to the server.

cserver ⇐ cclient

3. The server generates a nonce and denotes it serverfg .

s = nonce
4. The server calculates an authentication key based on the SHA1 function, the shared secret, the

received cl ientfg , the serverfg and the authentication constant.

Ka ← SHA1({δ, c, s, A})
5. The server calculates an encryption key using an SHA-1 function, the shared secret, the received

cl ientfg , the serverfg and the encryption constant. It must first calculate the key material M.

M[1, 20] ← SHA1({ δ, c, s, E})

M[21, 40] ← SHA1({ δ, M[1, 20], c, s, E})
6. The key for DES consists Ke and IV.

Ke ← M[1, 24]

IV ← M[25, 32]

The server encrypts the response data using the encryption key derived in step 5. The encryption
algorithm that must be used to encrypt/decrypt the response data is 3DES. 24 bytes (192 bits)
from M are used to generate Ke, but the low order bit of each byte must be used as an odd parity
bit. This means that before using Ke, each byte must be processed to set the low order bit so that
the byte has odd parity.

The encryption/decryption key used is specified by the following:

e ← 3DES(Ke, IV, r)
7. The server calculates a MAC m using the HMAC function, the encrypted response data and the

authentication key derived in 4.

m ← HMAC(Ka, e)
8. The server sends a response to the client containing the serverfg , the MAC m and the encrypted

response data

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme

OSGi Compendium Release 6 Page 255

sclient ⇐ sserver

mclient ⇐ mserver

eclient ⇐ eserver

The client calculates the encryption key Ke the same way the server did in steps 5 and 6, and uses
this to decrypt the encrypted response data. The serverfg value received in the response is used
in the calculation.

r ← 3DES(Ke, IV, e)
9. The client performs the calculation of the MAC m' in the same way the server did, and checks

that the results match the received MAC m. If they do not match, further processing is discarded.
The serverfg value received in the response is used in the calculation.

Ka ← SHA1({δ, c, s, A})

m' ← HMAC(Ka, e)

m' = m

Figure 110.3 Action Diagram for RSH

Remote ManagerOSGi framework

request(spid,clientfg)

response(spid,mac,serverfg,encrypted-data) Shared Secret

Shared Secret

110.8.1 Shared Secret
The shared secret should be a key of length 160 bits (20 bytes) or more. The length is selected to
match the output of the selected hash algorithm [2] NIST, FIPS PUB 180-1: Secure Hash Standard,
April 1995..

In some scenarios, the shared secret is generated by the Operator and communicated to the User,
who inserts the secret into the OSGi framework through some unspecified means.

The opposite is also possible: the shared secret can be stored within the OSGi framework, extract-
ed from it, and then communicated to the Operator. In this scenario, the source of the shared secret
could be either the OSGi framework or the Operator.

In order for the server to calculate the authentication and encryption keys, it requires the prop-
er shared secret. The server must have access to many different shared secrets, one for each OSGi
framework it is to support. To be able to resolve this issue, the server must typically also have access
to the OSGi framework Identifier of the OSGi framework. The normal way for the server to know
the OSGi framework Identifier is through the application protocol, as this value is part of the URL
encoded parameters of the HTTP, HTTPS, or RSH mapping of the Initial Provisioning.

In order to be able to switch Operators, a new shared secret must be used. The new secret may be
generated by the new Operator and then inserted into the OSGi framework device using a mecha-
nism not covered by this specification. Or the device itself may generate the new secret and convey
it to the owner of the device using a display device or read-out, which is then communicated to the
new operator out-of-band. Additionally, the generation of the new secret may be triggered by some
external event, like holding down a button for a specified amount of time.

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2

Page 256 OSGi Compendium Release 6

110.8.2 Request Coding
RSH is mapped to HTTP or HTTPS. Thus, the request parameters are URL encoded as discussed in
URL Encoding on page 253. RSH requires an additional parameter in the URL: the cl ientfg parame-
ter. This parameter is a nonce that is used to counter replay attacks. See also RSH Transport on page
256.

110.8.3 Response Coding
The server's response to the client is composed of three parts:

• A header containing the protocol version and the serverfg
• The MAC
• The encrypted response

These three items are packaged into a binary container according to Table 110.2.

Table 110.2 RSH Header description

Bytes Description Value hex
4 Number of bytes in header 2E
1 Major version number 01
1 Minor version number 00
16 serverfg ...
4 Number of bytes in MAC 10
16 Message Authentication Code MAC
4 Number of bytes of encrypted ZIP file N
N Encrypted ZIP file ...

The response content type is an RSH-specific encrypted ZIP file, implying that the response header
Content-Type must be appl icat ion/x-rsh for the HTTP request. When the content file is decrypted,
the content must be a ZIP file.

110.8.4 RSH URL
The RSH URL must be used internally within the OSGi framework to indicate the usage of RSH
for initial provisioning. The RSH URL format is identical to the HTTP URL format, except that the
scheme is rsh: instead of http: . For example (« means line continues on next line):

rsh://server.operator.com/service-x

110.8.5 Extensions to the Provisioning Service Dictionary
RSH specifies one additional entry for the Provisioning Dictionary:

PROVISIONING_RSH_SECRET

The value of this entry is a byte[] containing the shared secret used by the RSH protocol.

110.8.6 RSH Transport
RSH is mapped to HTTP or HTTPS and follows the same URL encoding rules, except that the cl ientfg
is additionally appended to the URL. The key in the URL must be cl ientfg and the value must be en-
coded in base 64 format:

The cl ientfg parameter is transported as an HTTP parameter that is appended after the
service_platform_id parameter. The second example above would then be:

Initial Provisioning Specification Version 1.2 Exception Handling

OSGi Compendium Release 6 Page 257

rsh://server.operator.com/service-x

Which, when mapped to HTTP, must become:

http://server.operator.com/service-x «
 service_platform_id=VIN:123456789& «
 clientfg=AHPmWcw%2FsiWYC37xZNdKvQ%3D%3D

110.9 Exception Handling
The Initial Provisioning process is a sensitive process that must run without user supervision. There
is therefore a need to handle exceptional cases in a well defined way to simplify trouble shooting.

There are only 2 types of problems that halt the provisioning process. They are:

• IO Exception when reading or writing provisioning information.
• IO Exception when retrieving or processing a provisioning zip file.

Other exceptions can occur and the Provisioning Service must do any attempt to log these events.

In the cases that the provisioning process stops, it is important that the clients of the provisioning
service have a way to find out that the process is stopped. The mechanism that is used for this is a
special entry in the provisioning dictionary. The name of the entry must be provis ioning.error . The
value is a String object with the following format:

• Numeric error code
• Space
• A human readable string describing the error.

Permitted error codes are:

• 0 - Unknown error
• 1 - Couldn't load or save provisioning information
• 2 - Malformed URL Exception
• 3 - IO Exception when retrieving document of a URL
• 4 - Corrupted Zip Input Stream

The provisioning.update.count will be incremented as normal when a provis ioning.error entry is
added to the provisioning information. After, the provisioning service will take no further action.

Some examples:

0 SIM card removed
2 "http://www.acme.com/secure/blib/ifa.zip"

110.10 Security
The security model for the OSGi framework is based on the integrity of the Management Agent de-
ployment. If any of the mechanisms used during the deployment of management agents are weak,
or can be compromised, the whole security model becomes weak.

From a security perspective, one attractive means of information exchange would be a smart card.
This approach enables all relevant information to be stored in a single place. The Operator could
then provide the information to the OSGi framework by inserting the smart card into the OSGi
framework.

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2

Page 258 OSGi Compendium Release 6

110.10.1 Concerns
The major security concerns related to the deployment of the Management Agent are:

• The OSGi framework is controlled by the intended Operator
• The Operator controls the intended OSGi framework(s)
• The integrity and confidentiality of the information exchange that takes place during these

processes must be considered

In order to address these concerns, an implementation of the OSGi Remote Management Architec-
ture must assure that:

• The Operator authenticates itself to the OSGi framework
• The OSGi framework authenticates itself to the Operator
• The integrity and confidentiality of the Management Agent, certificates, and configuration data

are fully protected if they are transported over public transports.

Each mapping of the Initial Provisioning specification to a concrete implementation must describe
how these goals are met.

110.10.2 OSGi framework Long-Term Security
Secrets for long-term use may be exchanged during the Initial Provisioning procedures. This way,
one or more secrets may be shared securely, assuming that the Provisioning Dictionary assignments
used are implemented with the proper security characteristics.

110.10.3 Permissions
The provisioning information may contain sensitive information. Also, the ability to modify
provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register, or get the Provisioning Service. This restriction can be enforced using
ServicePermission[Provis ioningService, GET] .

No Permission classes guard reading or modification of the Provisioning Dictionary, so care must be
taken not to leak the Dictionary object received from the Provisioning Service to bundles that are
not trusted.

Whether message-based or connection-based, the communications used for Initial Provisioning
must support mutual authentication and message integrity checking, at a minimum.

By using both server and client authentication in HTTPS, the problem of establishing identity is
solved. In addition, HTTPS will encrypt the transmitted data. HTTPS requires a Public Key Infras-
tructure implementation in order to retrieve the required certificates.

When RSH is used, it is vital that the shared secret is shared only between the Operator and the OS-
Gi framework, and no one else.

110.11 org.osgi.service.provisioning

Provisioning Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.provis ioning; vers ion="[1.2,2.0)"

Initial Provisioning Specification Version 1.2 org.osgi.service.provisioning

OSGi Compendium Release 6 Page 259

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.provis ioning; vers ion="[1.2,1 .3)"

110.11.1 Summary

• Provis ioningService - Service for managing the initial provisioning information.

110.11.2 public interface ProvisioningService
Service for managing the initial provisioning information.

Initial provisioning of an OSGi device is a multi step process that culminates with the installation
and execution of the initial management agent. At each step of the process, information is collected
for the next step. Multiple bundles may be involved and this service provides a means for these bun-
dles to exchange information. It also provides a means for the initial Management Bundle to get its
initial configuration information.

The provisioning information is collected in a Dictionary object, called the Provisioning Dictionary.
Any bundle that can access the service can get a reference to this object and read and update provi-
sioning information. The key of the dictionary is a Str ing object and the value is a Str ing or byte[]
object. The single exception is the PROVISIONING_UPDATE_COUNT value which is an Integer.
The provis ioning prefix is reserved for keys defined by OSGi, other key names may be used for im-
plementation dependent provisioning systems.

Any changes to the provisioning information will be reflected immediately in all the dictionary ob-
jects obtained from the Provisioning Service.

Because of the specific application of the Provisioning Service, there should be only one Provision-
ing Service registered. This restriction will not be enforced by the Framework. Gateway operators or
manufactures should ensure that a Provisioning Service bundle is not installed on a device that al-
ready has a bundle providing the Provisioning Service.

The provisioning information has the potential to contain sensitive information. Also, the ability to
modify provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register and get the Provisioning Service. The ServicePermission is used to limit the
bundles that can gain access to the Provisioning Service. There is no check of Permission objects to
read or modify the provisioning information, so care must be taken not to leak the Provisioning Dic-
tionary received from getInformation method.

No Implement Consumers of this API must not implement this interface

110.11.2.1 public static final String INITIALPROVISIONING_ENTRIES = "InitialProvisioning-Entries"

Name of the header that specifies the type information for the ZIP file entries.

Since 1.2

110.11.2.2 public static final String MIME_BUNDLE = "application/vnd.osgi.bundle"

MIME type to be stored in the extra field of a ZipEntry object for an installable bundle file. Zip en-
tries of this type will be installed in the framework, but not started. The entry will also not be put in-
to the information dictionary.

110.11.2.3 public static final String MIME_BUNDLE_ALT = "application/x-osgi-bundle"

Alternative MIME type to be stored in the extra field of a ZipEntry object for an installable bundle
file. Zip entries of this type will be installed in the framework, but not started. The entry will also
not be put into the information dictionary. This alternative entry is only for backward compatibili-
ty, new applications are recommended to use MIME_BUNDLE , which is an official IANA MIME type.

Since 1.2

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2

Page 260 OSGi Compendium Release 6

110.11.2.4 public static final String MIME_BUNDLE_URL = "text/x-osgi-bundle-url"

MIME type to be stored in the extra field of a ZipEntry for a String that represents a URL for a bun-
dle. Zip entries of this type will be used to install (but not start) a bundle from the URL. The entry
will not be put into the information dictionary.

110.11.2.5 public static final String MIME_BYTE_ARRAY = "application/octet-stream"

MIME type to be stored in the extra field of a ZipEntry object for byte[] data.

110.11.2.6 public static final String MIME_STRING = "text/plain;charset=utf-8"

MIME type to be stored in the extra field of a ZipEntry object for String data.

110.11.2.7 public static final String PROVISIONING_AGENT_CONFIG = "provisioning.agent.config"

The key to the provisioning information that contains the initial configuration information of the
initial Management Agent. The value will be of type byte[] .

110.11.2.8 public static final String PROVISIONING_REFERENCE = "provisioning.reference"

The key to the provisioning information that contains the location of the provision data provider.
The value must be of type Str ing .

110.11.2.9 public static final String PROVISIONING_ROOTX509 = "provisioning.rootx509"

The key to the provisioning information that contains the root X509 certificate used to establish
trust with operator when using HTTPS.

110.11.2.10 public static final String PROVISIONING_RSH_SECRET = "provisioning.rsh.secret"

The key to the provisioning information that contains the shared secret used in conjunction with
the RSH protocol.

110.11.2.11 public static final String PROVISIONING_SPID = "provisioning.spid"

The key to the provisioning information that uniquely identifies the Service Platform. The value
must be of type Str ing .

110.11.2.12 public static final String PROVISIONING_START_BUNDLE = "provisioning.start.bundle"

The key to the provisioning information that contains the location of the bundle to start with
AllPermission . The bundle must have be previously installed for this entry to have any effect.

110.11.2.13 public static final String PROVISIONING_UPDATE_COUNT = "provisioning.update.count"

The key to the provisioning information that contains the update count of the info data. Each set
of changes to the provisioning information must end with this value being incremented. The value
must be of type Integer . This key/value pair is also reflected in the properties of the ProvisioningSer-
vice in the service registry.

110.11.2.14 public void addInformation(Dictionary info)

info the set of Provisioning Information key/value pairs to add to the Provisioning Information dictio-
nary. Any keys are values that are of an invalid type will be silently ignored.

□ Adds the key/value pairs contained in info to the Provisioning Information dictionary. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.11.2.15 public void addInformation(ZipInputStream zis) throws IOException

zis the ZipInputStream that will be used to add key/value pairs to the Provisioning Information dic-
tionary and install and start bundles. If a ZipEntry does not have an Extra field that corresponds
to one of the four defined MIME types (MIME_STRING , MIME_BYTE_ARRAY , MIME_BUNDLE , and
MIME_BUNDLE_URL) in will be silently ignored.

Initial Provisioning Specification Version 1.2 References

OSGi Compendium Release 6 Page 261

□ Processes the ZipInputStream and extracts information to add to the Provisioning Infor-
mation dictionary, as well as, install/update and start bundles. This method causes the
PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException– if an error occurs while processing the ZipInputStream. No additions will be made to
the Provisioning Information dictionary and no bundles must be started or installed.

110.11.2.16 public Dictionary getInformation()

□ Returns a reference to the Provisioning Dictionary. Any change operations (put and remove) to the
dictionary will cause an UnsupportedOperationException to be thrown. Changes must be done us-
ing the setInformation and addInformation methods of this service.

Returns A reference to the Provisioning Dictionary.

110.11.2.17 public void setInformation(Dictionary info)

info the new set of Provisioning Information key/value pairs. Any keys are values that are of an invalid
type will be silently ignored.

□ Replaces the Provisioning Information dictionary with the key/value pairs contained in info . Any
key/value pairs not in info will be removed from the Provisioning Information dictionary. This
method causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.12 References
[1] HMAC: Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt Krawczyk ,et. al. 1997.

[2] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[3] Hypertext Transfer Protocol - HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt Fielding, R., et. al.

[4] Rescorla, E., HTTP over TLS, IETF RFC 2818, May 2000
http://www.ietf.org/rfc/rfc2818.txt.

[5] ZIP Archive format
http://www.pkware.com/support/zip-app-note/archives

[6] RFC 2396 - Uniform Resource Identifier (URI)
http://www.ietf.org/rfc/rfc2396.txt

[7] MIME Types
http://www.ietf.org/rfc/rfc2046.txt
http://www.iana.org/assignments/media-types

[8] 3DES
W/ Tuchman, "Hellman Presents No Shortcut Solution to DES," IEEE Spectrum, v. 16, n. 7 July 1979,
pp40-41.

[9] RFC 1423 Part III: Algorithms, Modes, and Identifiers
http://www.ietf.org/rfc/rfc1423.txt

[10] PKCS 5
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2

[11] Java Cryptography API (part of Java 1.4)
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html/

[12] SHA-1
U.S. Government, Proposed Federal Information Processing Standard for Secure Hash Standard, Jan-
uary 1992

References Initial Provisioning Specification Version 1.2

Page 262 OSGi Compendium Release 6

[13] Transport Layer Security
http://www.ietf.org/rfc/rfc2246.txt, January 1999, The TLS Protocol Version 1.0, T. Dierks & C. Allen.

UPnP™ Device Service Specification Version 1.2 Introduction

OSGi Compendium Release 6 Page 263

111 UPnP™ Device Service
Specification

Version 1.2

111.1 Introduction
The UPnP Device Architecture specification provides the protocols for a peer-to-peer network. It
specifies how to join a network and how devices can be controlled using XML messages sent over
HTTP. The OSGi specifications address how code can be download and managed in a remote system.
Both standards are therefore fully complimentary. Using an OSGi Framework to work with UPnP
enabled devices is therefore a very successful combination.

This specification specifies how OSGi bundles can be developed that interoperate with UPnP™
(Universal Plug and Play) devices and UPnP control points. The specification is based on the UPnP
Device Architecture and does not further explain the UPnP specifications. The UPnP specifications
are maintained by [1] UPnP Forum.

UPnP™ is a trademark of the UPnP Implementers Corporation.

111.1.1 Essentials

• Scope - This specification is limited to device control aspects of the UPnP specifications. Aspects
concerning the TCP/IP layer, like DHCP and limited TTL, are not addressed.

• Transparency - OSGi services should be made available to networks with UPnP enabled devices in
a transparent way.

• Network Selection - It must be possible to restrict the use of the UPnP protocols to a selection of the
connected networks. For example, in certain cases OSGi services that are UPnP enabled should
not be published to the Wide Area Network side of a gateway, nor should UPnP devices be detect-
ed on this WAN.

• Event handling - Bundles must be able to listen to UPnP events.
• Export OSGi services as UPnP devices - Enable bundles that make a service available to UPnP con-

trol points.
• Implement UPnP Control Points - Enable bundles that control UPnP devices.

111.1.2 Entities

• UPnP Base Driver - The bundle that implements the bridge between OSGi and UPnP networks.
This entity is not represented as a service.

• UPnP Root Device -A physical device can contain one or more root devices. Root devices contain
one ore more devices. A root device is modeled with a UPnPDevice object, there is no separate in-
terface defined for root devices.

• UPnP Device - The representation of a UPnP device. A UPnP device may contain other UPnP de-
vices and UPnP services. This entity is represented by a UPnPDevice object. A device can be local
(implemented in the Framework) or external (implemented by another device on the net).

Introduction UPnP™ Device Service Specification Version 1.2

Page 264 OSGi Compendium Release 6

• UPnP Service -A UPnP device consists of a number of services. A UPnP service has a number of UP-
nP state variables that can be queried and modified with actions. This concept is represented by a
UPnPService object.

• UPnP Action - A UPnP service is associated with a number of actions that can be performed on
that service and that may modify the UPnP state variables. This entity is represented by a UPn-
PAction object.

• UPnP State Variable - A variable associated with a UPnP service, represented by a UPnPStateVari-
able object.

• UPnP Local State Variable - Extends the UPnPStateVariable interface when the state variable is im-
plemented locally. This interface provides access to the actual value.

• UPnP Event Listener Service - A listener to events coming from UPnP devices.
• UPnP Host - The machine that hosts the code to run a UPnP device or control point.
• UPnP Control Point - A UPnP device that is intended to control UPnP devices over a network. For

example, a UPnP remote controller.
• UPnP Icon - A representation class for an icon associated with a UPnP device.
• UPnP Exception - An exception that delivers errors that were discovered in the UPnP layer.
• UDN - Unique Device Name, a name that uniquely identifies the a specific device.

Figure 111.1 UPnP Service Specification class Diagram org.osgi.service.upnp package

<<interface>>
UPnP Service

a listener

<<interface>>
UPnP Action

<<interface>>
UPnP State
Variable

<<interface>>
UPnP Event
Listener

<<interface>>
UPnPIcon

A UPnP device
implementer

A UPnP control
point

A UPnP device
implementation

in parameter

out parm

has

1

1..n 0..n

1

10..n

11..n

UPnP Base Driver
Implementation

associated w
ith

has

has

registers getsregisters

receives events from

0..n

0..n

has

1..n

1

0..n

1

10..n

<<interface>>
UPnP Device

child

0..n

0,1

<<interface>>
UPnP Local
State Variable

receives events from

0..n

0..n

1 1

111.1.3 Operation Summary
To make a UPnP service available to UPnP control points on a network, an OSGi service object must
be registered under the UPnPDevice interface with the Framework. The UPnP driver bundle must de-

UPnP™ Device Service Specification Version 1.2 UPnP Specifications

OSGi Compendium Release 6 Page 265

tect these UPnP Device services and must make them available to the network as UPnP devices us-
ing the UPnP protocol.

UPnP devices detected on the local network must be detected and automatically registered under
the UPnPDevice interface with the Framework by the UPnP driver implementation bundle.

A bundle that wants to control UPnP devices, for example to implement a UPnP control point,
should track UPnP Device services in the OSGi service registry and control them appropriately. Such
bundles should not distinguish between resident or remote UPnP Device services.

111.2 UPnP Specifications
The UPnP DA is intended to be used in a broad range of device from the computing (PCs printers),
consumer electronics (DVD, TV, radio), communication (phones) to home automation (lighting
control, security) and home appliances (refrigerators, coffee makers) domains.

For example, a UPnP TV might announce its existence on a network by broadcasting a message. A
UPnP control point on that network can then discover this TV by listening to those announce mes-
sages. The UPnP specifications allow the control point to retrieve information about the user inter-
face of the TV. This information can then be used to allow the end user to control the remote TV
from the control point, for example turn it on or change the channels.

The UPnP specification supports the following features:

• Detect and control a UPnP standardized device. In this case the control point and the remote device
share a priori knowledge about how the device should be controlled. The UPnP Forum intends to
define a large number of these standardized devices.

• Use a user interface description. A UPnP control point receives enough information about a device
and its services to automatically build a user interface for it.

• Programmatic Control. A program can directly control a UPnP device without a user interface.
This control can be based on detected information about the device or through a priori knowl-
edge of the device type.

• Allows the user to browse a web page supplied by the device. This web page contains a user interface
for the device that be directly manipulated by the user. However, this option is not well defined
in the UPnP Device Architecture specification and is not tested for compliance.

The UPnP Device Architecture specification and the OSGi Framework provide complementary func-
tionality. The UPnP Device Architecture specification is a data communication protocol that does
not specify where and how programs execute. That choice is made by the implementations. In con-
trast, the OSGi Framework specifies a (managed) execution point and does not define what proto-
cols or media are supported. The UPnP specification and the OSGi specifications are fully comple-
mentary and do not overlap.

From the OSGi perspective, the UPnP specification is a communication protocol that can be imple-
mented by one or more bundles. This specification therefore defines the following:

• How an OSGi bundle can implement a service that is exported to the network via the UPnP pro-
tocols.

• How to find and control services that are available on the local network.

The UPnP specifications related to the assignment of IP addresses to new devices on the network or
auto-IP self configuration should be handled at the operating system level. Such functions are out-
side the scope of this specification.

UPnP Device UPnP™ Device Service Specification Version 1.2

Page 266 OSGi Compendium Release 6

111.2.1 UPnP Base Driver
The functionality of the UPnP service is implemented in a UPnP base driver. This is a bundle that im-
plements the UPnP protocols and handles the interaction with bundles that use the UPnP devices. A
UPnP base driver bundle must provide the following functions:

• Discover UPnP devices on the network and map each discovered device into an OSGi registered
UPnP Device service.

• Present UPnP marked services that are registered with the OSGi Framework on one or more net-
works to be used by other computers.

111.3 UPnP Device
The principle entity of the UPnP specification is the UPnP device. There is a UPnP root device that
represents a physical appliance, such as a complete TV. The root device contains a number of sub-de-
vices. These might be the tuner, the monitor, and the sound system. Each sub-device is further com-
posed of a number of UPnP services. A UPnP service represents some functional unit in a device. For
example, in a TV tuner it can represent the TV channel selector. Figure 111.2 on page 266 illus-
trates this hierarchy.

Figure 111.2 UPnP device hierarchy

Network

UPnP root device

UPnP device

UPnP service

UPnP Action

Each UPnP service can be manipulated with a number of UPnP actions. UPnP actions can modify
the state of a UPnP state variable that is associated with a service. For example, in a TV there might
be a state variable volume. There are then actions to set the volume, to increase the volume, and to
decrease the volume.

111.3.1 Root Device
The UPnP root device is registered as a UPnP Device service with the Framework, as well as all its
sub-devices. Most applications will work with sub-devices, and, as a result, the children of the root
device are registered under the UPnPDevice interface.

UPnP device properties are defined per sub-device in the UPnP specification. These properties must
be registered with the OSGi Framework service registry so they are searchable.

Bundles that want to handle the UPnP device hierarchy can use the registered service properties to
find the parent of a device (which is another registered UPnPDevice).

The following service registration properties can be used to discover this hierarchy:

UPnP™ Device Service Specification Version 1.2 Device Category

OSGi Compendium Release 6 Page 267

• PARENT_UDN - (Str ing) The Universal Device Name (UDN) of the parent device. A root device
most not have this property registered. Type is a Str ing object.

• CHILDREN_UDN - (Str ing[]) An array of UDNs of this device's children.

111.3.2 Exported Versus Imported Devices
Both imported (from the network to the OSGi service registry) and exported (from the service reg-
istry to the network) UPnPDevice services must have the same representation in the OSGi Frame-
work for identical devices. For example, if an OSGi UPnP Device service is exported as a UPnP device
from an OSGi Framework to the network, and it is imported into another OSGi Framework, the ob-
ject representation should be equal. Application bundles should therefore be able to interact with
imported and exported forms of the UPnP device in the same manner.

Imported and exported UPnP devices differ only by two marker properties that can be added to the
service registration. One marker, DEVICE_CATEGORY , should typically be set only on imported de-
vices. By not setting DEVICE_CATEGORY on internal UPnP devices, the Device Manager does not
try to refine these devices (See the Device Access Specification on page 61 for more information about
the Device Manager). If the device service does not implement the Device interface and does not
have the DEVICE_CATEGORY property set, it is not considered a device according to the Device Ac-
cess Specification.

The other marker, UPNP_EXPORT , should only be set on internally created devices that the bundle
developer wants to export. By not setting UPNP_EXPORT on registered UPnP Device services, the UP-
nP Device service can be used by internally created devices that should not be exported to the net-
work. This allows UPnP devices to be simulated within an OSGi Framework without announcing all
of these devices to any networks.

The UPNP_EXPORT service property has no defined type, any value is correct.

111.3.3 Icons
A UPnP device can optionally support an icon. The purpose of this icon is to identify the device on
a UPnP control point. UPnP control points can be implemented in large computers like PC's or sim-
ple devices like a remote control. However, the graphic requirements for these UPnP devices differ
tremendously. The device can, therefore, export a number of icons of different size and depth.

In the UPnP specifications, an icon is represented by a URL that typically refers to the device itself.
In this specification, a list of icons is available from the UPnP Device service.

In order to obtain localized icons, the method getIcons(Str ing) can be used to obtain different ver-
sions. If the locale specified is a nul l argument, then the call returns the icons of the default locale of
the called device (not the default locale of the UPnP control point).When a bundle wants to access
the icon of an imported UPnP device, the UPnP driver gets the data and presents it to the application
through an input stream.

A bundle that needs to export a UPnP Device service with one or more icons must provide an imple-
mentation of the UPnPIcon interface. This implementation must provide an InputStream object to
the actual icon data. The UPnP driver bundle must then register this icon with an HTTP server and
include the URL to the icon with the UPnP device data at the appropriate place.

111.4 Device Category
UPnP Device services are devices in the context of the Device Manager. This means that these ser-
vices need to register with a number of properties to participate in driver refinement. The value for
UPnP devices is defined in the UPnPDevice constant DEVICE_CATEGORY . The value is UPnP . The UP-
nPDevice interface contains a number of constants for matching values. Refer to MATCH_GENERIC
for further information.

UPnPService UPnP™ Device Service Specification Version 1.2

Page 268 OSGi Compendium Release 6

111.5 UPnPService
A UPnP Device contains a number of UPnPService objects. UPnPService objects combine zero or
more actions and one or more state variables.

111.5.1 State Variables
The UPnPStateVariable interface encapsulates the properties of a UPnP state variable. In addition
to the properties defined by the UPnP specification, a state variable is also mapped to a Java data
type. The Java data type is used when an event is generated for this state variable and when an ac-
tion is performed containing arguments related to this state variable. There must be a strict corre-
spondence between the UPnP data type and the Java data type so that bundles using a particular UP-
nP device profile can predict the precise Java data type.

The function QueryStateVariable defined in the UPnP specification has been deprecated and is
therefore not implemented. It is recommended to use the UPnP event mechanism to track UPnP
state variables.

Additionally, a UPnPStateVariableobject can also implement the UPnPLocalStateVariable interface
if the device is implemented locally. That is, the device is not imported from the network. The UP-
nPLocalStateVariable interface provides a getCurrentValue() method that provides direct access to
the actual value of the state variable.

111.6 Working With a UPnP Device
The UPnP driver must register all discovered UPnP devices in the local networks. These devices are
registered under a UPnPDevice interface with the OSGi Framework.

Using a remote UPnP device thus involves tracking UPnP Device services in the OSGi service reg-
istry. The following code illustrates how this can be done. The sample Control ler class extends the
ServiceTracker class so that it can track all UPnP Device services and add them to a user interface,
such as a remote controller application.

class Controller extends ServiceTracker {
 UI ui;

 Controller(BundleContext context) {
 super(context, UPnPDevice.class.getName(), null);
 }
 public Object addingService(ServiceReference ref) {
 UPnPDevice dev = (UPnPDevice)super.addingService(ref);
 ui.addDevice(dev);
 return dev;
 }
 public void removedService(ServiceReference ref,
 Object dev) {
 ui.removeDevice((UPnPDevice) dev);
 }
 ...
}

UPnP™ Device Service Specification Version 1.2 Implementing a UPnP Device

OSGi Compendium Release 6 Page 269

111.7 Implementing a UPnP Device
OSGi services can also be exported as UPnP devices to the local networks, in a way that is transpar-
ent to typical UPnP devices. This allows developers to bridge legacy devices to UPnP networks. A
bundle should perform the following to export an OSGi service as a UPnP device:

• Register an UPnP Device service with the registration property UPNP_EXPORT .
• Use the registration property PRESENTATION_URL to provide the presentation page. The service

implementer must register its own servlet with the Http Service to serve out this interface. This
URL must point to that servlet.

There can be multiple UPnP root devices hosted by one OSGi platform. The relationship between
the UPnP devices and the OSGi platform is defined by the PARENT_UDN and CHILDREN_UDN service
properties. The bundle registering those device services must make sure these properties are set ac-
cordingly.

Devices that are implemented on the OSGi Framework (in contrast with devices that are imported
from the network) should use the UPnPLocalStateVariable interface for their state variables instead
of the UPnPStateVariable interface. This interface provides programmatic access to the actual value
of the state variable as maintained by the device specific code.

111.8 Event API
There are two distinct event directions for the UPnP Service specification.

• External events from the network must be dispatched to listeners inside the OSGi Frameworks.
The UPnP Base driver is responsible for mapping the network events to internal listener events.

• Implementations of UPnP devices must send out events to local listeners as well as cause the
transmission of the UPnP network events.

UPnP events are sent using the whiteboard model, in which a bundle interested in receiving the UP-
nP events registers an object implementing the UPnPEventListener interface. A filter can be set to
limit the events for which a bundle is notified. The UPnP Base driver must register a UPnP Event Lis-
ter without filter that receives all events.

Figure 111.3 Event Dispatching for Local and External Devices

<<service>>
UPnP Event
Listener

Local Device

UPnP Base Driver

send events to

get events from

multicast
network

receive

send

0,10..n

0..n

1

If a service is registered with a property named upnp.fi l ter with the value of an instance of an Fi l-
ter object, the listener is only notified for matching events (This is a Fi l ter object and not a Str ing ob-
ject because it allows the Inval idSyntaxException to be thrown in the client and not the UPnP driver
bundle).

UPnP Events and Event Admin service UPnP™ Device Service Specification Version 1.2

Page 270 OSGi Compendium Release 6

The filter might refer to any valid combination of the following pseudo properties for event filter-
ing:

• UPnPDevice.UDN - (UPnP.device.UDN/Str ing) Only events generated by services contained
in the specific device are delivered. For example: (UPnP.device.UDN=uuid:Upnp-TVEmula-
tor-1_0-1234567890001)

• UPnPDevice.TYPE - (UPnP.device.type/Str ing or Str ing[]) Only events generated by services con-
tained in a device of the given type are delivered. For example: (UPnP.device.type=urn:schemas-
upnp-org:device:tvdevice:1)

• UPnPService. ID - (UPnP.service. id/Str ing) Service identity. Only events generated by services
matching the given service ID are delivered.

• UPnPService.TYPE - (UPnP.service.type/Str ing or Str ing[]) Only events generated by services of
the given type are delivered.

If an event is generated by either a local device or via the base driver for an external device, the
notifyUPnPEvent(Str ing,Str ing,Dict ionary) method is called on all registered UPnPEventListener
services for which the optional filter matches for that event. If no filter is specified, all events must
be delivered. If the filter does not match, the UPnP Driver must not call the UPnP Event Listener ser-
vice. The way events must be delivered is the same as described in Delivering Events of OSGi Core Re-
lease 6.

One or multiple events are passed as parameters to the notifyUPnPEvent(Str ing,Str ing,Dict ionary)
method. The Dictionary object holds a pair of UpnPStateVariable objects that triggered the event
and an Object for the new value of the state variable.

111.8.1 Initial Event Delivery
Special care must be taken with the initial subscription to events. According to the UPnP specifi-
cation, when a client subscribes for notification of events for the first time, the device sends out a
number of events for each state variable, indicating the current value of each state variable. This be-
havior simplifies the synchronization of a device and an event-driven client.

The UPnP Base Driver must mimic this event distribution on behalf of external devices. It must
therefore remember the values of the state variables of external devices. A UPnP Device implemen-
tation must send out these initial events for each state variable they have a value for.

The UPnP Base Driver must have stored the last event from the device and retransmit the value over
the multicast network. The UPnP Driver must register an event listener without any filter for this
purpose.

The call to the listener's notification method must be done asynchronously.

111.9 UPnP Events and Event Admin service
UPnP events must be delivered asynchronously to the Event Admin service by the UPnP implemen-
tation, if present. UPnP events have the following topic:

org/osgi/service/upnp/UPnPEvent

The properties of a UPnP event are the following:

• upnp.deviceId - (Str ing) The identity as defined by UPnPDevice.UDN of the device sending the
event.

• upnp.serviceId - (Str ing) The identity of the service sending the events.
• upnp.events - (Dict ionary) A Dictionary object containing the new values for the state variables

that have changed.

UPnP™ Device Service Specification Version 1.2 Localization

OSGi Compendium Release 6 Page 271

111.10 Localization
All values of the UPnP properties are obtained from the device using the device's default lo-
cale. If an application wants to query a set of localized property values, it has to use the method
getDescr ipt ions(Str ing) . For localized versions of the icons, the method getIcons(Str ing) is to be
used.

111.11 Dates and Times
The UPnP specification uses different types for date and time concepts. An overview of these types is
given in the following table.

Table 111.1 Mapping UPnP Date/Time types to Java

UPnP Type Class Example Value (TZ=CEST=UTC+0200)
date Date 1985-04-12 Sun Apri l 12 00:00:00 CEST 1985
dateTime Date 1985-04-12T10:15:30 Sun Apri l 12 10:15:30 CEST 1985
dateTime.tz Date 1985-04-12T10:15:30+0400 Sun Apri l 12 08:15:30 CEST 1985
time Long 23:20:50 84.050.000 (ms)
t ime.tz Long 23:20:50+0100 1.250.000 (ms)

The UPnP specification points to [2] XML Schema. In this standard, [3] ISO 8601 Date And Time
formats are referenced. The mapping is not completely defined which means that this OSGi UP-
nP specification defines a complete mapping to Java classes. The UPnP types date , dateTime and
dateTime.tz are represented as a Date object. For the date type, the hours, minutes and seconds must
all be zero.

The UPnP types t ime and t ime.tz are represented as a Long object that represents the number of ms
since midnight. If the time wraps to the next day due to a time zone value, then the final value must
be truncated modulo 86.400.000.

See also TYPE_DATE .

111.12 UPnP Exception
The UPnP Exception can be thrown when a UPnPAction is invoked. This exception contains infor-
mation about the different UPnP layers. The following errors are defined:

INVALID_ACTION - (401) No such action could be found.

INVALID_ARGS - (402) Invalid argument.

INVALID_SEQUENCE_NUMBER - (403) Out of synchronization.

INVALID_VARIABLE - (404) State variable not found.

DEVICE_INTERNAL_ERROR - (501) Internal error.

Further errors are categorized as follows:

• Common Action Errors - In the range of 600-69 , defined by the UPnP Forum Technical Committee.
• Action Specific Errors - In the range of 700-799, defined by the UPnP Forum Working Committee.
• Non-Standard Action Specific Errors - In the range of 800-899. Defined by vendors.

Configuration UPnP™ Device Service Specification Version 1.2

Page 272 OSGi Compendium Release 6

111.13 Configuration
In order to provide a standardized way to configure a UPnP driver bundle, the Configuration Admin
property upnp.ssdp.address is defined.

The value is a Str ing[] with a list of IP addresses, optionally followed with a colon (' : ' \u003A) and a
port number. For example:

239.255.255.250:1900

Those addresses define the interfaces which the UPnP driver is operating on. If no SSDP address is
specified, the default assumed will be 239.255.255.250:1900. If no port is specified, port 1900 is as-
sumed as default.

111.14 Networking considerations

111.14.1 The UPnP Multicasts
The operating system must support multicasting on the selected network device. In certain cases, a
multicasting route has to be set in the operating system routing table.

These configurations are highly dependent on the underlying operating system and beyond the
scope of this specification.

111.15 Security
The UPnP specification is based on HTTP and uses plain text SOAP (XML) messages to control de-
vices. For this reason, it does not provide any inherent security mechanisms. However, the UPnP
specification is based on the exchange of XML files and not code. This means that at least worms
and viruses cannot be implemented using the UPnP protocols.

However, a bundle registering a UPnP Device service is represented on the outside network and has
the ability to communicate. The same is true for getting a UPnP Device service. It is therefore recom-
mended that ServicePermission[UPnPDevice|UPnPEventListener, REGISTER|GET] be used sparingly
and only for bundles that are trusted.

111.16 org.osgi.service.upnp

UPnP Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.upnp; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.upnp; vers ion="[1.2,1 .3)"

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 6 Page 273

111.16.1 Summary

• UPnPAction - A UPnP action.
• UPnPDevice - Represents a UPnP device.
• UPnPEventListener - UPnP Events are mapped and delivered to applications according to the OS-

Gi whiteboard model.
• UPnPException - There are several defined error situations describing UPnP problems while a

control point invokes actions to UPnPDevices.
• UPnPIcon - A UPnP icon representation.
• UPnPLocalStateVariable - A local UPnP state variable which allows the value of the state vari-

able to be queried.
• UPnPService - A representation of a UPnP Service.
• UPnPStateVariable - The meta-information of a UPnP state variable as declared in the device's

service state table (SST).

111.16.2 public interface UPnPAction
A UPnP action. Each UPnP service contains zero or more actions. Each action may have zero or more
UPnP state variables as arguments.

111.16.2.1 public String[] getInputArgumentNames()

□ Lists all input arguments for this action.

Each action may have zero or more input arguments.

This method must continue to return the action input argument names after the UPnP action has
been removed from the network.

Returns Array of input argument names or nul l if no input arguments.

See Also UPnPStateVariable

111.16.2.2 public String getName()

□ Returns the action name. The action name corresponds to the name field in the actionList of the ser-
vice description.

• For standard actions defined by a UPnP Forum working committee, action names must not begin
with X_ nor A_ .

• For non-standard actions specified by a UPnP vendor and added to a standard service, action
names must begin with X_ .

This method must continue to return the action name after the UPnP action has been removed from
the network.

Returns Name of action, must not contain a hyphen character or a hash character

111.16.2.3 public String[] getOutputArgumentNames()

□ List all output arguments for this action.

This method must continue to return the action output argument names after the UPnP action has
been removed from the network.

Returns Array of output argument names or nul l if there are no output arguments.

See Also UPnPStateVariable

111.16.2.4 public String getReturnArgumentName()

□ Returns the name of the designated return argument.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 274 OSGi Compendium Release 6

One of the output arguments can be flagged as a designated return argument.

This method must continue to return the action return argument name after the UPnP action has
been removed from the network.

Returns The name of the designated return argument or nul l if none is marked.

111.16.2.5 public UPnPStateVariable getStateVariable(String argumentName)

argumentName The name of the UPnP action argument.

□ Finds the state variable associated with an argument name. Helps to resolve the association of state
variables with argument names in UPnP actions.

Returns State variable associated with the named argument or nul l if there is no such argument.

Throws I l legalStateException– if the UPnP action has been removed from the network.

See Also UPnPStateVariable

111.16.2.6 public Dictionary invoke(Dictionary args) throws Exception

args A Dictionary of arguments. Must contain the correct set and type of arguments for this action. May
be nul l if no input arguments exist.

□ Invokes the action. The input and output arguments are both passed as Dictionary objects. Each en-
try in the Dictionary object has a Str ing object as key representing the argument name and the val-
ue is the argument itself. The class of an argument value must be assignable from the class of the as-
sociated UPnP state variable. The input argument Dictionary object must contain exactly those ar-
guments listed by getInputArguments method. The output argument Dictionary object will contain
exactly those arguments listed by getOutputArguments method.

Returns A Dictionary with the output arguments. nul l if the action has no output arguments.

Throws UPnPException– A UPnP error has occurred.

I l legalStateException– if the UPnP action has been removed from the network.

Exception– The execution fails for some reason.

See Also UPnPStateVariable

111.16.3 public interface UPnPDevice
Represents a UPnP device. For each UPnP root and embedded device, an object is registered with the
framework under the UPnPDevice interface.

The relationship between a root device and its embedded devices can be deduced using the
UPnPDevice.CHILDREN_UDN and UPnPDevice.PARENT_UDN service registration properties.

The values of the UPnP property names are defined by the UPnP Forum.

All values of the UPnP properties are obtained from the device using the device's default locale.

If an application wants to query for a set of localized property values, it has to use the method
UPnPDevice.getDescr ipt ions(Str ing locale) .

111.16.3.1 public static final String CHILDREN_UDN = "UPnP.device.childrenUDN"

The property key that must be set for all devices containing other embedded devices.

The value is an array of UDNs for each of the device's children (Str ing[]). The array contains UDNs
for the immediate descendants only.

If an embedded device in turn contains embedded devices, the latter are not included in the array.

The UPnP Specification does not encourage more than two levels of nesting.

The property is not set if the device does not contain embedded devices.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 6 Page 275

The property is of type Str ing[] . Value is "UPnP.device.childrenUDN"

111.16.3.2 public static final String DEVICE_CATEGORY = "UPnP"

Constant for the value of the service property DEVICE_CATEGORY used for all UPnP devices. Value is
"UPnP".

See Also org.osgi .service.device.Constants.DEVICE_CATEGORY

111.16.3.3 public static final String FRIENDLY_NAME = "UPnP.device.friendlyName"

Mandatory property key for a short user friendly version of the device name. The property value
holds a Str ing object with the user friendly name of the device. Value is "UPnP.device.friendlyName".

111.16.3.4 public static final String ID = "UPnP.device.UDN"

Property key for the Unique Device ID property. This property is an alias to UPnPDevice.UDN . It is
merely provided for reasons of symmetry with the UPnPService. ID property. The value of the prop-
erty is a Str ing object of the Device UDN. The value of the key is "UPnP.device.UDN".

111.16.3.5 public static final String MANUFACTURER = "UPnP.device.manufacturer"

Mandatory property key for the device manufacturer's property. The property value holds a String
representation of the device manufacturer's name. Value is "UPnP.device.manufacturer".

111.16.3.6 public static final String MANUFACTURER_URL = "UPnP.device.manufacturerURL"

Optional property key for a URL to the device manufacturers Web site. The value of the property is a
Str ing object representing the URL. Value is "UPnP.device.manufacturerURL".

111.16.3.7 public static final int MATCH_GENERIC = 1

Constant for the UPnP device match scale, indicating a generic match for the device. Value is 1.

111.16.3.8 public static final int MATCH_MANUFACTURER_MODEL = 7

Constant for the UPnP device match scale, indicating a match with the device model. Value is 7.

111.16.3.9 public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15

Constant for the UPnP device match scale, indicating a match with the device revision. Value is 15.

111.16.3.10 public static final int MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31

Constant for the UPnP device match scale, indicating a match with the device revision and the serial
number. Value is 31.

111.16.3.11 public static final int MATCH_TYPE = 3

Constant for the UPnP device match scale, indicating a match with the device type. Value is 3.

111.16.3.12 public static final String MODEL_DESCRIPTION = "UPnP.device.modelDescription"

Optional (but recommended) property key for a Str ing object with a long description of the device
for the end user. The value is "UPnP.device.modelDescription".

111.16.3.13 public static final String MODEL_NAME = "UPnP.device.modelName"

Mandatory property key for the device model name. The property value holds a Str ing object giving
more information about the device model. Value is "UPnP.device.modelName".

111.16.3.14 public static final String MODEL_NUMBER = "UPnP.device.modelNumber"

Optional (but recommended) property key for a Str ing class typed property holding the model num-
ber of the device. Value is "UPnP.device.modelNumber".

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 276 OSGi Compendium Release 6

111.16.3.15 public static final String MODEL_URL = "UPnP.device.modelURL"

Optional property key for a Str ing typed property holding a string representing the URL to the Web
site for this model. Value is "UPnP.device.modelURL".

111.16.3.16 public static final String PARENT_UDN = "UPnP.device.parentUDN"

The property key that must be set for all embedded devices. It contains the UDN of the parent de-
vice. The property is not set for root devices. The value is "UPnP.device.parentUDN".

111.16.3.17 public static final String PRESENTATION_URL = "UPnP.presentationURL"

Optional (but recommended) property key for a Str ing typed property holding a string representing
the URL to a device representation Web page. Value is "UPnP.presentationURL".

111.16.3.18 public static final String SERIAL_NUMBER = "UPnP.device.serialNumber"

Optional (but recommended) property key for a Str ing typed property holding the serial number of
the device. Value is "UPnP.device.serialNumber".

111.16.3.19 public static final String TYPE = "UPnP.device.type"

Property key for the UPnP Device Type property. Some standard property values are defined by the
Universal Plug and Play Forum. The type string also includes a version number as defined in the UP-
nP specification. This property must be set.

For standard devices defined by a UPnP Forum working committee, this must consist of the follow-
ing components in the given order separated by colons:

• urn
• schemas-upnp-org
• device
• a device type suffix
• an integer device version

For non-standard devices specified by UPnP vendors following components must be specified in the
given order separated by colons:

• urn
• an ICANN domain name owned by the vendor
• device
• a device type suffix
• an integer device version

To allow for backward compatibility the UPnP driver must automatically generate additional De-
vice Type property entries for smaller versions than the current one. If for example a device an-
nounces its type as version 3, then properties for versions 2 and 1 must be automatically generated.

In the case of exporting a UPnPDevice, the highest available version must be announced on the net-
work.

Syntax Example: urn:schemas-upnp-org:device:deviceType:v

The value is "UPnP.device.type".

111.16.3.20 public static final String UDN = "UPnP.device.UDN"

Property key for the Unique Device Name (UDN) property. It is the unique identifier of an instance
of a UPnPDevice . The value of the property is a Str ing object of the Device UDN. Value of the key is
"UPnP.device.UDN". This property must be set.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 6 Page 277

111.16.3.21 public static final String UPC = "UPnP.device.UPC"

Optional property key for a Str ing typed property holding the Universal Product Code (UPC) of the
device. Value is "UPnP.device.UPC".

111.16.3.22 public static final String UPNP_EXPORT = "UPnP.export"

The UPnP.export service property is a hint that marks a device to be picked up and exported by the
UPnP Service. Imported devices do not have this property set. The registered property requires no
value.

The UPNP_EXPORT string is "UPnP.export".

111.16.3.23 public Dictionary getDescriptions(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include "de", "en" or "
en-US". The default locale of the device is specified by passing a nul l argument.

□ Get a set of localized UPnP properties. The UPnP specification allows a device to present different
device properties based on the client's locale. The properties used to register the UPnPDevice service
in the OSGi registry are based on the device's default locale. To obtain a localized set of the proper-
ties, an application can use this method.

Not all properties might be available in all locales. This method does not substitute missing proper-
ties with their default locale versions.

This method must continue to return the properties after the UPnP device has been removed from
the network.

Returns Dictionary mapping property name Strings to property value Strings

111.16.3.24 public UPnPIcon[] getIcons(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include "de", "en" or "
en-US". The default locale of the device is specified by passing a nul l argument.

□ Lists all icons for this device in a given locale. The UPnP specification allows a device to present dif-
ferent icons based on the client's locale.

Returns Array of icons or null if no icons are available.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.3.25 public UPnPService getService(String serviceId)

serviceId The service id

□ Locates a specific service by its service id.

Returns The requested service or null if not found.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.3.26 public UPnPService[] getServices()

□ Lists all services provided by this device.

Returns Array of services or nul l if no services are available.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.4 public interface UPnPEventListener
UPnP Events are mapped and delivered to applications according to the OSGi whiteboard model.
An application that wishes to be notified of events generated by a particular UPnP Device registers a
service extending this interface.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 278 OSGi Compendium Release 6

The notification call from the UPnP Service to any UPnPEventListener object must be done asyn-
chronous with respect to the originator (in a separate thread).

Upon registration of the UPnP Event Listener service with the Framework, the service is notified for
each variable which it listens for with an initial event containing the current value of the variable.
Subsequent notifications only happen on changes of the value of the variable.

A UPnP Event Listener service filter the events it receives. This event set is limited using a standard
framework filter expression which is specified when the listener service is registered.

The filter is specified in a property named "upnp.filter" and has as a value an object of type
org.osgi .f ramework.Fi l ter .

When the Filter is evaluated, the following keywords are recognized as defined as literal constants
in the UPnPDevice class.

The valid subset of properties for the registration of UPnP Event Listener services are:

• UPnPDevice.TYPE -- Which type of device to listen for events.
• UPnPDevice. ID -- The ID of a specific device to listen for events.
• UPnPService.TYPE -- The type of a specific service to listen for events.
• UPnPService. ID -- The ID of a specific service to listen for events.

111.16.4.1 public static final String UPNP_FILTER = "upnp.filter"

Key for a service property having a value that is an object of type org.osgi .f ramework.Fi l ter and that
is used to limit received events.

111.16.4.2 public void notifyUPnPEvent(String deviceId,String serviceId,Dictionary events)

deviceId ID of the device sending the events

serviceId ID of the service sending the events

events Dictionary object containing the new values for the state variables that have changed.

□ Callback method that is invoked for received events. The events are collected in a Dictionary object.
Each entry has a Str ing key representing the event name (= state variable name) and the new value
of the state variable. The class of the value object must match the class specified by the UPnP State
Variable associated with the event. This method must be called asynchronously

111.16.5 public class UPnPException
extends Exception
There are several defined error situations describing UPnP problems while a control point invokes
actions to UPnPDevices.

Since 1.1

111.16.5.1 public static final int DEVICE_INTERNAL_ERROR = 501

The invoked action failed during execution.

111.16.5.2 public static final int INVALID_ACTION = 401

No Action found by that name at this service.

111.16.5.3 public static final int INVALID_ARGS = 402

Not enough arguments, too many arguments with a specific name, or one of more of the arguments
are of the wrong type.

111.16.5.4 public static final int INVALID_SEQUENCE_NUMBER = 403

The different end-points are no longer in synchronization.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 6 Page 279

111.16.5.5 public static final int INVALID_VARIABLE = 404

Refers to a non existing variable.

111.16.5.6 public UPnPException(int errorCode,String errorDescription)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of problem.

□ This constructor creates a UPnPException on the specified error code and error description.

111.16.5.7 public UPnPException(int errorCode,String errorDescription,Throwable errorCause)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of the problem.

errorCause cause of that UPnPException .

□ This constructor creates a UPnPException on the specified error code, error description and error
cause.

Since 1.2

111.16.5.8 public int getUPnPError_Code()

□ Returns the UPnPError Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Deprecated As of version 1.2, replaced by getUPnPErrorCode()

111.16.5.9 public int getUPnPErrorCode()

□ Returns the UPnP Error Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Since 1.2

111.16.6 public interface UPnPIcon
A UPnP icon representation. Each UPnP device can contain zero or more icons.

111.16.6.1 public int getDepth()

□ Returns the color depth of the icon in bits.

This method must continue to return the icon depth after the UPnP device has been removed from
the network.

Returns The color depth in bits. If the actual color depth of the icon is unknown, -1 is returned.

111.16.6.2 public int getHeight()

□ Returns the height of the icon in pixels. If the actual height of the icon is unknown, -1 is returned.

This method must continue to return the icon height after the UPnP device has been removed from
the network.

Returns The height in pixels, or -1 if unknown.

111.16.6.3 public InputStream getInputStream() throws IOException

□ Returns an InputStream object for the icon data. The InputStream object provides a way for a client
to read the actual icon graphics data. The number of bytes available from this InputStream object
can be determined via the getSize() method. The format of the data encoded can be determined by
the MIME type available via the getMimeType() method.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 280 OSGi Compendium Release 6

Returns An InputStream to read the icon graphics data from.

Throws IOException– If the InputStream cannot be returned.

I l legalStateException– if the UPnP device has been removed from the network.

See Also UPnPIcon.getMimeType()

111.16.6.4 public String getMimeType()

□ Returns the MIME type of the icon. This method returns the format in which the icon graphics, read
from the InputStream object obtained by the getInputStream() method, is encoded.

The format of the returned string is in accordance to RFC2046. A list of valid MIME types is main-
tained by the IANA [http://www.iana.org/assignments/media-types/].

Typical values returned include: "image/jpeg" or "image/gif"

This method must continue to return the icon MIME type after the UPnP device has been removed
from the network.

Returns The MIME type of the encoded icon.

111.16.6.5 public int getSize()

□ Returns the size of the icon in bytes. This method returns the number of bytes of the icon available
to read from the InputStream object obtained by the getInputStream() method. If the actual size can
not be determined, -1 is returned.

Returns The icon size in bytes, or -1 if the size is unknown.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.6.6 public int getWidth()

□ Returns the width of the icon in pixels. If the actual width of the icon is unknown, -1 is returned.

This method must continue to return the icon width after the UPnP device has been removed from
the network.

Returns The width in pixels, or -1 if unknown.

111.16.7 public interface UPnPLocalStateVariable
extends UPnPStateVariable
A local UPnP state variable which allows the value of the state variable to be queried.

Since 1.1

111.16.7.1 public Object getCurrentValue()

□ This method will keep the current values of UPnPStateVariables of a UPnPDevice whenever
UPnPStateVariable's value is changed , this method must be called.

Returns Object current value of UPnPStateVariable. if the current value is initialized with the default value
defined UPnP service description.

Throws I l legalStateException– if the UPnP state variable has been removed.

111.16.8 public interface UPnPService
A representation of a UPnP Service. Each UPnP device contains zero or more services. The UPnP de-
scription for a service defines actions, their arguments, and event characteristics.

111.16.8.1 public static final String ID = "UPnP.service.id"

Property key for the optional service id. The service id property is used when registering UPnP De-
vice services or UPnP Event Listener services. The value of the property contains a Str ing array

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 6 Page 281

(Str ing[]) of service ids. A UPnP Device service can thus announce what service ids it contains. A
UPnP Event Listener service can announce for what UPnP service ids it wants notifications. A ser-
vice id does not have to be universally unique. It must be unique only within a device. A nul l value
is a wildcard, matching all services. The value is "UPnP.service.id".

111.16.8.2 public static final String TYPE = "UPnP.service.type"

Property key for the optional service type uri. The service type property is used when registering UP-
nP Device services and UPnP Event Listener services. The property contains a Str ing array (Str ing[])
of service types. A UPnP Device service can thus announce what types of services it contains. A UP-
nP Event Listener service can announce for what type of UPnP services it wants notifications. The
service version is encoded in the type string as specified in the UPnP specification. A nul l value is a
wildcard, matching all service types. Value is "UPnP.service.type".

See Also UPnPService.getType()

111.16.8.3 public UPnPAction getAction(String name)

name Name of action. Must not contain hyphen or hash characters. Should be < 32 characters.

□ Locates a specific action by name. Looks up an action by its name.

Returns The requested action or nul l if no action is found.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.4 public UPnPAction[] getActions()

□ Lists all actions provided by this service.

Returns Array of actions (UPnPAction[])or nul l if no actions are defined for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.5 public String getId()

□ Returns the serviceId field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceId must contain the
following components in the indicated order:

• urn:upnp-org:serviceId:
• service ID suffix

Example: urn:upnp-org:serviceId:serviceID .

Note that upnp-org is used instead of schemas-upnp-org in this example because an XML schema is
not defined for each serviceId.

For non-standard services specified by UPnP vendors, the serviceId must contain the following com-
ponents in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :serviceId:
• service ID suffix

Example: urn:domain-name:serviceId:serviceID .

This method must continue to return the service id after the UPnP service has been removed from
the network.

Returns The service ID suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters. Single URI.

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 282 OSGi Compendium Release 6

111.16.8.6 public UPnPStateVariable getStateVariable(String name)

name Name of the State Variable

□ Gets a UPnPStateVariable objects provided by this service by name

Returns State variable or nul l if no such state variable exists for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.7 public UPnPStateVariable[] getStateVariables()

□ Lists all UPnPStateVariable objects provided by this service.

Returns Array of state variables or nul l if none are defined for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.8 public String getType()

□ Returns the serviceType field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceType must contain
the following components in the indicated order:

• urn:schemas-upnp-org:service:
• service type suffix:
• integer service version

Example: urn:schemas-upnp-org:service:serviceType:v .

For non-standard services specified by UPnP vendors, the serviceType must contain the following
components in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :service:
• service type suffix:
• integer service version

Example: urn:domain-name:service:serviceType:v .

This method must continue to return the service type after the UPnP service has been removed from
the network.

Returns The service type suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters, not including the version suffix and separating colon. Single URI.

111.16.8.9 public String getVersion()

□ Returns the version suffix encoded in the serviceType field in the UPnP service description.

This method must continue to return the service version after the UPnP service has been removed
from the network.

Returns The integer service version defined by a UPnP Forum working committee or specified by a UPnP
vendor.

111.16.9 public interface UPnPStateVariable
The meta-information of a UPnP state variable as declared in the device's service state table (SST).

Method calls to interact with a device (e.g. UPnPAction. invoke(. . .) ;) use this class to encapsulate
meta information about the input and output arguments.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 6 Page 283

The actual values of the arguments are passed as Java objects. The mapping of types from UPnP data
types to Java data types is described with the field definitions.

111.16.9.1 public static final String TYPE_BIN_BASE64 = "bin.base64"

MIME-style Base64 encoded binary BLOB.

Takes 3 Bytes, splits them into 4 parts, and maps each 6 bit piece to an octet. (3 octets are encoded as
4.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.

111.16.9.2 public static final String TYPE_BIN_HEX = "bin.hex"

Hexadecimal digits representing octets.

Treats each nibble as a hex digit and encodes as a separate Byte. (1 octet is encoded as 2.) No limit on
size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.

111.16.9.3 public static final String TYPE_BOOLEAN = "boolean"

True or false.

Mapped to Boolean object.

111.16.9.4 public static final String TYPE_CHAR = "char"

Unicode string.

One character long.

Mapped to Character object.

111.16.9.5 public static final String TYPE_DATE = "date"

A calendar date.

Date in a subset of ISO 8601 format without time data.

See http://www.w3.org/TR/ xmlschema-2/#date [http://www.w3.org/TR/xmlschema-2/#date].

Mapped to java.ut i l .Date object. Always 00:00 hours.

111.16.9.6 public static final String TYPE_DATETIME = "dateTime"

A specific instant of time.

Date in ISO 8601 format with optional time but no time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime [http://www.w3.org/TR/xmlschema-2/#date-
Time].

Mapped to java.ut i l .Date object using default time zone.

111.16.9.7 public static final String TYPE_DATETIME_TZ = "dateTime.tz"

A specific instant of time.

Date in ISO 8601 format with optional time and optional time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime [http://www.w3.org/TR/xmlschema-2/#date-
Time].

Mapped to java.ut i l .Date object adjusted to default time zone.

http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 284 OSGi Compendium Release 6

111.16.9.8 public static final String TYPE_FIXED_14_4 = "fixed.14.4"

Same as r8 but no more than 14 digits to the left of the decimal point and no more than 4 to the
right.

Mapped to Double object.

111.16.9.9 public static final String TYPE_FLOAT = "float"

Floating-point number.

Mantissa (left of the decimal) and/or exponent may have a leading sign. Mantissa and/or exponent
may have leading zeros. Decimal character in mantissa is a period, i.e., whole digits in mantissa sep-
arated from fractional digits by period. Mantissa separated from exponent by E. (No currency sym-
bol.) (No grouping of digits in the mantissa, e.g., no commas.)

Mapped to Float object.

111.16.9.10 public static final String TYPE_I1 = "i1"

1 Byte int.

Mapped to Integer object.

111.16.9.11 public static final String TYPE_I2 = "i2"

2 Byte int.

Mapped to Integer object.

111.16.9.12 public static final String TYPE_I4 = "i4"

4 Byte int.

Must be between -2147483648 and 2147483647

Mapped to Integer object.

111.16.9.13 public static final String TYPE_INT = "int"

Integer number.

Mapped to Integer object.

111.16.9.14 public static final String TYPE_NUMBER = "number"

Same as r8.

Mapped to Double object.

111.16.9.15 public static final String TYPE_R4 = "r4"

4 Byte float.

Same format as float. Must be between 3.40282347E+38 to 1.17549435E-38.

Mapped to Float object.

111.16.9.16 public static final String TYPE_R8 = "r8"

8 Byte float.

Same format as float. Must be between -1.79769313486232E308 and -4.94065645841247E-324 for
negative values, and between 4.94065645841247E-324 and 1.79769313486232E308 for positive val-
ues, i.e., IEEE 64-bit (8-Byte) double.

Mapped to Double object.

UPnP™ Device Service Specification Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 6 Page 285

111.16.9.17 public static final String TYPE_STRING = "string"

Unicode string.

No limit on length.

Mapped to Str ing object.

111.16.9.18 public static final String TYPE_TIME = "time"

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with no date and no time zone.

See http://www.w3.org /TR/xmlschema-2/#time [http://www.w3.org/TR/xmlschema-2/#dateTime].

Mapped to Long . Converted to milliseconds since midnight.

111.16.9.19 public static final String TYPE_TIME_TZ = "time.tz"

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with optional time zone but no date.

See http://www.w3.org /TR/xmlschema-2/#time [http://www.w3.org/TR/xmlschema-2/#dateTime].

Mapped to Long object. Converted to milliseconds since midnight and adjusted to default time zone,
wrapping at 0 and 24*60*60*1000.

111.16.9.20 public static final String TYPE_UI1 = "ui1"

Unsigned 1 Byte int.

Mapped to an Integer object.

111.16.9.21 public static final String TYPE_UI2 = "ui2"

Unsigned 2 Byte int.

Mapped to Integer object.

111.16.9.22 public static final String TYPE_UI4 = "ui4"

Unsigned 4 Byte int.

Mapped to Long object.

111.16.9.23 public static final String TYPE_URI = "uri"

Universal Resource Identifier.

Mapped to Str ing object.

111.16.9.24 public static final String TYPE_UUID = "uuid"

Universally Unique ID.

Hexadecimal digits representing octets. Optional embedded hyphens are ignored.

Mapped to Str ing object.

111.16.9.25 public String[] getAllowedValues()

□ Returns the allowed values, if defined. Allowed values can be defined only for String types.

This method must continue to return the state variable allowed values after the UPnP state variable
has been removed from the network.

Returns The allowed values or nul l if not defined. Should be less than 32 characters.

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.2

Page 286 OSGi Compendium Release 6

111.16.9.26 public Object getDefaultValue()

□ Returns the default value, if defined.

This method must continue to return the state variable default value after the UPnP state variable
has been removed from the network.

Returns The default value or nul l if not defined. The type of the returned object can be determined by get-
JavaDataType .

111.16.9.27 public Class getJavaDataType()

□ Returns the Java class associated with the UPnP data type of this state variable.

Mapping between the UPnP data types and Java classes is performed according to the schema men-
tioned above.

 Integer ui1, ui2, i1, i2, i4, int
 Long ui4, time, time.tz
 Float r4, float
 Double r8, number, fixed.14.4
 Character char
 String string, uri, uuid
 Date date, dateTime, dateTime.tz
 Boolean boolean
 byte[] bin.base64, bin.hex

This method must continue to return the state variable java type after the UPnP state variable has
been removed from the network.

Returns A class object corresponding to the Java type of this argument.

111.16.9.28 public Number getMaximum()

□ Returns the maximum value, if defined. Maximum values can only be defined for numeric types.

This method must continue to return the state variable maximum value after the UPnP state vari-
able has been removed from the network.

Returns The maximum value or nul l if not defined.

111.16.9.29 public Number getMinimum()

□ Returns the minimum value, if defined. Minimum values can only be defined for numeric types.

This method must continue to return the state variable minimum value after the UPnP state vari-
able has been removed from the network.

Returns The minimum value or nul l if not defined.

111.16.9.30 public String getName()

□ Returns the variable name.

• All standard variables defined by a UPnP Forum working committee must not begin with X_ nor
A_ .

• All non-standard variables specified by a UPnP vendor and added to a standard service must be-
gin with X_ .

This method must continue to return the state variable name after the UPnP state variable has been
removed from the network.

Returns Name of state variable. Must not contain a hyphen character nor a hash character. Should be < 32
characters.

UPnP™ Device Service Specification Version 1.2 References

OSGi Compendium Release 6 Page 287

111.16.9.31 public Number getStep()

□ Returns the size of an increment operation, if defined. Step sizes can be defined only for numeric
types.

This method must continue to return the step size after the UPnP state variable has been removed
from the network.

Returns The increment size or null if not defined.

111.16.9.32 public String getUPnPDataType()

□ Returns the UPnP type of this state variable. Valid types are defined as constants.

This method must continue to return the state variable UPnP data type after the UPnP state variable
has been removed from the network.

Returns The UPnP data type of this state variable, as defined in above constants.

111.16.9.33 public boolean sendsEvents()

□ Tells if this StateVariable can be used as an event source. If the StateVariable is eventable, an event
listener service can be registered to be notified when changes to the variable appear.

This method must continue to return the correct value after the UPnP state variable has been re-
moved from the network.

Returns true if the StateVariable generates events, fa lse otherwise.

111.17 References

[1] UPnP Forum
http://www.upnp.org

[2] XML Schema
http://www.w3.org/TR/xmlschema-2

[3] ISO 8601 Date And Time formats
http://www.iso.ch

References UPnP™ Device Service Specification Version 1.2

Page 288 OSGi Compendium Release 6

Declarative Services Specification Version 1.3 Introduction

OSGi Compendium Release 6 Page 289

112 Declarative Services Specification

Version 1.3

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a publish/find/bind mod-
el for using services. This model is elegant and powerful, it enables the building of applications out
of bundles that communicate and collaborate using these services.

This specification addresses some of the complications that arise when the OSGi service model is
used for larger systems and wider deployments, such as:

• Startup Time - The procedural service model requires a bundle to actively register and acquire
its services. This is normally done at startup time, requiring all present bundles to be initial-
ized with a Bundle Activator. In larger systems, this quickly results in unacceptably long startup
times.

• Memory Footprint - A service registered with the Framework implies that the implementation,
and related classes and objects, are loaded in memory. If the service is never used, this memory is
unnecessarily occupied. The creation of a class loader may therefore cause significant overhead.

• Complexity - Service can come and go at any time. This dynamic behavior makes the service pro-
gramming model more complex than more traditional models. This complexity negatively influ-
ences the adoption of the OSGi service model as well as the robustness and reliability of applica-
tions because these applications do not always handle the dynamicity correctly.

The service component model uses a declarative model for publishing, finding and binding to OSGi
services. This model simplifies the task of authoring OSGi services by performing the work of reg-
istering the service and handling service dependencies. This minimizes the amount of code a pro-
grammer has to write; it also allows service components to be loaded only when they are needed.
As a result, bundles need not provide a BundleActivator class to collaborate with others through the
service registry.

From a system perspective, the service component model means reduced startup time and potential-
ly a reduction of the memory footprint. From a programmer's point of view the service component
model provides a simplified programming model.

The Service Component model makes use of concepts described in [1] Automating Service Dependency
Management in a Service-Oriented Component Model.

112.1.1 Essentials

• Backward Compatibility - The service component model must operate seamlessly with the exist-
ing service model.

• Size Constraints - The service component model must not require memory and performance in-
tensive subsystems. The model must also be applicable on resource constrained devices.

• Delayed Activation - The service component model must allow delayed activation of a service
component. Delayed activation allows for delayed class loading and object creation until needed,
thereby reducing the overall memory footprint.

• Simplicity - The programming model for using declarative services must be very simple and not
require the programmer to learn a complicated API or XML sub-language.

Introduction Declarative Services Specification Version 1.3

Page 290 OSGi Compendium Release 6

• Reactive - It must be possible to react to changes in the external dependencies with different poli-
cies.

• Annotations - Annotations must be provided that can leverage the type information to create the
XML descriptor.

• Introspection - It must be possible to introspect the service components.

112.1.2 Entities

• Service Component - A service component contains a description that is interpreted at run time to
create and dispose objects depending on the availability of other services, the need for such an
object, and available configuration data. Such objects can optionally provide a service. This speci-
fication also uses the generic term component to refer to a service component.

• Service Component Runtime (SCR) - The actor that manages the components and their life cycle
and allows introspection of the components.

• Component Description - The declaration of a service component. It is contained within an XML
document in a bundle.

• Component Properties - A set of properties which can be specified by the component description,
Configuration Admin service and from the component factory.

• Component Property Type - A user defined annotation type which defines component properties
and is implemented by SCR to provide type safe access to the defined component properties.

• Component Configuration - A component configuration represents a component description para-
meterized by component properties. It is the entity that tracks the component dependencies and
manages a component instance. An activated component configuration has a component con-
text.

• Component Instance - An instance of the component implementation class. A component instance
is created when a component configuration is activated and discarded when the component con-
figuration is deactivated. A component instance is associated with exactly one component con-
figuration.

• Delayed Component - A component whose component configurations are activated when their
service is requested.

• Immediate Component - A component whose component configurations are activated immediate-
ly upon becoming satisfied.

• Factory Component - A component whose component configurations are created and activated
through the component's component factory.

• Reference - A specified dependency of a component on a set of target services.
• Target Services - The set of services that is defined by the reference interface and target property

filter.
• Bound Services - The set of target services that are bound to a component configuration.
• Event methods - The bind, updated, and unbind methods associated with a Reference.

Declarative Services Specification Version 1.3 Introduction

OSGi Compendium Release 6 Page 291

Figure 112.1 Service Component Runtime, org.osgi.service.component package

a Component
Impl

a Service Impl

Service
Component
Runtime Impl

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

1

<<service>>
Service Component
Runtime

112.1.3 Synopsis
The Service Component Runtime reads component descriptions from started bundles. These de-
scriptions are in the form of XML documents which define a set of components for a bundle. A com-
ponent can refer to a number of services that must be available before a component configuration
becomes satisfied. These dependencies are defined in the descriptions and the specific target ser-
vices can be influenced by configuration information in the Configuration Admin service. After a
component configuration becomes satisfied, a number of different scenarios can take place depend-
ing on the component type:

• Immediate Component - The component configuration of an immediate component must be acti-
vated immediately after becoming satisfied. Immediate components may provide a service.

• Delayed Component - When a component configuration of a delayed component becomes satis-
fied, SCR will register the service specified by the service element without activating the com-
ponent configuration. If this service is requested, SCR must activate the component configura-
tion creating an instance of the component implementation class that will be returned as the ser-
vice object. If the scope attribute of the service element is bundle , then, for each distinct bundle
that requests the service object, a different component configuration is created and activated and
a new instance of the component implementation class is returned as the service object. If the
scope attribute of the service element is prototype , then, for each distinct request for the service
object, such as via ServiceObjects , a different component configuration is created and activated
and a new instance of the component implementation class is returned as the service object.

• Factory Component - If a component's description specifies the factory attribute of the component
element, SCR will register a Component Factory service. This service allows client bundles to
create and activate multiple component configurations and dispose of them. If the component's
description also specifies a service element, then as each component configuration is activated,
SCR will register it as a service.

112.1.4 Readers

• Architects - The chapter, Components on page 292, gives a comprehensive introduction to the
capabilities of the component model. It explains the model with a number of examples. The sec-
tion about Component Life Cycle on page 314 provides some deeper insight in the life cycle of
components.

Components Declarative Services Specification Version 1.3

Page 292 OSGi Compendium Release 6

• Service Programmers - Service programmers should read Components on page 292. This chapter
should suffice for the most common cases. For the more advanced possibilities, they should con-
sult Component Description on page 305 for the details of the XML grammar for component de-
scriptions.

• Deployers - Deployers should consult Deployment on page 325.

112.2 Components
A component is a normal Java class contained within a bundle. The distinguishing aspect of a com-
ponent is that it is declared in an XML document. Component configurations are activated and deac-
tivated under the full control of SCR. SCR bases its decisions on the information in the component's
description. This information consists of basic component information like the name and type, op-
tional services that are implemented by the component, and references. References are dependencies
that the component has on other services.

SCR must activate a component configuration when the component is enabled and the component
configuration is satisfied and a component configuration is needed. During the life time of a compo-
nent configuration, SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when the component becomes
disabled, the component configuration becomes unsatisfied, or the component configuration is no
longer needed.

If an activated component configuration's configuration properties change, SCR must either notify
the component configuration of the change, if the component description specifies a method to be
notified of such changes, or deactivate the component configuration and then attempt to reactivate
the component configuration using the new configuration information.

112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML documents that contain the

component descriptions.
• An implementation class that is specified in the component description.

The elements in the component's description are defined in Component Description on page 305.
The XML grammar for the component declaration is defined by the XML Schema, see Component De-
scription Schema on page 338.

112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied. If an immediate compo-
nent has no dependencies, it is activated immediately. A component is an immediate component if
it is not a factory component and either does not specify a service or specifies a service and the im-
mediate attribute of the component element set to true . If an immediate component configuration
is satisfied and specifies a service, SCR must register the component configuration as a service in the
service registry and then activate the component configuration.

For example, the bundle entry /OSGI-INF/act ivator.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.activator"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.Activator"/>

Declarative Services Specification Version 1.3 Components

OSGi Compendium Release 6 Page 293

</scr:component>

The manifest header Service-Component must also be specified in the bundle manifest. For exam-
ple:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {
 public Activator() {...}
 private void activate(BundleContext context) {...}
 private void deactivate() {...}
}

This example component is virtually identical to a Bundle Activator. It has no references to other
services so it will be satisfied immediately. It publishes no service so SCR will activate a component
configuration immediately.

The activate method is called when SCR activates the component configuration and the deactivate
method is called when SCR deactivates the component configuration. If the activate method throws
an Exception, then the component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory component and does not have
the immediate attribute of the component element set to true . If a delayed component configura-
tion is satisfied, SCR must register the component configuration as a service in the service registry
but the activation of the component configuration is delayed until the registered service is request-
ed. The registered service of a delayed component looks like a normal registered service but does not
incur the overhead of an ordinarily registered service that require a service's bundle to be initialized
to register the service.

For example, a bundle needs to see events of a specific topic. The Event Admin uses the white board
pattern, receiving the events is therefore as simple as registering a Event Handler service. The exam-
ple XML for the delayed component looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.handler"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.HandlerImpl"/>
 <property name="event.topics">some/topic</property>
 <service>
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>
</scr:component>

The associated component class looks like:

public class HandlerImpl implements EventHandler{
 public void handleEvent(Event evt) {
 ...
 }
}

The component configuration will only be activated once the Event Admin service requires the ser-
vice because it has an event to deliver on the topic to which the component subscribed.

Components Declarative Services Specification Version 1.3

Page 294 OSGi Compendium Release 6

112.2.4 Factory Component
Certain software patterns require the creation of component configurations on demand. For exam-
ple, a component could represent an application that can be launched multiple times and each ap-
plication instance can then quit independently. Such a pattern requires a factory that creates the in-
stances. This pattern is supported with a factory component. A factory component is used if the fac-
tory attribute of the component element is set to a factory identifier. This identifier can be used by a
bundle to associate the factory with externally defined information.

SCR must register a Component Factory service on behalf of the component as soon as the compo-
nent factory is satisfied. The service properties must be:

• component.name - The name of the component.
• component.factory - The factory identifier.

The service properties of the Component Factory service must not include the component proper-
ties.

New configurations of the component can be created and activated by calling the newInstance
method on this Component Factory service. The newInstance(Dict ionary) method has a Dictionary
object as argument. This Dictionary object is merged with the component properties as described
in Component Properties on page 324. If the component specifies a service, then the service is reg-
istered after the created component configuration is satisfied with the component properties. Then
the component configuration is activated.

For example, a component can provide a connection to a USB device. Such a connection should nor-
mally not be shared and should be created each time such a service is needed. The component de-
scription to implement this pattern looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
</scr:component>

The component class looks like:

public class USBConnectionImpl implements USBConnection {
 private void activate(Map<String, ?> properties) {
 ...
 }
}

A factory component can be associated with a service. In that case, such a service is registered for
each component configuration. For example, the previous example could provide a USB Connection
service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
 <service>
 <provide interface="com.acme.usb.USBConnection"/>
 </service>
</scr:component>

Declarative Services Specification Version 1.3 References to Services

OSGi Compendium Release 6 Page 295

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {
 private void activate(Map<String, ?> properties) {...}
 public void connect() { ... }
 ...
 public void close() { ... }
}

A new service will be registered each time a new component configuration is created and activat-
ed with the newInstance method. This allows a bundle other than the one creating the component
configuration to utilize the service. If the component configuration is deactivated, the service must
be unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry. The dynamics of the
service registry require care and attention of the programmer because referenced services, once ac-
quired, could be unregistered at any moment. The component model simplifies the handling of
these service dependencies significantly.

The services that are selected by a reference are called the target services. These are the services select-
ed by the BundleContext.getServiceReferences method where the first argument is the reference's
interface and the second argument is the reference's target property, which must be a valid filter.

A component configuration becomes satisfied when each specified reference is satisfied. A refer-
ence is satisfied if it specifies optional cardinality or when the number of target services is equal to or
more than the minimum cardinality of the reference. An activated component configuration that
becomes unsatisfied must be deactivated.

During the activation of a component configuration, SCR must bind some or all of the target ser-
vices of a reference to the component configuration. Any target service that is bound to the compo-
nent configuration is called a bound service. See Binding Services on page 318.

112.3.1 Accessing Services
A component instance must be able to use the services that are referenced by the component config-
uration, that is, the bound services of the references. The following strategies are available for a com-
ponent instance to acquire these bound services:

• Event strategy - SCR calls a method on the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated. These methods are the
bind, updated, and unbind methods specified by the reference. The event strategy is useful if the
component needs to be notified of changes to the bound services for a dynamic reference.

• Field strategy - SCR modifies a field in the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated.

• Lookup strategy - The component instance can use one of the locateService methods of Compo-
nentContext to locate a bound service. These methods take the name of the reference as a para-
meter. If the reference has a dynamic policy, it is important to not store returned service objects
but look them up every time they are needed.

A component may use multiple strategies to access the bound services of a reference.

112.3.2 Event Methods
When using the event strategy, SCR must callback the component instance at the appropriate time.
SCR must callback on the following events:

References to Services Declarative Services Specification Version 1.3

Page 296 OSGi Compendium Release 6

• bind - The bind method, if specified, is called to bind a new service to the component that match-
es the selection criteria. If the pol icy is dynamic then the bind method of a replacement service
can be called before its corresponding unbind method.

• updated - The updated method, if specified, is called when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The unbind method, if specified, is called when SCR needs to unbind the service.

Each event is associated with an event method. The prototype of the event methods is:

void <method-name>(<arguments>);

An event method can take one or more arguments. Each argument must be of one of the following
types:

• <service-type> - The bound service object.
• ServiceReference - A Service Reference for the bound service. This Service Reference may later be

passed to the locateService(Str ing,ServiceReference) method to obtain the actual service object.
This approach is useful when the service properties need to be examined before accessing the
service object. It also allows for the delayed activation of bound services when using the event
strategy.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

A suitable method is selected using the following priority:

1. The method takes a single argument and the type of the argument is
org.osgi .f ramework.ServiceReference . This method will receive a Service Reference for the
bound service.

2. The method takes a single argument and the type of the argument is ComponentServiceOb-
jects . This method will receive a Component Service Objects for the bound service.

3. The method takes a single argument and the type of the argument is the type specified by the
reference's interface attribute. This method will receive the bound service object.

4. The method takes a single argument and the type of the argument is assignable from the type
specified by the reference's interface attribute. If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call. This method
will receive the bound service object.

5. The method takes a single argument and the type of the argument is java.ut i l .Map . This method
will receive an unmodifiable Map containing the service properties of the bound service.

6. The method takes two or more arguments and the types of the arguments must be one of: the
type specified by the reference's interface attribute, a type assignable from the type specified
by the reference's interface attribute, org.osgi .f ramework.ServiceReference , ComponentSer-
viceObjects , or java.ut i l .Map . If multiple methods match this rule, this implies the method
name is overloaded and SCR may choose any of the methods to call. In the case where the type
specified by the reference's interface attribute is org.osgi .f ramework.ServiceReference , Compo-
nentServiceObjects , or java.ut i l .Map , the first argument of that type will receive the bound ser-
vice object. If selected event method has more than one argument of that type, the remaining ar-
guments of that type will receive a Service Reference for the bound service, a Service Objects for

Declarative Services Specification Version 1.3 References to Services

OSGi Compendium Release 6 Page 297

the bound service, or an unmodifiable Map containing the service properties of the bound ser-
vice.

When searching for an event method to call, SCR must locate a suitable method as specified in Lo-
cating Component Methods and Fields on page 334. If no suitable method is located, SCR must log an
error message with the Log Service, if present, and there will be no bind, updated, or unbind notifi-
cation.

The bind and unbind methods must be called once for each bound service. This implies that if the
reference has multiple cardinality, then the methods may be called multiple times. The updated
method can be called multiple times per service.

In the following examples, a component requires the Log Service. The first example uses the lookup
strategy. The reference is declared without any bind, updated, and unbind methods:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.LogLookupImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"/>
</scr:component>

The component implementation class must now lookup the service. This looks like:

public class LogLookupImpl {
 private void activate(ComponentContext ctxt) {
 LogService log = (LogService)
 ctxt.locateService("LOG");
 log.log(LogService.LOG_INFO, "Hello Components!"));
 }
}

Alternatively, the component could use the event strategy and ask to be notified with the Log Ser-
vice by declaring bind, updated, and unbind methods.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 bind="setLog"
 updated="updatedLog"
 unbind="unsetLog"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LogService log;
 Integer level;
 void setLog(LogService l, Map<String,?> ref) {
 log = l;
 updatedLog(ref);
 }

References to Services Declarative Services Specification Version 1.3

Page 298 OSGi Compendium Release 6

 void updatedLog(LogService l, Map<String,?> ref) {
 level = (Integer) ref.get("level");
 }
 void unsetLog(LogService l) { log = null; }

 private void activate() {
 log.log(LogService.LOG_INFO, "Hello Components!"));
 }
}

Event methods can be declared private in the component class but are only looked up in the inheri-
tance chain when they are protected, public, or have default access. See Locating Component Methods
and Fields on page 334.

112.3.3 Field Strategy
When using the field strategy, SCR must modify fields in the component instance at the appropriate
time. SCR must modify the fields on the following events:

• bind - The field is modified to bind a new service to the component that matches the selection
criteria.

• updated - For certain field types, the field is modified when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The field is modified when SCR needs to unbind the service.

For a reference with unary cardinality, a field must be of one of the following types:

• <service-type> - The bound service object. The type of the field can be the actual service type or it
can be a type that is assignable from the actual service type.

• ServiceReference - A Service Reference for the bound service. This Service Reference may later be
passed to the locateService(Str ing,ServiceReference) method to obtain the actual service object.
This approach is useful when the service properties need to be examined before accessing the
service object. It also allows for the delayed activation of bound services when using field strate-
gy.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

• Map.Entry - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the ser-
vice properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must additionally implement Comparable with the compareTo method comparing
the service property map key using the same ordering as ServiceReference.compareTo based up-
on service ranking and service id.

If the actual service type is one of ServiceReference , ComponentServiceObjects , Map , or
Map.Entry , the field will be set to the service object rather than the object about the service.

For a reference with multiple cardinality, a field must be a collection of one of the following types:

• Collect ion
• List

Declarative Services Specification Version 1.3 References to Services

OSGi Compendium Release 6 Page 299

• A subtype of Collect ion - This type can only be used for dynamic references using the update ref-
erence field option. The component instance must initialize the field to a collection object in its
constructor.

The type of objects set in the collection are specified by the f ie ld-col lect ion-type attribute in the
component description:

• service - The bound service object. This is the default field collection type.
• reference - A Service Reference for the bound service.
• serviceobjects - A Component Service Objects for the bound service.
• propert ies - An unmodifiable Map containing the service properties of the bound service. This

Map must implement Comparable , as above.
• tuple - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the service

properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must implement Comparable , as above.

Only instance fields of the field types above are supported. If a referenced field is declared with the
stat ic modifier or has a type other than one of the above, SCR must log an error message with the
Log Service, if present, and the field must not be modified.

Care must be taken by the component implementation regarding the field. SCR has no way to know
if the component implementation itself may alter the field value. The component implementation
should not alter the field value and allow SCR to manage it. SCR must treat the field as if the compo-
nent implementation does not alter the field value so SCR may retain its own copy of the value set
in the field.

In the following examples, a component requires the Log Service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 field="log"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LogService log;
 private void activate() {
 log.log(LogService.LOG_INFO, "Hello Components!"));
 }
}

Fields can be declared private in the component class but are only looked up in the inheritance
chain when they are protected, public, or have default access. See Locating Component Methods and
Fields on page 334.

112.3.4 Reference Cardinality
A component implementation is always written with a certain cardinality for each reference in
mind. The cardinality represents two important concepts:

• Multiplicity - Does the component implementation assume a single service or does it explicitly
handle multiple services? For example, when a component uses the Log Service, it only needs to

References to Services Declarative Services Specification Version 1.3

Page 300 OSGi Compendium Release 6

bind to one Log Service to function correctly. Alternatively, when the Configuration Admin us-
es the Configuration Listener services it needs to bind to all target services present in the service
registry to dispatch its events correctly.

• Optionality - Can the component function without any bound service present? Some components
can still perform useful tasks even when no service is available; other components must bind to
at least one service before they can be useful. For example, the Configuration Admin in the pre-
vious example must still provide its functionality even if there are no Configuration Listener ser-
vices present. Alternatively, an application that registers a Servlet with the Http Service has little
to do when the Http Service is not present, it should therefore use a reference with a mandatory
cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality '..' multiplicity
optionality ::= '0' | '1'
multiplicity ::= '1' | 'n'

The cardinality for a reference can be specified as one of four choices:

• 0..1 - Optional and unary.
• 1. .1 - Mandatory and unary (Default) .
• 0..n - Optional and multiple.
• 1. .n - Mandatory and multiple.

The minimum cardinality is specified by the optionality part of the cardinality. This is either 0 or 1 .
A minimum cardinality property can be used to raise the minimum cardinality of a reference from
this initial value. For example, a 0..n cardinality in the component description can be raised into a
3. .n cardinality at runtime by setting the minimum cardinality property for the reference to 3 . This
would typically be done by a deployer setting the minimum cardinality property in a configuration
for the component. The minimum cardinality for a unary cardinality cannot exceed 1 . See Minimum
Cardinality Property on page 325 for more information.

A reference is satisfied if the number of target services is equal to or more than the minimum cardi-
nality. The mult ipl ic ity is irrelevant for the satisfaction of the reference. The mult ipl ic ity only spec-
ifies if the component implementation is written to handle being bound to multiple services (n) or
requires SCR to select and bind to a single service (1).

When a satisfied component configuration is activated, there must be at most one bound service for
each reference with a unary cardinality and at least as many bound services as the minimum cardi-
nality for each reference. If the cardinality constraints cannot be maintained after a component con-
figuration is activated, that is the reference becomes unsatisfied, the component configuration must
be deactivated. If the reference has a unary cardinality and there is more than one target service for
the reference, then the bound service must be the target service with the highest service ranking as
specified by the service.ranking property. If there are multiple target services with the same service
ranking, then the bound service must be the target service with the highest service ranking and the
lowest service id as specified by the service. id property.

In the following example, a component wants to register a resource with all Http Services that are
available. Such a scenario has the cardinality of 0..n . The code must be prepared to handle multiple
calls to the bind method for each Http Service in such a case. In this example, the code uses the reg-
isterResources method to register a directory for external access.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"

Declarative Services Specification Version 1.3 References to Services

OSGi Compendium Release 6 Page 301

 cardinality="0..n"
 bind="setPage"
 unbind="unsetPage"
 />
</scr:component>

public class HttpResourceImpl {
 private void setPage(HttpService http) {
 http.registerResources("/scr", "scr", null);
 }
 private void unsetPage(HttpService http) {
 http.unregister("/scr");
 }
}

112.3.5 Reference Scope
A component implementation must be written to understand the service scope of referenced ser-
vices. The reference scope defines whether the component expects the bundle to be exposed to a sin-
gle service object for a bound service or to potentially multiple services objects. The following refer-
ence scopes are available:

• bundle - For all references to a given bound service, all activated component instances within a
bundle must use the same service object. That is, for a given bound service, all component in-
stances within a bundle will be using the same service object. This is the default reference scope.

• prototype - For all references to a given bound service, each activated component instance may
use a single, distinct service object. That is, for a given bound service, each component instance
may use a distinct service object but within a component instance all references to the bound
service will use the same service object.

• prototype_required - For all references to a given bound service, each activated component in-
stance must use a single, distinct service object. That is, for a given bound service, each compo-
nent instance will use a distinct service object but within a component instance all references to
the bound service will use the same service object.

For a bound service of a reference with bundle reference scope, SCR must get the service object from
the OSGi Framework's service registry using the getService method on the component's Bundle
Context. If the service object for a bound service has been obtained and the service becomes un-
bound, SCR must unget the service object using the ungetService method on the component's Bun-
dle Context and discard all references to the service object. This ensures that the bundle will only be
exposed to a single instance of the service object at any given time.

For a bound service of a reference with prototype or prototype required reference scope, SCR
must use a Service Objects object obtained from the OSGi Framework's service registry using the
component's Bundle Context to get any service objects. If service objects for a bound service have
been obtained and the service becomes unbound, SCR must unget any unreleased service objects
using the Service Objects object obtained from the OSGi Framework's service registry using the
component's Bundle Context. This means that if a component instance used a Component Service
Objects object to obtain service objects, SCR must track those service objects so that when the ser-
vice becomes unbound, SCR can unget any unreleased service objects.

Additionally, for a bound service of a reference with prototype required reference scope, only ser-
vices registered with prototype service scope can be considered as target services. This ensures that
each component instance can be exposed to a single, distinct instance of the service object. Using
prototype required reference scope effectively adds service.scope=prototype to the target property
for the reference. A service that does not use prototype service scope cannot be used as a bound ser-
vice for a reference with prototype required reference scope since the service cannot provide a dis-
tinct service object for each component instance.

References to Services Declarative Services Specification Version 1.3

Page 302 OSGi Compendium Release 6

112.3.6 Reference Policy
Once all the references of a component are satisfied, a component configuration can be activat-
ed and therefore bound to target services. However, the dynamic nature of the OSGi service reg-
istry makes it likely that services are registered, modified and unregistered after target services are
bound. These changes in the service registry could make one or more bound services no longer a tar-
get service thereby making obsolete any object references that the component has to these service
objects. Components therefore must specify a policy how to handle these changes in the set of bound
services. A policy-option can further refine how changes affect bound services.

112.3.6.1 Static Reference Policy

The static policy is the most simple policy and is the default policy. A reference with a static policy is
called a static reference. A component instance never sees any of the dynamics of the static reference.
The bind method is called and/or the field is set before the component instance is activated. Com-
ponent configurations are deactivated before any bound service for the static reference becomes
unavailable. If a target service is available to replace the bound service which became unavailable,
the component configuration must be reactivated and the replacement service is bound to the new
component instance.

If the pol icy-option is reluctant then the registration of an additional target service for a reference
must not result in deactivating and reactivating a component configuration. If the pol icy-option
is greedy then the component configuration must be reactivated when new applicable services be-
come available. See Table 112.1 on page 303.

If a static reference specifies an updated method and the bound service's properties change, SCR
must call the updated method.

The static policy can be very expensive if it depends on services that frequently unregister and re-
register or if the cost of activating and deactivating a component configuration is high. Static policy
is usually also not applicable if the cardinality specifies multiple bound services.

112.3.6.2 Dynamic Reference Policy

The dynamic policy is slightly more complex since the component implementation must properly
handle changes in the set of bound services that can occur on any thread at any time after the com-
ponent instance is created. A reference with a dynamic policy is called a dynamic reference. With the
dynamic policy, SCR can change the set of bound services without deactivating a component config-
uration. If the component uses the event strategy to access services, then the component instance
will be notified of changes in the set of bound services by calls to the bind, updated, and unbind
methods.

If the pol icy-option is reluctant then a bound reference is not rebound even if a more suitable ser-
vice becomes available for a 1..1 or 0..1 reference. If the pol icy-option is greedy then the component
must be unbound and rebound for that reference. See Table 112.1 on page 303.

The previous example with the registering of a resource directory used a static policy. This implied
that the component configurations are deactivated when there is a change in the bound set of Http
Services. The code in the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..n"
 policy="dynamic"
 bind="setPage"

Declarative Services Specification Version 1.3 References to Services

OSGi Compendium Release 6 Page 303

 unbind="unsetPage"
 />
</scr:component>

The code is identical to the previous example.

112.3.7 Reference Policy Option
The reference policy option defines how eager the reference is to rebind when a new, potentially a
higher ranking, target service becomes available. The reference policy option can have the follow-
ing values:

• reluctant - Minimize rebinding and reactivating. This is the default reference policy option.
• greedy - Maximize the use of the best service by deactivating static references or rebinding dy-

namic references.

Table 112.1 defines the actions that are taken when a better target service becomes available. In this
context, better is when the reference is not bound or when the new target service has a higher rank-
ing than the bound service.

Table 112.1 Action taken for policy-option when a new or higher ranking service becomes available

Cardinality static reluctant static greedy dynamic reluctant dynamic greedy
0..1 Ignore Reactivate to bind the

better target service.
If no service is bound,
bind to new target ser-
vice. Otherwise, ignore
new target service.

If no service is bound,
bind to better target ser-
vice. Otherwise, unbind
the bound service and
bind the better target ser-
vice.

1. .1 Ignore Reactivate to bind the
better target service.

Ignore Unbind the bound ser-
vice, then bind the new
service.

0..n Ignore Reactivate Bind new target service Bind new target service
1. .n Ignore Reactivate Bind new target service Bind new target service

112.3.8 Reference Field Option
For a reference using field strategy, the reference field option defines how SCR must manage the
field value. The reference field option can have the following values:

• replace - SCR must set the field value. Any field value set by the constructor of the component in-
stance is overwritten. This is the default reference field option.

• update - SCR must update the collection set in the field. This collection can be set by the con-
structor of the component instance. This reference field option can only be used for a dynamic
reference with multiple cardinality.

For a static reference, the replace option must be used.

For a dynamic reference, the choice of reference field option is influenced by the cardinality of the
reference. For unary cardinality, the replace option must be used. For multiple cardinality, either the
replace or update option can be used.

If the update option is used when not permitted, SCR must log an error message with the Log Ser-
vice, if present, and the field must not be modified.

112.3.8.1 Replace Field Option

If the field is declared with the f inal modifier, SCR must log an error message with the Log Service, if
present, and the field must not be modified.

References to Services Declarative Services Specification Version 1.3

Page 304 OSGi Compendium Release 6

For a static reference, SCR must set the value of the field before the component instance is activat-
ed and must not change the field while the component is active. This means there is a happens-before
relationship between setting the field and activating the component instance, so the active compo-
nent can safely read the field.

For a dynamic reference, the field must be declared with the volat i le modifier so that field value
changes made by SCR are visible to other threads. If the field is not declared with the volat i le modi-
fier, SCR must log an error message with the Log Service, if present, and the field must not be modi-
fied.

For a dynamic reference with unary cardinality, SCR must set the field with initial bound service, if
any, before the component instance is activated. When there is a new bound service or the service
properties of the bound service are modified and the field holds service properties, SCR must replace
the field value. If the reference has optional cardinality and there is no bound service, SCR must set
the field value to nul l .

For a dynamic reference with multiple cardinality, the type of the field must be Collect ion or List . If
the field has a different type, SCR must log an error message with the Log Service, if present, and the
field must not be modified. Before the component instance is activated, SCR must set the field with
a new mutable collection that must contain the initial set of bound services sorted using the same
ordering as ServiceReference.compareTo based upon service ranking and service id. The new collec-
tion may be empty if the reference has optional cardinality and there are no bound services. When
there is a change in the set of bound services or the service properties of a bound service are modi-
fied and the collection holds service properties, SCR must replace the field value with a new muta-
ble collection that must contain the updated set of bound services sorted using the same ordering as
ServiceReference.compareTo based upon service ranking and service id. The new collection may be
empty if the reference has optional cardinality and there are no bound services.

112.3.8.2 Update Field Option

The update option can only be used for a dynamic reference with multiple cardinality. The
component's constructor can set the field with its choice of collection implementation. In this case,
the field can be declared with the f inal modifier. The collection implementation used by the compo-
nent should use identity rather than equals or hashCode to manage the elements of the collection.
The collection implementation should also be thread-safe since SCR may update the collection from
threads different than those used by the component instance.

After constructing the component instance, if the field value is nul l :

• If the type of the field is Collect ion or List , SCR will set the field to a new mutable empty collec-
tion or list object, respectively. If the field is declared with the f inal modifier, SCR must log an er-
ror message with the Log Service, if present, and the field must not be modified.

• Otherwise, SCR must log an error message with the Log Service, if present, and the field must not
be modified.

SCR must not change the field value while the component is active and only update the contents of
the collection. SCR must update the collection before the component instance is activated by calling
Collect ion.add for each bound service. When there is a change to the set of bound services:

• SCR must call Collect ion.add for a newly bound service.
• SCR must call Collect ion.remove for an unbound service.
• If the service properties of a bound service are modified and the collection holds service proper-

ties, SCR must call Collect ion.add for the replacement element followed by Collect ion.remove
for the old element.

The collection may be empty if the reference has optional cardinality and there are no bound ser-
vices.

Declarative Services Specification Version 1.3 Component Description

OSGi Compendium Release 6 Page 305

112.3.9 Selecting Target Services
The target services for a reference are constrained by the reference's interface name and target prop-
erty. By specifying a filter in the target property, the programmer and deployer can constrain the set
of services that should be part of the target services.

For example, a component wants to track all Component Factory services that have a factory identi-
fication of acme.appl icat ion . The following component description shows how this can be done.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.FactoryTracker"/>
 <reference name="FACTORY"
 interface=
 "org.osgi.service.component.ComponentFactory"
 target="(component.factory=acme.application)"
 />
</scr:component>

The filter is manifested as a component property called the target property. The target property can
also be set by property and propert ies elements, see Property and Properties Elements on page 309.
The deployer can also set the target property by establishing a configuration for the component
which sets the value of the target property. This allows the deployer to override the target property
in the component description. See Target Property on page 325 for more information.

112.3.10 Circular References
It is possible for a set of component descriptions to create a circular dependency. For example, if
component A references a service provided by component B and component B references a service
provided by component A then a component configuration of one component cannot be satisfied
without accessing a partially activated component instance of the other component. SCR must en-
sure that a component instance is never accessible to another component instance or as a service
until it has been fully activated, that is it has returned from its activate method if it has one.

Circular references must be detected by SCR when it attempts to satisfy component configurations
and SCR must fail to satisfy the references involved in the cycle and log an error message with the
Log Service, if present. However, if one of the references in the cycle has optional cardinality SCR
must break the cycle. The reference with the optional cardinality can be satisfied and bound to zero
target services. Therefore the cycle is broken and the other references may be satisfied.

112.4 Component Description
Component descriptions are defined in XML documents contained in a bundle and any attached
fragments.

If SCR detects an error when processing a component description, it must log an error message with
the Log Service, if present, and ignore the component description. Errors can include XML parsing
errors and ill-formed component descriptions.

112.4.1 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. These annotations will be discussed with the ap-
propriate elements and attributes. Since the naming rules between XML and Java differ, some name
changes are necessary.

Component Description Declarative Services Specification Version 1.3

Page 306 OSGi Compendium Release 6

Multi-word element and attribute names that use a minus sign (' - ' \u002D) are changed to camel
case. For example, the configurat ion-pid attribute in the component element is the configurat ionPid
member in the @Component annotation. The annotation class that corresponds to an element
starts with an upper case letter. For example the component element is represented by the @Com-
ponent annotation.

Some elements do not have a corresponding annotation since the annotations can be parameterized
by the type information in the Java class. For example, the @Component annotation synthesizes
the implement element's class attribute from the type it is applied to.

See Component Annotations on page 328 for more information.

112.4.2 Service Component Header
XML documents containing component descriptions must be specified by the Service-Component
header in the manifest. The value of the header is a comma separated list of paths to XML entries
within the bundle.

Service-Component ::= header // See Common Header Syntax in Core

The Service-Component header has no architected directives or properties. The header can be left
empty.

The last component of each path in the Service-Component header may use wildcards so that
Bundle.f indEntr ies can be used to locate the XML document within the bundle and its fragments.
For example:

Service-Component: OSGI-INF/*.xml

A Service-Component manifest header specified in a fragment is ignored by SCR. However, XML
documents referenced by a bundle's Service-Component manifest header may be contained in at-
tached fragments.

SCR must process each XML document specified in this header. If an XML document specified by
the header cannot be located in the bundle and its attached fragments, SCR must log an error mes-
sage with the Log Service, if present, and continue.

112.4.3 XML Document
A component description must be in a well-formed XML document, [4] Extensible Markup Language
(XML) 1.0, stored in a UTF-8 encoded bundle entry. The namespace for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.3.0

The recommended prefix for this namespace is scr . This prefix is used by examples in this specifica-
tion. XML documents containing component descriptions may contain a single, root component el-
ement or one or more component elements embedded in a larger document. Use of the namespace
for component descriptions is mandatory. The attributes and sub-elements of a component element
are always unqualified.

If an XML document contains a single, root component element which does not specify a name-
space, then the http://www.osgi .org/xmlns/scr/v1.0.0 namespace is assumed. Component descrip-
tions using the http://www.osgi .org/xmlns/scr/v1.0.0 namespace must be treated according to ver-
sion 1.0 of this specification.

SCR must parse all component elements in the namespace. Elements not in this namespace must
be ignored. Ignoring elements that are not recognized allows component descriptions to be embed-
ded in any XML document. For example, an entry can provide additional information about compo-
nents. These additional elements are parsed by another sub-system.

See Component Description Schema on page 338 for component description schema.

Declarative Services Specification Version 1.3 Component Description

OSGi Compendium Release 6 Page 307

112.4.4 Component Element
The component element specifies the component description. The following text defines the struc-
ture of the XML grammar using a form that is similar to the normal grammar used in OSGi specifi-
cations. In this case the grammar should be mapped to XML elements:

<component> ::= (<property> | <properties>)*
 <service>?
 <reference>*
 <implementation>

SCR must not require component descriptions to specify the elements in the order listed above and
as required by the XML schema. SCR must allow other orderings since arbitrary orderings of these
elements do not affect the meaning of the component description. Only the relative ordering of
property and propert ies elements and of reference elements have meaning.

The component element has the attributes and @Component annotations defined in the following
table.

Table 112.2 Component Element and Annotations

Attribute Annotation Description
name name The name of a component must be unique within a bundle. The component

name is used as a PID to retrieve component properties from the OSGi Con-
figuration Admin service if present, unless a configurat ion-pid attribute has
been defined. See Deployment on page 325 for more information. If the com-
ponent name is used as a PID then it should be unique within the framework.
The XML schema allows the use of component names which are not valid
PIDs. Care must be taken to use a valid PID for a component name if the com-
ponent should be configured by the Configuration Admin service. This at-
tribute is optional. The default value of this attribute is the value of the class
attribute of the nested implementation element. If multiple component ele-
ments in a bundle use the same value for the class attribute of their nested im-
plementation element, then using the default value for this attribute will re-
sult in duplicate component names. In this case, this attribute must be speci-
fied with a unique value.

enabled enabled Controls whether the component is enabled when the bundle is started. The
default value is true . If enabled is set to fa lse , the component is disabled un-
til the method enableComponent is called on the ComponentContext object.
This allows some initialization to be performed by some other component in
the bundle before this component can become satisfied. See Enabled on page
314.

factory factory If set to a non-empty string, it indicates that this component is a factory compo-
nent. SCR must register a Component Factory service for each factory compo-
nent. See Factory Component on page 294.

immediate immediate Controls whether component configurations must be immediately activated
after becoming satisfied or whether activation should be delayed. The default
value is fa lse if the factory attribute or if the service element is specified and
true otherwise. If this attribute is specified, its value must be fa lse if the facto-
ry attribute is also specified or must be true unless the service element is also
specified.

Component Description Declarative Services Specification Version 1.3

Page 308 OSGi Compendium Release 6

Attribute Annotation Description
configura-
t ion-pol icy

configurat ionPol-
icy

OPTIONAL

REQUIRE

IGNORE

Controls whether component configurations must be satisfied depending on
the presence of a corresponding Configurat ion object in the OSGi Configura-
tion Admin service. A corresponding configuration is a Configurat ion object
where the PID is the name of the component.

• optional - (default) Use the corresponding Configurat ion object if present
but allow the component to be satisfied even if the corresponding Configu-
rat ion object is not present.

• require - There must be a corresponding Configurat ion object for the com-
ponent configuration to become satisfied.

• ignore - Always allow the component configuration to be satisfied and do
not use the corresponding Configurat ion object even if it is present.

configurat ion-pid configurat ionPid The configuration PIDs to be used for the component in conjunction with
Configuration Admin. Multiple configuration PIDs can be specified by using a
whitespace separated list in the attribute. The default value for this attribute is
the name of the component.

The annotation uses a Str ing[] to specify multiple configuration PIDs. The or-
der in which configuration PIDs are specified must be preserved in the gen-
erated component description. The annotation can also use the special con-
figuration PID name "$" to specify the name of the component. This special
name must be replaced with the actual name of the component in the generat-
ed component description.

activate Activate Specifies the name of the method to call when a component configuration is
activated. The default value of this attribute is activate . See Activate Method on
page 318 for more information.

The annotation must be applied to the activate method and can only be used
once.

deactivate Deactivate Specifies the name of the method to call when a component configuration is
deactivated. The default value of this attribute is deactivate . See Deactivate
Method on page 321 for more information.

The annotation must be applied to the deactivate method and can only be
used once.

modified Modified Specifies the name of the method to call when the configuration properties
for a component configuration is using a Configurat ion object from the Con-
figuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this attribute
is not specified, then the component configuration will become unsatisfied if
its configuration properties use a Configurat ion object that is modified in any
way. See Modified Method on page 320 for more information.

The annotation must be applied to the modified method and can only be used
once.

112.4.5 Implementation Element
The implementation element is required and defines the name of the component implementation
class. The single attribute is defined in the following table.

Declarative Services Specification Version 1.3 Component Description

OSGi Compendium Release 6 Page 309

Table 112.3 Implementation Element and Annotations

Attribute Annotation Description
class Component The Java fully qualified name of the implementation class.

The component Component annotation will define the implementation ele-
ment automatically from the type it is applied to.

The class is retrieved with the loadClass method of the component's bundle. The class must be pub-
lic and have a public constructor without arguments (this is normally the default constructor) so
component instances may be created by SCR with the newInstance method on Class .

If the component description specifies a service, the class must implement all interfaces that are
provided by the service.

112.4.6 Property and Properties Elements
A component description can define a number of properties. These can defined inline or from a re-
source in the bundle. The property and propert ies elements can occur multiple times and they can
be interleaved. This interleaving is relevant because the properties are processed from top to bot-
tom. Later properties override earlier properties that have the same name.

Properties can also be overridden by a Configuration Admin service's Configurat ion object before
they are exposed to the component or used as service properties. This is described in Component
Properties on page 324 and Deployment on page 325.

The property element has the attributes and annotations defined in the following table.

Table 112.4 Property Element and Annotations

Attribute Annotation Description
name Component prop-

erty
The name of the property.

value The value of the property. This value is parsed according to the property type.
If the value attribute is specified, the body of the element is ignored. If the
type of the property is not Str ing , parsing of the value is done by the static
valueOf(Str ing) method in the given type. For Character types, the conversion
must be handled by Integer.valueOf method, a Character is always represented
by its Unicode value.

type The type of the property. Defines how to interpret the value. The type must be
one of the following Java types:

• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

Component Description Declarative Services Specification Version 1.3

Page 310 OSGi Compendium Release 6

Attribute Annotation Description
<body> If the value attribute is not specified, the body of the property element must

contain one or more values. The value of the property is then an array of the
specified type. Except for Str ing objects, the result will be translated to an ar-
ray of primitive types. For example, if the type attribute specifies Integer , then
the resulting array must be int[] .

Values must be placed one per line and blank lines are ignored. Parsing of the
value is done by the parse methods in the class identified by the type, after
trimming the line of any beginning and ending white space. Str ing values are
also trimmed of beginning and ending white space before being placed in the
array.

For example, a component that needs an array of hosts can use the following property definition:

<property name="hosts">
 www.acme.com
 backup.acme.com
</property>

This property declaration results in the property hosts, with a value of Str ing[] { "www.acme.com",
"backup.acme.com" } .

A property can also be set with the property annotation element of Component . This element is an
array of strings that must follow the following syntax:

property ::= name (':' type)? '=' value

In this case name , type , and value parts map to the attributes of the property element. If multiple
values must be specified then the same name can be repeated multiple times. For example:

@Component(property={"foo:Integer=1","foo:Integer=2","foo:Integer=3"})
public class FooImpl {
 ...
}

The propert ies element references an entry in the bundle whose contents conform to a standard [3]
Java Properties File.

At runtime, SCR reads the entry to obtain the properties and their values. The properties element at-
tributes are defined in the following table.

Table 112.5 Properties Element and Annotations

Attribute Annotation Description
entry Component prop-

ert ies
The entry path relative to the root of the bundle

For example, to include vendor identification properties that are stored in the OSGI-INF directory,
the following definition could be used:

<properties entry="OSGI-INF/vendor.properties"/>

The Component propert ies element can be used to provide the same information, this element con-
sists of an array of strings where each string defines an entry. The order within the array is the order
that must be used for the XML. However, the annotations do not support interleaving of the generat-
ed property and propert ies elements.

For example:

Declarative Services Specification Version 1.3 Component Description

OSGi Compendium Release 6 Page 311

@Component(properties="OSGI-INF/vendor.properties")

See Ordering of Generated Properties on page 332 for more information on the ordering of generat-
ed properties when using annotations.

112.4.7 Service Element
The service element is optional. It describes the service information to be used when a component
configuration is to be registered as a service.

A service element has the following attribute defined in the following table.

Table 112.6 Service Element and Annotations

Attribute Annotation Description
scope Component scope

SINGLETON

BUNDLE

PROTOTYPE

Controls the scope of the provided service. If set to singleton , when the com-
ponent is registered as a service, it must be registered as a bundle scope ser-
vice but only a single component configuration must be created and activat-
ed and a new instance of the component implementation class of the compo-
nent must be used for all bundles using the service. If set to bundle , when the
component is registered as a service, it must be registered as a bundle scope
service and a different component configuration is created and activated and
a new instance of the component implementation class must be created for
each bundle using the service. If set to prototype , when the component is reg-
istered as a service, it must be registered as a prototype scope service and a dif-
ferent component configuration is created and activated and a new instance of
the component implementation class must be created for each distinct request
for the service, such as via ServiceObjects .

The scope attribute must be singleton if the component is a factory component or an immediate
component. This is because SCR is not free to create component configurations as necessary to sup-
port non-singleton scoped services. A component description is ill-formed if it specifies that the
component is a factory component or an immediate component and scope is not singleton .

The service element must have one or more provide elements that define the service interfaces. The
provide element has the attribute defined in the following table.

Table 112.7 Provide Element and Annotations

Attribute Annotation Description
interface Component ser-

vice
The name of the interface that this service is registered under. This
name must be the fully qualified name of a Java class. For example,
org.osgi .service. log.LogService . The specified Java class should be an inter-
face rather than a class, however specifying a class is supported. The compo-
nent implementation class must implement all the specified service inter-
faces.

The Component annotation can specify the provided services, if this element
is not specified all directly implemented interfaces on the component's type
are defined as service interfaces. Specifying an empty array indicates that no
service should be registered.

For example, a component implements an Event Handler service.

<service>
 <provide interface=
 "org.osgi.service.eventadmin.EventHandler"/>
</service>

Component Description Declarative Services Specification Version 1.3

Page 312 OSGi Compendium Release 6

This previous example can be generated with the following annotation:

@Component
public class Foo implements EventHandler { ... }

112.4.8 Reference Element
A reference declares a dependency that a component has on a set of target services. A component con-
figuration is not satisfied, unless all its references are satisfied. A reference specifies target services
by specifying their interface and an optional target property.

A reference element has the attributes defined in the following table.

Table 112.8 Reference Element and Annotations

Attribute Annotation Description
name name The name of the reference. This name is local to the component and can be

used to locate a bound service of this reference with one of the locateService
methods of ComponentContext . Each reference element within the compo-
nent must have a unique name. This name attribute is optional. The default
value of this attribute is the value of the interface attribute of this element. If
multiple reference elements in the component use the same interface name,
then using the default value for this attribute will result in duplicate reference
names. In this case, this attribute must be specified with a unique name for the
reference to avoid an error.

The Reference annotation will use the name of the annotated method or field
as the default reference name. If the method name begins with bind , set or
add , that prefix is removed.

interface service Fully qualified name of the class that is used by the component to access the
service. The service provided to the component must be type compatible with
this class. That is, the component must be able to cast the service object to this
class. A service must be registered under this name to be considered for the set
of target services.

The Reference annotation will use the type of the first argument of the anno-
tated method or the type of the annotated field to determine the service value.

cardinal ity cardinal ity

MANDATORY

OPTIONAL

MULTIPLE

AT_LEAST_ONE

Specifies if the reference is optional and if the component implementation
support a single bound service or multiple bound services. See Reference Cardi-
nality on page 299.

pol icy pol icy

STATIC

DYNAMIC

The policy declares the assumption of the component about dynamicity. See
Reference Policy on page 302.

pol icy-option pol icyOption

RELUCTANT

GREEDY

Defines the policy when a better service becomes available. See Reference Policy
on page 302.

target target An optional OSGi Framework filter expression that further constrains the set
of target services. The default is no filter, limiting the set of matched services
to all service registered under the given reference interface. The value of this
attribute is used for the value of the target property of the reference. See Target
Property on page 325.

Declarative Services Specification Version 1.3 Component Description

OSGi Compendium Release 6 Page 313

Attribute Annotation Description
scope scope

BUNDLE

PROTOTYPE

PROTOTYPE_

 REQUIRED

The reference scope for this reference. See Reference Scope on page 301.

bind Reference

bind

The name of a method in the component implementation class that is used to
notify that a service is bound to the component configuration. For static refer-
ences, this method is only called before the activate method. For dynamic ref-
erences, this method can also be called while the component configuration is
active. See Accessing Services on page 295.

The Reference annotation will use the name of the method it is applied to as
the bind method name.

updated updated The name of a method in the component implementation class that is used to
notify that a bound service has modified its properties.

unbind unbind Same as bind, but is used to notify the component configuration that the ser-
vice is unbound. For static references, the method is only called after the deac-
t ivate method. For dynamic references, this method can also be called while
the component configuration is active. See Accessing Services on page 295.

f ie ld Reference

field

The name of a field in the component implementation class that is used to
hold service(s) that are bound to the component configuration. For static refer-
ences, this field is only set before the activate method. For dynamic references,
this field can modified while the component configuration is active. See Ac-
cessing Services on page 295.

The Reference annotation will use the name of the field it is applied to as the
field name.

f ie ld-option fieldOption

REPLACE

UPDATE

Defines how the field value must be managed. This is ignored if the f ie ld at-
tribute is not set. See Reference Field Option on page 303.

f ie ld-col lec-
t ion-type

 Defines the types of elements in the collection referenced by the field value.
This is ignored if the f ie ld attribute is not set or the cardinality is unary. See
Field Strategy on page 298 for more information.

The Reference annotation can infer the value of the collection elements from
the generic type information of the annotated field.

In the generated component description, the reference elements must be ordered in ascending lexi-
cographical order, using Str ing.compareTo , of the names of the references.

The following code demonstrates the use of the Reference annotation for the event strategy.

@Component
public class FooImpl implements Foo {
 @Reference(
 policy = DYNAMIC,
 policyOption = GREEDY,
 cardinality = MANDATORY)
 void setLog(LogService log) { ... }
 void unsetLog(LogService log) { ... }
 void updatedLog(Map<String,?> ref) { ... }

 @Activate

Component Life Cycle Declarative Services Specification Version 1.3

Page 314 OSGi Compendium Release 6

 void open() { ... }
 @Deactivate
 void close() { ... }
}

The following code demonstrates the use of the Reference annotation for the field strategy.

@Component
public class FooImpl implements Foo {
 @Reference(
 policy = DYNAMIC,
 policyOption = GREEDY,
 cardinality = MANDATORY)
 volatile LogService log;

 @Activate
 void open() { log.log(LOG_INFO, "activated"); }
 @Deactivate
 void close() { log.log(LOG_INFO, "deactivated"); }
}

For a reference to be used with the lookup strategy, there are no bind methods or fields to annotate
with the Reference annotation. Instead Reference annotations can be specified in the reference el-
ement of the Component annotation. When used in this way, the name and service elements must
be specified since there is no annotated member from which the name or service can be determined.
The following code demonstrates the use of the Reference annotation for the lookup strategy.

@Component(reference =
 @Reference(name = "log", service = LogService.class)
)
public class FooImpl implements Foo {
 @Activate
 void open(ComponentContext context) {
 LogService log = (LogService) context.locateService("log");
 ...
 }
 @Deactivate
 void close() { ... }
}

112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component cannot be enabled unless the
component's bundle is started. See Starting Bundles in OSGi Core Release 6. All components in a bun-
dle become disabled when the bundle is stopped. So the life cycle of a component is contained with-
in the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a component is specified in
the component description via the enabled attribute of the component element. See Component El-
ement on page 307. Component configurations can be created, satisfied and activated only when
the component is enabled.

The enabled state of a component can be controlled with the Component Context
enableComponent(Str ing) and disableComponent(Str ing) methods. The purpose of later enabling

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Compendium Release 6 Page 315

a component is to be able to decide programmatically when a component can become enabled. For
example, an immediate component can perform some initialization work before other components
in the bundle are enabled. The component descriptions of all other components in the bundle can
be disabled by having enabled set to fa lse in their component descriptions. After any necessary ini-
tialization work is complete, the immediate component can call enableComponent to enable the re-
maining components.

The enableComponent and disableComponent methods must return after changing the enabled
state of the named component. Any actions that result from this, such as activating or deactivating
a component configuration, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a nul l as the argument to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component configuration is satisfied. A
component configuration becomes satisfied when the following conditions are all satisfied:

• The component is enabled.
• If the component description specifies configurat ion-pol icy=required , then a Configurat ion ob-

ject for the component is present in the Configuration Admin service.
• Using the component properties of the component configuration, all the component's references

are satisfied. A reference is satisfied when the reference specifies optional cardinality or the num-
ber of target services is equal to or more than the minimum cardinality of the reference.

Once any of the listed conditions are no longer true, the component configuration becomes unsatis-
fied. An activated component configuration that becomes unsatisfied must be deactivated.

112.5.3 Immediate Component
A component is an immediate component when it must be activated as soon as its dependencies are
satisfied. Once the component configuration becomes unsatisfied, the component configuration
must be deactivated. If an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service registry and then activate
the component configuration. The service properties for this registration consist of the component
properties as defined in Service Properties on page 324.

The state diagram is shown in Figure 112.2.

Figure 112.2 Immediate Component Configuration

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and object creation. There-
fore, the activation of a delayed component configuration does not occur until there is an actual re-
quest for a service object. A component is a delayed component when it specifies a service but it is

Component Life Cycle Declarative Services Specification Version 1.3

Page 316 OSGi Compendium Release 6

not a factory component and does not have the immediate attribute of the component element set
to true .

SCR must register a service after the component configuration becomes satisfied. The registration of
this service must look to observers of the service registry as if the component's bundle actually reg-
istered this service. This strategy makes it possible to register services without creating a class loader
for the bundle and loading classes, thereby allowing reduction in initialization time and a delay in
memory footprint.

When SCR registers the service on behalf of a component configuration, it must avoid causing a
class load to occur from the component's bundle. SCR can ensure this by registering a ServiceFacto-
ry object with the Framework for that service. By registering a ServiceFactory object, the actual ser-
vice object is not needed until the ServiceFactory is called to provide the service object. The service
properties for this registration consist of the component properties as defined in Service Properties on
page 324.

The activation of a component configuration must be delayed until its service is requested. When
the service is requested, if the service has the scope attribute set to bundle , SCR must create and ac-
tivate a unique component configuration for each bundle requesting the service. If the service has
the scope attribute set to prototype , SCR must create and activate a unique component configura-
tion for each distinct request for the service. Otherwise, if the service has the scope attribute set to
singleton , SCR must activate a single component configuration which is used by all requests for the
service. A component instance can determine the bundle it was activated for by calling the getUs-
ingBundle() method on the Component Context.

The activation of delayed components is depicted in a state diagram in Figure 112.3. Notice that
multiple component configurations can be created from the REGISTERED state if a delayed compo-
nent specifies a service scope set to a value other than singleton .

If the service registered by a component configuration becomes unused because there are no more
bundles using it, then SCR should deactivate that component configuration. This allows SCR imple-
mentations to eagerly reclaim activated component configurations.

Figure 112.3 Delayed Component Configuration

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

activate

deactivate

ACTIVE

REGISTERED becomes
unsatisfied

get
service

unget
service1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component factory becomes satisfied.
The component factory is satisfied when the following conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component description, all the component's

references are satisfied. A reference is satisfied when the reference specifies optional cardinality
or there is at least one target service for the reference

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Compendium Release 6 Page 317

The component factory, however, does not use any of the target services and does not bind to them.

Once any of the listed conditions are no longer true, the component factory becomes unsatisfied
and the Component Factory service must be unregistered. Any component configurations activated
via the component factory are unaffected by the unregistration of the Component Factory service,
but may themselves become unsatisfied for the same reason.

The Component Factory service must be registered under the name
org.osgi .service.component.ComponentFactory with the following service properties:

• component.name - The name of the component.
• component.factory - The value of the factory attribute.

The service properties of the Component Factory service must not include the component proper-
ties.

New component configurations are created and activated when the newInstance method of the
Component Factory service is called. If the component description specifies a service, the compo-
nent configuration is registered as a service under the provided interfaces. The service properties for
this registration consist of the component properties as defined in Service Properties on page 324.
The service registration must take place before the component configuration is activated. Service
unregistration must take place before the component configuration is deactivated.

Figure 112.4 Factory Component

activate

deactivate

ACTIVE

FACTORY

becomes
unsatisfied

newInstance

dispose

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

A Component Factory service has a single method: newInstance(Dict ionary) . This method must cre-
ate, satisfy and activate a new component configuration and register its component instance as a
service if the component description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component instance with the getIn-
stance() method.

SCR must attempt to satisfy the component configuration created by newInstance before activating
it. If SCR is unable to satisfy the component configuration given the component properties and the
Dictionary argument to newInstance , the newInstance method must throw a ComponentException .

The client of the Component Factory service can also deactivate a component configuration with
the dispose() method on the ComponentInstance object. If the component configuration is already

Component Life Cycle Declarative Services Specification Version 1.3

Page 318 OSGi Compendium Release 6

deactivated, or is being deactivated, then this method is ignored. Also, if the component configura-
tion becomes unsatisfied for any reason, it must be deactivated by SCR.

Once a component configuration created by the Component Factory has been deactivated, that com-
ponent configuration will not be reactivated or used again.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1. Load the component implementation class.
2. Create the component instance and component context.
3. Bind the target services. See Binding Services on page 318.
4. Call the activate method, if present. See Activate Method on page 318.

Component instances must never be reused. Each time a component configuration is activated, SCR
must create a new component instance to use with the activated component configuration. A com-
ponent instance must complete activation before it can be deactivated. Once the component config-
uration is deactivated or fails to activate due to an exception, SCR must unbind all the component's
bound services and discard all references to the component instance associated with the activation.

112.5.7 Binding Services
When a component configuration's reference is satisfied, there is a set of zero or more target services
for that reference. When the component configuration is activated, a subset of the target services for
each reference are bound to the component configuration. The subset is chosen by the cardinality of
the reference. See Reference Cardinality on page 299.

When binding services, the references are processed in the order in which they are specified in the
component description. That is, target services from the first specified reference are bound before
services from the next specified reference.

Obtaining the service object for a bound service may result in activating a component configuration
of the bound service which could result in an exception. If the loss of the bound service due to the
exception causes the reference's cardinality constraint to be violated, then activation of this compo-
nent configuration will fail. Otherwise the bound service which failed to activate will be considered
unbound.

If the reference uses the field strategy, the field must be set. Then, if the reference uses the event
strategy, the bind method must be called for each bound service of that reference. If a bind method
throws an exception, SCR must log an error message containing the exception with the Log Service,
if present, but the activation of the component configuration does not fail.

112.5.8 Activate Method
A component instance can have an activate method. The name of the activate method can be spec-
ified by the activate attribute. See Component Element on page 307. If the activate attribute is not
specified, the default method name of activate is used. The prototype of the activate method is:

void <method-name>(<arguments>);

The activate method can take zero or more arguments. Each argument must be of one of the follow-
ing types:

• ComponentContext - The component instance will be passed the Component Context for the
component configuration.

• BundleContext - The component instance will be passed the Bundle Context of the component's
bundle.

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Compendium Release 6 Page 319

• Map - The component instance will be passed an unmodifiable Map containing the component
properties.

• A component property type - The component instance will be passed an instance of the compo-
nent property type which allows type safe access to component properties defined by the compo-
nent property type. See Component Property Types on page 330.

A suitable method is selected using the following priority:

1. The method takes a single argument and the type of the argument is
org.osgi .service.component.ComponentContext .

2. The method takes a single argument and the type of the argument is
org.osgi .f ramework.BundleContext .

3. The method takes a single argument and the type of the argument is a component property
type.

4. The method takes a single argument and the type of the argument is java.ut i l .Map .
5. The method takes two or more arguments and the type of each argument must be

org.osgi .service.component.ComponentContext , org.osgi .f ramework.BundleContext , a com-
ponent property type or java.ut i l .Map . If multiple methods match this rule, this implies the
method name is overloaded and SCR may choose any of the methods to call.

6. The method takes zero arguments.

When searching for the activate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 334. If the activate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
component configuration is not activated.

If an activate method is located, SCR must call this method to complete the activation of the compo-
nent configuration. If the activate method throws an exception, SCR must log an error message con-
taining the exception with the Log Service, if present, and the component configuration is not acti-
vated.

112.5.9 Component Context
The Component Context is made available to a component instance via the activate and deactivate
methods. It provides the interface to the execution context of the component, much like the Bundle
Context provides a bundle the interface to the Framework. A Component Context should therefore
be regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context. Component Contexts are
not reused and must be discarded when the component configuration is deactivated.

112.5.10 Bound Service Replacement
If an active component configuration has a dynamic reference with unary cardinality and the
bound service is modified or unregistered and ceases to be a target service, or the pol icy-option is
greedy and a better target service becomes available then SCR must attempt to replace the bound
service with a new bound service.

If the reference uses the field strategy, the field must be set for the replacement bound service. Then,
if the reference uses the event strategy, SCR must first bind the new bound service and then unbind
the outgoing service. This reversed order allows the component to not have to handle the inevitable
gap between the unbind and bind methods. However, this means that in the unbind method care
must be taken to not overwrite the newly bound service. For example, the following code handles
the associated concurrency issues and simplify handling the reverse order.

final AtomicReference<LogService> log = new AtomicReference<LogService>();

Component Life Cycle Declarative Services Specification Version 1.3

Page 320 OSGi Compendium Release 6

void setLogService(LogService log) {
 this.log.set(log);
}
void unsetLogService(LogService log) {
 this.log.compareAndSet(log, null);
}

If the dynamic reference falls below the minimum cardinality, the component configuration must
be deactivated because the cardinality constraints will be violated.

If a component configuration has a static reference and a bound service is modified or unregistered
and ceases to be a target service, or the pol icy-option is greedy and a better target service becomes
available then SCR must deactivate the component configuration. Afterwards, SCR must attempt to
activate the component configuration again if another target service can be used as a replacement
for the outgoing service.

112.5.11 Updated
If an active component is bound to a service that modifies its service properties then the component
can be updated. If the reference uses the field strategy and the field holds the service properties, the
field must be set for the updated bound service. Then, if the reference uses the event strategy and
specifies an updated method, the updated method must be called.

112.5.12 Modification
Modifying a component configuration can occur if the component description specifies the mod-
if ied attribute and the component properties of the component configuration use a Configurat ion
object from the Configuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this occurs, the component instance
will be notified of the change in the component properties.

If the modified attribute is not specified, then the component configuration will become unsatisfied
if its component properties use a Configurat ion object and that Configuration object is modified in
any way.

Modifying a component configuration consists of the following steps:

1. Update the component context for the component configuration with the modified configura-
tion properties.

2. Call the modified method. See Modified Method on page 320.
3. Modify the bound services for the dynamic references if the set of target services changed due to

changes in the target properties. See Bound Service Replacement on page 319.
4. If the component configuration is registered as a service, modify the service properties.

A component instance must complete activation, or a previous modification, before it can be modi-
fied.

See Configuration Changes on page 326 for more information.

112.5.13 Modified Method
The name of the modified method is specified by the modified attribute. See Component Element on
page 307. The prototype and selection priority of the modified method is identical to that of the
activate method. See Activate Method on page 318.

SCR must locate a suitable method as specified in Locating Component Methods and Fields on page
334. If the modified attribute is specified and no suitable method is located, SCR must log an error
message with the Log Service, if present, and the component configuration becomes unsatisfied and
is deactivated as if the modified attribute was not specified.

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Compendium Release 6 Page 321

If a modified method is located, SCR must call this method to notify the component configuration
of changes to the component properties. If the modified method throws an exception, SCR must log
an error message containing the exception with the Log Service, if present and continue processing
the modification.

112.5.14 Deactivation
Deactivating a component configuration consists of the following steps:

1. Call the deactivate method, if present. See Deactivate Method on page 321.
2. Unbind any bound services. See Unbinding on page 322.
3. Release all references to the component instance and component context.

A component instance must complete activation or modification before it can be deactivated. A
component configuration can be deactivated for a variety of reasons. The deactivation reason can be
received by the deactivate method. The following reason values are defined:

• 0 - Unspecified.
• 1 - The component was disabled.
• 2 - A reference became unsatisfied.
• 3 - A configuration was changed.
• 4 - A configuration was deleted.
• 5 - The component was disposed.
• 6 - The bundle was stopped.

Once the component configuration is deactivated, SCR must discard all references to the compo-
nent instance and component context associated with the activation.

112.5.15 Deactivate Method
A component instance can have a deactivate method. The name of the deactivate method can be
specified by the deactivate attribute. See Component Element on page 307. If the deactivate at-
tribute is not specified, the default method name of deactivate is used. The prototype of the deacti-
vate method is:

void <method-name>(<arguments>);

The deactivate method can take zero or more arguments. Each argument must be assignable from
one of the following types:

• ComponentContext - The component instance will be passed the Component Context for the
component.

• BundleContext - The component instance will be passed the Bundle Context of the component's
bundle.

• Map - The component instance will be passed an unmodifiable Map containing the component
properties.

• A component property type - The component instance will be passed an instance of the compo-
nent property type which allows type safe access to component properties defined by the compo-
nent property type. See Component Property Types on page 330.

• int or Integer - The component instance will be passed the reason the component configuration
is being deactivated. See Deactivation on page 321.

A suitable method is selected using the following priority:

1. The method takes a single argument and the type of the argument is
org.osgi .service.component.ComponentContext .

Component Life Cycle Declarative Services Specification Version 1.3

Page 322 OSGi Compendium Release 6

2. The method takes a single argument and the type of the argument is
org.osgi .f ramework.BundleContext .

3. The method takes a single argument and the type of the argument is a component property
type.

4. The method takes a single argument and the type of the argument is java.ut i l .Map .
5. The method takes a single argument and the type of the argument is int .
6. The method takes a single argument and the type of the argument is java. lang. Integer .
7. The method takes two or more arguments and the type of each argument must be

org.osgi .service.component.ComponentContext , org.osgi .f ramework.BundleContext , a com-
ponent property type, java.ut i l .Map , int or java. lang. Integer . If multiple methods match this
rule, this implies the method name is overloaded and SCR may choose any of the methods to
call.

8. The method takes zero arguments.

When searching for the deactivate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 334. If the deactivate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
deactivation of the component configuration will continue.

If a deactivate method is located, SCR must call this method to commence the deactivation of the
component configuration. If the deactivate method throws an exception, SCR must log an error
message containing the exception with the Log Service, if present, and the deactivation of the com-
ponent configuration will continue.

112.5.16 Unbinding
When a component configuration is deactivated, the bound services are unbound from the compo-
nent configuration.

When unbinding services, the references are processed in the reverse order in which they are spec-
ified in the component description. That is, target services from the last specified reference are un-
bound before services from the previous specified reference.

If the reference uses the event strategy, the unbind method must be called for each bound service of
that reference. If an unbind method throws an exception, SCR must log an error message containing
the exception with the Log Service, if present, and the deactivation of the component configuration
will continue. Then, if the reference uses the field strategy, the field must be set to nul l .

112.5.17 Life Cycle Example
A component could declare a dependency on the Http Service to register some resources.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.binding"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.Binding"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 cardinality="1..1"
 policy="static"
 />
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..1"
 policy="dynamic"
 bind="setHttp"
 unbind="unsetHttp"

Declarative Services Specification Version 1.3 Component Life Cycle

OSGi Compendium Release 6 Page 323

 />
</scr:component>

The component implementation code looks like:

public class Binding {
 LogService log;
 HttpService http;

 private void setHttp(HttpService h) {
 http = h;
 // register servlet
 }
 private void unsetHttp(HttpService h){
 if (http == h)
 http = null;
 // unregister servlet
 }
 private void activate(ComponentContext context) {
 log = (LogService) context.locateService("LOG");
 }
 private void deactivate(ComponentContext context) {...}
}

This example is depicted in a sequence diagram in Figure 112.5 with the following scenario:

1. A bundle with the example.Binding component is started. At that time there is a Log Service l1
and a Http Service h1 registered.

2. The Http Service h1 is unregistered
3. A new Http Service h2 is registered
4. The Log Service h1 is unregistered.

Figure 112.5 Sequence Diagram for binding

a Component
Configuration

Log Service Ref.
static, 1..1

Http Service Ref.
dynamic, 0..1

SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered
unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

create

Component Properties Declarative Services Specification Version 1.3

Page 324 OSGi Compendium Release 6

112.6 Component Properties
Each component configuration is associated with a set of component properties. The component
properties are specified in the following configuration sources (in order of precedence):

1. Properties specified in the argument of the ComponentFactory.newInstance method. This is on-
ly applicable for factory components.

2. Properties retrieved from the OSGi Configuration Admin service in Configuration objects whose
PID matches a configuration PID. The configuration PIDs are specified by the configurat ion-pid
attribute of the component element. See Component Element on page 307. If no configura-
t ion-pid attribute is specified, the component name is used as the default configuration PID. If
multiple configuration PIDs are specified, the order of precedence follows the order the configu-
ration PIDs are specified in the component description. That is, the precedence for the configu-
ration for an earlier specified configuration PID is lower than the precedence for the configura-
tions for a later specified configuration PID.

3. Properties specified in the component description. Properties specified later in the component
description override properties that have the same name specified earlier. Properties can be spec-
ified in the component description in the following ways:
• target attribute of reference elements - Sets the target property of the reference. See Target

Property on page 325. The value of the target attribute is used for the value of a target prop-
erty.

• property and propert ies elements - See Property and Properties Elements on page 309.

The precedence behavior allows certain default values to be specified in the component description
while allowing properties to be replaced and extended by:

• A configuration in Configuration Admin
• The argument to the ComponentFactory.newInstance method

Normally, a property value from a higher precedence configuration source replace a property value
from a lower precedence configuration source. However, the service.pid property values receive dif-
ferent treatment. For the service.pid property, if the property appears multiple times in the config-
uration sources, SCR must aggregate all the values found into a Collect ion<Str ing> having an itera-
tion order such that the first item in the iteration is the property value from the lowest precedence
configuration source and the last item in the iteration is the property value from the highest prece-
dence configuration source. If the component description specifies multiple configuration PIDs,
then the order of the service.pid property values from the corresponding configurations match-
es the order the configuration PIDs are specified in the component description. The values of the
service.pid component property are the values as they come from the configuration sources which,
for Configuration objects, may be more detailed than the configuration PIDs specified in the compo-
nent description.

SCR always adds the following component properties, which cannot be overridden:

• component.name - The component name.
• component. id - A unique value (Long) that is larger than all previously assigned values. These

values are not persistent across restarts of SCR.

112.6.1 Service Properties
When SCR registers a service on behalf of a component configuration, SCR must follow the recom-
mendations in Property Propagation on page 95 and must not propagate private configuration prop-
erties. That is, the service properties of the registered service must be all the component properties
of the component configuration whose property names do not start with full stop ('.' \u002E).

Declarative Services Specification Version 1.3 Deployment

OSGi Compendium Release 6 Page 325

Component properties whose names start with full stop are available to the component instance
but are not available as service properties of the registered service.

112.6.2 Reference Properties
This specification defines some component properties which are associated with specific compo-
nent references. These are called reference properties. The name of a reference property for a reference
is the name of the reference appended with a full stop ('.' \u002E) and a suffix unique to the refer-
ence property. Reference properties can be set wherever component properties can be set.

All component property names starting with a reference name followed by a full stop ('.' \u002E)
are reserved for use by this specification.

Following are the reference properties defined by this specification.

112.6.2.1 Target Property

The target property is a reference property which aids in the selection of target services for the refer-
ence. See Selecting Target Services on page 305. The name of a target property is the name of a ref-
erence appended with .target . For example, the target property for a reference with the name http
would have the name http.target . The value of a target property is a filter string used to select tar-
gets services for the reference.

The target property for a reference can also be set by the target attribute of the reference element.
See Reference Element on page 312.

112.6.2.2 Minimum Cardinality Property

The initial minimum cardinality of a reference is specified by the optionality: the first part of the
cardinality. It is either 0 or 1 . The minimum cardinality of a reference cannot exceed the multiplici-
ty: the second part of the cardinality. See Reference Cardinality on page 299 for more information
on the cardinality of a reference.

The minimum cardinality property is a reference property which can be used to raise the minimum
cardinality of a reference from its initial value. That is, a 0..1 cardinality can be raised to a 1. .1 cardi-
nality by setting the reference's minimum cardinality property to 1 , and a 0..n or 1. .n cardinality can
be raised to a m..n cardinality by setting the reference's minimum cardinality property to m such
that m is a positive integer. The minimum cardinality of a reference cannot be lowered. That is, a 1. .1
or 1. .n cardinality can be lowered to a 0..1 or 0..n cardinality because the component was coded to
expect at least one bound service.

The name of a minimum cardinality property is the name of a reference appended with
.cardinal ity.minimum . For example, the minimum cardinality property for a reference with the
name http would have the name http.cardinal ity.minimum . The value of a minimum cardinality
property must be a positive integer or a value that can be coerced into a positive integer. See Coerc-
ing Component Property Values on page 332 for information on coercing property values. If the nu-
merical value of the minimum cardinality property is not valid for the reference's cardinality or the
minimum cardinality property value cannot be coerced into a numerical value, then the minimum
cardinality property must be ignored.

SCR must support the minimum cardinality property for all components even those with compo-
nent descriptions in older namespaces.

112.7 Deployment
A component description contains default information to select target services for each reference.
However, when a component is deployed, it is often necessary to influence the target service selec-
tion in a way that suits the needs of the deployer. Therefore, SCR uses Configurat ion objects from

Deployment Declarative Services Specification Version 1.3

Page 326 OSGi Compendium Release 6

Configuration Admin to replace and extend the component properties for a component configura-
tion. That is, through Configuration Admin, a deployer can configure component properties.

A component's configuration PIDs are used as keys for obtaining additional component properties
from Configuration Admin. When matching a configuration PID to a Configurat ion object, SCR must
use the Configurat ion object with the best matching PID for the component's bundle. See Targeted
PIDs on page 91 for more information on targeted PIDs and Extenders and Targeted PIDs on page 92
for more information on selecting the Configurat ion object with the best matching PID.

The following situations can arise when looking for Configurat ion objects:

• No Configuration - If the component's configurat ion-pol icy is set to ignore or there are no Config-
urations with a PID or factory PID matching any of the configuration PIDs, then component con-
figurations will not obtain component properties from Configuration Admin. Only component
properties specified in the component description or via the ComponentFactory.newInstance
method will be used.

• Not Satisfied - If the component's configurat ion-pol icy is set to require and, for each configuration
PID, there is no Configuration with a matching PID or factory PID, then the component configu-
ration is not satisfied and will not be activated.

• Single Configurations - If none of the configuration PIDs matches a factory PID, then component
configurations will obtain additional component properties from Configuration Admin.

• Factory Configuration - If one of the configuration PIDs matches a factory PID, with zero or more
Configurations, then for each Configuration of the factory PID, a component configuration must
be created that will obtain additional component properties from Configuration Admin.

It is a configuration error if more than one of the configuration PIDs match a factory PID and
SCR must log an error message with the Log Service, if present. If the configurat ion-pol icy is set
to optional , the component configuration must be satisfied without the configurations PIDs
which match a factory PID. If the configurat ion-pol icy is set to require , the component configu-
ration is not satisfied and will not be activated.

A factory configuration must not be used if the component is a factory component. This is be-
cause SCR is not free to create component configurations as necessary to support multiple Con-
figurations. When SCR detects this condition, it must log an error message with the Log Service,
if present, and ignore the component description.

SCR must obtain the Configurat ion objects from the Configuration Admin service using the Bundle
Context of the bundle containing the component.

For example, there is a component named com.acme.cl ient with a reference named HTTP that re-
quires an Http Service which must be bound to a component com.acme.httpserver which provides
an Http Service. A deployer can establish the following configuration:

[PID=com.acme.client, factoryPID=null]
HTTP.target = (component.name=com.acme.httpserver)

112.7.1 Configuration Changes
SCR must track changes in the Configurat ion objects matching the configuration PIDs of a com-
ponent description. Changes include the creating, updating and deleting of Configurat ion objects
matching the configuration PIDs. The actions SCR must take when a configuration change for a
component configuration occurs are based upon how the configurat ion-pol icy and modified attrib-
utes are specified in the component description, whether a component configuration becomes satis-
fied, remains satisfied or becomes unsatisfied and the type and number of matching Configurat ion
objects.

With targeted PIDs, multiple Configurat ion objects can exist which can match a configuration PID.
Creation of a Configurat ion object with a better matching PID than a Configurat ion object current-
ly being used by a component configuration results in a configuration change for the component

Declarative Services Specification Version 1.3 Deployment

OSGi Compendium Release 6 Page 327

configuration with the new Configurat ion object replacing the currently used Configurat ion ob-
ject. Deletion of a Configurat ion object currently being used by a component configuration when
there is another Configurat ion object matching the configuration PID also results in a configuration
change for the component configuration with the Configurat ion object having the best matching
PID replacing the currently used, and now deleted, Configurat ion object.

112.7.1.1 Ignore Configuration Policy

For configurat ion-pol icy of ignore , component configurations are unaffected by configuration
changes since the component properties do not include properties from Configurat ion objects.

112.7.1.2 Require Configuration Policy

For configurat ion-pol icy of require , component configurations require a Configurat ion object for
each specified configuration PID. With a factory configuration, there can be zero or more matching
Configurat ion objects which will result in a component configuration for each Configurat ion object
of the factory configuration. With a factory component, multiple component configurations can be
created all using the matching Configurat ion objects.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• Each configuration PID of the component description does not have a matching Configurat ion
object.

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

• A target property change results in unbound target services for a static reference with the greedy
policy option.

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

112.7.1.3 Optional Configuration Policy

For configurat ion-pol icy of optional , component configurations do not require Configurat ion ob-
jects. Since matching Configurat ion objects are optional, component configurations can be satis-
fied with zero or more matched configuration PIDs. If a Configurat ion object is then created which
matches a configuration PID, this is a configuration change for the component configurations that
are not using the created Configurat ion object. If a Configurat ion object is deleted which matches a
configuration PID, this is a configuration change for the component configurations using the delet-
ed Configurat ion object.

Furthermore, with a factory configuration matching a configuration PID, the factory configuration
can provide zero or more Configurat ion objects which will result in a component configuration for
each Configurat ion object or a single component configuration when zero matching Configurat ion
objects are provided. With a factory component, multiple component configurations can be created
all using the Configurat ion objects matching the configuration PIDs.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

• A target property change results in unbound target services for a static reference with the greedy
policy option.

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

Annotations Declarative Services Specification Version 1.3

Page 328 OSGi Compendium Release 6

112.7.1.4 Configuration Change Actions

If a component configuration becomes unsatisfied:

• SCR must deactivate the component configuration.
• If the component configuration was not created from a factory component, SCR must attempt to

satisfy the component configuration with the current configuration state.

If a component configuration remains satisfied:

• If the component configuration has been activated, the modified method is called to provide the
updated component properties. See Modification on page 320 for more information.

• If the component configuration is registered as a service, SCR must modify the service properties.

112.8 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. The Component Annotations are intended to be
used during build time to generate the component description XML.

Component Property Types, which are user defined annotations, can be used to describe component
properties in the component description XML and to access those component properties at runtime
in a type safe manner.

112.8.1 Component Annotations
The Component Annotations provide a convenient way to create the component description XML
during build time. Since annotations are placed in the source file and can use types, fields, and
methods, they can significantly simplify the use of Declarative Services.

The Component Annotations are build time annotations because one of the key aspects of Declar-
ative Services is its laziness. SCR can easily read the component description XML from the bundle,
preprocess it, and cache the results between framework invocations. This way it is unnecessary
to load a class from the bundle when the bundle is started and/or scan the classes for annotations.
Component Annotations are not recognized by SCR at runtime.

The Component Annotations are not inherited, they can only be used on a given class, annotations
on its super class hierarchy or interfaces are not taken into account.

The primary annotation is the Component annotation. It indicates that a class is a component. Its
defaults create the easiest to use component:

• Its name is the class name
• It registers all of the class's directly implemented interfaces as services
• The instance will be shared by all bundles
• It is enabled
• It is immediate if it has no services, otherwise it is delayed
• It has an optional configuration policy
• The configuration PID is the class name

For example, the following class registers a Speech service that can run on a Macintosh:

pubic interface Speech {
 void say(String what) throws Exception;
}

@Component

Declarative Services Specification Version 1.3 Annotations

OSGi Compendium Release 6 Page 329

public class MacSpeech implements Speech {
 ScriptEngine engine =
 new ScriptEngineManager().getEngineByName("AppleScript");

 public void say(String message) throws Exception {
 engine.eval("say \"" + message.replace('"','\'' + "\"");
 }
}

The previous example would be processed at build time into a component description similar to the
following XML:

<scr:component name="com.example.MacSpeech"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0">
 <implementation class="com.acme.impl.MacSpeech"/>
 <service>
 <provide interface="com.acme.service.speech.Speech"/>
 </service>
</scr:component>

It is possible to add activate and deactivate methods on the component with the Activate and Deac-
t ivate annotations. If the component wants to be updated for changes in the configuration proper-
ties than it can also indicated the modified method with the Modified annotation. For example:

@Activate
void open(Map<String,?> properties) { ... }

@Deactivate
void close() { ... }

@Modified
void modified(Map<String,?> properties) { ... }

If a component has dependencies on other services then they can be referenced with the Reference
annotation that can be applied to a bind method or a field. For a bind method, the defaults for the
Reference annotation are:

• The name of the bind method or field is used for the name of the reference.
• 1:1 cardinality.
• Static reluctant policy.
• The requested service is the type of the first argument of the bind method.
• It will infer a default unset method and updated method based on the name of the bind method.

For example:

@Reference(cardinality=MULTIPLE, policy=DYNAMIC)
void setLogService(LogService log, Map<String,?> props) { ... }
void unsetLogService(LogService log) { ... }
void updatedLogService(Map<String,?> map) { ...}

For a field, the defaults for the Reference annotation are:

• The name of the bind method or field is used for the name of the reference.
• 1:1 cardinality if the field is not a collection. 0..n cardinality if the field is a collection.
• Static reluctant policy if the field is not declared volatile. Dynamic reluctant policy if the field is

declared volatile.

Annotations Declarative Services Specification Version 1.3

Page 330 OSGi Compendium Release 6

• The requested service is the type of the field.

For example:

@Reference
volatile Collection<LogService> log;

112.8.2 Component Property Types
Component properties can be defined and accessed through a user defined annotation type, called
a component property type, containing the property names, property types and default values. A com-
ponent property type allows properties to be defined and accessed in a type safe manner. The follow-
ing example shows the definition of a component property type called Config which defines three
properties where the name of the property is the name of the method, the type of the property is the
return type of the method and the default value for the property is the default value of the method.

@interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Component property types can be referenced as argument types in the component's life cycle meth-
ods, activate, deactivate, and modified, and used in the method implementation to access compo-
nent property values in a type safe manner. The following example shows the activate method tak-
ing the example Config component property type as an argument type and the method implementa-
tion accesses component property values by invoking methods on the component property type ar-
gument.

@Component
public class MyComponent {
 void activate(Config config) {
 if (config.enabled()) {
 // do something
 }
 for (String name:config.names()) {
 // do something with each name
 }
 }
}

If a component implementation needs to access component properties which are not represented
by a component property type, it can use a life cycle method signature which also receives the prop-
erties map in addition to component property types. For example:

@Component
public class MyComponent {
 void activate(Config config, Map<String, ?> allProperties) {
 if (config.enabled()) {
 // do something
 }
 if (allProperties.get("other.prop") != null) {
 // do something
 }
 }
}

Declarative Services Specification Version 1.3 Annotations

OSGi Compendium Release 6 Page 331

Component property types must be defined as annotation types even though they are not applied
as annotations but are rather used as life cycle method argument types. This is done for two reasons.
First, the limitations on annotation type definitions make them well suited for component prop-
erty types. The methods must have no arguments and the return types supported are limited to a
set which is well suited for component properties. Second, annotation types support default values
which is useful for defining the default value of a component property.

At build time, the component property types must be processed to potentially generate property ele-
ments in the component description. See Ordering of Generated Properties on page 332.

At runtime, when SCR needs to call a lifecycle method on a component instance which takes an ar-
gument whose type is a component property type, SCR must construct an instance of the compo-
nent property type whose methods are backed by the values of the component properties for the
component instance. This object is then passed to the life cycle method which can use the object to
obtain the property values in a type safe manner.

112.8.2.1 Component Property Mapping

Each method of a configuration property type is mapped to a component property. The property
name is derived from the method name. Certain common property name characters, such as full
stop ('.' \u002E) are not valid in Java identifiers. So the name of a method must be converted to its
corresponding property name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by another dollar sign in which
case the two consecutive dollar signs ("$$") are converted to a single dollar sign.

• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-
other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.

Table 112.9 contains some name mapping examples.

Table 112.9 Component Property Name Mapping Examples

Component Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop

The property type can be directly derived from the type of the method. All types supported for anno-
tation elements can be used except for annotation types. Method types of an annotation type or ar-
ray thereof are not supported. A tool processing the component property types must declare an er-
ror during processing in this case.

If the method type is Class or Class[] , then the property type must be Str ing or Str ing[] , respectively,
whose values are fully qualified class names in the form returned by the Class.getName() method.

If the method type is an enumeration type or an array thereof, then the property type must be Str ing
or Str ing[] , respectively, whose values are the names of the enum constants in the form returned by
the Enum.name() method.

Annotations Declarative Services Specification Version 1.3

Page 332 OSGi Compendium Release 6

112.8.2.2 Coercing Component Property Values

When a component property type is used as an argument for a life cycle method, SCR must create
an object that implements the component property type and maps the methods of the component
property type to component properties. The name of the method is converted to the property name
as described in Component Property Mapping on page 331. The property value may need to be co-
erced to the type of the method. In Table 112.10, the columns are source types, that is, the type of the
component property value, and the rows are target types, that is, the method types. The property
value is v; number is a primitive numerical type and Number is a wrapper numerical type. An invalid
coercion is represented by throw . Such a coercion attempt must result in throwing a Component Ex-
ception when the component property type method is called. Any other coercion error, such as pars-
ing a non-numerical string to a number or the inability to coerce a string into a Class or enum ob-
ject, must be wrapped in a Component Exception and thrown when the component property type
method is called.

Table 112.10 Coercion From Property Value to Method Type

target \ source String Boolean Character Number Collection/array
String v v. toString() v. toString() v. toString() If v has no elements, nul l ; other-

wise the first element of v is co-
erced.

boolean Boolean. parse-
Boolean(v)

v. booleanVal-
ue()

v. charValue() !
= 0

v. numberVal-
ue() != 0

If v has no elements, fa lse ; other-
wise the first element of v is co-
erced.

char v. length() > 0 ?
v. charAt(0) : 0

v. booleanVal-
ue() ? 1 : 0

v. charValue() (char) v. num-
berValue()

If v has no elements, 0; otherwise
the first element of v is coerced.

number Number.
parseNumber(
v)

v. booleanVal-
ue() ? 1 : 0

(number) v.
charValue()

v. numberVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

Class Bundle. load-
Class(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

EnumType EnumType. val-
ueOf(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

annotation type throw throw throw throw throw
array A single element array is created and v is coerced into the single el-

ement of the new array.
An array the size of v is created
and each element of v is coerced
into the corresponding element
of the new array.

Component properties whose names do not map to component property type methods are ignored.
If there is no corresponding component property for a component property type method, the com-
ponent property type method must:

• Return 0 for numerical and char method types.
• Return fa lse for boolean method type.
• Return nul l for String, Class, enum and array method types.
• Throw a ComponentException for annotation method types.

112.8.3 Ordering of Generated Properties
The Component annotation contains two ways to define component properties via the property
and propert ies elements. See Property and Properties Elements on page 309. If Component Anno-
tations are used to describe the component, then any component property types referenced in the
signatures of the component's life cycle methods must also be processed since component prop-

Declarative Services Specification Version 1.3 Service Component Runtime

OSGi Compendium Release 6 Page 333

erty types can be used to define component property values as well. See Component Property Types
on page 330. A tool processing the Component Annotations and the component property types
must write the defined component properties into the generated component description in the fol-
lowing order.

1. Properties defined through component property types used in the signatures of the life cycle
methods.

If any of the referenced component property types have methods with defaults, then the gener-
ated component description must include a property element for each such method with the
property name mapped from the method name, the property type mapped from the method
type, and the property value set to the method's default value. See Component Property Mapping
on page 331. The generated property elements must be added to the component description
by processing the component property types in the following order. First, the component prop-
erty types used as arguments to the activate method, followed by the component property types
used as arguments to the modified method and finally the component property types used as ar-
guments to the deactivate method. If a method has more than one component property type ar-
gument, the component property types are processed in the order of the method arguments.

For component property type methods without a default value, a property element must not be
generated.

2. property element of the Component annotation.
3. propert ies element of the Component annotation.

This means that the properties defined through component property types are declared first in the
generated component description, followed by all properties defined through the property element
of the Component annotation and finally the properties entries defined through the propert ies ele-
ment of the Component annotation.

Since property values defined later in the component description override property values defined
earlier in the component description, this means that property values defined in propert ies element
of the Component annotation can override property values defined in property element of the Com-
ponent annotation which can override values defined by default values in the component property
types used in life cycle method signatures.

112.9 Service Component Runtime
Service Component Runtime (SCR) is the actor that manages the components and their life cycle
and allows introspection of the components.

112.9.1 Relationship to OSGi Framework
SCR must have access to the Bundle Context of any bundle that contains a component. SCR needs
access to the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with components.
• To interact with the Configuration Admin on behalf of a bundle with components.
• To provide a component its Bundle Context when the Component Context getBundleContext

method is called.

SCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.

112.9.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations activated by SCR must be
deactivated when the SCR bundle is stopped. When the SCR bundle is started, it must process any

Service Component Runtime Declarative Services Specification Version 1.3

Page 334 OSGi Compendium Release 6

components that are declared in bundles that are started. This includes bundles which are started
and are awaiting lazy activation.

112.9.3 Logging Error Messages
When SCR must log an error message to the Log Service, it must use a Log Service obtained using
the component's Bundle Context so that the resulting Log Entry is associated with the component's
bundle.

If SCR is unable to obtain, or use, a Log Service using the component's Bundle Context, then SCR
must log the error message to a Log Service obtained using SCR's bundle context to ensure the error
message is logged.

112.9.4 Locating Component Methods and Fields
SCR will need to locate activate, deactivate, modified, bind, updated, and unbind methods as well
as fields in a component instance. These members will be located, and called or modified, using re-
flection. The declared members of each class in the component implementation class's hierarchy are
examined for a suitable member. If a suitable member is found in a class, and it is accessible to the
component implementation class, then that member must be used. If suitable members are found
in a class but none of the suitable members are accessible by the component implementation class,
then the search for suitable members terminates with no suitable member having been located. If
no suitable members are found in a class, the search continues in the superclass.

Only members that are accessible to the component implementation class will be used. If the mem-
ber has the publ ic or protected access modifier, then access is permitted. Otherwise, if the member
has the private access modifier, then access is permitted only if the member is declared in the com-
ponent implementation class. Otherwise, if the member has default access, also known as pack-
age private access, then access is permitted only if the member is declared in the component imple-
mentation class or if the member is declared in a superclass and all classes in the hierarchy from the
component implementation class to the superclass, inclusive, are in the same package and loaded
by the same class loader.

It is recommended that these members should not be declared with the publ ic access modifier so
that they do not appear as public members on the component instance when it is used as a service
object. Having these members declared publ ic allows any code to call or access the members with
reflection, even if a Security Manager is installed. These members are generally intended to only be
called or modified by SCR.

112.9.5 Bundle Activator Interaction
A bundle containing components may also declare a Bundle Activator. Such a bundle may also be
marked for lazy activation. Since components are activated by SCR and Bundle Activators are called
by the OSGi Framework, a bundle using both components and a Bundle Activator must take care.
The Bundle Activator's start method must not rely upon SCR having activated any of the bundle's
components. However, the components can rely upon the Bundle Activator's start method hav-
ing been called. That is, there is a happens-before relationship between the Bundle Activator's start
method being run and the components being activated.

112.9.6 Introspection
SCR provides an introspection API for examining the runtime state of the components in bundles
processed by SCR. SCR must register a ServiceComponentRuntime service upon startup. The Service
Component Runtime service provides methods to inspect the component descriptions and compo-
nent configurations as well as inspect and modify the enabled state of components. The service uses
Data Transfer Objects (DTO) as arguments and return values. The rules for Data Transfer Objects are
specified in OSGi Core Release 6.

The Service Component Runtime service provides the following methods.

Declarative Services Specification Version 1.3 Service Component Runtime

OSGi Compendium Release 6 Page 335

• getComponentDescr ipt ionDTOs(Bundle. . .) - For each specified bundle, if the bundle is active
and processed by SCR, the returned collection will contain a ComponentDescr ipt ionDTO for
each valid component description in the bundle.

• getComponentDescr ipt ionDTO(Bundle,Str ing) - If the specified bundle is active and processed
by SCR, and the specified bundle contains a valid component description with the specified
name, the method will return a ComponentDescr ipt ionDTO for the component description.

• getComponentConfigurat ionDTOs(ComponentDescr ipt ionDTO) - If the specified Component-
Descr ipt ionDTO represents a valid component description from an active bundle processed by
SCR, the returned collection will contain a ComponentConfigurat ionDTO for each component
configuration of the component.

• isComponentEnabled(ComponentDescr ipt ionDTO) - Returns true if the specified Component
Description DTO represents a valid component description from an active bundle processed by
SCR, and the component is enabled. Otherwise, the method returns fa lse .

• enableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is enabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will
be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

• disableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is disabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will
be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

The runtime state of the components can change at any time. So any information returned by these
methods only provides a snapshot of the state at the time of the method call.

There are a number of DTOs available via the Service Component Runtime service.

Service Component Runtime Declarative Services Specification Version 1.3

Page 336 OSGi Compendium Release 6

Figure 112.6 Service Component Runtime DTOs

<<service>>
Service Component
Runtime

Component
Description DTO

Component
Configuration DTO

Reference DTO
Satisfied
Reference DTO

Service Reference
DTO

0..* 0..*

0..*
0..*

0..*

1

1

Unsatisfied
Reference DTO

0..*

1 0..*

The two main DTOs are ComponentDescr ipt ionDTO , which represents a component description,
and ComponentConfigurat ionDTO , which represents a component configuration. The Component
Description DTO contains an array of ReferenceDTO objects which represent each declared refer-
ence in the component description. The Component Configuration DTO contains an array of Satis-
fiedReferenceDTO objects and an array of UnsatisfiedReferenceDTO objects. A Satisfied Reference
DTO represents a satisfied reference of the component configuration and an Unsatisfied Reference
DTO represents an unsatisfied reference of the component configuration. The Component Config-
uration DTO for a satisfied component configuration must contain no Unsatisfied Reference DTOs.
The Component Configuration DTO for an unsatisfied component configuration may contain some
Satisfied Reference DTOs and some Unsatisfied Reference DTOs. This information can be used to di-
agnose why the component configuration is not satisfied.

112.9.7 Capabilities
SCR must provide the following capabilities.

• A capability in the osgi .extender namespace declaring an extender with the name
COMPONENT_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.component package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 version:Version="1.3";
 uses:="org.osgi.service.component"

This capability must follow the rules defined for the osgi.extender Namespace on page 993.

A bundle that contains service components should require the osgi .extender capability from
SCR. This requirement will wire the bundle to the SCR implementation and ensure that SCR is
using the same org.osgi .service.component package as the bundle if the bundle uses that pack-
age.

Declarative Services Specification Version 1.3 Security

OSGi Compendium Release 6 Page 337

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

SCR must only process a bundle's service components if one of the following is true:
• The bundle's wiring has a required wire for at least one osgi .extender capability with the

name osgi .component and the first of these required wires is wired to SCR.
• The bundle's wiring has no required wire for an osgi .extender capability with the name

osgi .component .

Otherwise, SCR must not process the bundle's service components.
• A capability in the osgi .service namespace representing the ServiceComponentRuntime service.

This capability must also declare a uses constraint for the org.osgi .service.component.runtime
package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.component.runtime.ServiceComponentRuntime";
 uses:="org.osgi.service.component.runtime"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

112.10 Security
When Java permissions are enabled, SCR must perform the following security procedures.

112.10.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, then component configurations for the component cannot be sat-
isfied unless the component's bundle has ServicePermission[<provides>, REGISTER] for each pro-
vided interface specified for the service.

If a component's reference does not specify optional cardinality, the reference cannot be satisfied
unless the component's bundle has ServicePermission[<interface>, GET] for the specified interface
in the reference. If the reference specifies optional cardinality but the component's bundle does not
have ServicePermission[<interface>, GET] for the specified interface in the reference, no service
must be bound for this reference.

If a component is a factory component, then the above Service Permission checks still apply. But the
component's bundle is not required to have ServicePermission[ComponentFactory, REGISTER] as
the Component Factory service is registered by SCR.

SCR must have ServicePermission[ServiceComponentRuntime, REGISTER] permission to register
the ServiceComponentRuntime service. Administrative bundles wishing to use the ServiceCompo-
nentRuntime service must have ServicePermission[ServiceComponentRuntime, GET] permission.
In general, this permission should only be granted to administrative bundles to limit access to the
potentially intrusive methods provided by this service.

112.10.2 Required Admin Permission
SCR requires AdminPermission[*,CONTEXT] because it needs access to the bundle's Bundle Context
object with the Bundle.getBundleContext() method.

Component Description Schema Declarative Services Specification Version 1.3

Page 338 OSGi Compendium Release 6

112.10.3 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the component using the Bun-
dle Context of the component's bundle. This means that normal stack-based permission checks
will check SCR and not the component's bundle. Since SCR is registering and getting services on be-
half of a component's bundle, SCR must call the Bundle.hasPermission method to validate that a
component's bundle has the necessary permission to register or get a service.

112.10.4 Configuration Multi-Locations and Regions
SCR must ensure a bundle has the proper Configurat ionPermission for a Configuration used by its
components when the Configuration has a multi-location. See Using Multi-Locations on page 105 for
more information on multi-locations and Regions on page 105 for more information on regions. If a
bundle does not have the necessary permission for a multi-location Configuration, then SCR must
act as if the Configuration does not exist for the bundle.

112.11 Component Description Schema
This XML Schema defines the component description grammar.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.3.0"
 targetNamespace="http://www.osgi.org/xmlns/scr/v1.3.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.3.0">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for component descriptions used by
 the Service Component Runtime (SCR). Component description
 documents may be embedded in other XML documents. SCR will
 process all XML documents listed in the Service-Component
 manifest header of a bundle. XML documents containing
 component descriptions may contain a single, root component
 element or one or more component elements embedded in a
 larger document. Use of the namespace for component
 descriptions is mandatory. The attributes and subelements
 of a component element are always unqualified.
 </documentation>
 </annotation>
 <element name="component" type="scr:Tcomponent" />
 <complexType name="Tcomponent">
 <sequence>
 <annotation>
 <documentation xml:lang="en">
 Implementations of SCR must not require component
 descriptions to specify the subelements of the component
 element in the order as required by the schema. SCR
 implementations must allow other orderings since
 arbitrary orderings do not affect the meaning of the
 component description. Only the relative ordering of
 property and properties element have meaning.
 </documentation>
 </annotation>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="property" type="scr:Tproperty" />
 <element name="properties" type="scr:Tproperties" />
 </choice>
 <element name="service" type="scr:Tservice" minOccurs="0"
 maxOccurs="1" />
 <element name="reference" type="scr:Treference"
 minOccurs="0" maxOccurs="unbounded" />
 <element name="implementation" type="scr:Timplementation" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="enabled" type="boolean" default="true"

Declarative Services Specification Version 1.3 Component Description Schema

OSGi Compendium Release 6 Page 339

 use="optional" />
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the class attribute of the nested implementation
 element. If multiple component elements use the same
 value for the class attribute of their nested
 implementation element, then using the default value
 for this attribute will result in duplicate names.
 In this case, this attribute must be specified with
 a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="factory" type="string" use="optional" />
 <attribute name="immediate" type="boolean" use="optional" />
 <attribute name="configuration-policy"
 type="scr:Tconfiguration-policy" default="optional" use="optional" />
 <attribute name="activate" type="token" use="optional"
 default="activate" />
 <attribute name="deactivate" type="token" use="optional"
 default="deactivate" />
 <attribute name="modified" type="token" use="optional" />
 <attribute name="configuration-pid" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the name attribute of this element.
 </documentation>
 </annotation>
 <simpleType>
 <restriction>
 <simpleType>
 <list itemType="token" />
 </simpleType>
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Timplementation">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="class" type="token" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tproperty">
 <simpleContent>
 <extension base="string">
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="type" type="scr:Tproperty_type"
 default="String" use="optional" />
 <anyAttribute processContents="lax" />
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="Tproperties">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="entry" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tservice">
 <sequence>
 <element name="provide" type="scr:Tprovide" minOccurs="1"
 maxOccurs="unbounded" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig

Component Description Schema Declarative Services Specification Version 1.3

Page 340 OSGi Compendium Release 6

 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="scope" type="scr:Tservice_scope" default="singleton"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tprovide">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="interface" type="token" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Treference">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the interface attribute of this element. If multiple
 instances of this element within a component element
 use the same value for the interface attribute, then
 using the default value for this attribute will result
 in duplicate names. In this case, this attribute
 must be specified with a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="interface" type="token" use="required" />
 <attribute name="cardinality" type="scr:Tcardinality"
 default="1..1" use="optional" />
 <attribute name="policy" type="scr:Tpolicy" default="static"
 use="optional" />
 <attribute name="policy-option" type="scr:Tpolicy-option"
 default="reluctant" use="optional" />
 <attribute name="target" type="string" use="optional" />
 <attribute name="bind" type="token" use="optional" />
 <attribute name="unbind" type="token" use="optional" />
 <attribute name="updated" type="token" use="optional" />
 <attribute name="scope" type="scr:Treference_scope" default="bundle"
 use="optional" />
 <attribute name="field" type="token" use="optional" />
 <attribute name="field-option" type="scr:Tfield-option" default="replace"
 use="optional" />
 <attribute name="field-collection-type" type="scr:Tfield-collection-type"
 default="service" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <simpleType name="Tproperty_type">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 </restriction>
 </simpleType>
 <simpleType name="Tcardinality">
 <restriction base="string">
 <enumeration value="0..1" />
 <enumeration value="0..n" />
 <enumeration value="1..1" />
 <enumeration value="1..n" />
 </restriction>
 </simpleType>

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Compendium Release 6 Page 341

 <simpleType name="Tpolicy">
 <restriction base="string">
 <enumeration value="static" />
 <enumeration value="dynamic" />
 </restriction>
 </simpleType>
 <simpleType name="Tpolicy-option">
 <restriction base="string">
 <enumeration value="reluctant" />
 <enumeration value="greedy" />
 </restriction>
 </simpleType>
 <simpleType name="Tconfiguration-policy">
 <restriction base="string">
 <enumeration value="optional" />
 <enumeration value="require" />
 <enumeration value="ignore" />
 </restriction>
 </simpleType>
 <simpleType name="Tservice_scope">
 <restriction base="string">
 <enumeration value="singleton" />
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 </restriction>
 </simpleType>
 <simpleType name="Treference_scope">
 <restriction base="string">
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 <enumeration value="prototype_required" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-option">
 <restriction base="string">
 <enumeration value="replace" />
 <enumeration value="update" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-collection-type">
 <restriction base="string">
 <enumeration value="service" />
 <enumeration value="properties" />
 <enumeration value="reference" />
 <enumeration value="serviceobjects" />
 <enumeration value="tuple" />
 </restriction>
 </simpleType>
 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension. This attribute must be qualified when used.
 </documentation>
 </annotation>
 </attribute>
</schema>

SCR must not require component descriptions to specify the elements in the order required by the
schema. SCR must allow other orderings since arbitrary orderings of these elements do not affect
the meaning of the component description. Only the relative ordering of property , propert ies and
reference elements have meaning for overriding previously set property values.

The schema is also available in digital form from [5] OSGi XML Schemas.

112.12 org.osgi.service.component

Service Component Package Version 1.3.

org.osgi.service.component Declarative Services Specification Version 1.3

Page 342 OSGi Compendium Release 6

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.3,1 .4)"

112.12.1 Summary

• ComponentConstants - Defines standard names for Service Component constants.
• ComponentContext - A Component Context object is used by a component instance to interact

with its execution context including locating services by reference name.
• ComponentException - Unchecked exception which may be thrown by Service Component

Runtime.
• ComponentFactory - When a component is declared with the factory attribute on its compo-

nent element, Service Component Runtime will register a Component Factory service to allow
new component configurations to be created and activated rather than automatically creating
and activating component configuration as necessary.

• ComponentInstance - A ComponentInstance encapsulates a component instance of an activat-
ed component configuration.

• ComponentServiceObjects - Allows multiple service objects for a service to be obtained.

112.12.2 public interface ComponentConstants
Defines standard names for Service Component constants.

Provider Type Consumers of this API must not implement this type

112.12.2.1 public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"

Capability name for Service Component Runtime.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

Since 1.3

112.12.2.2 public static final String COMPONENT_FACTORY = "component.factory"

A service registration property for a Component Factory that contains the value of the factory at-
tribute. The value of this property must be of type Str ing .

112.12.2.3 public static final String COMPONENT_ID = "component.id"

A component property that contains the generated id for a component configuration. The value of
this property must be of type Long .

The value of this property is assigned by Service Component Runtime when a component config-
uration is created. Service Component Runtime assigns a unique value that is larger than all previ-
ously assigned values since Service Component Runtime was started. These values are NOT persis-
tent across restarts of Service Component Runtime.

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Compendium Release 6 Page 343

112.12.2.4 public static final String COMPONENT_NAME = "component.name"

A component property for a component configuration that contains the name of the component
as specified in the name attribute of the component element. The value of this property must be of
type Str ing .

112.12.2.5 public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6

The component configuration was deactivated because the bundle was stopped.

Since 1.1

112.12.2.6 public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4

The component configuration was deactivated because its configuration was deleted.

Since 1.1

112.12.2.7 public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3

The component configuration was deactivated because its configuration was changed.

Since 1.1

112.12.2.8 public static final int DEACTIVATION_REASON_DISABLED = 1

The component configuration was deactivated because the component was disabled.

Since 1.1

112.12.2.9 public static final int DEACTIVATION_REASON_DISPOSED = 5

The component configuration was deactivated because the component was disposed.

Since 1.1

112.12.2.10 public static final int DEACTIVATION_REASON_REFERENCE = 2

The component configuration was deactivated because a reference became unsatisfied.

Since 1.1

112.12.2.11 public static final int DEACTIVATION_REASON_UNSPECIFIED = 0

The reason the component configuration was deactivated is unspecified.

Since 1.1

112.12.2.12 public static final String REFERENCE_TARGET_SUFFIX = ".target"

The suffix for reference target properties. These properties contain the filter to select the target ser-
vices for a reference. The value of this property must be of type Str ing .

112.12.2.13 public static final String SERVICE_COMPONENT = "Service-Component"

Manifest header specifying the XML documents within a bundle that contain the bundle's Service
Component descriptions.

The attribute value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

112.12.3 public interface ComponentContext
A Component Context object is used by a component instance to interact with its execution context
including locating services by reference name. Each component instance has a unique Component
Context.

org.osgi.service.component Declarative Services Specification Version 1.3

Page 344 OSGi Compendium Release 6

A component instance may obtain its Component Context object through its activate, modified, and
deactivate methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.3.1 public void disableComponent(String name)

name The name of a component.

□ Disables the specified component name. The specified component name must be in the same bun-
dle as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.3.2 public void enableComponent(String name)

name The name of a component or nul l to indicate all components in the bundle.

□ Enables the specified component name. The specified component name must be in the same bundle
as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.3.3 public BundleContext getBundleContext()

□ Returns the BundleContext of the bundle which contains this component.

Returns The BundleContext of the bundle containing this component.

112.12.3.4 public ComponentInstance getComponentInstance()

□ Returns the Component Instance object for the component instance associated with this Compo-
nent Context.

Returns The Component Instance object for the component instance.

112.12.3.5 public Dictionary<String,Object> getProperties()

□ Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and cannot be modified.

112.12.3.6 public ServiceReference<?> getServiceReference()

□ If the component instance is registered as a service using the service element, then this method re-
turns the service reference of the service provided by this component instance.

This method will return nul l if the component instance is not registered as a service.

Returns The ServiceReference object for the component instance or nul l if the component instance is not
registered as a service.

112.12.3.7 public Bundle getUsingBundle()

□ If the component instance is registered as a service using the servicescope="bundle" or
servicescope="prototype" attribute, then this method returns the bundle using the service provided
by the component instance.

This method will return nul l if:

• The component instance is not a service, then no bundle can be using it as a service.

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Compendium Release 6 Page 345

• The component instance is a service but did not specify the servicescope="bundle" or
servicescope="prototype" attribute, then all bundles using the service provided by the compo-
nent instance will share the same component instance.

• The service provided by the component instance is not currently being used by any bundle.

Returns The bundle using the component instance as a service or nul l .

112.12.3.8 public Object locateService(String name)

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service object for the specified reference name.

If the cardinality of the reference is 0..n or 1. .n and multiple services are bound to the reference,
the service with the highest ranking (as specified in its Constants.SERVICE_RANKING property)
is returned. If there is a tie in ranking, the service with the lowest service id (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n and no
bound service is available.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.3.9 public S locateService(String name,ServiceReference<S> reference)

Type Arguments <S>

<S> Type of Service.

name The name of a reference as specified in a reference element in this component's description.

reference The ServiceReference to a bound service. This must be a ServiceReference provided to the compo-
nent via the bind or unbind method for the specified reference name.

□ Returns the service object for the specified reference name and ServiceReference .

Returns A service object for the referenced service or nul l if the specified ServiceReference is not a bound ser-
vice for the specified reference name.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.3.10 public Object[] locateServices(String name)

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or nul l if the reference cardinality is 0..1 or 0..n
and no bound service is available. If the reference cardinality is 0..1 or 1. .1 and a bound service is
available, the array will have exactly one element.

Throws ComponentException– If Service Component Runtime catches an exception while activating a
bound service.

112.12.4 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by Service Component Runtime.

112.12.4.1 public ComponentException(String message,Throwable cause)

message The message for the exception.

cause The cause of the exception. May be nul l .

org.osgi.service.component Declarative Services Specification Version 1.3

Page 346 OSGi Compendium Release 6

□ Construct a new ComponentException with the specified message and cause.

112.12.4.2 public ComponentException(String message)

message The message for the exception.

□ Construct a new ComponentException with the specified message.

112.12.4.3 public ComponentException(Throwable cause)

cause The cause of the exception. May be nul l .

□ Construct a new ComponentException with the specified cause.

112.12.4.4 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

112.12.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

112.12.5 public interface ComponentFactory
When a component is declared with the factory attribute on its component element, Service Com-
ponent Runtime will register a Component Factory service to allow new component configurations
to be created and activated rather than automatically creating and activating component configura-
tion as necessary.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.5.1 public ComponentInstance newInstance(Dictionary<String,?> properties)

properties Additional properties for the component configuration or nul l if there are no additional properties.

□ Create and activate a new component configuration. Additional properties may be provided for the
component configuration.

Returns A ComponentInstance object encapsulating the component instance of the component configura-
tion. The component configuration has been activated and, if the component specifies a service ele-
ment, the component instance has been registered as a service.

Throws ComponentException– If Service Component Runtime is unable to activate the component configu-
ration.

112.12.6 public interface ComponentInstance
A ComponentInstance encapsulates a component instance of an activated component configura-
tion. ComponentInstances are created whenever a component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object will be created when the
component configuration is activated again.

Concurrency Thread-safe

Declarative Services Specification Version 1.3 org.osgi.service.component

OSGi Compendium Release 6 Page 347

Provider Type Consumers of this API must not implement this type

112.12.6.1 public void dispose()

□ Dispose of the component configuration for this component instance. The component configura-
tion will be deactivated. If the component configuration has already been deactivated, this method
does nothing.

112.12.6.2 public Object getInstance()

□ Returns the component instance of the activated component configuration.

Returns The component instance or nul l if the component configuration has been deactivated.

112.12.7 public interface ComponentServiceObjects<S>
<S> Type of Service

Allows multiple service objects for a service to be obtained.

A component instance can receive a ComponentServiceObjects object via a reference that is typed
ComponentServiceObjects .

For services with prototype scope, multiple service objects for the service can be obtained. For ser-
vices with singleton or bundle scope, only one, use-counted service object is available.

Any unreleased service objects obtained from this ComponentServiceObjects object are automati-
cally released by Service Component Runtime when the service becomes unbound.

See Also ServiceObjects

Since 1.3

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.7.1 public S getService()

□ Returns a service object for the associated service.

This method will always return nul l when the associated service has been become unbound.

Returns A service object for the associated service or nul l if the service is unbound, the customized service
object returned by a ServiceFactory does not implement the classes under which it was registered or
the ServiceFactory threw an exception.

Throws I l legalStateException– If the associated service has been become unbound.

See Also ungetService(Object)

112.12.7.2 public ServiceReference<S> getServiceReference()

□ Returns the ServiceReference for the service associated with this ComponentServiceObjects object.

Returns The ServiceReference for the service associated with this ComponentServiceObjects object.

112.12.7.3 public void ungetService(S service)

service A service object previously provided by this ComponentServiceObjects object.

□ Releases a service object for the associated service.

The specified service object must no longer be used and all references to it should be destroyed after
calling this method.

Throws I l legalStateException– If the associated service has been become unbound.

I l legalArgumentException– If the specified service object was not provided by this ComponentSer-
viceObjects object.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 348 OSGi Compendium Release 6

See Also getService()

112.13 org.osgi.service.component.annotations

Service Component Annotations Package Version 1.3.

This package is not used at runtime. Annotated classes are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

112.13.1 Summary

• Activate - Identify the annotated method as the activate method of a Service Component.
• Component - Identify the annotated class as a Service Component.
• Configurat ionPol icy - Configuration Policy for the Component annotation.
• Deactivate - Identify the annotated method as the deactivate method of a Service Component.
• FieldOption - Field options for the Reference annotation.
• Modified - Identify the annotated method as the modified method of a Service Component.
• Reference - Identify the annotated member as a reference of a Service Component.
• ReferenceCardinal ity - Cardinality for the Reference annotation.
• ReferencePol icy - Policy for the Reference annotation.
• ReferencePol icyOption - Policy option for the Reference annotation.
• ReferenceScope - Reference scope for the Reference annotation.
• ServiceScope - Service scope for the Component annotation.

112.13.2 @Activate
Identify the annotated method as the activate method of a Service Component.

The annotated method is the activate method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The act ivate attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.3 @Component
Identify the annotated class as a Service Component.

The annotated class is the implementation class of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The component element of a Component Descr ipt ion.

Retention CLASS

Target TYPE

112.13.3.1 String name default ""

□ The name of this Component.

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Compendium Release 6 Page 349

If not specified, the name of this Component is the fully qualified type name of the class being anno-
tated.

See Also The name attr ibute of the component element of a Component Descr ipt ion.

112.13.3.2 Class<?>[] service default {}

□ The types under which to register this Component as a service.

If no service should be registered, the empty value {} must be specified.

If not specified, the service types for this Component are all the directly implemented interfaces of
the class being annotated.

See Also The service element of a Component Descr ipt ion.

112.13.3.3 String factory default ""

□ The factory identifier of this Component. Specifying a factory identifier makes this Component a
Factory Component.

If not specified, the default is that this Component is not a Factory Component.

See Also The factory attr ibute of the component element of a Component Descr ipt ion.

112.13.3.4 boolean servicefactory default false

□ Declares whether this Component uses the OSGi ServiceFactory concept and each bundle using this
Component's service will receive a different component instance.

This element is ignored when the scope() element does not have the default value. If true , this Com-
ponent uses bundle service scope. If fa lse or not specified, this Component uses singleton service
scope. If the factory() element is specified or the immediate() element is specified with true , this ele-
ment can only be specified with fa lse .

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Deprecated Since 1.3. Replaced by scope().

112.13.3.5 boolean enabled default true

□ Declares whether this Component is enabled when the bundle containing it is started.

If true or not specified, this Component is enabled. If fa lse , this Component is disabled.

See Also The enabled attr ibute of the component element of a Component Descr ipt ion.

112.13.3.6 boolean immediate default false

□ Declares whether this Component must be immediately activated upon becoming satisfied or
whether activation should be delayed.

If true , this Component must be immediately activated upon becoming satisfied. If fa lse , activa-
tion of this Component is delayed. If this property is specified, its value must be fa lse if the factory()
property is also specified or must be true if the service() property is specified with an empty value.

If not specified, the default is fa lse if the factory() property is specified or the service() property is
not specified or specified with a non-empty value and true otherwise.

See Also The immediate attr ibute of the component element of a Component Descr ipt ion.

112.13.3.7 String[] property default {}

□ Properties for this Component.

Each property string is specified as "name=value" . The type of the property value can be specified in
the name as name:type=value . The type must be one of the property types supported by the type at-
tribute of the property element of a Component Description.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 350 OSGi Compendium Release 6

To specify a property with multiple values, use multiple name, value pairs. For example, " foo=bar",
" foo=baz" .

See Also The property element of a Component Descr ipt ion.

112.13.3.8 String[] properties default {}

□ Property entries for this Component.

Specifies the name of an entry in the bundle whose contents conform to a standard Java Properties
File. The entry is read and processed to obtain the properties and their values.

See Also The propert ies element of a Component Descr ipt ion.

112.13.3.9 String xmlns default ""

□ The XML name space of the Component Description for this Component.

If not specified, the XML name space of the Component Description for this Component should be
the lowest Declarative Services XML name space which supports all the specification features used
by this Component.

See Also The XML name space specif ied for a Component Descr ipt ion.

112.13.3.10 ConfigurationPolicy configurationPolicy default OPTIONAL

□ The configuration policy of this Component.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID equals the name of the component.

If not specified, the configuration policy is based upon whether the component is also annotated
with the Meta Type Designate annotation.

• Not annotated with Designate - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=false) - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=true) - The configuration policy is REQUIRE.

See Also The configurat ion-pol icy attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

112.13.3.11 String[] configurationPid default "$"

□ The configuration PIDs for the configuration of this Component.

Each value specifies a configuration PID for this Component.

If no value is specified, the name of this Component is used as the configuration PID of this Compo-
nent.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
NAME constant holds this special string. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

See Also The configurat ion-pid attr ibute of the component element of a Component Descr ipt ion.

Since 1.2

112.13.3.12 ServiceScope scope default DEFAULT

□ The service scope for the service of this Component.

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Compendium Release 6 Page 351

If not specified (and the deprecated servicefactory() element is not specified), the singleton service
scope is used. If the factory() element is specified or the immediate() element is specified with true ,
this element can only be specified with the singleton service scope.

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Since 1.3

112.13.3.13 Reference[] reference default {}

□ The lookup strategy references of this Component.

To access references using the lookup strategy, Reference annotations are specified naming the refer-
ence and declaring the type of the referenced service. The referenced service can be accessed using
one of the locateService methods of ComponentContext .

To access references using the event strategy, bind methods are annotated with Reference. To access
references using the field strategy, fields are annotated with Reference.

See Also The reference element of a Component Descr ipt ion.

Since 1.3

112.13.3.14 String NAME = "$"

Special string representing the name of this Component.

This string can be used in configurationPid() to specify the name of the component as a configura-
tion PID. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

Since 1.3

112.13.4 enum ConfigurationPolicy
Configuration Policy for the Component annotation.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID is the name of the component.

Since 1.1

112.13.4.1 OPTIONAL

Use the corresponding Configuration object if present but allow the component to be satisfied even
if the corresponding Configuration object is not present.

112.13.4.2 REQUIRE

There must be a corresponding Configuration object for the component configuration to become
satisfied.

112.13.4.3 IGNORE

Always allow the component configuration to be satisfied and do not use the corresponding Config-
uration object even if it is present.

112.13.5 @Deactivate
Identify the annotated method as the deactivate method of a Service Component.

The annotated method is the deactivate method of the Component.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 352 OSGi Compendium Release 6

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The deactivate attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.6 enum FieldOption
Field options for the Reference annotation.

Since 1.3

112.13.6.1 UPDATE

The update field option is used to update the collection referenced by the field when there are
changes to the bound services.

This field option can only be used when the field reference has dynamic policy and multiple cardi-
nality.

112.13.6.2 REPLACE

The replace field option is used to replace the field value with a new value when there are changes
to the bound services.

112.13.7 @Modified
Identify the annotated method as the modified method of a Service Component.

The annotated method is the modified method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The modified attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.8 @Reference
Identify the annotated member as a reference of a Service Component.

When the annotation is applied to a method, the method is the bind method of the reference. When
the annotation is applied to a field, the field will contain the bound service(s) of the reference.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

In the generated Component Description for a component, the references must be ordered in as-
cending lexicographical order (using Str ing.compareTo) of the reference names.

See Also The reference element of a Component Descr ipt ion.

Retention CLASS

Target METHOD , FIELD

112.13.8.1 String name default ""

□ The name of this reference.

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Compendium Release 6 Page 353

The name of this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the name can be
determined. If not specified, the name of this reference is based upon how this annotation is used:

• Annotated method - If the method name begins with bind , set or add , that prefix is removed to
create the name of the reference. Otherwise, the name of the reference is the method name.

• Annotated field - The name of the reference is the field name.

See Also The name attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.2 Class<?> service default Object.class

□ The type of the service for this reference.

The type of the service for this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the type of the ser-
vice can be determined.

If not specified, the type of the service for this reference is based upon how this annotation is used:

• Annotated method - The type of the service is the type of the first argument of the method.
• Annotated field - The type of the service is based upon the type of the field being annotated and

the cardinality of the reference. If the cardinality is either 0..n, or 1..n, the type of the field must
be one of java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion so the type of the
service is the generic type of the collection. Otherwise, the type of the service is the type of the
field.

See Also The interface attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.3 ReferenceCardinality cardinality default MANDATORY

□ The cardinality of this reference.

If not specified, the cardinality of this reference is based upon how this annotation is used:

• Annotated method - The cardinality is 1..1.
• Annotated field - The cardinality is based on the type of the field. If the type is either

java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion , the cardinality is 0..n. Oth-
erwise the cardinality is 1..1.

• Component.reference() element - The cardinality is 1..1.

See Also The cardinal ity attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.4 ReferencePolicy policy default STATIC

□ The policy for this reference.

If not specified, the policy of this reference is based upon how this annotation is used:

• Annotated method - The policy is STATIC.
• Annotated field - The policy is based on the modifiers of the field. If the field is declared volat i le ,

the policy is ReferencePolicy.DYNAMIC. Otherwise the policy is STATIC.
• Component.reference() element - The policy is STATIC.

See Also The pol icy attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.5 String target default ""

□ The target property for this reference.

If not specified, no target property is set.

See Also The target attr ibute of the reference element of a Component Descr ipt ion.

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 354 OSGi Compendium Release 6

112.13.8.6 ReferencePolicyOption policyOption default RELUCTANT

□ The policy option for this reference.

If not specified, the RELUCTANT reference policy option is used.

See Also The pol icy-option attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.8.7 ReferenceScope scope default BUNDLE

□ The reference scope for this reference.

If not specified, the bundle reference scope is used.

See Also The scope attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.8.8 String bind default ""

□ The name of the bind method for this reference.

If specified and this reference annotates a method, the specified name must match the name of the
annotated method.

If not specified, the name of the bind method is based upon how this annotation is used:

• Annotated method - The name of the annotated method is the name of the bind method.
• Annotated field - There is no bind method name.
• Component.reference() element - There is no bind method name.

If there is a bind method name, the component must contain a method with that name.

See Also The bind attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.8.9 String updated default ""

□ The name of the updated method for this reference.

If not specified, the name of the updated method is based upon how this annotation is used:

• Annotated method - The name of the updated method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with updated to create the name candidate for the updated method. Otherwise, updated is pre-
fixed to the name of the annotated method to create the name candidate for the updated method.
If the component type contains a method with the candidate name, the candidate name is used
as the name of the updated method. To declare no updated method when the component type
contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no updated method name.
• Component.reference() element - There is no updated method name.

If there is an updated method name, the component must contain a method with that name.

See Also The updated attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.8.10 String unbind default ""

□ The name of the unbind method for this reference.

If not specified, the name of the unbind method is based upon how this annotation is used:

Declarative Services Specification Version 1.3 org.osgi.service.component.annotations

OSGi Compendium Release 6 Page 355

• Annotated method - The name of the unbind method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with unbind , unset or remove , respectively, to create the name candidate for the unbind method.
Otherwise, un is prefixed to the name of the annotated method to create the name candidate for
the unbind method. If the component type contains a method with the candidate name, the can-
didate name is used as the name of the unbind method. To declare no unbind method when the
component type contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no unbind method name.
• Component.reference() element - There is no unbind method name.

If there is an unbind method name, the component must contain a method with that name.

See Also The unbind attr ibute of the reference element of a Component Descr ipt ion.

112.13.8.11 String field default ""

□ The name of the field for this reference.

If specified and this reference annotates a field, the specified name must match the name of the an-
notated field.

If not specified, the name of the field is based upon how this annotation is used:

• Annotated method - There is no field name.
• Annotated field - The name of the annotated field is the name of the field.
• Component.reference() element - There is no field name.

If there is a field name, the component must contain a field with that name.

See Also The fie ld attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.8.12 FieldOption fieldOption default REPLACE

□ The field option for this reference.

If not specified, the field option is based upon how this annotation is used:

• Annotated method - There is no field option.
• Annotated field - The field option is based upon the policy and cardinality of the reference and

the modifiers of the field. If the policy is ReferencePolicy.DYNAMIC, the cardinality is 0..n or 1..n,
and the field is declared f inal , the field option is FieldOption.UPDATE. Otherwise, the field op-
tion is FieldOption.REPLACE

• Component.reference() element - There is no field option.

See Also The fie ld-option attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.9 enum ReferenceCardinality
Cardinality for the Reference annotation.

Specifies if the reference is optional and if the component implementation support a single bound
service or multiple bound services.

112.13.9.1 OPTIONAL

The reference is optional and unary. That is, the reference has a cardinality of 0..1 .

112.13.9.2 MANDATORY

The reference is mandatory and unary. That is, the reference has a cardinality of 1. .1 .

org.osgi.service.component.annotations Declarative Services Specification Version 1.3

Page 356 OSGi Compendium Release 6

112.13.9.3 MULTIPLE

The reference is optional and multiple. That is, the reference has a cardinality of 0..n .

112.13.9.4 AT_LEAST_ONE

The reference is mandatory and multiple. That is, the reference has a cardinality of 1. .n .

112.13.10 enum ReferencePolicy
Policy for the Reference annotation.

112.13.10.1 STATIC

The static policy is the most simple policy and is the default policy. A component instance never
sees any of the dynamics. Component configurations are deactivated before any bound service for
a reference having a static policy becomes unavailable. If a target service is available to replace the
bound service which became unavailable, the component configuration must be reactivated and
bound to the replacement service.

112.13.10.2 DYNAMIC

The dynamic policy is slightly more complex since the component implementation must proper-
ly handle changes in the set of bound services. With the dynamic policy, SCR can change the set of
bound services without deactivating a component configuration. If the component uses the event
strategy to access services, then the component instance will be notified of changes in the set of
bound services by calls to the bind and unbind methods.

112.13.11 enum ReferencePolicyOption
Policy option for the Reference annotation.

Since 1.2

112.13.11.1 RELUCTANT

The reluctant policy option is the default policy option for both static and dynamic reference poli-
cies. When a new target service for a reference becomes available, references having the reluctant
policy option for the static policy or the dynamic policy with a unary cardinality will ignore the
new target service. References having the dynamic policy with a multiple cardinality will bind the
new target service.

112.13.11.2 GREEDY

The greedy policy option is a valid policy option for both static and dynamic reference policies.
When a new target service for a reference becomes available, references having the greedy policy
option will bind the new target service.

112.13.12 enum ReferenceScope
Reference scope for the Reference annotation.

Since 1.3

112.13.12.1 BUNDLE

A single service object is used for all references to the service in this bundle.

112.13.12.2 PROTOTYPE

If the bound service has prototype service scope, then each instance of the component with this ref-
erence can receive a unique instance of the service. If the bound service does not have prototype ser-
vice scope, then this reference scope behaves the same as BUNDLE.

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime

OSGi Compendium Release 6 Page 357

112.13.12.3 PROTOTYPE_REQUIRED

Bound services must have prototype service scope. Each instance of the component with this refer-
ence can receive a unique instance of the service.

112.13.13 enum ServiceScope
Service scope for the Component annotation.

Since 1.3

112.13.13.1 SINGLETON

When the component is registered as a service, it must be registered as a bundle scope service but
only a single instance of the component must be used for all bundles using the service.

112.13.13.2 BUNDLE

When the component is registered as a service, it must be registered as a bundle scope service and
an instance of the component must be created for each bundle using the service.

112.13.13.3 PROTOTYPE

When the component is registered as a service, it must be registered as a prototype scope service and
an instance of the component must be created for each distinct request for the service.

112.13.13.4 DEFAULT

Default element value for annotation. This is used to distinguish the default value for an element
and should not otherwise be used.

112.14 org.osgi.service.component.runtime

Service Component Runtime Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.3,1 .4)"

112.14.1 Summary

• ServiceComponentRuntime - The ServiceComponentRuntime service represents the Declara-
tive Services actor, known as Service Component Runtime (SCR), that manages the service com-
ponents and their life cycle.

112.14.2 public interface ServiceComponentRuntime
The ServiceComponentRuntime service represents the Declarative Services actor, known as Service
Component Runtime (SCR), that manages the service components and their life cycle. The Service-
ComponentRuntime service allows introspection of the components managed by Service Compo-
nent Runtime.

This service differentiates between a ComponentDescriptionDTO and a ComponentConfigura-
tionDTO. A ComponentDescriptionDTO is a representation of a declared component description. A

org.osgi.service.component.runtime Declarative Services Specification Version 1.3

Page 358 OSGi Compendium Release 6

ComponentConfigurationDTO is a representation of an actual instance of a declared component de-
scription parameterized by component properties.

Access to this service requires the ServicePermission[ServiceComponentRuntime, GET] permis-
sion. It is intended that only administrative bundles should be granted this permission to limit ac-
cess to the potentially intrusive methods provided by this service.

Since 1.3

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.14.2.1 public Promise<Void> disableComponent(ComponentDescriptionDTO description)

description The component description to disable. Must not be nul l .

□ Disables the specified component description.

If the specified component description is currently disabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.2 public Promise<Void> enableComponent(ComponentDescriptionDTO description)

description The component description to enable. Must not be nul l .

□ Enables the specified component description.

If the specified component description is currently enabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.3 public Collection<ComponentConfigurationDTO>
getComponentConfigurationDTOs(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns the component configurations for the specified component description.

Returns A collection containing a snapshot of the current component configurations for the specified com-
ponent description. An empty collection is returned if there are none.

112.14.2.4 public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle,String name)

bundle The bundle declaring the component description. Must not be nul l .

name The name of the component description. Must not be nul l .

□ Returns the ComponentDescriptionDTO declared with the specified name by the specified bundle.

Only component descriptions from active bundles are returned. nul l if no such component is de-
clared by the given bundle or the bundle is not active.

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime.dto

OSGi Compendium Release 6 Page 359

Returns The declared component description or nul l if the specified bundle is not active or does not declare a
component description with the specified name.

112.14.2.5 public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle ... bundles)

bundles The bundles whose declared component descriptions are to be returned. Specifying no bundles, or
the equivalent of an empty Bundle array, will return the declared component descriptions from all
active bundles.

□ Returns the component descriptions declared by the specified active bundles.

Only component descriptions from active bundles are returned. If the specified bundles have no de-
clared components or are not active, an empty collection is returned.

Returns The declared component descriptions of the specified active bundles . An empty collection is re-
turned if there are no component descriptions for the specified active bundles.

112.14.2.6 public boolean isComponentEnabled(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns whether the specified component description is currently enabled.

The enabled state of a component description is initially set by the enabled attribute of the compo-
nent description.

Returns true if the specified component description is currently enabled. Otherwise, fa lse .

See Also enableComponent(ComponentDescriptionDTO), disableComponent(ComponentDescriptionDTO),
ComponentContext.disableComponent(String), ComponentContext.enableComponent(String)

112.15 org.osgi.service.component.runtime.dto

Service Component Runtime Data Transfer Objects Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.3,1 .4)"

112.15.1 Summary

• ComponentConfigurat ionDTO - A representation of an actual instance of a declared component
description parameterized by component properties.

• ComponentDescr ipt ionDTO - A representation of a declared component description.
• ReferenceDTO - A representation of a declared reference to a service.
• SatisfiedReferenceDTO - A representation of a satisfied reference.
• UnsatisfiedReferenceDTO - A representation of an unsatisfied reference.

112.15.2 public class ComponentConfigurationDTO
extends DTO
A representation of an actual instance of a declared component description parameterized by com-
ponent properties.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.3

Page 360 OSGi Compendium Release 6

Since 1.3

Concurrency Not Thread-safe

112.15.2.1 public static final int ACTIVE = 8

The component configuration is active.

This is the normal operational state of a component configuration.

112.15.2.2 public ComponentDescriptionDTO description

The representation of the component configuration's component description.

112.15.2.3 public long id

The id of the component configuration.

The id is a non-persistent, unique value assigned at runtime. The id is also available as the
component. id component property. The value of this field is unspecified if the state of this compo-
nent configuration is unsatisfied.

112.15.2.4 public Map<String,Object> properties

The component properties for the component configuration.

See Also ComponentContext.getProperties()

112.15.2.5 public static final int SATISFIED = 4

The component configuration is satisfied.

Any services declared by the component description are registered.

112.15.2.6 public SatisfiedReferenceDTO[] satisfiedReferences

The satisfied references.

Each SatisfiedReferenceDTO in the array represents a satisfied reference of the component configu-
ration. The array must be empty if the component configuration has no satisfied references.

112.15.2.7 public int state

The current state of the component configuration.

This is one of UNSATISFIED_CONFIGURATION, UNSATISFIED_REFERENCE, SATISFIED or AC-
TIVE.

112.15.2.8 public static final int UNSATISFIED_CONFIGURATION = 1

The component configuration is unsatisfied due to a missing required configuration.

112.15.2.9 public static final int UNSATISFIED_REFERENCE = 2

The component configuration is unsatisfied due to an unsatisfied reference.

112.15.2.10 public UnsatisfiedReferenceDTO[] unsatisfiedReferences

The unsatisfied references.

Each UnsatisfiedReferenceDTO in the array represents an unsatisfied reference of the component
configuration. The array must be empty if the component configuration has no unsatisfied refer-
ences.

112.15.2.11 public ComponentConfigurationDTO()

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime.dto

OSGi Compendium Release 6 Page 361

112.15.3 public class ComponentDescriptionDTO
extends DTO
A representation of a declared component description.

Since 1.3

Concurrency Not Thread-safe

112.15.3.1 public String activate

The name of the activate method.

This is declared in the activate attribute of the component element. This must be nul l if the compo-
nent description does not declare an activate method name.

112.15.3.2 public BundleDTO bundle

The bundle declaring the component description.

112.15.3.3 public String[] configurationPid

The configuration pids.

These are declared in the configurat ion-pid attribute of the component element. This must contain
the default configuration pid if the component description does not declare a configuration pid.

112.15.3.4 public String configurationPolicy

The configuration policy.

This is declared in the configurat ion-pol icy attribute of the component element. This must be the
default configuration policy if the component description does not declare a configuration policy.

112.15.3.5 public String deactivate

The name of the deactivate method.

This is declared in the deactivate attribute of the component element. This must be nul l if the com-
ponent description does not declare a deactivate method name.

112.15.3.6 public boolean defaultEnabled

The initial enabled state.

This is declared in the enabled attribute of the component element.

112.15.3.7 public String factory

The component factory name.

This is declared in the factory attribute of the component element. This must be nul l if the compo-
nent description is not declared as a component factory.

112.15.3.8 public boolean immediate

The immediate state.

This is declared in the immediate attribute of the component element.

112.15.3.9 public String implementationClass

The fully qualified name of the implementation class.

This is declared in the class attribute of the implementation element.

112.15.3.10 public String modified

The name of the modified method.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.3

Page 362 OSGi Compendium Release 6

This is declared in the modified attribute of the component element. This must be nul l if the compo-
nent description does not declare a modified method name.

112.15.3.11 public String name

The name of the component.

This is declared in the name attribute of the component element. This must be the default name if
the component description does not declare a name.

112.15.3.12 public Map<String,Object> properties

The declared component properties.

These are declared in the property and propert ies elements.

112.15.3.13 public ReferenceDTO[] references

The referenced services.

These are declared in the reference elements. The array must be empty if the component descrip-
tion does not declare references to any services.

112.15.3.14 public String scope

The service scope.

This is declared in the scope attribute of the service element. This must be nul l if the component de-
scription does not declare any service interfaces.

112.15.3.15 public String[] serviceInterfaces

The fully qualified names of the service interfaces.

These are declared in the interface attribute of the provide elements. The array must be empty if the
component description does not declare any service interfaces.

112.15.3.16 public ComponentDescriptionDTO()

112.15.4 public class ReferenceDTO
extends DTO
A representation of a declared reference to a service.

Since 1.3

Concurrency Not Thread-safe

112.15.4.1 public String bind

The name of the bind method of the reference.

This is declared in the bind attribute of the reference element. This must be nul l if the component
description does not declare a bind method for the reference.

112.15.4.2 public String cardinality

The cardinality of the reference.

This is declared in the cardinal ity attribute of the reference element. This must be the default cardi-
nality if the component description does not declare a cardinality for the reference.

112.15.4.3 public String field

The name of the field of the reference.

Declarative Services Specification Version 1.3 org.osgi.service.component.runtime.dto

OSGi Compendium Release 6 Page 363

This is declared in the f ie ld attribute of the reference element. This must be nul l if the component
description does not declare a field for the reference.

112.15.4.4 public String fieldOption

The field option of the reference.

This is declared in the f ie ld-option attribute of the reference element. This must be nul l if the com-
ponent description does not declare a field for the reference.

112.15.4.5 public String interfaceName

The service interface of the reference.

This is declared in the interface attribute of the reference element.

112.15.4.6 public String name

The name of the reference.

This is declared in the name attribute of the reference element. This must be the default name if the
component description does not declare a name for the reference.

112.15.4.7 public String policy

The policy of the reference.

This is declared in the pol icy attribute of the reference element. This must be the default policy if
the component description does not declare a policy for the reference.

112.15.4.8 public String policyOption

The policy option of the reference.

This is declared in the pol icy-option attribute of the reference element. This must be the default
policy option if the component description does not declare a policy option for the reference.

112.15.4.9 public String scope

The scope of the reference.

This is declared in the scope attribute of the reference element. This must be the default scope if the
component description does not declare a scope for the reference.

112.15.4.10 public String target

The target of the reference.

This is declared in the target attribute of the reference element. This must be nul l if the component
description does not declare a target for the reference.

112.15.4.11 public String unbind

The name of the unbind method of the reference.

This is declared in the unbind attribute of the reference element. This must be nul l if the component
description does not declare an unbind method for the reference.

112.15.4.12 public String updated

The name of the updated method of the reference.

This is declared in the updated attribute of the reference element. This must be nul l if the compo-
nent description does not declare an updated method for the reference.

112.15.4.13 public ReferenceDTO()

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.3

Page 364 OSGi Compendium Release 6

112.15.5 public class SatisfiedReferenceDTO
extends DTO
A representation of a satisfied reference.

Since 1.3

Concurrency Not Thread-safe

112.15.5.1 public ServiceReferenceDTO[] boundServices

The bound services.

Each ServiceReferenceDTO in the array represents a service bound to the satisfied reference. The ar-
ray must be empty if there are no bound services.

112.15.5.2 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.5.3 public String target

The target property of the satisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.5.4 public SatisfiedReferenceDTO()

112.15.6 public class UnsatisfiedReferenceDTO
extends DTO
A representation of an unsatisfied reference.

Since 1.3

Concurrency Not Thread-safe

112.15.6.1 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.6.2 public String target

The target property of the unsatisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.6.3 public ServiceReferenceDTO[] targetServices

The target services.

Each ServiceReferenceDTO in the array represents a target service for the reference. The array must
be empty if there are no target services. The upper bound on the number of target services in the ar-
ray is the upper bound on the cardinality of the reference.

112.15.6.4 public UnsatisfiedReferenceDTO()

Declarative Services Specification Version 1.3 References

OSGi Compendium Release 6 Page 365

112.16 References

[1] Automating Service Dependency Management in a Service-Oriented Component Model
Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-Based Software Engi-
neering Workshop, May 2003, pp. 91-96
http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf

[2] Service Binder
Humberto Cervantes, Richard S. Hall
http://gravity.sourceforge.net/servicebinder

[3] Java Properties File
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

[4] Extensible Markup Language (XML) 1.0
http://www.w3.org/TR/REC-xml/

[5] OSGi XML Schemas
http://www.osgi.org/Specifications

112.17 Changes
• Configuration Changes on page 326 has been rewritten to more accurately state the effects of

configuration changes on component configurations.
• New introspection API. See Introspection on page 334.
• Defined capabilities SCR must provide. See Capabilities on page 336.
• Expanded the allowed signatures and argument types for Event Methods. See Event Methods on

page 295.
• New scope attribute for the service element. See Service Element on page 311.
• New scope attribute for the reference element. See Reference Scope on page 301.
• New reference element for Component annotation. See Reference Element on page 312.
• New minimum cardinality property. See Minimum Cardinality Property on page 325.
• Added support for a component using multiple configuration PIDs. See Component Element on

page 307, Component Properties on page 324, and Deployment on page 325.
• service.pid property values are aggregated across configuration sources. See Component Properties

on page 324.
• SCR must check ConfigurationPermission for multi-location Configurations. See Configuration

Multi-Locations and Regions on page 338.
• Added support for targeted PIDs for Configurations. See Deployment on page 325.
• New component property types can be used for type safe component property definition and ac-

cess. See Component Property Types on page 330.
• Specified the ordering of property information component descriptions generated from annota-

tions. See Ordering of Generated Properties on page 332.
• Maps of service properties must also implement Comparable. See Event Methods on page 295.
• Support for field strategy is added. See Field Strategy on page 298. This change affects many ar-

eas of this specification.

Changes Declarative Services Specification Version 1.3

Page 366 OSGi Compendium Release 6

Event Admin Service Specification Version 1.3 Introduction

OSGi Compendium Release 6 Page 367

113 Event Admin Service Specification

Version 1.3

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either as an event publisher or
as an event handler. So far, the preferred mechanism to disperse those events have been the service
interface mechanism.

Dispatching events for a design related to X, usually involves a service of type XListener . Howev-
er, this model does not scale well for fine grained events that must be dispatched to many different
handlers. Additionally, the dynamic nature of the OSGi environment introduces several complexi-
ties because both event publishers and event handlers can appear and disappear at any time.

The Event Admin service provides an inter-bundle communication mechanism. It is based on a
event publish and subscribe model, popular in many message based systems.

This specification defines the details for the participants in this event model.

113.1.1 Essentials

• Simplifications - The model must significantly simplify the process of programming an event
source and an event handler.

• Dependencies - Handle the myriad of dependencies between event sources and event handlers for
proper cleanup.

• Synchronicity - It must be possible to deliver events asynchronously or synchronously with the
caller.

• Event Window - Only event handlers that are active when an event is published must receive this
event, handlers that register later must not see the event.

• Performance - The event mechanism must impose minimal overhead in delivering events.
• Selectivity - Event listeners must only receive notifications for the event types for which they are

interested
• Reliability - The Event Admin must ensure that events continue to be delivered regardless the

quality of the event handlers.
• Security - Publishing and receiving events are sensitive operations that must be protected per

event type.
• Extensibility - It must be possible to define new event types with their own data types.
• Native Code - Events must be able to be passed to native code or come from native code.
• OSGi Events - The OSGi Framework, as well as a number of OSGi services, already have number of

its own events defined. For uniformity of processing, these have to be mapped into generic event
types.

113.1.2 Entities

• Event - An Event object has a topic and a Dictionary object that contains the event properties. It is
an immutable object.

• Event Admin - The service that provides the publish and subscribe model to Event Handlers and
Event Publishers.

Event Admin Architecture Event Admin Service Specification Version 1.3

Page 368 OSGi Compendium Release 6

• Event Handler - A service that receives and handles Event objects.
• Event Publisher - A bundle that sends event through the Event Admin service.
• Event Subscriber - Another name for an Event Handler.
• Topic - The name of an Event type.
• Event Properties - The set of properties that is associated with an Event.

Figure 113.1 The Event Admin service org.osgi.service.event package

Event Publisher
Impl

an Event
Consumer Impl

receive
event

send
event

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Event

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events, regardless of their destina-
tion. It is also used by Event Handlers to subscribe to specific types of events.

Events are published under a topic, together with a number of event properties. Event Handlers can
specify a filter to control the Events they receive on a very fine grained basis.

113.1.4 What To Read

• Architects - The Event Admin Architecture on page 368 provides an overview of the Event Admin
service.

• Event Publishers - The Event Publisher on page 371 provides an introduction of how to write an
Event Publisher. The Event Admin Architecture on page 368 provides a good overview of the de-
sign.

• Event Subscribers/Handlers - The Event Handler on page 370 provides the rules on how to sub-
scribe and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern decouples sources from their
handlers by interposing an event channel between them. The publisher posts events to the channel,
which identifies which handlers need to be notified and then takes care of the notification process.
This model is depicted in Figure 113.2.

Event Admin Service Specification Version 1.3 The Event

OSGi Compendium Release 6 Page 369

Figure 113.2 Channel Pattern

Publisher <<service>>
Event Handler

1
0..n

<<service>>
Event Admin

1
0..n

handleEventsendEvent
postEvent

In this model, the event source and event handler are completely decoupled because neither has any
direct knowledge of the other. The complicated logic of monitoring changes in the event publishers
and event handlers is completely contained within the event channel. This is highly advantageous
in an OSGi environment because it simplifies the process of both sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic - A topic that defines what happened. For example, when a bundle is started an event is
published that has a topic of org/osgi/framework/BundleEvent/STARTED .

• Properties - Zero or more properties that contain additional information about the event. For
example, the previous example event has a property of bundle. id which is set to a Long object,
among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in order to give handlers the
opportunity to register for just the events they are interested in. When a topic is designed, its name
should not include any other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which handlers should receive
the event. Event Admin service implementations use the structure of the topic to optimize the dis-
patching of the events to the handlers.

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by solidi (' / ' \u002F). More precisely, the topic must conform to the following grammar:

 topic ::= token ('/' token) * // See General Syntax Definitions in Core

Topics should be designed to become more specific when going from left to right. Handlers can pro-
vide a prefix that matches a topic, using the preferred order allows a handler to minimize the num-
ber of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be a solidus (' / ' \u002F) instead
of the full stop ('.' \u002E).

This specification uses the convention ful ly/qual i f ied/package/ClassName/ACTION . If necessary, a
pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property name is a case-sensitive
string and the value can be any object. Although any Java object can be used as a property value, on-
ly Str ing objects and the eight primitive types (plus their wrappers) should be used. Other types can-
not be passed to handlers that reside external from the Java VM.

Event Handler Event Admin Service Specification Version 1.3

Page 370 OSGi Compendium Release 6

Another reason that arbitrary classes should not be used is the mutability of objects. If the values are
not immutable, then any handler that receives the event could change the value. Any handlers that
received the event subsequently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC . This allows filters to in-
clude the topic as a condition if necessary.

113.3.3 High Performance
An event processing system can become a bottleneck in large systems. One expensive aspect of the
Event object is its properties and its immutability. This combination requires the Event object to cre-
ate a copy of the properties for each object. There are many situations where the same properties are
dispatched through Event Admin, the topic is then used to signal the information. Creating the copy
of the properties can therefore take unnecessary CPU time and memory. However, the immutability
of the Event object requires the properties to be immutable.

For this reason, this specification also provides an immutable Map with the Event Properties class.
This class implements an immutable map that is recognized and trusted by the Event object to not
mutate. Using an Event Properties object allows a client to create many different Event objects with
different topics but sharing the same properties object.

The following example shows how an event poster can limit the copying of the properties.

void foo(EventAdmin eventAdmin) {
 Map<String,Object> props = new HashMap<String,Object>();
 props.put("foo", 1);
 EventProperties eventProps = new EventProperties(props);

 for (int i=0; i<1000; i++)
 eventAdmin.postEvent(new Event("my/topic/" + i, eventProps));
}

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework under the object class
org.osgi .service.event.EventHandler .

Event handlers should be registered with a property (constant from the EventConstants class)
EVENT_TOPIC . The value being a Str ing , Str ing[] or Collect ion<Str ing> object that describes which
topics the handler is interested in. A wildcard asterisk ('* ' \u002A) may be used as the last token of a
topic name, for example com/action/* . This matches any topic that shares the same first tokens. For
example, com/action/* matches com/action/l isten .

Event Handlers which have not specified the EVENT_TOPIC service property must not receive
events.

The value of each entry in the EVENT_TOPIC service registration property must conform to the fol-
lowing grammar:

topic-scope ::= '*' | (topic '/*'?)

Event handlers can also be registered with a service property named EVENT_FILTER . The value of
this property must be a string containing a Framework filter specification. Any of the event's prop-
erties can be used in the filter expression.

event-filter ::= filter // See Filter Syntax in Core

Event Admin Service Specification Version 1.3 Event Publisher

OSGi Compendium Release 6 Page 371

Each Event Handler is notified for any event which belongs to the topics the handler has expressed
an interest in. If the handler has defined a EVENT_FILTER service property then the event properties
must also match the filter expression. If the filter is an error, then the Event Admin service should
log a warning and further ignore the Event Handler.

For example, a bundle wants to see all Log Service events with a level of WARNING or ERROR , but it
must ignore the INFO and DEBUG events. Additionally, the only events of interest are when the bun-
dle symbolic name starts with com.acme .

public AcmeWatchDog implements BundleActivator,
 EventHandler {
 final static String [] topics = new String[] {
 "org/osgi/service/log/LogEntry/LOG_WARNING",
 "org/osgi/service/log/LogEntry/LOG_ERROR" };

 public void start(BundleContext context) {
 Dictionary d = new Hashtable();
 d.put(EventConstants.EVENT_TOPIC, topics);
 d.put(EventConstants.EVENT_FILTER,
 "(bundle.symbolicName=com.acme.*)");
 context.registerService(EventHandler.class.getName(),
 this, d);
 }
 public void stop(BundleContext context) {}

 public void handleEvent(Event event) {
 //...
 }
}

If there are multiple Event Admin services registered with the Framework then all Event Admin ser-
vices must send their published events to all registered Event Handlers.

113.4.1 Ordering
In the default case, an Event Handler will receive posted (asynchronous) events from a single thread
in the same order as they were posted. Maintaining this ordering guarantee requires the Event Ad-
min to serialize the delivery of events instead of, for example, delivering the events on different
worker threads. There are many scenarios where this ordering is not really required. For this reason,
an Event Handler can signal to the Event Admin that events can be delivered out of order. This is no-
tified with the EVENT_DELIVERY service property. This service property can be used in the following
way:

• Not set or set to both - The Event Admin must deliver the events in the proper order.
• DELIVERY_ASYNC_ORDERED - Events must be delivered in order.
• DELIVERY_ASYNC_UNORDERED - Allow the events to be delivered in any order.

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service from the OSGi service reg-
istry. Then it creates the event object and calls one of the Event Admin service's methods to fire the
event either synchronously or asynchronously.

The following example is a class that publishes a time event every 60 seconds.

public class TimerEvent extends Thread

Event Publisher Event Admin Service Specification Version 1.3

Page 372 OSGi Compendium Release 6

 implements BundleActivator {
 Hashtable time = new Hashtable();
 ServiceTracker tracker;

 public TimerEvent() { super("TimerEvent"); }

 public void start(BundleContext context) {
 tracker = new ServiceTracker(context,
 EventAdmin.class.getName(), null);
 tracker.open();
 start();
 }

 public void stop(BundleContext context) {
 interrupt();
 tracker.close();
 }

 public void run() {
 while (! Thread.interrupted()) try {
 Calendar c = Calendar.getInstance();
 set(c,Calendar.MINUTE,"minutes");
 set(c,Calendar.HOUR,"hours");
 set(c,Calendar.DAY_OF_MONTH,"day");
 set(c,Calendar.MONTH,"month");
 set(c,Calendar.YEAR,"year");

 EventAdmin ea =
 (EventAdmin) tracker.getService();
 if (ea != null)
 ea.sendEvent(new Event("com/acme/timer",
 time));
 Thread.sleep(60000-c.get(Calendar.SECOND)*1000);
 } catch(InterruptedException e) {
 return;
 }
 }

 void set(Calendar c, int field, String key) {
 time.put(key, new Integer(c.get(field)));
 }
}

Event Admin Service Specification Version 1.3 Specific Events

OSGi Compendium Release 6 Page 373

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than what actually happened.
For example, a handler wants to be notified whenever an Exception is thrown anywhere in the sys-
tem. Both Framework Events and Log Entry events may contain an exception that would be of inter-
est to this hypothetical handler. If both Framework Events and Log Entries use the same property
names then the handler can access the Exception in exactly the same way. If some future event type
follows the same conventions then the handler can receive and process the new event type even
though it had no knowledge of it when it was compiled.

The following properties are suggested as conventions. When new event types are defined they
should use these names with the corresponding types and values where appropriate. These values
should be set only if they are not nul l

A list of these property names can be found in the following table.

Table 113.1 General property names for events

Name Type Notes
BUNDLE_SIGNER Str ing |

Col lect ion
<Str ing>

A bundle's signers DN

BUNDLE_VERSION Version A bundle's version
BUNDLE_SYMBOLICNAME Str ing A bundle's symbolic name
EVENT Object The actual event object. Used when rebroadcasting an

event that was sent via some other event mechanism
EXCEPTION Throwable An exception or error
EXCEPTION_MESSAGE Str ing Must be equal to exception.getMessage() .
EXCEPTION_CLASS Str ing Must be equal to the name of the Exception class.
MESSAGE Str ing A human-readable message that is usually not localized.
SERVICE Service Ref-

erence
A Service Reference

SERVICE_ID Long A service's id
SERVICE_OBJECTCLASS Str ing[] A service's objectClass
SERVICE_PID Str ing |

Col lect ion
<Str ing>

A service's persistent identity. A PID that is spec-
ified with a Str ing[] must be coerced into a
Collect ion<Str ing> .

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMil l is()

The topic of an OSGi event is constructed by taking the fully qualified name of the event class, sub-
stituting a solidus (' / ' \u002F)for every full stop, and appending a solidus followed by the name of
the constant that defines the event type. For example, the topic of

BundleEvent.STARTED

Event becomes

org/osgi/framework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

Specific Events Event Admin Service Specification Version 1.3

Page 374 OSGi Compendium Release 6

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the system, the existing Frame-
work-level events are mapped to the Event Admin's publish-subscribe model. This allows event sub-
scribers to treat framework events exactly the same as other events.

It is the responsibility of the Event Admin service implementation to map these Framework events
to its queue.

The properties associated with the event depends on its class as outlined in the following sections.

113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<eventtype>

The following event types are supported:

STARTED
ERROR
PACKAGES_REFRESHED
STARTLEVEL_CHANGED
WARNING
INFO

Other events are ignored, no event will be send by the Event Admin. The following event properties
must be set for a Framework Event.

• event - (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-nul l value, the following fields must be set:

• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non-nul l value:

• exception.class - (Str ing) The fully-qualified class name of the attached Exception.
• exception.message -(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• exception - (Throwable) The Exception returned by the getThrowable method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED
STARTED
STOPPED

Event Admin Service Specification Version 1.3 Event Admin Service

OSGi Compendium Release 6 Page 375

UPDATED
UNINSTALLED
RESOLVED
UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners require synchronous de-
livery then they should register a Synchronous Bundle Listener with the Framework.

• event - (BundleEvent) The original event object.
• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osgi/framework/ServiceEvent/<eventtype>

The following event types are supported:

REGISTERED
MODIFIED
UNREGISTERING

Unknown events must be ignored.

• event - (ServiceEvent) The original Service Event object.
• service - (ServiceReference) The result of the getServiceReference method
• service. id - (Long) The service's ID.
• service.pid - (Str ing or Col lect ion<Str ing>) The service's persistent identity. Only set if not nul l .

If the PID is specified as a Str ing[] then it must be coerced into a Collect ion<Str ing> .
• service.objectClass - (Str ing[]) The service's object class.

113.6.6 Other Event Sources
Several OSGi service specifications define their own event model. It is the responsibility of these ser-
vices to map their events to Event Admin events. Event Admin is seen as a core service that will be
present in most devices. However, if there is no Event Admin service present, applications are not
mandated to buffer events.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object class
org.osgi .service.event.EventAdmin . Multiple Event Admin services can be registered. Pub-
lishers should publish their event on the Event Admin service with the highest value for the
SERVICE_RANKING service property. This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers, handling event notifica-
tions and providing at least one thread for asynchronous event delivery.

Event Admin Service Event Admin Service Specification Version 1.3

Page 376 OSGi Compendium Release 6

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When this method is invoked,
the Event Admin service determines which handlers must be notified of the event and then notifies
each one in turn. The handlers can be notified in the caller's thread or in an event-delivery thread,
depending on the implementation. In either case, all notifications must be completely handled be-
fore the sendEvent method returns to the caller.

Synchronous event delivery is significantly more expensive than asynchronous delivery. All things
considered equal, the asynchronous delivery should be preferred over the synchronous delivery.

Callers of this method will need to be coded defensively and assume that synchronous event notifi-
cations could be handled in a separate thread. That entails that they must not be holding any moni-
tors when they invoke the sendEvent method. Otherwise they significantly increase the likelihood
of deadlocks because Java monitors are not reentrant from another thread by definition. Not hold-
ing monitors is good practice even when the event is dispatched in the same thread.

113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When this method is invoked,
the Event Admin service must determine which handlers are interested in the event. By collecting
this list of handlers during the method invocation, the Event Admin service ensures that only han-
dlers that were registered at the time the event was posted will receive the event notification. This is
the same as described in Delivering Events of OSGi Core Release 6.

The Event Admin service can use more than one thread to deliver events. If it does then it must guar-
antee that each handler receives the events in the same order as the events were posted, unless this
handler allows unordered deliver, see Ordering on page 371. This ensures that handlers see events
in their expected order. For example, for some handlers it would be an error to see a destroyed event
before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that the handler is still regis-
tered in the service registry. If it has been unregistered then the handler must not be notified.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the event queue. Thus if two
events are posted by the same thread then they will be delivered in the same order (though other
events may come between them). However, if two or more events are posted by different threads
then the order in which they arrive in the queue (and therefore the order in which they are deliv-
ered) will depend very much on subtle timing issues. The event delivery system cannot make any
guarantees in this case. An Event Handler can indicate that the ordering is not relevant, allowing the
Event Admin to more aggressively parallelize the event deliver, see Ordering on page 371.

Synchronous events are delivered as soon as they are sent. If two events are sent by the same thread,
one after the other, then they must be guaranteed to be processed serially and in the same order.
However, if two events are sent by different threads then no guarantees can be made. The events can
be processed in parallel or serially, depending on whether or not the Event Admin service dispatches
synchronous events in the caller's thread or in a separate thread.

Note that if the actions of a handler trigger a synchronous event, then the delivery of the first event
will be paused and delivery of the second event will begin. Once delivery of the second event has
completed, delivery of the first event will resume. Thus some handlers may observe the second
event before they observe the first one.

Event Admin Service Specification Version 1.3 Reliability

OSGi Compendium Release 6 Page 377

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be caught by the Event Admin
service and handled in some implementation specific way. If a Log Service is available the exception
should be logged. Once the exception has been caught and dealt with, the event delivery must con-
tinue with the next handlers to be notified, if any.

As the Log Service can also forward events through the Event Admin service there is a potential for a
loop when an event is reported to the Log Service.

113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method. Doing so will prevent other
handlers in the system from being notified. If a handler needs to do something that can take a while,
it should do it in a different thread.

An event admin implementation can attempt to detect stalled or deadlocked handlers and deal with
them appropriately. Exactly how it deals with this situation is left as implementation specific. One
allowed implementation is to mark the current event delivery thread as invalid and spawn a new
event delivery thread. Event delivery must resume with the next handler to be notified.

Implementations can choose to blacklist any handlers that they determine are misbehaving. Black-
listed handlers must not be notified of any events. If a handler is blacklisted, the event admin should
log a message that explains the reason for it.

113.9 Inter-operability with Native Applications
Implementations of the Event Admin service can support passing events to, and/or receiving events
from native applications.

If the implementation supports native inter-operability, it must be able to pass the topic of the event
and its properties to/from native code. Implementations must be able to support property values of
the following types:

• Str ing objects, including full Unicode support
• Integer, Long, Byte, Short , F loat, Double, Boolean, Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (int , long, byte, short , f loat , double,

boolean, char)

Implementations can support additional types. Property values of unsupported types must be silent-
ly discarded.

113.10 Security

113.10.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles may post events to a giv-
en topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that solidi (' / ' \u002F) are used as

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 378 OSGi Compendium Release 6

separators instead of full stop characters. For example, a name of a/b/* implies a/b/c but not x/y/z or
a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

113.10.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org.osgi .service.event.EventHandler , REGISTER]. In addition, handlers require
TopicPermission[<topic>, SUBSCRIBE] for each topic they want to be notified about.

Bundles that need to publish an event must be granted
ServicePermission[org.osgi .service.event.EventAdmin, GET] so that they may retrieve the Event
Admin service and use it. In addition, event sources require TopicPermission[<topic>, PUBLISH] for
each topic they want to send events to.

Bundles that need to iterate the handlers registered with the system must be granted
ServicePermission[org.osgi .service.event.EventHandler, GET] to retrieve the event handlers from
the service registry.

Only a bundle that contains an Event Admin service implementation should be granted
ServicePermission[org.osgi .service.event.EventAdmin, REGISTER] to register the event channel
admin service.

113.10.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain will be on the stack
above the handler's Protection Domain. In the case of a synchronous event, the event publisher's
protection domain can also be on the stack.

Therefore, if a handler needs to perform a secure operation using its own privileges, it must invoke
the doPriv i leged method to isolate its security context from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPriv i leged call.

113.11 org.osgi.service.event

Event Admin Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.3,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.3,1 .4)"

113.11.1 Summary

• Event - An event.
• EventAdmin - The Event Admin service.
• EventConstants - Defines standard names for EventHandler properties.
• EventHandler - Listener for Events.
• EventPropert ies - The properties for an Event.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Compendium Release 6 Page 379

• TopicPermission - A bundle's authority to publish or subscribe to event on a topic.

113.11.2 public class Event
An event. Event objects are delivered to EventHandler services which subscribe to the topic of the
event.

Concurrency Immutable

113.11.2.1 public Event(String topic,Map<String,?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. If
the specified properties is an EventProperties object, then it will be directly used. Otherwise, a copy
of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

Since 1.2

113.11.2.2 public Event(String topic,Dictionary<String,?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. A
copy of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

113.11.2.3 public final boolean containsProperty(String name)

name The name of the property.

□ Indicate the presence of an event property. The event topic is present using the property name
"event.topics".

Returns true if a property with the specified name is in the event. This property may have a nul l value. fa lse
otherwise.

Since 1.3

113.11.2.4 public boolean equals(Object object)

object The Event object to be compared.

□ Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and the properties are equal.
The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a Event and is equal to this object; fa lse otherwise.

113.11.2.5 public final Object getProperty(String name)

name The name of the property to retrieve.

□ Retrieve the value of an event property. The event topic may be retrieved with the property name
"event.topics".

Returns The value of the property, or nul l if not found.

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 380 OSGi Compendium Release 6

113.11.2.6 public final String[] getPropertyNames()

□ Returns a list of this event's property names. The list will include the event topic property name
"event.topics".

Returns A non-empty array with one element per property.

113.11.2.7 public final String getTopic()

□ Returns the topic of this event.

Returns The topic of this event.

113.11.2.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.11.2.9 public final boolean matches(Filter filter)

filter The filter to test.

□ Tests this event's properties against the given filter using a case sensitive match.

Returns true If this event's properties match the filter, false otherwise.

113.11.2.10 public String toString()

□ Returns the string representation of this event.

Returns The string representation of this event.

113.11.3 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain the Event Admin service
and call one of the event delivery methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

113.11.3.1 public void postEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.11.3.2 public void sendEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate synchronous delivery of an event. This method does not return to the caller until delivery of
the event is completed.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.11.4 public interface EventConstants
Defines standard names for EventHandler properties.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Compendium Release 6 Page 381

Provider Type Consumers of this API must not implement this type

113.11.4.1 public static final String BUNDLE = "bundle"

The Bundle object of the bundle relevant to the event. The type of the value for this event property
is Bundle.

Since 1.1

113.11.4.2 public static final String BUNDLE_ID = "bundle.id"

The Bundle id of the bundle relevant to the event. The type of the value for this event property is
Long .

Since 1.1

113.11.4.3 public static final String BUNDLE_SIGNER = "bundle.signer"

The Distinguished Names of the signers of the bundle relevant to the event. The type of the value
for this event property is Str ing or Collect ion of Str ing .

113.11.4.4 public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"

The Bundle Symbolic Name of the bundle relevant to the event. The type of the value for this event
property is Str ing .

113.11.4.5 public static final String BUNDLE_VERSION = "bundle.version"

The version of the bundle relevant to the event. The type of the value for this event property is Ver-
sion.

Since 1.2

113.11.4.6 public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"

Event Handler delivery quality value specifying the Event Handler requires asynchronously de-
livered events be delivered in order. Ordered delivery is the default for asynchronously delivered
events.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_UNORDERED. However,
if both this value and DELIVERY_ASYNC_UNORDERED are specified for an event handler, this val-
ue takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.11.4.7 public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"

Event Handler delivery quality value specifying the Event Handler does not require asynchronously
delivered events be delivered in order. This may allow an Event Admin implementation to optimize
asynchronous event delivery by relaxing ordering requirements.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_ORDERED. How-
ever, if both this value and DELIVERY_ASYNC_ORDERED are specified for an event handler,
DELIVERY_ASYNC_ORDERED takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.11.4.8 public static final String EVENT = "event"

The forwarded event object. Used when rebroadcasting an event that was sent via some other event
mechanism. The type of the value for this event property is Object .

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 382 OSGi Compendium Release 6

113.11.4.9 public static final String EVENT_DELIVERY = "event.delivery"

Service Registration property specifying the delivery qualities requested by an Event Handler ser-
vice.

Event handlers MAY be registered with this property. Each value of this property is a string specify-
ing a delivery quality for the Event handler.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also DELIVERY_ASYNC_ORDERED, DELIVERY_ASYNC_UNORDERED

Since 1.3

113.11.4.10 public static final String EVENT_FILTER = "event.filter"

Service Registration property specifying a filter to further select Event s of interest to an Event Han-
dler service.

Event handlers MAY be registered with this property. The value of this property is a string contain-
ing an LDAP-style filter specification. Any of the event's properties may be used in the filter expres-
sion. Each event handler is notified for any event which belongs to the topics in which the handler
has expressed an interest. If the event handler is also registered with this service property, then the
properties of the event must also match the filter for the event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a warning should be
logged.

The value of this property must be of type Str ing .

See Also Event, Filter

113.11.4.11 public static final String EVENT_TOPIC = "event.topics"

Service registration property specifying the Event topics of interest to an Event Handler service.

Event handlers SHOULD be registered with this property. Each value of this property is a string that
describe the topics in which the handler is interested. An asterisk ('*') may be used as a trailing wild-
card. Event Handlers which do not have a value for this property must not receive events. More pre-
cisely, the value of each string must conform to the following grammar:

 topic-description := '*' | topic ('/*')?
 topic := token ('/' token)*

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Event

113.11.4.12 public static final String EXCEPTION = "exception"

An exception or error. The type of the value for this event property is Throwable .

113.11.4.13 public static final String EXCEPTION_CLASS = "exception.class"

The name of the exception type. Must be equal to the name of the class of the exception in the event
property EXCEPTION. The type of the value for this event property is Str ing .

Since 1.1

113.11.4.14 public static final String EXCEPTION_MESSAGE = "exception.message"

The exception message. Must be equal to the result of calling getMessage() on the exception in the
event property EXCEPTION. The type of the value for this event property is Str ing .

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Compendium Release 6 Page 383

113.11.4.15 public static final String EXECPTION_CLASS = "exception.class"

This constant was released with an incorrectly spelled name. It has been replaced by
EXCEPTION_CLASS

Deprecated As of 1.1, replaced by EXCEPTION_CLASS

113.11.4.16 public static final String MESSAGE = "message"

A human-readable message that is usually not localized. The type of the value for this event proper-
ty is Str ing .

113.11.4.17 public static final String SERVICE = "service"

A service reference. The type of the value for this event property is ServiceReference.

113.11.4.18 public static final String SERVICE_ID = "service.id"

A service's id. The type of the value for this event property is Long .

113.11.4.19 public static final String SERVICE_OBJECTCLASS = "service.objectClass"

A service's objectClass. The type of the value for this event property is Str ing[] .

113.11.4.20 public static final String SERVICE_PID = "service.pid"

A service's persistent identity. The type of the value for this event property is Str ing or Collect ion of
Str ing .

113.11.4.21 public static final String TIMESTAMP = "timestamp"

The time when the event occurred, as reported by System.currentTimeMil l is() . The type of the val-
ue for this event property is Long .

113.11.5 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry and are notified with an
Event object when an event is sent or posted.

EventHandler objects can inspect the received Event object to determine its topic and properties.

EventHandler objects must be registered with a service property EventConstants.EVENT_TOPIC
whose value is the list of topics in which the event handler is interested.

For example:

 String[] topics = new String[] {"com/isv/*"};
 Hashtable ht = new Hashtable();
 ht.put(EventConstants.EVENT_TOPIC, topics);
 context.registerService(EventHandler.class.getName(), this, ht);

Event Handler services can also be registered with an EventConstants.EVENT_FILTER service prop-
erty to further filter the events. If the syntax of this filter is invalid, then the Event Handler must be
ignored by the Event Admin service. The Event Admin service should log a warning.

Security Considerations. Bundles wishing to monitor Event objects will require
ServicePermission[EventHandler,REGISTER] to register an EventHandler service. The bundle must
also have TopicPermission[topic,SUBSCRIBE] for the topic specified in the event in order to receive
the event.

See Also Event

Concurrency Thread-safe

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 384 OSGi Compendium Release 6

113.11.5.1 public void handleEvent(Event event)

event The event that occurred.

□ Called by the EventAdmin service to notify the listener of an event.

113.11.6 public class EventProperties
implements Map<String,Object>
The properties for an Event. An event source can create an EventProperties object if it needs to reuse
the same event properties for multiple events.

The keys are all of type Str ing . The values are of type Object . The key "event.topics" is ignored as
event topics can only be set when an Event is constructed.

Once constructed, an EventProperties object is unmodifiable. However, the values of the map used
to construct an EventProperties object are still subject to modification as they are not deeply copied.

Since 1.3

Concurrency Immutable

113.11.6.1 public EventProperties(Map<String,?> properties)

properties The properties to use for this EventProperties object (may be nul l).

□ Create an EventProperties from the specified properties.

The specified properties will be copied into this EventProperties. Properties whose key is not of type
Str ing will be ignored. A property with the key "event.topics" will be ignored.

113.11.6.2 public void clear()

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.3 public boolean containsKey(Object name)

name The property name.

□ Indicates if the specified property is present.

Returns true If the property is present, fa lse otherwise.

113.11.6.4 public boolean containsValue(Object value)

value The property value.

□ Indicates if the specified value is present.

Returns true If the value is present, fa lse otherwise.

113.11.6.5 public Set<Map.Entry<String,Object>> entrySet()

□ Return the property entries.

Returns A set containing the property name/value pairs.

113.11.6.6 public boolean equals(Object object)

object The EventPropert ies object to be compared.

□ Compares this EventPropert ies object to another object.

The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a EventPropert ies and is equal to this object; fa lse otherwise.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Compendium Release 6 Page 385

113.11.6.7 public Object get(Object name)

name The name of the specified property.

□ Return the value of the specified property.

Returns The value of the specified property.

113.11.6.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.11.6.9 public boolean isEmpty()

□ Indicate if this properties is empty.

Returns true If this properties is empty, fa lse otherwise.

113.11.6.10 public Set<String> keySet()

□ Return the names of the properties.

Returns The names of the properties.

113.11.6.11 public Object put(String key,Object value)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.12 public void putAll(Map<? extends String,? extends Object> map)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.13 public Object remove(Object key)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.11.6.14 public int size()

□ Return the number of properties.

Returns The number of properties.

113.11.6.15 public String toString()

□ Returns the string representation of this object.

Returns The string representation of this object.

113.11.6.16 public Collection<Object> values()

□ Return the properties values.

Returns The values of the properties.

113.11.7 public final class TopicPermission
extends Permission
A bundle's authority to publish or subscribe to event on a topic.

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 386 OSGi Compendium Release 6

A topic is a slash-separated string that defines a topic.

For example:

 org/osgi/service/foo/FooEvent/ACTION

TopicPermission has two actions: publ ish and subscr ibe .

Concurrency Thread-safe

113.11.7.1 public static final String PUBLISH = "publish"

The action string publ ish .

113.11.7.2 public static final String SUBSCRIBE = "subscribe"

The action string subscr ibe .

113.11.7.3 public TopicPermission(String name,String actions)

name Topic name.

actions publ ish ,subscr ibe (canonical order).

□ Defines the authority to publish and/or subscribe to a topic within the EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used. For example:

 org/osgi/service/fooFooEvent/ACTION
 com/isv/*
 *

A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate Top-
icPermssion for that topic.

113.11.7.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

□ Determines the equality of two TopicPermission objects. This method checks that specified Top-
icPermission has the same topic name and actions as this TopicPermission object.

Returns true if obj is a TopicPermission , and has the same topic name and actions as this TopicPermission ob-
ject; fa lse otherwise.

113.11.7.5 public String getActions()

□ Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order: publ ish ,subscr ibe .

Returns Canonical string representation of the TopicPermission actions.

113.11.7.6 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

113.11.7.7 public boolean implies(Permission p)

p The target permission to interrogate.

□ Determines if the specified permission is implied by this object.

Event Admin Service Specification Version 1.3 org.osgi.service.event

OSGi Compendium Release 6 Page 387

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermission actions must either match or allow for the list of the target object to imply
the target TopicPermission action.

 x/y/*,"publish" -> x/y/z,"publish" is true
 *,"subscribe" -> x/y,"subscribe" is true
 *,"publish" -> x/y,"subscribe" is false
 x/y,"publish" -> x/y/z,"publish" is false

Returns true if the specified TopicPermission action is implied by this object; fa lse otherwise.

113.11.7.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing TopicPermission objects.

Returns A new PermissionCol lect ion object.

org.osgi.service.event Event Admin Service Specification Version 1.3

Page 388 OSGi Compendium Release 6

Deployment Admin Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 389

114 Deployment Admin Specification

Version 1.1

114.1 Introduction
The ability to install new software components after the time of manufacture is of increasing inter-
est to manufacturers, operators, and end users. End users already are, or soon will be, accustomed to
installing applications or services on their devices from remote servers.

The OSGi Framework provides mechanisms to manage the lifecycle of bundles, configuration ob-
jects, and permission objects, but the overall consistency of the runtime configuration is the respon-
sibility of the management agent. In other words, the management agent decides to install, update, or
uninstall bundles, create or delete configuration or permission objects, and manage other resource
types.

The task of the management agent is extensive because it must track the sometimes fine-grained
dependencies and constraints between the different resource types. This model, though extremely
flexible, leaves many details up to the implementation significantly hindering the inter-operability
of devices because it does not unify the management aspects from the management systems point
of view. This specification, therefore, introduces the Deployment Admin service that standardizes the
access to some of the responsibilities of the management agent: that is, the life-cycle management of
interlinked resources on an OSGi Framework. The role of the Deployment Admin service is depicted
in Figure 114.1.

Figure 114.1 Deployment Admin role

Management
Agent Impl

Framework Configuration
Admin

Conditional
Permission
Admin

Other Resource
ManagersOther Resource

Managers

Deployment
Admin

Remote Manager
remotely manage

114.1.1 Essentials

• Installing/Uninstalling - Provide a Deployment Package concept to install and uninstall bundles
and related resources on an OSGi Framework as an atomic unit.

• Tamper Detection - Provide detection of changes to a Deployment Package.
• Securing - Provide a security model that allows Operators to control the Deployment Packages

that are installed on an OSGi Framework.
• Media Independence - Deployment Packages must have the capacity to load from different media

such as CD-ROM, over the air, wireless, etc.
• Management - Management of a repository of Deployment Packages must be possible locally on

the device as well as remotely.

Introduction Deployment Admin Specification Version 1.1

Page 390 OSGi Compendium Release 6

• Customizing - The author of a Deployment Package must be permitted to customize the environ-
ment during the installation and uninstallation operations.

• Extending - The resource types that are used in a Deployment Package must be easy to extend.

114.1.2 Entities

• Resource - A file in a Deployment Package that is processed to create artifacts in the Framework.
For example, bundles, configurations, and permissions are different resources.

• Deployment Admin Service - The service that is used to install and uninstall Deployment Packages,
as well as to provide information about the repository of Deployment Packages.

• Resource Processor - A service that can handle the lifecycle of a specific resource type. It processes a
resource to create a number of artifacts that are removed when the resource is dropped.

• Deployment Package - A group of resources that must be treated as a unit. Unbreakable dependen-
cies exist among these resources.

• Artifact - A construct that is created from a Resource in a Deployment Package. A resource can
have zero or more artifacts related to it. Artifacts do not have a common interface because their
nature differs and their existence is abstracted by the Resource Processor services. Artifacts must
be removed when their related resources are dropped. An example of an artifact is a Configura-
tion object that is created from an configuration file in a Deployment Package.

• Customizer - A bundle carried in a Deployment Package that can perform initialization during an
install operation and cleanup during an uninstall operation.

• Fix Package - A Deployment Package that is an update to an resident Deployment Package, which
does not carry some resources because they are unchanged.

Figure 114.2 Deployment Admin Service, org.osgi.service.deploymentadmin package

Deployment
Admin

Deployment
Admin Impl

Resource
Processor

Resource
Processor Impl

Deployment
Package

Manager Impl

Deployment
Package Impl 1

*

*

manages

holds

processes

* Resource
Reference

1

*

Artifact Impl

1

1

1

*

114.1.3 Synopsis
A developer can package a number of resources in a Deployment Package. A Deployment Package
is stored in a JAR file, with a format that is similar to bundles. A Deployment Package JAR can be
installed via the Deployment Admin service via an input stream. The Deployment Admin service
manages the bundle resources itself, but processes every other resource in the Deployment Pack-
age by handing them off to a Resource Processor service that is designated for that resource. The Re-
source Processor service will then process the resource to create a number of artifacts.

The uninstallation and update of a Deployment Package works in a similar manner. All Resource
Processor services are notified about any resources that are dropped or changed.

Deployment Admin Specification Version 1.1 Deployment Package

OSGi Compendium Release 6 Page 391

If all resources have been processed, the changes are committed. If an operation on the Deployment
Admin service fails, all changes are rolled back. The Deployment Admin service is not, however,
guaranteed to support all features of transactions.

114.2 Deployment Package
A Deployment Package is a set of related resources that need to be managed as a unit rather than indi-
vidual pieces. For example, a Deployment Package can contain both a bundle and its configuration
data. The resources of a Deployment Package are tightly coupled to the Deployment Package and
cannot be shared with other Deployment Packages.

A Deployment Package is not a script that brings the system from one consistent state to another;
several deployment packages may be needed to achieve a new consistent state. Like a bundle, a De-
ployment Package does not have to be self-contained. Its bundle resources can have dependencies
on Java packages and services provided by other Deployment Packages.

For example, a suite of games shares some parts that are common to both games. The suite contains
two games: Chess (com.acme.chess) and Backgammon (com.acme.backg). Both share a top-score
database as well as a 3D graphic library.

• com.third.3d - The 3D graphic library comes from a third-party provider. It is a Deployment Pack-
age of its own, composed of several bundles and possible configuration objects.

• com.acme.score - The top-score database would also be its own Deployment Package, and would
in fact be optional. It offers a service for storing top scores, but games can function without this
service.

Each game is a Deployment Package, allowing them to be installed independently. Alternatively,
the two games can be packaged into the same Deployment Package, but in this case they must be in-
stalled and removed together and can no longer be deployed independently.

These two different packaging strategies cannot be used simultaneously. Once the games are de-
ployed separately, they can no longer be grouped later in an update, because that action would move
ownership of the bundle resource to another Deployment Package which is specifically not allowed.
A bundle resource can belong to only one Deployment Package.

These two packaging scenarios are depicted in Figure 114.3.

Figure 114.3 Packaged game

com.acme.backg

com.acme.chess

deployment package
resource

com.acme.score

com.third.3d

com.acme.chess

com.acme.backg

packaged separatelypackaged together

dependency

Deployment Packages are managed as first-class citizens during runtime, similar to bundles. The De-
ploymentPackage object represents this concept in runtime.

114.2.1 Resources
A Deployment Package consists of installable resources. Resources are described in the Name sections
of the Manifest. They are stored in the JAR file under a path. This path is called the resource id.

Deployment Package Deployment Admin Specification Version 1.1

Page 392 OSGi Compendium Release 6

Subsets of these resources are the bundles. Bundles are treated differently from the other resources
by the Deployment Admin service. Non-bundle resources are called processed resources.

Bundles are managed by the Deployment Admin service directly. When installing a new bundle, the
Deployment Admin service must set the bundle location to the following URL:

location ::= 'osgi-dp:' bsn
bsn ::= unique-name // See General Syntax Definitions in Core

The bsn stands for the bundle's Bundle Symbolic Name, without any parameters, which implies that
only a single version of a bundle can be installed at any moment in time. The osgi-dp: scheme is not
required to have a valid URL handler.

Processed resources are not managed directly by the Deployment Admin service; their management
must be handed off to a Resource Processor service that is selected in the Name section. The logical
structure and processing of resources is depicted in Figure 114.4.

Figure 114.4 Structure of a Deployment Package

Deployment
Package

Resource
Processor

ResourceBundle ResourceManifest

bundle
symbolic name

processed resourcesmeta data

1

1 *

1 1

*
Signatures

1

*

ordered

describes

pr
oc

es
se

db
y

114.2.2 Atomicity and Sharing
A Deployment Package is a reified concept, like a bundle, in an OSGi Framework. It is created and
managed by the Deployment Admin service. As a unit, a Deployment Package should be installed or
uninstalled atomically.

Deployment packages provide an ownership model for resources installed in an OSGi Framework. A
Deployment Package contains resources, which once processed, will result in the creation of a num-
ber of artifacts in the OSGi Platform such as:

• Installed bundles
• Configuration objects
• System properties
• Certificates
• Wiring schemes

A Deployment Package will own its resources. If a Deployment Package is uninstalled, all its re-
sources, and thus its artifacts, must be removed as well. The ownership model follows a no-sharing
principle: equal resources are not shared between deployment packages.

The meaning of "equal" is dependent on the resource type. For example, two bundles are considered
equal if their bundle symbolic name is equal, regardless of the version.

Deployment Admin Specification Version 1.1 File Format

OSGi Compendium Release 6 Page 393

A sharing violation must be considered an error. The install or update of the offending Deployment
Package must fail if a resource would be affected by another Deployment Package. The verification
of this rule is delegated to the Resource Processor services, or the Deployment Admin service in case
of bundles.

For example, a Deployment Package could be used to install bundles and configuration objects
for Managed Services (singleton configurations). Because of the no-sharing principle, an installed
bundle must belong to one, and only one, Deployment Package (as defined by its Bundle Symbolic
Name). A singleton configuration can be set only when the associated bundle is in the same Deploy-
ment Package. Trying to install a Deployment Package when one of the bundles or one of the config-
uration objects is already present and associated with another Deployment Package is an error, and
the install must fail in such a case.

This strong no-sharing rule ensures a clean and robust lifecycle. It allows the simple cleanup rule:
the Deployment Package that installs a resource is the one that must uninstall it.

114.2.3 Naming
Every Deployment Package must have a name and a version. Package authors should use unique re-
verse domain naming, like the naming used for Java packages. The version syntax must follow the
rules defined in Version in [2] ; the version must be specified.

The name is set with a Manifest header. This name is used to detect whether an install is an update
(an Deployment Package has the given name) or an install (no such Deployment Package exists).
The name must be compared in a case-sensitive manner.

Together, the name and version specify a unique Deployment Package; a device will consider any
Deployment Package with the same name and version pairs to be identical. Installing a Deployment
Package with a name version identical to the existing Deployment Package must not result in any
actions.

Deployment packages with the same name but different versions are considered to be versions of the
same deployment package. The Deployment Admin service maintains a repository of installed De-
ployment Packages. This set must not contain multiple versions of the same Deployment Package.
Installing a deployment package when a prior or later version was already present must cause re-
placement of the existing deployment package. In terms of version, this action can be either an up-
grade or downgrade.

114.3 File Format
A Deployment Package is a standard JAR file as specified in [1] JAR File Specification. The extension of
a Deployment Package JAR file name should be .dp . The MIME type of a Deployment Package JAR
should be:

application/vnd.osgi.dp

For example, valid Deployment Package JAR names are:

com.acme.chess.dp
chess.dp

A Deployment Package must be formed in such a way that it can be read with a Jar InputStream ob-
ject. Therefore, the order of the files in the JAR file is important. The order must be:

1. META-INF/MANIFEST.MF - A Deployment Package must begin with a standard Java Manifest file.
This rule is not explicitly defined in the Java JAR file specification; it is implied, however, by the
known Jar InputStream class implementations.

File Format Deployment Admin Specification Version 1.1

Page 394 OSGi Compendium Release 6

2. META-INF/*.SF, META-INF/*.DSA, META-INF/*.RS - If the Deployment Package is signed, sub-
sequent files in the JAR must be the signature files as defined in the manifest specification. The
signature files are not considered resources. Signing is discussed in Signing on page 394.

3. Localization files - Any manifest localization files are normally stored in the OSGI-INF directory.
Localization files must precede the other files because the resource processors can require local-
ized information.

4. Bundles must come before any other resource types so that they can be installed before any
processed resources.

5. Resources - Any processed resources needed for this package. Resources are processed in the order
in which they appear in the JAR file, and dropped in reverse order.

The order of all the resources in the JAR file is significant, and is called the resource order. The pur-
pose of the resource order is to allow the JAR to be processed as a stream. It is not necessary to buffer
the input stream in memory or to hard disk, or to allow random access to its contents. The specifica-
tion allows access to the stream sequentially. To increase the determinism, the resource order must
also determine the processing order of the bundles and the resources.

The format is shown graphically in Figure 114.5.

Figure 114.5 Deployment Package JAR format

Manifest

signature files

bundles

processed

resources

1

2n

m

q
resource
order

localization files

r

114.3.1 Signing
Deployment packages are optionally signed by JAR signing, compatible with the operation of the
standard java.uti l . jar. Jar InputStream class, i.e. as defined in JAR Structure and Manifest of [2] . This
compatibility requires that the manifest must be the first file in the input stream, and the signature
files must follow directly thereafter.

A Deployment Package must follow the same rules for signing as bundles, described in the Frame-
work specification, Digitally Signed JAR Files in [2] .

The Deployment Admin service must reject a Deployment Package that has an invalid signature.

114.3.2 Path Names
Path names must be limited to remove some of the unnecessary complexities that are caused by
path names that can contain any Unicode character. Therefore, a path name must not contain any
character except:

[A-Za-z0-9_.-]

Directories are separated by a solidus character (' / ' \u002F).

Deployment Admin Specification Version 1.1 File Format

OSGi Compendium Release 6 Page 395

114.3.3 Deployment Package Manifest
The Manifest of a Deployment Package consists of a global section and separate sections for each re-
source contained within it, called the Name sections. The global section of a Deployment Package
Manifest can contain the following headers that have a defined meaning in this specification:

• DeploymentPackage-SymbolicName - The name of the deployment package as a reverse do-
main name. For example, com.acme.chess . See further DeploymentPackage-SymbolicName on page
396.

• DeploymentPackage-Version - The version of the deployment package as defined in [2] . See fur-
ther DeploymentPackage-Version on page 397.

• DeploymentPackage-FixPack - Marks this deployment package as a partial update to a resident
deployment package. See Fix Package on page 400.

The following headers provide information about the Deployment Package, but are not interpreted
by the Deployment Admin service.

• DeploymentPackage-Name - A human readable of this deployment package. This name can be lo-
calized.

• DeploymentPackage-Copyright - Specifies the copyright statement for this Deployment Package.
• DeploymentPackage-ContactAddress - How to contact the vendor/developer of this Deployment

Package.
• DeploymentPackage-Description - A short description of this Deployment Package.
• DeploymentPackage-DocURL - A URL to any documentation that is available for this Deployment

Package. The URL can be relative to the JAR file.
• DeploymentPackage-Icon - A URL to an image file that is an icon for this deployment package. The

URL can be relative to the JAR file.
• DeploymentPackage-Vendor - The vendor of the Deployment Package.
• DeploymentPackage-License - A URL to a license file. The URL can be relative to the Deployment

Package JAR file.
• DeploymentPackage-RequiredStorage - The minimum amount of persistent storage required by the

deployment package after successful install or update.

As with any JAR file Manifest, additional headers can be added and must be ignored by the De-
ployment Admin service. If any fields have human readable content, localization can be provided
through property files as described in Localization in [2] . The Deployment Admin service must al-
ways use the raw, untranslated version of the header values.

For example, the global section of a Deployment Package Manifest could look like:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.third._3d
DeploymentPacakge-Version: 1.2.3.build22032005
DeploymentPackage-Copyright: ACME Inc. (c) 2003
↵

Additionally, the Deployment Package Manifest must carry a Name section for each resource in the
JAR file (except the resources in the META-INF directory). Each name section must start with an
empty line (carriage return and line feed, shown as ↵ when its usage could be ambiguous).

The Name section must start with a Name header that contains the path name of the resource. This
path name is also used as resource id. The path name must be constructed with the characters as de-
fined in Path Names on page 394. For example:

Name: bundles/3dlib.jar

File Format Deployment Admin Specification Version 1.1

Page 396 OSGi Compendium Release 6

The name section can include any additional relevant meta data for the named resource. For bun-
dles, only the specification of the Bundle-Symbol icName and Bundle-Version headers are required,
but other headers can be added. Unrecognized headers are allowed and must be ignored by the De-
ployment Admin service. The Name section is also used by the JAR signing to include digests of the
actual resources.

The following headers are architected for the Name section in the manifest of a deployment pack-
age:

• Bundle-SymbolicName - Only for bundle resources. This header must be identical to the Bundle
Symbolic Name of the named bundle. If there is a discrepancy, the install of the Deployment
Package must fail. If the bundle resource has no Bundle-SymbolicName in its manifest, however,
the Deployment Admin must use the given symbolic name for the calculation of the location of
this bundle.

• Bundle-Version - Only for bundle resources. This header must be identical to the bundle version of
the named bundle. Its syntax must follow the version syntax as defined in the Framework speci-
fication. The installation must fail if incorrect.

• DeploymentPackage-Missing - (true|false) Indicates that the resource is logically part of the De-
ployment Package but that a previous version of the Deployment Package already contained this
resource there is no data for this resource. See Fix Package on page 400 for a further explana-
tion.

• Resource-Processor - The PID of the Resource Processor service that must install the given resource.
• DeploymentPackage-Customizer - (true|false) Indicates whether this bundle is a customizer bundle

by listing a PID for the customizer service. See a further discussion in Customizer on page 401.

An example Manifest of a Deployment Package that deploys the 3D package, consisting of two bun-
dles and no resources, could look like:

Manifest-Version: 1.0
DeploymentPackage-Icon: %icon
DeploymentPackage-SymbolicName: com.third._3d
DeploymentPacakge-Version: 1.2.3.build22032005
↵
Name: bundles/3dlib.jar
SHA-1-Digest: MOez1l4gXHBo8ycYdAxstK3UvEg=
Bundle-SymbolicName: com.third._3d
Bundle-Version: 2.3.1
↵
Name: bundles/3dnative.jar
SHA-1-Digest: N8Ow2UY4yjnHZv5zeq2I1Uv/+uE=
Bundle-SymbolicName: com.third._3d.native
Bundle-Version: 1.5.3
↵
Name: OSGI-INF/autoconf.xml
SHA-1-Digest: M78w24912HgiZv5zeq2X1Uv-+uF=
Resource-Processor: org.osgi.deployment.rp.autoconf
↵

114.3.4 Deployment Package Headers
This section contains a detailed description of the different headers for a Deployment Package with
their value syntax.

114.3.4.1 DeploymentPackage-SymbolicName

The name of the deployment package. A name must follow the same rules as Java packages. The
grammar is as follows:

Deployment Admin Specification Version 1.1 File Format

OSGi Compendium Release 6 Page 397

DeploymentPackage-SymbolicName ::= unique-name
 // See General Syntax Definitions in Core

This header is mandatory and must not be localized.

An example is:

DeploymentPackage-SymbolicName: com.acme.chess

114.3.4.2 DeploymentPackage-Version

This header defines the version of the deployment package. The syntax follows the standard OSGi
Framework rules for versions.

DeploymentPackage-Version ::= version // See Version in Core

This header is mandatory and must follow the syntax of the version. It must not be localized.

An example:

DeploymentPackage-Version: 1.2.3.build200501041230

114.3.4.3 DeploymentPackage-FixPack

A fix package can be distinguished from the full format Deployment Package through the presence
of the DeploymentPackage-FixPack header, contained within the global section of the Manifest. The
format of this header is:

DeploymentPackage-FixPack ::= version-range
 // See Version Range in Core

The version range syntax is identical to the Framework module's layer version range as defined in [2]
. For example, a Manifest header that denotes a fix package which is only applicable to versions 1.3
through 3.4 of a given deployment package looks like:

DeploymentPackage-FixPack: [1.3,3.4]

See Fix Package on page 400 for more information about Fix Packages.

114.3.4.4 DeploymentPackage-Icon

This header contains a URL (absolute or relative to the JAR file) to an image resource that represents
this deployment package. Implementations should support at least the HTTP protocol as well as the
PNG image file. This URL can be localized. The Deployment Admin service must maintain a local
copy of the image resource. A URL to this local resource can be obtained with the getIcon() method.

DeploymentPackage-Icon ::= url
url ::= <absolute or relative URL or localization name>

For example:

DeploymentPackage-Icon: %icon

114.3.4.5 DeploymentPackage-Name

This header is available as the DeploymentPackage getDisplayName method. It provides a human
readable name that can be localized. It is available through the getDisplayName() method. This
name can be localized.

DeploymentPackage ::= name

File Format Deployment Admin Specification Version 1.1

Page 398 OSGi Compendium Release 6

name ::= <any value or a localization name>

Example:

DeploymentPackage: 3D-Library

114.3.4.6 DeploymentPackage-RequiredStorage

This header specifies the minimum amount of persistent storage required by the deployment pack-
age after successful install or update. The value is an integer that represent kilo-bytes. The value
includes the size of the bundles and any persistent storage needs and storage needed to run the re-
source processors and customizers. An installation agent can verify the availability of sufficient
memory before installing the package. A fix-pack must specify the minimum memory requirements
of the complete deployment package after the it is applied.

DeploymentPackage-RequiredStorage ::= number

Example

DeploymentPackage-RequiredStorage: 15

114.3.4.7 Bundle-SymbolicName (Name Section)

The Bundle-Symbol icName header must be a copy of the Bundle-Symbol icName header in the
named bundle, including any parameters. This header must match the Bundle-SymbolicName of the
actual bundle; if it does not, the install or update must fail. The parameters, however, can differ be-
tween updates. The header has the following format:

Bundle-SymbolicName: unique-name (';' parameter) *

If the bundle resource has no Bundle-SymbolicName header, the given symbolic name must be used
to calculate the location of the bundle.

For example:

Name: bundles/http.jar
Bundle-SymbolicName: com.acme.http; singleton=true

114.3.4.8 Bundle-Version (Name Section)

The Bundle-Version header must be equal to the Bundle-Version header in the named bundle. It
must follow the format as defined for the version clause in [2] .

Bundle-Version ::= version // See Version in Core

A mismatch between the version indicated in the Manifest of the Deployment Package and the actu-
al value in the Bundle's Manifest must cause an installation or update to fail.

For example

Bundle-Version: 1.2

114.3.4.9 Resource-Processor (Name Section)

The Resource-Processor header selects an OSGi Resource Processor service for this resource by se-
lecting the Resource-Processor service with the given PID as service. id service property. This header
is optional, so that the Deployment Package can carry resources that are not processed: for example,
license and documentation files. The format of the header is:

Resource-Processor ::= pid // See General Syntax Definitions in Core

Deployment Admin Specification Version 1.1 File Format

OSGi Compendium Release 6 Page 399

For example:

Name: certificate/certificates.xml
SHA-1-Digest: M78w249126182Ak5zeq2X1Uv-+uF=
Resource-Processor: com.securitas.keystore

In the example, the cert i f icates.xml in the cert i f icate directory will be processed by the Resource
Processor service registered with the service property service.pid set to com.securitas.keystore . The
service.pid is a standard Framework property to uniquely identify a service instance called a Persis-
tent IDentity a.k.a. PID.

114.3.4.10 DeploymentPackage-Missing (Name Section)

Fix packs (see Fix Package on page 400) are Deployment Packages that do not contain all the re-
sources for a full install. This header indicates the Bundle Symbolic Name of a bundle that is not
present in the enclosing JAR file but should be part of a prior version of this Deployment Package.
The format is:

DeploymentPackage-Missing ::= 'true' | 'false'

The default value for this header is fa lse . An error results if this header is true and the resource is
not present in the existing Deployment Package.

For example:

Name: bundles/3dlib.jar
DeploymentPackage-Missing: true
Bundle-SymbolicName: com.acme.http
Bundle-Version: 3.0

114.3.4.11 DeploymentPackage-Customizer (Name Section)

This header is used to indicated that a resource is a customizer bundle, as described in Customizer on
page 401. The syntax of this optional header is:

DeploymentPackage-Customizer ::= 'true' |'false'

The default for this header is fa lse .

For example:

Name: bundles/3dlibcustomizer.jar
DeploymentPackage-Customizer: true
Bundle-SymbolicName: com.acme.customizer
Bundle-Version: 3.6

114.3.5 Localization
All human readable headers can be localized using the same mechanism as is used to localize the
manifest of a bundle. This mechanism is described in Localization of the [2] .

For example, a Manifest could look like:

Manifest-Version: 1.0
DeploymentPackage-ManifestVersion: 1
DeploymentPackage-SymbolicName: com.third._3d
DeploymentPacakge-Version: 1.2.3.build22032005
DeploymentPackage-Copyright: %copyright
DeploymentPackage-Vendor: %vendor

Fix Package Deployment Admin Specification Version 1.1

Page 400 OSGi Compendium Release 6

DeploymentPackage-License: %licenseurl
DeploymentPackage-Description: %3dlib
DeploymentPackage-Icon: %iconurl
DeploymentPackage-Name: %name
Bundle-Localization: OSGI-INF/l10n/dp
↵
Name: bundles/3dlib.jar
SHA-1-Digest: MOez1l4gXHBo8ycYdAxstK3UvEg=
Bundle-SymbolicName: com.third._3d
Bundle-Version: 2.3.1
↵
Name: OSGI-INF/autoconf.xml
SHA-1-Digest: M78w24912HgiZv5zeq2X1Uv-+uF=
Resource-Processor: org.osgi.deployment.rp.autoconf
↵
Name: icon_nl.gif
SHA-1-Digest: n72w21124hGiZV5zQeAXxUvaaUf=
↵
Name: OSGI-INF/l10n/dp.properties
SHA-1-Digest: V5zQeAXxUvaaUfn72w21124hGiZ=
↵
Name: OSGI-INF/l10n/dp_nl.properties
SHA-1-Digest: xUvaaUfn72w21124hGiZV5zQeAXx
↵

Different language translations can be provided, such as:

OSGI-INF/l10n/dp.properties:
copyright=ACME Inc. (c) 2005
vendor=ACME Inc.
license=OSGI-INF/license.en.txt
3dlib=High performance graphic library
name=3D-Lib
icon=htpp:/www.acm.com/3dlib/icon.gif

OSGI-INF/l10n/dp_nl.properties:
copyright=ACME Holland BV (c) 2005
vendor=ACME Holland BV.
license=OSGI-INF/licentie.txt
3dlib=Zeer snelle 3D grafische routine bibliotheek
icon = icon_nl.gif
name = 3D-Bibliotheek

The language translation resources should appear in the Name section of the manifest so they can
be signed.

114.4 Fix Package
A Fix Package is a Deployment Package that minimizes download time by excluding resources
that are not required to upgrade or downgrade a Deployment Package. It can only be installed on a
Framework if a previous version of that Deployment Package is already installed. The Fix Package
contains only the changed and new resources. A Fix Package (called the source) therefore must speci-
fy the range of versions that the existing Deployment Package (called the target) must have installed.
This range is specified with the DeploymentPackage-FixPack header in the manifest of the source.

Deployment Admin Specification Version 1.1 Customizer

OSGi Compendium Release 6 Page 401

The Manifest format for a Fix Package is, except for the Fix Package header, the same as for a De-
ployment Package manifest: each resource must be named in the Name section of the Manifest. Re-
sources that are absent, however, must be marked in the named section with the DeploymentPack-
age-Missing header set to true .

Thus, the name sections of the manifest of a Fix Package must list all resources, absent or present,
in order to distinguish between resources that must be removed or resources that are absent. Name
sections that specify the DeploymentPackage-Missing header, however, indicate that the actual con-
tent of the resource is not carried in the Deployment Package. That is, the resource content is absent.
Only a Fix Package is permitted to contain the DeploymentPackage-Missing headers.

For example, the following headers define a valid Fix Package that can update an existing Deploy-
ment Package, only if the version is between 1 and 2.

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.acme.package.chess
DeploymentPackage-Version: 2.1
DeploymentPackage-FixPack: [1,2)
↵
Name: chess.jar
Bundle-SymbolicName: com.acme.bundle.chess
DeploymentPackage-Missing: true
Bundle-Version: 5.7
↵
Name: score.jar
Bundle-SymbolicName: com.acme.bundle.chessscore
Bundle-Version: 5.7
↵

In this example, the Fix Package requires that version 1.x.y of the deployment package is already in-
stalled. The presence of the com.acme.bundle. chess bundle on the Framework is assumed, and it
must be part of the existing Deployment Package com.acme.package.chess . After installation, this
Deployment Package must contain the two listed bundles.

114.5 Customizer
The standardized Deployment Admin service installation and uninstallation functions do not al-
ways cover the needs of a developer. In certain cases, running custom code at install and uninstall
time is required. This need is supported with the Deployment Package Customizer. Typical Cus-
tomizer bundles are:

• Database initialization
• Data conversion
• Wiring

A Customizer bundle is indicated by a DeploymentPackage-Customizer header in a Name section
for a bundle resource. A Deployment Package can have a number of customizers, or none. A Cus-
tomizer bundle must be installed and started by the Deployment Admin service before any of the re-
sources are processed.

As a Customizer bundle is started, it should register one or more Resource Processor services. These
Resource Processor services must only be used by resources originating from the same Deployment
Package. Customizer bundles must never process a resource from another Deployment Package,
which must be ensured by the Deployment Admin service.

Customizers are installed and started in the order that they appear in the Deployment Package.

Deployment Admin Service Deployment Admin Specification Version 1.1

Page 402 OSGi Compendium Release 6

114.5.1 Bundle's Data File Area
Each bundle in the OSGi Framework has its own persistent private storage area. This private area is
accessed by a bundle with the getDataFi le method on the Bundle Context. The location in the file
system where these files are stored is not defined, and thus is implementation-dependent. A Cus-
tomizer bundle, however, typically needs access to this private storage area.

The Deployment Admin service provides access to the Bundle private storage area with the
getDataFi le(Bundle) method on the DeploymentSession object. This method returns a Fi le object to
the root of the data directory.

The location of a bundle's private storage area is impossible to determine because it depends on the
implementation of the OSGi Framework. It is therefore impossible to give a Customizer bundle an
appropriate File Permission for customization of a bundle's data area.

Therefore, if a Customizer bundle calls the getDataFi le method for a specific bundle, the Deploy-
ment Admin must add to the Customizer bundle the required File Permission to access this area.
This File Permission must be removed after the session ends.

114.5.2 Customizers and Update
The lifecycle of a customizer bundle is intertwined with the lifecycle of the resources it processes.
Care should be taken to ensure that updates and uninstallations are handled correctly. A Customiz-
er bundle is updated before a resource is processed implying that a deployment session n is always
dropped or processed by the customizer from session n+1. In this case, a session is an install or unin-
stall of a Deployment or Fix Package.

Figure 114.6 Time line for customizer versus resource versions

Resource R1

Customizer Bundle

Session

time

1.0 2.0 3.0

2.01.0

Stopped Resource Update

In Figure 114.6, Customizer bundle 2.0 must update the resource from version 1.0, and customizer
3.0 must drop the resource from version 2.0. As a consequence, the Customizer bundle that process-
es a resource will be a different version than the one that processes or drops it.

The same ordering issue is also relevant with respect to the Autoconf resources (see Auto Configura-
tion Specification on page 439). Autoconf resources will not be available until the commit method
is called. This condition implies that a customizer cannot receive fresh configuration information
from the Deployment Package.

114.6 Deployment Admin Service
The Deployment Admin service provides the following services:

• Introspecting - Provide information about the Deployment Package repository. Introspecting is
further discussed on Introspection on page 403.

• Install - The installation of a Deployment Package is described in Installing a Deployment Package
on page 406.

• Uninstall - The uninstallation of a Deployment Package is described in Uninstalling a Deployment
Package on page 411.

Deployment Admin Specification Version 1.1 Deployment Admin Service

OSGi Compendium Release 6 Page 403

• Canceling - An ongoing session can be canceled with the cancel method described in Canceling on
page 404.

An important concept of the Deployment Admin service is the session. Installations and uninstal-
lations of Deployment Packages take place inside a session. This session is represented by a De-
ploymentSession object. The session provides access to the Deployment Package that is being
(un)installed, as well as access to the data area of bundles. The transactional aspects of this sessions
are discussed in Sessions on page 404.

114.6.1 Introspection
The Deployment Admin service can provide the list of currently installed Deployment Packages
with the l istDeploymentPackages() method. Given a name, it is also possible to get a Deployment
Package with getDeploymentPackage(Str ing) using the name, or getDeploymentPackage(Bundle)
for the Deployment Package of a specific bundle.

The l istDeploymentPackages() method returns an array of DeploymentPackage objects. This list of
Deployment Packages must contain only valid installed packages. During an installation or upgrade
of an existing package, the target must remain in this list until the installation process is complete,
after which the source replaces the target. If the installation fails, the source must never become vis-
ible, even transiently.

DeploymentPackage objects provide access to the following identity information:

• getName() - The name of the Deployment Package.
• getVersion() - The version of the Deployment Package.

The Deployment Package also provides access to the bundles that are associated with a Deployment
Package.

• getBundleInfos() - Returns an array of information about all bundles that are owned by this De-
ployment Package. The return type is a BundleInfo object that has a getVersion() and getSymbol-
icName() method.

• getBundle(Str ing) - Returns the bundle with the given Bundle Symbolic Name that is associat-
ed with this Deployment Package. As this instance is transient, for example, a bundle can be re-
moved at any time because of the dynamic nature of the OSGi platform, this method may also re-
turn nul l if the bundle is part of this deployment package but is temporarily not defined in the
Framework.

The Deployment Package also provides access to the headers in its Manifest. The global section and
the Name sections are both supported. This information can be used to provide human-readable in-
formation to the end user. If the Manifest is using localization, this information must be returned
in the default locale. It is not possible to specify a specific locale. See Localization on page 399 for
more information.

• getHeader(Str ing) - Provides access to the Deployment Package's Manifest header global section.
Header names must be matched in a case-insensitive manner.

• getResourceHeader(Str ing,Str ing) - Provides access to a header in the Name section. The first ar-
gument specifies the resource id (JAR path); the second argument is the (case insensitive) header
name.

The Deployment Package contains a number of resources. Each resource can be queried for its asso-
ciated Resource Processor service.

• getResourceProcessor(Str ing) - Return the Service Reference of the Resource Processor service
that is associated with the given resource. For a Bundle resource, the returned Resource Processor
must be nul l .

Sessions Deployment Admin Specification Version 1.1

Page 404 OSGi Compendium Release 6

• getResources() - Return an array of resource names. This array must include the Bundle re-
sources.

The isStale() method returns true when DeploymentPackage object is no longer available.

114.6.2 Canceling
An ongoing session can be canceled with the Deployment Admin service's cancel() method. This
method must find the currently executing Resource Processor service and call its cancel method.
The remainder of the session must be immediately rolled back after the Resource Processor returns
from the active method.

114.7 Sessions
The (un)installation or upgrade of a deployment package requires the cooperation and interaction
of a large number of services. This operation, therefore, takes place in a session. A session must be
created by the Deployment Admin service before any activity on behalf of the Deployment Package
takes place, including any bundle installations. Sessions are not visible to the clients of Deployment
Admin service.

Before using a resource processor in a session, the Deployment Admin service must join the Re-
source Processor service to the session. The begin(DeploymentSession) method must be called be-
fore a Resource Processor service calls the process , drop , or dropAl lResources method. For brevity,
this joining is not shown in the following sections, but must be assumed to have taken place before
any of the methods is called.

A Resource Processor has joined the session when it has returned from its begin(DeploymentSession)
method without an Exception being thrown. A Resource Processor service must not be joined to
more than a single session at any moment in time implying that a Resource Processor can assume
that only one install takes place at a time.

A roll back can take place at any moment during a session. It can be caused by a Resource Processor
service that throws an Exception during a method call, or it can be caused by canceling the session
(see Canceling on page 404).

If all methods in a session are executed without throwing Exceptions, then the session must be
committed. Commitment first requires a vote about the outcome of the session in the so-called pre-
pare phase. The Deployment Admin service must therefore call the prepare method on all Resource
Processor services that have joined the session. The Resource Processor services must be called in the
reverse order of joining.

Any Resource Processor that wants to roll back the session in the prepare phase can, at that mo-
ment, still throw an Exception. The prepare method can also be used to persist some of the changes,
although the possibility remains that the session will be rolled back and that those changes must
then be undone.

If all joined Resource Processors have successfully executed the prepare method, the Deployment
Admin service must call the commit method on all Resource Processor services that have joined
the session. The Resource Processor services must be called in the reverse order of joining. Resource
Processor services must not throw an Exception in this method; they should only finalize the com-
mit. Any Exceptions thrown should be logged, but must be ignored by the Deployment Admin ser-
vice.

114.7.1 Roll Back
At the moment of the roll back, a number of Resource Processor services can have joined the session
and bundles could have been installed. For each of these joined Resource Processor services, the De-
ployment Admin service must call the rol lback() method. A roll back can be caused by a thrown Ex-

Deployment Admin Specification Version 1.1 Sessions

OSGi Compendium Release 6 Page 405

ception during an operation, or can be initiated by the caller. The roll back can even happen after
the prepare() method has been called if another Resource Processor throws an Exception in its pre-
pare method. The Resource Processor services must be called in the reverse order of joining for the
rol lback method.

The system should make every attempt to roll back the situation to its pre-session state:

• Changed artifacts must be restored to their prior state
• New artifacts must be removed
• Stale artifacts must be created again
• Any installed or updated bundles must be removed
• The state of the target bundles must be restored

If the target bundles were started before, and the state can be restored successfully, the target bun-
dles must be refreshed and started again before the method returns.

If the roll back cannot completely restore the state of the target bundles, the target bundles that
were restored must not be restarted, in order to prevent running bundles with incompatible ver-
sions. An appropriate warning should be logged in this case.

After the commit or rol lback method, the DeploymentAdminSession object is no longer usable.

The transactional aspects of the session are depicted in Figure 114.7.

Figure 114.7 Transactional Sessions

operations

nook

rollbackprepare

commit

ok

yes

yes

no

begin

The Deployment Admin service must uninstall any new bundles and install stale bundles (bundles
that were uninstalled during the session), and should roll back updated bundles. Rolling back a bun-
dle update, as well as reinstalling a stale bundle, requires an implementation-dependent back door
into the OSGi Framework, because the Framework specification is not transactional over multiple
lifecycle operations. Therefore, this specification does not mandate full transactional behavior.

Installing a Deployment Package Deployment Admin Specification Version 1.1

Page 406 OSGi Compendium Release 6

After a roll back, however, a Deployment Package must still be removable with all its resources and
bundles dropped. A roll back must not bring the Deployment Package to a state where it can no
longer be removed, or where resources become orphaned.

114.7.2 Bundle Events During Deployment
Deployment operations usually result in bundles being installed or uninstalled. These deployment
operations can fail in mid-operation, and cause a roll back by Deployment Admin meaning that the
platform can go through some transient states in which bundles are installed, then uninstalled due
to roll back.

Therefore, the order of Bundle events produced by a transactional implementation must be compat-
ible with the Bundle events produced by a non-transactional implementation. A transactional im-
plementation, however, can choose to postpone all events while maintaining ordering until the end
of the session and thereby canceling any events that cancel each other (e.g. install and uninstall). A
non-transactional Deployment Admin service must send out the events as they occur.

In the following example, a simple Deployment Package consists of bundles A , B , and C . If this De-
ployment Package is successfully installed, an implementation must produce the following Bundle
events (in order):

1. BundleEvent(INSTALLED) for bundle A
2. BundleEvent(INSTALLED) for bundle B
3. BundleEvent(INSTALLED) for bundle C

If an operation of this Deployment Package was unsuccessful because, for example, Bundle C could
not be installed due to an error, then the Deployment Admin service must roll back the deployment
operation to return the platform to its original state. If the Deployment Admin service is transac-
tional, then it must not expose the events because no persistent bundle changes were made to the
platform.

On the other hand, a non-transactional implementation must expose the transient bundle states
that occur during the deployment operation. In this case, the following bundle events could have
been generated (in order):

1. BundleEvent(INSTALLED) for bundle A
2. BundleEvent(INSTALLED) for bundle B
3. BundleEvent(UNINSTALLED) for bundle A
4. BundleEvent(UNINSTALLED) for bundle B

114.8 Installing a Deployment Package
Installation starts with the instal lDeploymentPackage(InputStream) . No separate function exists
for an update; if the given Deployment Package already exists, it must be replaced with this new
version. The purpose of the instal lDeploymentPackage method is to replace the target Deployment
Package (existing) with the source Deployment Package (contained in the Input Stream).

The InputStream object must stream the bytes of a valid Deployment Package JAR; it is called the
source deployment package. The InputStream object must be a general InputStream object and not
an instance of the Jar InputStream class, because these objects do not read the JAR file as bytes.

If an installed Deployment Package has the same name as the source, it is called the target Deploy-
ment Package. If no target exists, an invisible empty target with a version of 0.0.0 must be assumed
without any bundles and resources.

The installation of a deployment package can result in these qualifications for any resource r:

• r ∈ source, r ∉ target - New resource

Deployment Admin Specification Version 1.1 Installing a Deployment Package

OSGi Compendium Release 6 Page 407

• r ∉ source, r ∈ target - Stale resource
• r ∈ source, r ∈ target - Updated resource

The short scenario for an install is depicted in Figure 114.8.

Figure 114.8 Overview of install process

ok

Read Manifest
and verify

Stop target
bundles

Read resource

bundle

Start any
customizers

Drop stale
resources

Install or update
Bundle

process resource

Next resource

resource

Uninstall stale
bundles

prepare joined
RPs

yes

no

yes

no

Start source
bundles

commit joined
RPs

yes

no

Process localiza-
tion files

In more detail, to install a Deployment Package, a Deployment Admin service must:

1. Create a Deployment Session
2. Assert that the Manifest file is the first resource in the Deployment Package JAR file.

Installing a Deployment Package Deployment Admin Specification Version 1.1

Page 408 OSGi Compendium Release 6

3. Assert the following:
• The source must not contain any bundle that exists in other deployment packages, except for

the target. The source bundles, as defined by the symbolic name, must belong to the target or
be absent.

If the source is a Fix Package, assert that:
• The version of the target matches the required source version range.
• All the missing source bundles are present in the target.

Otherwise:
• Assert that are no missing resources or bundles declared.

4. Process the localization files, see Localization on page 399.
5. All target bundles must be stopped in reverse target resource order. Exceptions thrown during

stopping must be ignored, but should be logged as warnings.

The target is now stopped; none of its bundles are running any longer. The next step requires the se-
quential processing of the resources from the source JAR file in source resource order. The bundles
must be processed first (if present), and can be followed by any number of resources, or none.

For each bundle read from the source JAR stream:

6. If the bundle symbolic name already exists in the system with a different version number, up-
date that bundle with the resource stream. If the version is identical, the resource stream must
be ignored. The update method must follow the semantics of the OSGi Framework update
method. An exception thrown during the update must roll back the session.

Otherwise, install the bundle according to the semantics of the OSGi Framework instal lBundle
method. The location of the bundle must be set to the Bundle Symbolic Name without any para-
meters and be prefixed with the osgi-dp: scheme. An exception thrown during the install must
roll back the session.

Framework events are discussed in Bundle Events During Deployment on page 406.
7. Assert that the installed bundle has the Bundle Symbolic Name and version as defined by the

source manifest. If not, the session must be rolled back.

All the source's bundles are now installed or updated successfully. Next, any customizers must be
started so that they can participate in the resource processing:

8. If Customizer bundles or stale customizers are defined, start them. If any Customizer bundle's
start method throws an exception, the session must be rolled back.

For each resource read from the JAR stream:

9. Find the Resource Processor service that processes the resource by using the PID in the Re-
source-Processor header. If it cannot be found, the session must be rolled back.

10. Assert that the matched Resource Processor service is not from a Customizer bundle in another
Deployment Package.

11. Call the matched Resource Processor service process(Str ing, InputStream) method. The argu-
ment is the JAR path of the resource. Any Exceptions thrown during this method must abort the
installation.

All resource updates and installs have now occurred. The next steps must remove any stale re-
sources. First the stale resources are dropped, and then the bundles are uninstalled. Exceptions are
ignored in this phase to allow repairs to always succeed, even if the existing package is corrupted.

12. In reverse target order, drop all the resources that are in the target but not in the source by call-
ing the matching Resource Processor service dropped(Str ing) method. Any exceptions thrown
during this method should be logged as warnings, but must be ignored.

Deployment Admin Specification Version 1.1 Installing a Deployment Package

OSGi Compendium Release 6 Page 409

13. Uninstall all stale bundles in reverse target order, using the OSGi Framework uninstal l method
semantics. Any exceptions thrown should be logged as warnings, but must be ignored.

The deployment package is now cleaned up, and can be activated and committed.

14. All the Resource Processor services that have joined the session must now prepare to commit,
which is achieved by calling the prepare() method. If any Resource Processor throws an Excep-
tion, the session must roll back. The Resource Processors must be called in the reverse order of
joining.

15. If all the Resource Processors have successfully prepared their changes, then all the Resource
Processor services that have joined the session must now be committed, which is achieved by
calling the commit() method. The Resource Processors must be called in the reverse order of
joining. Any exceptions should be logged as warnings, but must be ignored.

16. Refresh the bundles so that any new packages are resolved.
17. Wait until the refresh is finished.
18. Start the bundles in the source resource order. Exceptions thrown during the start must be

logged, but must not abort the deployment operation.

The session is closed and the source replaces the target in the Deployment Admin service's reposito-
ry.

The instal lDeploymentPackage method returns the source Deployment Package object.

114.8.1 Example Installation
The target Deployment Package has the following manifest:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.acme.daffy
DeploymentPackage-Version: 1
↵
Name: bundle-1.jar
Bundle-SymbolicName: com.acme.1
Bundle-Version: 5.7
↵
Name: r0.x
Resource-Processor: RP-x
↵
Name: r1.x
Resource-Processor: RP-x
↵
Name: r1.y
Resource-Processor: RP-y
↵

This deployment package is updated with a new version, with the following manifest:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.acme.daffy
DeploymentPackage-Version: 2
↵
Name: bundle-2.jar
Bundle-SymbolicName: com.acme.2
Bundle-Version: 5.7
↵
Name: r1.x

Installing a Deployment Package Deployment Admin Specification Version 1.1

Page 410 OSGi Compendium Release 6

Resource-Processor: RP-x
↵
Name: r2.x
Resource-Processor: RP-x
↵
Name: r1.y
Resource-Processor: RP-y
↵

The delta between version 1 and version 2 of the com.acme.daffy Deployment Package is depict-
ed in Figure 114.9. Bundle-1 must be uninstalled because it is no longer present in the Deployment
Package com.acme.daffy version 2. Bundle-2 is a new bundle and thus must be installed. The re-
source r0.x must be dropped and r1 .x must be updated (this must be detected and treated accord-
ingly by Resource Processor RP-x). r2.x is a new resource. The resource r1 .y is updated by Resource
Processor RP-y).

Figure 114.9 Delta

Bundle-1

Bundle-2

r0.x

r1.x

r1.y

r2.x

r1.y’

r1.x’

uninstall

install

drop

process

process

process

version 2version 1

The sequence diagram for the installation is shown in Figure 114.10.

Deployment Admin Specification Version 1.1 Uninstalling a Deployment Package

OSGi Compendium Release 6 Page 411

Figure 114.10 Sequence Diagram for a Resource Processor

manager
Deployment

Admin RP -x Rp-y

installDeploymentPackage()

Bundle-1

stop()

Framework

begin(session)

process("r1.x", stream)

process("r2.x", stream)

begin(session)

process("r1.y", stream)

install(bsn,stream)

Bundle-2

uninstall()

drop("r0.x")

prepare

prepare

start()

commit

commit

114.9 Uninstalling a Deployment Package
Uninstalling a Deployment Package must remove all the effects of its installation(s). The uninstall is
started by calling uninstal l () or uninstal lForced() method on a target DeploymentPackage object.

The Deployment Packages are uninstalled explicitly, which may break the overall runtime config-
uration. No attempt is made to ensure that the uninstalled Deployment Package is required as a
provider of Java packages or services, or fulfills other dependencies.

The Deployment Admin service must take the following actions to remove the target Deployment
Package when uninstal l () is called. This procedure must run inside a Deployment Admin session. A
Resource Processor that is called must first join the session as described in Sessions on page 404.

Uninstalling is composed of the following steps:

1. Start a new Deployment Admin session.
2. Stop all the bundles owned by the Deployment Package. If this step throws a Bundle Exception,

this error should be logged but must be ignored.
3. Call the dropAl lResources() method on all the Resource Processor services that are owned by

this Deployment Package. Absent Resource Processor services or Exceptions that are thrown
must immediately roll back this session.

4. Call the prepare method on the Resource Processor services that joined the session. If any Re-
source Processor service throws an Exception, the session must be rolled back.

5. Call the commit method on the Resource Processors that joined the session.
6. Uninstall all owned bundles.

Resource Processors Deployment Admin Specification Version 1.1

Page 412 OSGi Compendium Release 6

Uninstalling a Deployment Package can break the overall runtime configuration. No attempt is
made to ensure that a Deployment Package being uninstalled is not necessary as a provider of Java
packages or services, or fulfills other dependencies.

An error condition results if the Resource Processor services are no longer present when unin-
stalling or updating a deployment package. A request to carry out an uninstall operation on such
a Deployment Package must be refused until the Resource Processor services are all available. A
means must be provided, however, to handle permanent unavailability of these services.

To address this issue, the DeploymentPackage interface provides a method, uninstal lForced() ,
which forces removal of the Deployment Package from the repository maintained by the Deploy-
ment Admin service. This method follows the same steps described earlier. Any errors, or the ab-
sence of Resource Processor services, should be logged but ignored; they must not cause a roll back.

If errors occur or Resource Processor services are absent, it is likely that the uninstallation will be
incomplete, and that some residual artifacts will remain on the platform. Whether this residue is
eventually cleaned up, and how, is left up to the implementation.

114.10 Resource Processors
The Resource Processor service interprets the byte stream of a resource. Typically, the stream is
parsed and its information is stored as artifacts. Examples of resource processors are:

• Configuration Management - This processor is standardized by the OSGi and more information can
be found in Auto Configuration Specification on page 439.

• Certificate Keystore - A Certificate Keystore processor could extract certificates from a bundle and
install them in a keystore.

• SyncML Script - Execute a series of SyncML commands.

The Deployment Admin service maintains the list of resource ids (the path name in the JAR) that
are contained in a Deployment Package. Each resource is uniquely identified within a Deployment
Package by its path name hence the term "resource id." The Deployment Package's getResources()
method provides a list of the resources ids.

The Resource Processor service is responsible for actually creating and deleting the resource relat-
ed artifacts. The Resource Processor service must be able to remove the artifacts related to a resource
that is being dropped using only the resource id.

The ResourceProcessor interface is based on a session (see Sessions on page 404). The transaction-
ality is limited to the bracketing of any processing or dropping of resources. The bracketing begins
when a Resource Processor joins an install session. A Resource Processor service can assume that it
is never in two sessions at the same time (see Threading on page 417). It can, however, be called
multiple times during the session to process different resources.

Before the Resource Processor service is used in an install or uninstall session, the Deployment
Admin service must call the begin(DeploymentSession) method; this action makes the Resource
Processor service join the session. This method must be used by the Resource Processor service to
mark any changes for potential roll back, from this time until the prepare() / commit() or rol lback()
method is called.

When the session is opened, the Deployment Admin service can call the following methods on the
Resource Processor service:

• process(Str ing, InputStream) - The Resource processor must parse the Input Stream and persis-
tently associate the resulting artifacts with the given resource id. It must be possible to remove
those artifacts in a future time, potentially after a complete system restart. Keep in mind that a
resource can be processed many times. A Deployment Package that updates to a newer version is

Deployment Admin Specification Version 1.1 Resource Processors

OSGi Compendium Release 6 Page 413

likely to contain the same resources again. Care should be taken to ensure that these updates are
real updates and do not add new, unwanted artifacts.

• dropped(Str ing) - The artifacts that were associated with the given resource id must be removed.
If the named resource does not exist, a warning should be logged but no Exception should be
thrown.

• dropAl lResources() - Remove all artifacts that are related to the current target Deployment Pack-
age. This method is called when a Deployment Package is uninstalled.

• cancel() - This method is called when the Resource Processor is in the
process(Str ing, InputStream) , dropped(Str ing) or dropAl lResources() method, allowing the
caller to cancel a long-running session. In that case, the Deployment Admin must call the can-
cel() method for the active Resource Processor service. The Resource Processor service should ter-
minate its action as quickly as possible. The Resource Processor service must still handle a roll
back of the session after it has returned.

All methods must perform any integrity checks immediately and throw an Exception with an ap-
propriate code if the verification fails. These checks must not be delayed until the prepare or com-
mit method. As stated earlier, changes must be recorded, but it should be possible to roll back the
changes when the rol lback method is called.

Deployment Packages can be upgraded or downgraded. Resource Processor services must therefore
be capable of processing resources that have a lower, equal, or higher version.

114.10.1 Example Resource Processor
An example is a Resource Processor service that wires services with the Wire Admin service. The
Wire Admin service creates wires between a producer and a consumer service, each identified by a
PID. Wires are the artifacts that are installed and removed. Each wire contains a Dictionary object
that is a convenient place to tag wires with the Deployment Package name and resource id. The
Wire Admin stores this information persistently, which makes it very suitable for use in a transac-
tional model. This small example supports full transactionality, although without crash recovery.

For simplicity, the wire definitions are stored in a format compatible with the java.ut i l .Propert ies
format (because it can simply be loaded from an Input Stream object). The key is the producer and
the value is the consumer. A sample wiring could look like:

com.acme.gps = com.acme.navigation
com.acme.asn = com.acme.navigation
com.acme.navigation = com.acme.poi

This wiring is depicted in Figure 114.11.

Figure 114.11 Sample Wiring

com.acme.gps com.acme.poi

com.acme.asn

com.acme.navigation

This resource is stored in a Deployment Package JAR file. In this example there are no bundles, so
the Deployment Package's manifest would look like:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.acme.model.E45.wiring
DeploymentPackage-Version: 1.2832
↵

Resource Processors Deployment Admin Specification Version 1.1

Page 414 OSGi Compendium Release 6

Name: sample.wiring
Resource-Processor: wire.admin.processor
↵

To reduce the size of the code in this example, the Wire Admin service is received as a para-
meter. The constructor registers the object as a Resource Processor service with the required
wire.admin.processor PID.

The transaction strategy of this code is to create wires when new wires have to be created, but to de-
lay the deletion of wires until the end of the session. Any created wires are kept in the createdWires
field, and the wires that are to be deleted are kept in the toBeDeletedWires field.

The current DeploymentPackage object is saved in the current field when the begin method is
called.

public class WireAdminProcessor implementsResourceProcessor {
 WireAdmin admin;
 DeploymentPackage current;
 List createdWires = new Vector();
 List toBeDeletedWires = new Vector();

 public WireAdminProcessor(
 WireAdmin admin, BundleContext context)
 throws Exception {
 this.admin = admin;
 Dictionary properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,
 "wire.admin.processor");
 context.registerService(
 ResourceProcessor.class.getName(), this,
 properties);
 }

When the Deployment Admin service is installing a Deployment Package JAR, it must call the Re-
source Processor service's begin method before the first time it calls a Resource Processor service to
join it to the current session. In this case, only the source DeploymentPackage object is saved in the
current field.

 public void begin(DeploymentSession session){
 current = session.getSourceDeploymentPackage();
 }

The most complicated method that must be implemented is the process method. This method re-
ceives the resource id and an input stream with the contents. In this case, the stream is easily con-
verted to a java.ut i l .Propert ies object that contains the definitions of the wires.

The key and value of the Propert ies object are the producer and consumer respectively, which are
used to create new wires. Each wire has a Dictionary object in the Wire Admin service. This Dictio-
nary object is used to store the following properties:

• deployment.package - The symbolic name of the current (target) deployment package. This
property associates the wire with a specific deployment package.

• resource. id - The resource id, or JAR path name. This id associates the specific resource with the
wire.

Associating these fields with the wire simplifies finding all wires related to a Deployment Package
or all wires related to a specific resource id and Deployment Package. The Wire Admin service sup-
ports a search method for wires that takes a filter as argument, further simplifying this process.

Deployment Admin Specification Version 1.1 Resource Processors

OSGi Compendium Release 6 Page 415

After a wire is created, it is stored in the createdWires list so that the wires can be deleted if the ses-
sion is rolled back.

The process method looks as follows:

 public void process(String resourceId, InputStreamin)
 throws Exception {
 Properties properties = new Properties();
 properties.load(in);
 Dictionary dict = new Hashtable();
 dict.put("deployment.package", current.getName());
 for (Iterator i = properties.values().iterator();
 i.hasNext();) {
 dict.put("resource.id", resourceId);
 String producer = (String) i.next();
 String consumer = properties.getProperty(producer);
 Wire wire = admin.createWire(producer,
 consumer, dict);
 createdWires.add(wire);
 }
 }

If a resource is not in the source but is in the target Deployment Package, it must be dropped from
the Resource Processor service. The Deployment Admin will call the dropped(Str ing) method for
those resources. Therefore, the wires that are tagged with the given resource id and Deployment
Package name must be deleted.

The Wire Admin service has a convenient function to get all the wires that match a filter. This
method is used to list all the wires that belong to the current Deployment Package as well as those
that have the matching resource id. This array is added to the toBeDeletedWires field so that it can
be deleted when the session is successfully completed. That is, wires are not deleted until the com-
mit phase. When the session is rolled back, the list of wires to be deleted can be discarded, because
they were never really deleted.

 public void dropped(String name) throws Exception{
 List list = getWires(
 "(&(resource.id=" + name + ")(deployment.package="
 + current.getName() + "))");
 toBeDeletedWires.addAll(list);
 }

If the session concludes without errors, the Deployment Admin service must call the prepare()
method. In this example, it is possible to roll back the persistent changes made so far. The method
can therefore just return.

 public void prepare() {}

The commit() method must now actually delete the wires that were removed during the session. Af-
ter these wires are deleted, the method can throw away the list of wires that were created. This list
was only kept to remove the wires in case of a roll back.

 public void commit() {
 delete(toBeDeletedWires);
 toBeDeletedWires.clear();
 createdWires.clear();
 }

Resource Processors Deployment Admin Specification Version 1.1

Page 416 OSGi Compendium Release 6

The rol lback() method is the reverse of the commit. Any created wires must now be deleted to undo
their creations in this session. The wires that are to be deleted can now be discarded, because they
have not been deleted yet and therefore do not have to be rolled back.

 public void rollback() {
 delete(createdWires);
 toBeDeletedWires.clear();
 createdWires.clear();
 }

The dropAl lResources() method must drop all the wires that were created on behalf of the current
Deployment Package. The filter on the getWires method makes this process very straightforward.
Just delete all the wires that were tagged with the Deployment Package name.

 public void dropAllResources() {
 List list = getWires("(deployment.package="
 + current.getName() + ")");
 toBeDeletedWires.addAll(list);
 }

The cancel() method must cancel ongoing operations. This example does not have any long-run-
ning operations. The cancel method can therefore just return.

 public void cancel() {}

And finally, some helper methods should be self-explanatory.

 void delete(List wires) {
 while (! wires.isEmpty())
 admin.deleteWire((Wire) wires.remove(0));
 }

 List getWires(String filter) {
 try {
 Wire[] wires = admin.getWires(filter);
 return Arrays.asList(wires);
 }
 catch (InvalidSyntaxException ise) {
 ise.printStackTrace();
 }
 return new Vector();
 }
}

This example is obviously not an "industrial-strength" implementation; its only purpose is to high-
light the different problems that must be addressed. Implementers should therefore consider the fol-
lowing additional issues when implementing a Resource Processor service.

• Changes could have been made to the Deployment Package objects when a Resource Processor's
bundle was updated or has been offline for some time, which can happen when the uninstal l-
Forced method has been used. The Deployment Admin service can provide sufficient informa-
tion to verify its repository to the information maintained in the Resource Processor service.

• A Resource Processor service should have a strategy for transactions that can handle crash re-
covery. For example, in the previous code the list of createdWires and toBeDeletedWires should
have been logged. Logging these lists would have allowed full crash recovery.

• Better file formats should be considered. The Propert ies class is too restrictive because it can only
have a single wire per Producer object. The Properties class was only chosen for its convenience.

Deployment Admin Specification Version 1.1 Events

OSGi Compendium Release 6 Page 417

• Multi-threading issues may exist with the cancel method.

114.11 Events
The Deployment Admin service must publish several generic events to the Event Admin service in
the course of a deployment operation. The purpose of these events is to allow, for example, a user in-
terface to display the progress of a deployment operation to the user.

The topics to which Deployment Admin publishes events are:

• org/osgi/service/deployment/ INSTALL - The instal lDeploymentPackage(InputStream) method
has been called.

• org/osgi/service/deployment/UNINSTALL - The uninstal l () or uninstal lForced() method has been
called..

• org/osgi/service/deployment/COMPLETE - The deployment operation has completed.

The INSTALL , UNINSTALL and COMPLETE events have the following property:

• EVENT_DEPLOYMENTPACKAGE_NAME - (String) The name of the Deployment Package. This
name is the same name as that specified in the DeploymentPackage-SymbolicName Manifest
header.

• EVENT_DEPLOYMENTPACKAGE_READABLENAME - (String)
• EVENT_DEPLOYMENTPACKAGE_CURRENTVERSION - (Version) The currently installed version of

the Deployment Packages. This attribute is only present when there is a version of the Deploy-
ment Package installed before the method that generated the event.

• EVENT_DEPLOYMENTPACKAGE_NEXTVERSION - (Version) The version of Deployment Package
after the successful completion of the install operation.

The COMPLETE event additionally has the following property:

• successful - (Boolean) Whether the deployment operation was successful or not.

114.12 Threading
The Deployment Admin service must be a singleton and must only process a single session at a
time. When a client requests a new session with an install or uninstall operation, it must block that
call until the earlier session is completed. The Deployment Admin service must throw a Deploy-
ment Exception when the session cannot be created after an appropriate time-out period. Resource
Processor services can thus assume that all calls from begin to commit or rol lback methods are called
from the same thread.

Special care should be taken with the cancel method that is usually called from another thread.

114.13 Security

114.13.1 Deployment Admin Permission
The Deployment Admin Permission is needed to access the methods of the Deployment Admin ser-
vice. The target for a Deployment Admin Permission is the same Filter string as for an Admin Per-
mission, see Admin Permission of [2] .

The actions are:

Security Deployment Admin Specification Version 1.1

Page 418 OSGi Compendium Release 6

• LIST - The permission to call the l istDeploymentPackages() method and
getDeploymentPackage(Str ing) .

• INSTALL - Allowed to call the instal lDeploymentPackage(InputStream) method.
• UNINSTALL - Allowed to call the uninstal l () method.
• UNINSTALL_FORCED - Allowed to call the uninstal lForced() method.
• CANCEL - Allowed to cancel an ongoing session.
• METADATA - Provide access to the Deployment Package meta data.

114.13.2 Deployment Customizer Permission
The DeploymentCustomizerPermission is used by customizer bundles. The target is the same as the
target of Admin Permission: a filter that selects bundles. It has the following action:

• PRIVATEAREA - Permits the use of the private area of the target bundles.

114.13.3 Permissions During an Install Session
Unprotected, Resource Processor services can unwittingly disrupt the device by processing incorrect
or malicious resources in a Deployment Package. In order to protect the device, Resource Processor
service's capabilities must be limited by the permissions granted to the union of the permissions of
the Deployment Package's signers. This union is called the security scope. Given a signer, its security
scope can be obtained from the Conditional Permission Admin Service Specification.

The Deployment Admin service must execute all Resource Processor service calls inside a doPriv i-
leged block. This privileged block must use an AccessControlContext object that limits the permis-
sions to the security scope. Therefore, a Resource Processor service must assume that it is always
running inside the correct security scope. A Resource Processor can, of course, use its own security
scope by doing a local doPriv i leged block.

Bundle life cycle operations (install, uninstall, update) must be performed with the permissions
granted to the Deployment Admin service implementation, they should not be further scoped be-
cause this could make it impossible to install unsigned Deployment Packages.

114.13.4 Contained Bundle Permissions
Bundles can be signed independently from the vehicle that deployed them. As a consequence, a bun-
dle can be granted more permissions than its parent Deployment Package.

114.13.5 Service Registry Security

114.13.5.1 Deployment Admin Service

The Deployment Admin service is likely to require All Permission. This requirement is caused by
the plugin model. Any permission required by any of the Resource Processor services must be grant-
ed to the Deployment Admin service as well. This set is large and difficult to define. The following
list, however, shows the minimum permissions required if the permissions for the Resource Proces-
sor service permissions are ignored.

ServicePermission ..DeploymentAdmin REGISTER
ServicePermission ..ResourceProcessor GET
PackagePermission ..deployment EXPORTONLY

114.13.5.2 Resource Processor

ServicePermission ..DeploymentAdmin GET
ServicePermission ..ResourceProcessor REGISTER
PackagePermission ..deployment IMPORT

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin

OSGi Compendium Release 6 Page 419

114.13.5.3 Client

ServicePermission ..DeploymentAdmin GET
PackagePermission ..deployment IMPORT

114.14 org.osgi.service.deploymentadmin

Deployment Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.deploymentadmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.deploymentadmin; vers ion="[1.1 ,1 .2)"

114.14.1 Summary

• BundleInfo - Represents a bundle in the array given back by the
DeploymentPackage.getBundleInfos() method.

• DeploymentAdmin - This is the interface of the Deployment Admin service.
• DeploymentAdminPermission - DeploymentAdminPermission controls access to the Deploy-

ment Admin service.
• DeploymentException - Checked exception received when something fails during any deploy-

ment processes.
• DeploymentPackage - The DeploymentPackage object represents a deployment package (al-

ready installed or being currently processed).

114.14.2 public interface BundleInfo
Represents a bundle in the array given back by the DeploymentPackage.getBundleInfos() method.

114.14.2.1 public String getSymbolicName()

□ Returns the Bundle Symbolic Name of the represented bundle.

Returns the Bundle Symbolic Name

114.14.2.2 public Version getVersion()

□ Returns the version of the represented bundle.

Returns the version of the represented bundle

114.14.3 public interface DeploymentAdmin
This is the interface of the Deployment Admin service.

The OSGi Service Platform provides mechanisms to manage the life cycle of bundles, configuration
objects, permission objects, etc. but the overall consistency of the runtime configuration is the re-
sponsibility of the management agent. In other words, the management agent decides to install, up-
date, or uninstall bundles, create or delete configuration or permission objects, as well as manage
other resource types, etc.

The Deployment Admin service standardizes the access to some of the responsibilities of the man-
agement agent. The service provides functionality to manage Deployment Packages (see Deploy-

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.1

Page 420 OSGi Compendium Release 6

mentPackage). A Deployment Package groups resources as a unit of management. A Deployment
Package is something that can be installed, updated, and uninstalled as a unit.

The Deployment Admin functionality is exposed as a standard OSGi service with no mandatory ser-
vice parameters.

114.14.3.1 public boolean cancel()

□ This method cancels the currently active deployment session. This method addresses the need to
cancel the processing of excessively long running, or resource consuming install, update or unin-
stall operations.

Returns true if there was an active session and it was successfully canceled.

Throws SecurityException– if the caller doesn't have the appropriate
DeploymentAdminPermission("<filter>", "cancel") permission.

See Also DeploymentAdminPermission

114.14.3.2 public DeploymentPackage getDeploymentPackage(String symbName)

symbName the symbolic name of the Deployment Package to be retrieved. It mustn't be nul l .

□ Gets the currently installed DeploymentPackage instance which has the given symbolic name.

During an installation of an existing package (update) or during an uninstallation, the target De-
ployment Package must remain the return value until the installation (uninstallation) process is
completed, after which the source (or nul l in case of uninstall) is the return value.

Returns The DeploymentPackage for the given symbolic name. If there is no Deployment Package with that
symbolic name currently installed, nul l is returned.

Throws I l legalArgumentException– if the given symbName is nul l

SecurityException– if the caller doesn't have the appropriate
DeploymentAdminPermission("<filter>", "list") permission.

See Also DeploymentPackage, DeploymentAdminPermission

114.14.3.3 public DeploymentPackage getDeploymentPackage(Bundle bundle)

bundle the bundle whose owner is queried

□ Gives back the installed DeploymentPackage that owns the bundle. Deployment Packages own their
bundles by their Bundle Symbolic Name. It means that if a bundle belongs to an installed Deploy-
ment Packages (and at most to one) the Deployment Admin assigns the bundle to its owner Deploy-
ment Package by the Symbolic Name of the bundle.

Returns the Deployment Package Object that owns the bundle or nul l if the bundle doesn't belong to any De-
ployment Packages (standalone bundles)

Throws I l legalArgumentException– if the given bundle is nul l

SecurityException– if the caller doesn't have the appropriate
DeploymentAdminPermission("<filter>", "list") permission.

See Also DeploymentPackage, DeploymentAdminPermission

114.14.3.4 public DeploymentPackage installDeploymentPackage(InputStream in) throws DeploymentException

in the input stream the Deployment Package can be read from. It mustn't be nul l .

□ Installs a Deployment Package from an input stream. If a version of that Deployment Package is al-
ready installed and the versions are different, the installed version is updated with this new version
even if it is older (downgrade). If the two versions are the same, then this method simply returns
with the old (target) Deployment Package without any action.

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin

OSGi Compendium Release 6 Page 421

Returns A DeploymentPackage object representing the newly installed/updated Deployment Package. It is
never nul l .

Throws I l legalArgumentException– if the got InputStream parameter is nul l

DeploymentException– if the installation was not successful. For detailed error code description see
DeploymentException.

SecurityException– if the caller doesn't have the appropriate
DeploymentAdminPermission("<filter>", "install") permission.

See Also DeploymentAdminPermission, DeploymentPackage, DeploymentPackage

114.14.3.5 public DeploymentPackage[] listDeploymentPackages()

□ Lists the Deployment Packages currently installed on the platform.

DeploymentAdminPermission("<filter>", "list") is needed for this operation to the effect that only
those packages are listed in the array to which the caller has appropriate DeploymentAdminPermis-
sion. It has the consequence that the method never throws SecurityException only doesn't put cer-
tain Deployment Packages into the array.

During an installation of an existing package (update) or during an uninstallation, the target must
remain in this list until the installation (uninstallation) process is completed, after which the source
(or nul l in case of uninstall) replaces the target.

Returns the array of DeploymentPackage objects representing all the installed Deployment Packages. The re-
turn value cannot be nul l . In case of missing permissions it may give back an empty array.

See Also DeploymentPackage, DeploymentAdminPermission

114.14.4 public final class DeploymentAdminPermission
extends Permission
DeploymentAdminPermission controls access to the Deployment Admin service.

The permission uses a filter string formatted similarly to the org.osgi.framework.Filter. The filter
determines the target of the permission. The DeploymentAdminPermission uses the name and the
signer filter attributes only. The value of the signer attribute is matched against the signer chain
(represented with its semicolon separated Distinguished Name chain) of the Deployment Package,
and the value of the name attribute is matched against the value of the "DeploymentPackage-Name"
manifest header of the Deployment Package. Example:

• (signer=cn = Bugs Bunny, o = ACME, c = US)
• (name=org.osgi.ExampleApp)

Wildcards also can be used:

 (signer=cn=*,o=ACME,c=*)

"cn" and "c" may have an arbitrary value

 (signer=*, o=ACME, c=US)

Only the value of "o" and "c" are significant

 (signer=* ; ou=S & V, o=Tweety Inc., c=US)

The first element of the certificate chain is not important, only the second (the Distinguished Name
of the root certificate)

 (signer=- ; *, o=Tweety Inc., c=US)

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.1

Page 422 OSGi Compendium Release 6

The same as the previous but '-' represents zero or more certificates, whereas the asterisk only repre-
sents a single certificate

 (name=*)

The name of the Deployment Package doesn't matter

 (name=org.osgi.*)

The name has to begin with "org.osgi."

The following actions are allowed:

list

A holder of this permission can access the inventory information of the de-
ployment packages selected by the <filter> string. The filter selects the deploy-
ment packages on which the holder of the permission can acquire detailed in-
ventory information. See DeploymentAdmin.getDeploymentPackage(Bundle),
DeploymentAdmin.getDeploymentPackage(String) and
DeploymentAdmin.listDeploymentPackages.

install

A holder of this permission can install/update deployment packages if the deployment package sat-
isfies the <filter> string. See DeploymentAdmin.installDeploymentPackage.

uninstall

A holder of this permission can uninstall deployment packages if the deployment package satisfies
the <filter> string. See DeploymentPackage.uninstall().

uninstall_forced

A holder of this permission can forcefully uninstall deployment packages if the deployment pack-
age satisfies the <filter> string. See DeploymentPackage.uninstallForced().

cancel

A holder of this permission can cancel an active deployment action. This action being canceled
could correspond to the install, update or uninstall of a deployment package that satisfies the <fil-
ter> string. See DeploymentAdmin.cancel()

metadata

A holder of this permission is able to retrieve metadata information
about a Deployment Package (e.g. is able to ask its manifest headers). See
org.osgi.service.deploymentadmin.DeploymentPackage.getBundle(String),
org.osgi.service.deploymentadmin.DeploymentPackage.getBundleInfos(),
org.osgi.service.deploymentadmin.DeploymentPackage.getHeader(String),
org.osgi.service.deploymentadmin.DeploymentPackage.getResourceHeader(String, String),
org.osgi.service.deploymentadmin.DeploymentPackage.getResourceProcessor(String),
org.osgi.service.deploymentadmin.DeploymentPackage.getResources()

The actions string is converted to lower case before processing.

114.14.4.1 public static final String CANCEL = "cancel"

Constant String to the "cancel" action.

See Also DeploymentAdmin.cancel()

114.14.4.2 public static final String INSTALL = "install"

Constant String to the "install" action.

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin

OSGi Compendium Release 6 Page 423

See Also DeploymentAdmin.installDeploymentPackage(InputStream)

114.14.4.3 public static final String LIST = "list"

Constant String to the "list" action.

See Also DeploymentAdmin.listDeploymentPackages(), DeploymentAdmin.getDeploymentPackage(String),
DeploymentAdmin.getDeploymentPackage(Bundle)

114.14.4.4 public static final String METADATA = "metadata"

Constant String to the "metadata" action.

See Also org.osgi.service.deploymentadmin.DeploymentPackage.getBundle(String),
org.osgi.service.deploymentadmin.DeploymentPackage.getBundleInfos(),
org.osgi.service.deploymentadmin.DeploymentPackage.getHeader(String),
org.osgi.service.deploymentadmin.DeploymentPackage.getResourceHeader(String, String),
org.osgi.service.deploymentadmin.DeploymentPackage.getResourceProcessor(String),
org.osgi.service.deploymentadmin.DeploymentPackage.getResources()

114.14.4.5 public static final String UNINSTALL = "uninstall"

Constant String to the "uninstall" action.

See Also DeploymentPackage.uninstall()

114.14.4.6 public static final String UNINSTALL_FORCED = "uninstall_forced"

Constant String to the "uninstall_forced" action.

See Also DeploymentPackage.uninstallForced()

114.14.4.7 public DeploymentAdminPermission(String name,String actions)

name filter string, must not be null.

actions action string, must not be null. "*" means all the possible actions.

□ Creates a new DeploymentAdminPermission object for the given name and action .

The name parameter identifies the target deployment package the permission relates to. The actions
parameter contains the comma separated list of allowed actions.

Throws I l legalArgumentException– if the filter is invalid, the list of actions contains unknown operations
or one of the parameters is null

114.14.4.8 public boolean equals(Object obj)

obj The reference object with which to compare.

□ Checks two DeploymentAdminPermission objects for equality. Two permission objects are equal if:

• their target filters are semantically equal and
• their actions are the same

Returns true if the two objects are equal.

See Also java.lang.Object.equals(java.lang.Object)

114.14.4.9 public String getActions()

□ Returns the String representation of the action list.

The method always gives back the actions in the following (alphabetical) order: cancel , instal l , l ist ,
metadata, uninstal l , uninstal l_forced

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.1

Page 424 OSGi Compendium Release 6

Returns Action list of this permission instance. This is a comma-separated list that reflects the action para-
meter of the constructor.

See Also java.security.Permission.getActions()

114.14.4.10 public int hashCode()

□ Returns hash code for this permission object.

Returns Hash code for this permission object.

See Also java.lang.Object.hashCode()

114.14.4.11 public boolean implies(Permission permission)

permission Permission to check.

□ Checks if this DeploymentAdminPermission would imply the parameter permission.

Precondition of the implication is that the action set of this permission is the superset of
the action set of the other permission. Further rules of implication are determined by the
org.osgi.framework.Filter rules and the "OSGi Service Platform, Core Specification Release 4, Chap-
ter Certificate Matching".

The allowed attributes are: name (the symbolic name of the deployment package) and signer (the
signer of the deployment package). In both cases wildcards can be used.

Examples:

 1. DeploymentAdminPermission("(name=org.osgi.ExampleApp)", "list")
 2. DeploymentAdminPermission("(name=org.osgi.ExampleApp)", "list, install")
 3. DeploymentAdminPermission("(name=org.osgi.*)", "list")
 4. DeploymentAdminPermission("(signer=*, o=ACME, c=US)", "list")
 5. DeploymentAdminPermission("(signer=cn=Bugs Bunny, o=ACME, c=US)", "list")

 1. implies 1.
 2. implies 1.
 1. doesn't implies 2.
 3. implies 1.
 4. implies 5.

Returns true if this DeploymentAdminPermission object implies the specified permission.

See Also java.security.Permission.implies(java.security.Permission), org.osgi.framework.Filter

114.14.4.12 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DeploymentAdminPermission objects.

Returns The new PermissionCollection.

See Also java.security.Permission.newPermissionCollection()

114.14.5 public class DeploymentException
extends Exception
Checked exception received when something fails during any deployment processes. A Deploy-
mentException always contains an error code (one of the constants specified in this class), and may
optionally contain the textual description of the error condition and a nested cause exception.

114.14.5.1 public static final int CODE_BAD_HEADER = 452

Syntax error in any manifest header.

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin

OSGi Compendium Release 6 Page 425

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.2 public static final int CODE_BUNDLE_NAME_ERROR = 457

Bundle symbolic name is not the same as defined by the deployment package manifest.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.3 public static final int CODE_BUNDLE_SHARING_VIOLATION = 460

Bundle with the same symbolic name already exists.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.4 public static final int CODE_CANCELLED = 401

DeploymentAdmin.installDeploymentPackage(InputStream), DeploymentPackage.uninstall() and
DeploymentPackage.uninstallForced() methods can throw DeploymentException with this error
code if the DeploymentAdmin.cancel() method is called from another thread.

114.14.5.5 public static final int CODE_COMMIT_ERROR = 462

Exception with this error code is thrown when one of the Resource Processors involved in the de-
ployment session threw a ResourceProcessorException with the CODE_PREPARE error code.

DeploymentAdmin.installDeploymentPackage(InputStream) and DeploymentPackage.uninstall()
methods throw exception with this error code.

114.14.5.6 public static final int CODE_FOREIGN_CUSTOMIZER = 458

Matched resource processor service is a customizer from another deployment package.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.7 public static final int CODE_MISSING_BUNDLE = 454

A bundle in the deployment package is marked as DeploymentPackage-Missing but there is no such
bundle in the target deployment package.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.8 public static final int CODE_MISSING_FIXPACK_TARGET = 453

Fix pack version range doesn't fit to the version of the target deployment package or the target de-
ployment package of the fix pack doesn't exist.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.9 public static final int CODE_MISSING_HEADER = 451

Missing mandatory manifest header.

DeploymentAdmin.installDeploymentPackage(InputStream) can throw exception with this error
code.

114.14.5.10 public static final int CODE_MISSING_RESOURCE = 455

A resource in the source deployment package is marked as DeploymentPackage-Missing but there is
no such resource in the target deployment package.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.11 public static final int CODE_NOT_A_JAR = 404

DeploymentAdmin.installDeploymentPackage(InputStream) methods can throw DeploymentEx-
ception with this error code if the got InputStream is not a jar.

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.1

Page 426 OSGi Compendium Release 6

114.14.5.12 public static final int CODE_ORDER_ERROR = 450

Order of files in the deployment package is bad. The right order is the following:

1. META-INF/MANIFEST.MF
2. META-INF/*.SF, META-INF/*.DSA, META-INF/*.RS
3. Localization files
4. Bundles
5. Resources

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.13 public static final int CODE_OTHER_ERROR = 463

Other error condition.

All Deployment Admin methods which throw DeploymentException can throw an exception with
this error code if the error condition cannot be categorized.

114.14.5.14 public static final int CODE_PROCESSOR_NOT_FOUND = 464

The Resource Processor service with the given PID (see Resource-Processor manifest header) is not
found.

DeploymentAdmin.installDeploymentPackage(InputStream), DeploymentPackage.uninstall() and
DeploymentPackage.uninstallForced() throws exception with this error code.

114.14.5.15 public static final int CODE_RESOURCE_SHARING_VIOLATION = 461

An artifact of any resource already exists.

This exception is thrown when the called resource processor throws a ResourceProcessorException
with the CODE_RESOURCE_SHARING_VIOLATION error code.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.16 public static final int CODE_SIGNING_ERROR = 456

Bad deployment package signing.

DeploymentAdmin.installDeploymentPackage(InputStream) throws exception with this error code.

114.14.5.17 public static final int CODE_TIMEOUT = 465

When a client requests a new session with an install or uninstall operation, it must block that call
until the earlier session is completed. The Deployment Admin service must throw a Deployment
Exception with this error code when the session can not be created after an appropriate time out pe-
riod.

DeploymentAdmin.installDeploymentPackage(InputStream), DeploymentPackage.uninstall() and
DeploymentPackage.uninstallForced() throws exception with this error code.

114.14.5.18 public DeploymentException(int code,String message,Throwable cause)

code The error code of the failure. Code should be one of the predefined integer values (CODE_X).

message Message associated with the exception

cause the originating exception

□ Create an instance of the exception.

114.14.5.19 public DeploymentException(int code,String message)

code The error code of the failure. Code should be one of the predefined integer values (CODE_X).

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin

OSGi Compendium Release 6 Page 427

message Message associated with the exception

□ Create an instance of the exception. Cause exception is implicitly set to null.

114.14.5.20 public DeploymentException(int code)

code The error code of the failure. Code should be one of the predefined integer values (CODE_X).

□ Create an instance of the exception. Cause exception and message are implicitly set to null.

114.14.5.21 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

114.14.5.22 public int getCode()

Returns Returns the code.

114.14.5.23 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.1

114.14.6 public interface DeploymentPackage
The DeploymentPackage object represents a deployment package (already installed or being cur-
rently processed). A Deployment Package groups resources as a unit of management. A deploy-
ment package is something that can be installed, updated, and uninstalled as a unit. A deployment
package is a reified concept, like a bundle, in an OSGi Service Platform. It is not known by the OS-
Gi Framework, but it is managed by the Deployment Admin service. A deployment package is a
stream of resources (including bundles) which, once processed, will result in new artifacts (effects
on the system) being added to the OSGi platform. These new artifacts can include installed Bundles,
new configuration objects added to the Configuration Admin service, new Wire objects added to the
Wire Admin service, or changed system properties, etc. All the changes caused by the processing of
a deployment package are persistently associated with the deployment package, so that they can be
appropriately cleaned up when the deployment package is uninstalled. There is a strict no overlap
rule imposed on deployment packages. Two deployment packages are not allowed to create or ma-
nipulate the same artifact. Obviously, this means that a bundle cannot be in two different deploy-
ment packages. Any violation of this no overlap rule is considered an error and the install or update
of the offending deployment package must be aborted.

The Deployment Admin service should do as much as possible to ensure transactionality. It means
that if a deployment package installation, update or removal (uninstall) fails all the side effects
caused by the process should be disappeared and the system should be in the state in which it was
before the process.

If a deployment package is being updated the old version is visible through the DeploymentPackage
interface until the update process ends. After the package is updated the updated version is visible
and the old one is not accessible any more.

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.1

Page 428 OSGi Compendium Release 6

114.14.6.1 public static final String EVENT_DEPLOYMENTPACKAGE_CURRENTVERSION =
"deploymentpackage.currentversion"

The currently installed version of the Deployment Package. The attribute is not present, if no ver-
sion is installed:

• in the INSTALL event, when an installDeploymentPackage was called and no earlier version is
present

• in the COMPLETE event after the _successfully_ completing an uninstallDeploymentPackage
call

The value for this event must be a Version object.

Since 1.1

114.14.6.2 public static final String EVENT_DEPLOYMENTPACKAGE_NAME = "deploymentpackage.name"

The name of the Deployment Package. This name is the same name as that specified in the Deploy-
mentPackage-SymbolicName Manifest header.

Since 1.1

114.14.6.3 public static final String EVENT_DEPLOYMENTPACKAGE_NEXTVERSION = "deploymentpackage.nextversion"

The version of DP after the successful completion of the install operation (used in INSTALL event
only). The value for this event must be a Version object.

Since 1.1

114.14.6.4 public static final String EVENT_DEPLOYMENTPACKAGE_READABLENAME =
"deploymentpackage.readablename"

The human readable name of the DP localized to the default locale.

Since 1.1

114.14.6.5 public boolean equals(Object other)

other the reference object with which to compare.

□ Indicates whether some other object is "equal to" this one. Two deployment packages are equal if
they have the same deployment package symbolic name and version.

Returns true if this object is the same as the other argument; false otherwise.

114.14.6.6 public Bundle getBundle(String symbolicName)

symbolicName the symbolic name of the requested bundle

□ Returns the bundle instance, which is part of this deployment package, that corresponds to the
bundle's symbolic name passed in the symbol icName parameter. This method will return null for
request for bundles that are not part of this deployment package.

As this instance is transient (i.e. a bundle can be removed at any time because of the dynamic na-
ture of the OSGi platform), this method may also return null if the bundle is part of this deployment
package, but is not currently defined to the framework.

Returns The Bundle instance for a given bundle symbolic name.

Throws SecurityException– if the caller doesn't have the appropriate DeploymentAdminPermission with
"metadata" action

I l legalStateException– if the package is stale

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin

OSGi Compendium Release 6 Page 429

114.14.6.7 public BundleInfo[] getBundleInfos()

□ Returns an array of BundleInfo objects representing the bundles specified in the manifest of this de-
ployment package. Its size is equal to the number of the bundles in the deployment package.

Returns array of BundleInfo objects

Throws SecurityException– if the caller doesn't have the appropriate DeploymentAdminPermission with
"metadata" action

114.14.6.8 public String getDisplayName()

□ Returns the Deployment Package human readable name. This method returns the localized human
readable name as set with the DeploymentPackage-Name manifest header using the default locale.
If no header is set, this method will return nul l .

Returns The human readable name of the deployment package or nul l if header is not set.

Since 1.1

114.14.6.9 public String getHeader(String header)

header the requested header

□ Returns the requested deployment package manifest header from the main section. Header names
are case insensitive. If the header doesn't exist it returns null.

If the header is localized then the localized value is returned (see OSGi Service Platform, Mobile
Specification Release 4 - Localization related chapters).

Returns the value of the header or nul l if the header does not exist

Throws SecurityException– if the caller doesn't have the appropriate DeploymentAdminPermission with
"metadata" action

114.14.6.10 public URL getIcon()

□ Returns a URL pointing to an image that represents the icon for this Deployment Package. The De-
ploymentPackage-Icon header can set an icon for the deployment package. This method returns an
absolute URL that is defined by this header. The Deployment Admin service must provide this icon
as a local resource. That is, the Deployment Admin must make a local copy of the specified icon. The
returned URL 's must point to a local resource.

Returns An absolute URL to a local (device resident) image resource or nul l if not found

Since 1.1

114.14.6.11 public String getName()

□ Returns the Deployment Package Symbolic Name of the package.

Returns The name of the deployment package. It cannot be null.

114.14.6.12 public String getResourceHeader(String resource,String header)

resource the name of the resource (it is the same as the value of the "Name" attribute in the deployment
package's manifest)

header the requested header

□ Returns the requested deployment package manifest header from the name section determined by
the resource parameter. Header names are case insensitive. If the resource or the header doesn't exist
it returns null.

If the header is localized then the localized value is returned (see OSGi Service Platform, Mobile
Specification Release 4 - Localization related chapters).

Returns the value of the header or nul l if the resource or the header doesn't exist

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.1

Page 430 OSGi Compendium Release 6

Throws SecurityException– if the caller doesn't have the appropriate DeploymentAdminPermission with
"metadata" action

114.14.6.13 public ServiceReference getResourceProcessor(String resource)

resource the name of the resource (it is the same as the value of the "Name" attribute in the deployment
package's manifest)

□ At the time of deployment, resource processor service instances are located to resources contained
in a deployment package.

This call returns a service reference to the corresponding service instance. If the resource is not part
of the deployment package or this call is made during deployment, prior to the locating of the ser-
vice to process a given resource, null will be returned. Services can be updated after a deployment
package has been deployed. In this event, this call will return a reference to the updated service, not
to the instance that was used at deployment time.

Returns resource processor for the resource or nul l .

Throws SecurityException– if the caller doesn't have the appropriate DeploymentAdminPermission with
"metadata" action

I l legalStateException– if the package is stale

114.14.6.14 public String[] getResources()

□ Returns an array of strings representing the resources (including bundles) that are specified in the
manifest of this deployment package. A string element of the array is the same as the value of the
"Name" attribute in the manifest. The array contains the bundles as well.

E.g. if the "Name" section of the resource (or individual-section as the Manifest Specification [http://
java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification] calls it) in the manifest
is the following

 Name: foo/readme.txt
 Resource-Processor: foo.rp

then the corresponding array element is the "foo/readme.txt" string.

Returns The string array corresponding to resources. It cannot be null but its length can be zero.

Throws SecurityException– if the caller doesn't have the appropriate DeploymentAdminPermission with
"metadata" action

114.14.6.15 public Version getVersion()

□ Returns the version of the deployment package.

Returns version of the deployment package. It cannot be null.

114.14.6.16 public int hashCode()

□ Returns a hash code value for the object.

Returns a hash code value for this object

114.14.6.17 public boolean isStale()

□ Gives back the state of the deployment package whether it is stale or not). After uninstall of a de-
ployment package it becomes stale. Any active method calls to a stale deployment package raise Ille-
galStateException. Active methods are the following:

• getBundle(String)

http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification
http://java.sun.com/j2se/1.4.2/docs/guide/jar/jar.html#Manifest%20Specification

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin.spi

OSGi Compendium Release 6 Page 431

• getResourceProcessor(String)
• uninstall()
• uninstallForced()

Returns true if the deployment package is stale. fa lse otherwise

See Also uninstall(), uninstallForced()

114.14.6.18 public void uninstall() throws DeploymentException

□ Uninstalls the deployment package. After uninstallation, the deployment package object becomes
stale. This can be checked by using isStale(), which will return true when stale.

Throws DeploymentException– if the deployment package could not be successfully uninstalled. For de-
tailed error code description see DeploymentException.

SecurityException– if the caller doesn't have the appropriate
DeploymentAdminPermission("<filter>", "uninstall") permission.

I l legalStateException– if the package is stale

114.14.6.19 public boolean uninstallForced() throws DeploymentException

□ This method is called to completely uninstall a deployment package, which couldn't be uninstalled
using traditional means (uninstall()) due to exceptions. After uninstallation, the deployment pack-
age object becomes stale. This can be checked by using isStale(), which will return true when stale.

The method forces removal of the Deployment Package from the repository maintained by the De-
ployment Admin service. This method follows the same steps as uninstall(). However, any errors or
the absence of Resource Processor services are ignored, they must not cause a roll back. These errors
should be logged.

Returns true if the operation was successful

Throws DeploymentException– only DeploymentException.CODE_TIMEOUT and
DeploymentException.CODE_CANCELLED can be thrown. For detailed error code description see
DeploymentException.

SecurityException– if the caller doesn't have the appropriate
DeploymentAdminPermission("<filter>", "uninstall_forced") permission.

I l legalStateException– if the package is stale

114.15 org.osgi.service.deploymentadmin.spi

Deployment Admin SPI Package Version 1.0. The SPI is used by Resource Processors.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.deploymentadmin.spi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.deploymentadmin.spi ; vers ion="[1.0,1.1)"

org.osgi.service.deploymentadmin.spi Deployment Admin Specification Version 1.1

Page 432 OSGi Compendium Release 6

114.15.1 Summary

• DeploymentCustomizerPermission - The DeploymentCustomizerPermission permission gives
the right to Resource Processors to access a bundle's (residing in a Deployment Package) private
area.

• DeploymentSession - The session interface represents a currently running deployment session
(install/update/uninstall).

• ResourceProcessor - ResourceProcessor interface is implemented by processors handling re-
source files in deployment packages.

• ResourceProcessorException - Checked exception received when something fails during a call
to a Resource Processor.

114.15.2 public class DeploymentCustomizerPermission
extends Permission
The DeploymentCustomizerPermission permission gives the right to Resource Processors to access
a bundle's (residing in a Deployment Package) private area. The bundle and the Resource Processor
(customizer) have to be in the same Deployment Package.

The Resource Processor that has this permission is allowed to access the bundle's private area by
calling the DeploymentSession.getDataFile(Bundle) method during the session (see Deploymen-
tSession). After the session ends the FilePermissions are withdrawn. The Resource Processor will
have Fi lePermission with "read", "write" and "delete" actions for the returned java.io.File that repre-
sents the base directory of the persistent storage area and for its subdirectories.

The actions string is converted to lowercase before processing.

114.15.2.1 public static final String PRIVATEAREA = "privatearea"

Constant String to the "privatearea" action.

114.15.2.2 public DeploymentCustomizerPermission(String name,String actions)

name Bundle Symbolic Name of the target bundle, must not be nul l .

actions action string (only the "privatearea" or "*" action is valid; "*" means all the possible actions), must
not be nul l .

□ Creates a new DeploymentCustomizerPermission object for the given name and action .

The name parameter is a filter string. This filter has the same syntax as an OSGi filter but only the
"name" attribute is allowed. The value of the attribute is a Bundle Symbolic Name that represents a
bundle. The only allowed action is the "privatearea" action. E.g.

 Permission perm = new DeploymentCustomizerPermission(
 "(name=com.acme.bundle)", "privatearea");

The Resource Processor that has this permission is allowed to access the bundle's private area by
calling the DeploymentSession.getDataFile(Bundle) method. The Resource Processor will have
Fi lePermission with "read", "write" and "delete" actions for the returned java.io.File and its subdirec-
tories during the deployment session.

Throws I l legalArgumentException– if the filter is invalid, the list of actions contains unknown operations
or one of the parameters is nul l

114.15.2.3 public boolean equals(Object obj)

obj the reference object with which to compare.

□ Checks two DeploymentCustomizerPermission objects for equality. Two permission objects are
equal if:

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin.spi

OSGi Compendium Release 6 Page 433

• their target filters are equal (semantically and not character by character) and
• their actions are the same

Returns true if the two objects are equal.

See Also java.lang.Object.equals(java.lang.Object)

114.15.2.4 public String getActions()

□ Returns the String representation of the action list.

Returns Action list of this permission instance. It is always "privatearea".

See Also java.security.Permission.getActions()

114.15.2.5 public int hashCode()

□ Returns hash code for this permission object.

Returns Hash code for this permission object.

See Also java.lang.Object.hashCode()

114.15.2.6 public boolean implies(Permission permission)

permission Permission to check.

□ Checks if this DeploymentCustomizerPermission would imply the parameter permission. This per-
mission implies another DeploymentCustomizerPermission permission if:

• both of them has the "privatearea" action (other actions are not allowed) and
• their filters (only name attribute is allowed in the filters) match similarly to DeploymentAdmin-

Permission.

The value of the name attribute means Bundle Symbolic Name and not Deployment Package Sym-
bolic Name here!

Returns true if this DeploymentCustomizerPermission object implies the specified permission.

See Also java.security.Permission.implies(java.security.Permission)

114.15.2.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DeploymentCustomizerPermission objects.

Returns The new PermissionCollection.

See Also java.security.Permission.newPermissionCollection()

114.15.3 public interface DeploymentSession
The session interface represents a currently running deployment session (install/update/uninstall).

When a deployment package is installed the target package, when uninstalled the source package is
an empty deployment package. The empty deployment package is a virtual entity it doesn't appear
for the outside world. It is only visible on the DeploymentSession interface used by Resource Proces-
sors. Although the empty package is only visible for Resource Processors it has the following charac-
teristics:

• has version 0.0.0
• its name is an empty string
• it is stale

org.osgi.service.deploymentadmin.spi Deployment Admin Specification Version 1.1

Page 434 OSGi Compendium Release 6

• it has no bundles (see DeploymentPackage.getBundle(String))
• it has no resources (see DeploymentPackage.getResources())
• it has no headers except

• DeploymentPackage-SymbolicName and
• DeploymentPackage-Version

(see DeploymentPackage.getHeader(String))
• it has no resource headers (see DeploymentPackage.getResourceHeader(String, String))
• DeploymentPackage.uninstall() throws java.lang.IllegalStateException
• DeploymentPackage.uninstallForced() throws java.lang.IllegalStateException

114.15.3.1 public File getDataFile(Bundle bundle)

bundle the bundle the private area belongs to

□ Returns the private data area of the specified bundle. The bundle must be part of either the source or
the target deployment packages. The permission set the caller resource processor needs to manipu-
late the private area of the bundle is set by the Deployment Admin on the fly when this method is
called. The permissions remain available during the deployment action only.

The bundle and the caller Resource Processor have to be in the same Deployment Package.

Returns file representing the private area of the bundle. It cannot be null.

Throws SecurityException– if the caller doesn't have the appropriate
DeploymentCustomizerPermission("<filter>", "privatearea") permission.

See Also DeploymentPackage, DeploymentCustomizerPermission

114.15.3.2 public DeploymentPackage getSourceDeploymentPackage()

□ If the deployment action is an install or an update, this call returns the DeploymentPackage in-
stance that corresponds to the deployment package being streamed in for this session. If the deploy-
ment action is an uninstall, this call returns the empty deployment package (see DeploymentPack-
age).

Returns the source deployment package

See Also DeploymentPackage

114.15.3.3 public DeploymentPackage getTargetDeploymentPackage()

□ If the deployment action is an update or an uninstall, this call returns the DeploymentPackage in-
stance for the installed deployment package. If the deployment action is an install, this call returns
the empty deployment package (see DeploymentPackage).

Returns the target deployment package

See Also DeploymentPackage

114.15.4 public interface ResourceProcessor
ResourceProcessor interface is implemented by processors handling resource files in deployment
packages. Resource Processors expose their services as standard OSGi services. Bundles exporting
the service may arrive in the deployment package (customizers) or may be preregistered (they are
installed previously). Resource processors has to define the service.pid standard OSGi service prop-
erty which should be a unique string.

The order of the method calls on a particular Resource Processor in case of install/update session is
the following:

1. begin(DeploymentSession)

Deployment Admin Specification Version 1.1 org.osgi.service.deploymentadmin.spi

OSGi Compendium Release 6 Page 435

2. process(String, InputStream) calls till there are resources to process or rollback() and the further
steps are ignored

3. dropped(String) calls till there are resources to drop
4. prepare()
5. commit() or rollback()

The order of the method calls on a particular Resource Processor in case of uninstall session is the
following:

1. begin(DeploymentSession)
2. dropAllResources() or rollback() and the further steps are ignored
3. prepare()
4. commit() or rollback()

114.15.4.1 public void begin(DeploymentSession session)

session object that represents the current session to the resource processor

□ Called when the Deployment Admin starts a new operation on the given deployment package, and
the resource processor is associated a resource within the package. Only one deployment package
can be processed at a time.

See Also DeploymentSession

114.15.4.2 public void cancel()

□ Processing of a resource passed to the resource processor may take long. The cancel() method no-
tifies the resource processor that it should interrupt the processing of the current resource. This
method is called by the DeploymentAdmin implementation after the DeploymentAdmin.cancel()
method is called.

114.15.4.3 public void commit()

□ Called when the processing of the current deployment package is finished. This method is called if
the processing of the current deployment package was successful, and the changes must be made
permanent.

114.15.4.4 public void dropAllResources() throws ResourceProcessorException

□ This method is called during an "uninstall" deployment session. This method will be called on all re-
source processors that are associated with resources in the deployment package being uninstalled.
This provides an opportunity for the processor to cleanup any memory and persistent data being
maintained for the deployment package.

Throws ResourceProcessorException– if all resources could not be dropped. Only the
ResourceProcessorException.CODE_OTHER_ERROR is allowed.

114.15.4.5 public void dropped(String resource) throws ResourceProcessorException

resource the name of the resource to drop (it is the same as the value of the "Name" attribute in the deploy-
ment package's manifest)

□ Called when a resource, associated with a particular resource processor, had belonged to an earlier
version of a deployment package but is not present in the current version of the deployment pack-
age. This provides an opportunity for the processor to cleanup any memory and persistent data be-
ing maintained for the particular resource. This method will only be called during "update" deploy-
ment sessions.

Throws ResourceProcessorException– if the resource is not allowed to be dropped. Only the
ResourceProcessorException.CODE_OTHER_ERROR error code is allowed

org.osgi.service.deploymentadmin.spi Deployment Admin Specification Version 1.1

Page 436 OSGi Compendium Release 6

114.15.4.6 public void prepare() throws ResourceProcessorException

□ This method is called on the Resource Processor immediately before calling the commit method.
The Resource Processor has to check whether it is able to commit the operations since the last be-
gin method call. If it determines that it is not able to commit the changes, it has to raise a Resource-
ProcessorException with the ResourceProcessorException.CODE_PREPARE error code.

Throws ResourceProcessorException– if the resource processor is able to determine it is not able to commit.
Only the ResourceProcessorException.CODE_PREPARE error code is allowed.

114.15.4.7 public void process(String name,InputStream stream) throws ResourceProcessorException

name The name of the resource relative to the deployment package root directory.

stream The stream for the resource.

□ Called when a resource is encountered in the deployment package for which this resource processor
has been selected to handle the processing of that resource.

Throws ResourceProcessorException– if the resource cannot be processed. Only
ResourceProcessorException.CODE_RESOURCE_SHARING_VIOLATION and
ResourceProcessorException.CODE_OTHER_ERROR error codes are allowed.

114.15.4.8 public void rollback()

□ Called when the processing of the current deployment package is finished. This method is called if
the processing of the current deployment package was unsuccessful, and the changes made during
the processing of the deployment package should be removed.

114.15.5 public class ResourceProcessorException
extends Exception
Checked exception received when something fails during a call to a Resource Processor. A Resource-
ProcessorException always contains an error code (one of the constants specified in this class), and
may optionally contain the textual description of the error condition and a nested cause exception.

114.15.5.1 public static final int CODE_OTHER_ERROR = 463

Other error condition.

All Resource Processor methods which throw ResourceProcessorException is allowed throw an ex-
ception with this error code if the error condition cannot be categorized.

114.15.5.2 public static final int CODE_PREPARE = 1

Resource Processors are allowed to raise an exception with this error code to indicate
that the processor is not able to commit the operations it made since the last call of
ResourceProcessor.begin(DeploymentSession) method.

Only the ResourceProcessor.prepare() method is allowed to throw exception with this error code.

114.15.5.3 public static final int CODE_RESOURCE_SHARING_VIOLATION = 461

An artifact of any resource already exists.

Only the ResourceProcessor.process(String, InputStream) method is allowed to throw exception
with this error code.

114.15.5.4 public ResourceProcessorException(int code,String message,Throwable cause)

code The error code of the failure. Code should be one of the predefined integer values (CODE_X).

message Message associated with the exception

cause the originating exception

Deployment Admin Specification Version 1.1 References

OSGi Compendium Release 6 Page 437

□ Create an instance of the exception.

114.15.5.5 public ResourceProcessorException(int code,String message)

code The error code of the failure. Code should be one of the predefined integer values (CODE_X).

message Message associated with the exception

□ Create an instance of the exception. Cause exception is implicitly set to null.

114.15.5.6 public ResourceProcessorException(int code)

code The error code of the failure. Code should be one of the predefined integer values (CODE_X).

□ Create an instance of the exception. Cause exception and message are implicitly set to null.

114.15.5.7 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

114.15.5.8 public int getCode()

Returns Returns the code.

114.15.5.9 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.0.1

114.16 References

[1] JAR File Specification
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html

[2] OSGi Core Release 6
http://www.osgi.org/Specifications/HomePage

References Deployment Admin Specification Version 1.1

Page 438 OSGi Compendium Release 6

Auto Configuration Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 439

115 Auto Configuration Specification

Version 1.0

115.1 Introduction
The purpose of the Auto Configuration specification is to allow the configuration of bundles. These
bundles can be embedded in Deployment Packages or bundles that are already present on the OS-
Gi Framework. This specification defines the format and processing rules of a Autoconf Resource
Processor. Resource processors are defined in Deployment Admin Specification on page 389.

An Auto Configuration Resource contains information to define Configurat ion objects for the Con-
figuration Admin Service Specification on page 87.

115.1.1 Entities

• Autoconf Resource - One or more resources in a Deployment Package that are processed by the Au-
toconf Processor.

• Deployment Package - A named and versioned file that groups resources into a single management
unit. Deployment packages are the unit of deployment and uninstallation. Deployment pack-
ages can contain bundles and associated deployment-time resources that are processed by Re-
source Processors.

• Resource Processor - A deployment-time customizer that accepts a resource in a Deployment Pack-
age and turns it into a number of artifacts. A resource processor is a service that implements the
ResourceProcessor interface.

• Autoconf Resource Processor - The Resource Processor that processes the autoconf resources in a De-
ployment Package.

Figure 115.1 Autoconf Context Diagram

Resource
Processor

Autoconf
Processor Impl

Deployment
Package

1

Resource

Autoconf
resource

0..n

processes

Configuration
Adminconfigures

Configuration

1

0..n

Configuration Data Auto Configuration Specification Version 1.0

Page 440 OSGi Compendium Release 6

115.1.2 Synopsis
A Deployment Package can contain one or more Autoconf resources. The Manifest of the Deploy-
ment Package connects this resource to the Autoconf Resource Processor. When the Deployment
Package is deployed, the Autoconf Resource Processor reads the information from the Autoconf re-
sources and creates Configurat ion objects: both Managed Service as well as Managed Service Factory
Configurat ion objects.

When the Deployment Package is updated or uninstalled, the Autoconf Resource Processor must
delete the appropriate Configuration objects.

115.2 Configuration Data
Bundles usually require configuration data when they are deployed. For example, a bundle that has
to contact a central server needs one or more server URLs. In practice, a complete application can
consist of:

• A number of bundles
• Their configuration data
• Other required resources

The Deployment Package allows such an application to be installed, updated, and uninstalled in a
single operation. This specification extends the Deployment Package with a facility to create Con-
figurat ion objects. The extension uses the Resource Processor mechanism to read one or more re-
sources from the Deployment Package and create Configurat ion objects based on these resources.

For example, a Deployment Package contains a single bundle Chat . This bundle, when started, reg-
isters a Managed Service with a PID of com.acme.pid.Chat . The expected Configuration Dictionary
contains a single property: serverur l .

The schema explanation for an Autoconf resource can be found in Metatype Service Specification on
page 131. An Autoconf resource could look like:

<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData
 xmlns:metatype=
 "http://www.osgi.org/xmlns/metatype/v1.1.0">

 <OCD id="ChatConfiguration">
 <AD id="server" type="String">
 </OCD>

 <Designate pid="com.acme.pid.Chat"
 bundle="http://www.acme.com/chat.jar>
 <Object ocdref="ChatConfiguration">
 <Attribute adref="server" name="serverurl"
 content="http://chat.acme.com"/>
 </Object>
 </Designate>

</metatype:MetaData>

The OCD element (an abbreviation of Object Class Definition) defines the type of the Configuration
Dictionary. This typing is based on the Metatype Service Specification on page 131. The Designate ele-
ment links the configuration data to a PID. This PID is the PID for the configuration object. The con-

Auto Configuration Specification Version 1.0 Processing

OSGi Compendium Release 6 Page 441

tent is defined in an Object element. An Object element links to an OCD element and defines the
values of the attributes in Attr ibute elements.

The Autoconf Resource Processor in the example is instructed by this resource to create a Man-
aged Service Configuration object with a Dictionary object that contains serverur l="http://
chat.acme.com".

An Autoconf resource can configure Managed Service configurations, as long as the bundle is con-
tained in the same Deployment Package. For bundles that are not contained in the Deployment
Package, a.k.a. foreign bundles, only Managed Service Factory configurations can be created. Configur-
ing foreign bundles with a Managed Service configuration could create ownership conflicts and is
therefore explicitly not allowed.

The Autoconf Resource Processor must be able to handle installations, updates, and uninstallations
of Deployment Packages.

115.3 Processing
The Autoconf Resource Processor must register itself with the following PID to become available to
the Deployment Admin service:

org.osgi.deployment.rp.autoconf

The Autoconf Resource Processor must process each Designate element in order of appearance. This
element has the following information:

• pid - The PID of the Configuration object. If the Configuration object is a factory configuration,
the PID is actually an alias of the actual PID because a factory configuration PID is generated.

• factoryPid - (Str ing) Defines a factory PID when this Designate is a factory configuration; otherwise
it is for a singleton configuration.

• bundle - The location of the bundle. It must be used to set the location of the Configurat ion object.
This attribute is mandatory for autoconf though it is not mandatory for the schema because oth-
er applications might not need a bundle location.

• merge - (true|false) Indicates that the value of the contained Object definition replaces
(merge=false) the configuration data, or only replaces properties (merge=true) that do not exist
in the configuration data.

• optional - (true|false) If true , then this Designate element is optional, and errors during process-
ing must be ignored. Otherwise, errors during processing must abort the installation of the De-
ployment Package. This requires the undoing of any work done so far.

The content of a Designate element is an Object element. This element contains the value for the
configuration Dictionary.

If the Designate element was marked optional , then any errors during these steps can be ignored
and the next Designate element must be processed.

A factory configuration is processed differently from a singleton configuration. These two different
processing methods are discussed in the following sections.

115.3.1 Factory Configurations
Factory configurations can be created and deleted any number of times. This concept of multiplic-
ity makes it straightforward to associate factory configurations with a Deployment Package. Each
Deployment Package can create its unique configurations that are independent of any other Deploy-
ment Packages. When the Deployment Package is uninstalled, the created configurations can be
deleted without any concern for sharing.

Processing Auto Configuration Specification Version 1.0

Page 442 OSGi Compendium Release 6

A factory configuration is defined in a Designate element. The factoryPid must be set to the PID of
the related Managed Service Factory service. For example:

 <Designate pid="a" factoryPid="com.acme.a"
 bundle="osgi-dp:com.acme.A">
 <Object ocdref="a">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 </Object>
 </Designate>

The Autoconf resource cannot use the actual PID of the Configurat ion object because the Configu-
ration Admin service automatically generates the PID of factory configurations. This created PID is
called the actual PID.

The Autoconf resource author cannot know the actual PID ahead of time. The Autoconf resource
must therefore specify a alias. The alias does not have to be globally unique; it must only be unique
for a specific Autoconf resource. The Autoconf Processor must maintain the following association
(per Autoconf resource):

 alias → actual PID

The alias can be viewed as an Autoconf resource local name for the factory configuration PID. The
actual PID is generated when the Autoconf processor creates a new factory configuration. This map-
ping is identical to the mapping defined for the Configuration Admin Plugin.

The alias → actual PID association must be used by the Autoconf Processor to decide what life cycle
operation to execute.

• Alias → ∅ - This installation is a first-time installation of the factory configuration. The Autoconf
resource specifies a factory configuration that was not part of a previous installation. The Auto-
conf Processor must therefore create a new factory configuration, set the configuration dictio-
nary to the values in the Object element (see Assigning a Value on page 444), and create the
Alias → Actual association.

• Alias → Actual - The factory configuration already exists from a previous Autoconf resource in-
stallation. The Autoconf Processor must merge or override (depending on the merge attribute)
the Configuration object designated by the actual PID with the values in the Object element (see
Assigning a Value on page 444).

• ∅ → Actual - The Autoconf resource no longer contains an alias that it previously contained. The
configuration identified by the actual PID must be deleted.

Uninstalling an Autoconf resource requires that the Autoconf Resource Processor deletes all Config-
urat ion objects associated with the resource.

115.3.2 Singleton Configuration
A singleton configuration is associated with a Managed Service. The Autoconf Resource Processor
must only use singleton configurations for bundles that are contained in the same Deployment
Package as the Autoconf resource. The target Deployment Package can provide a list of these bun-
dles.

This ownership policy is required to prevent sharing conflicts. For this reason, the bundle attribute
in the Designate element must be set to the location of the bundle so that this ownership is en-
forced by the Configuration Admin service. The location of the bundle is defined by the Bundle
Symbolic Name of the given bundle prefixed with osgi-dp: .

The processing must abort with a fatal error if the bundle attribute is not set. The Autoconf Resource
processor must bind the singleton configuration to the given bundle.

If a singleton configuration with a given PID already exists, it must be unbound or bound to the
same location contained by the bundle attribute. Otherwise the processing must abort.

Auto Configuration Specification Version 1.0 Processing

OSGi Compendium Release 6 Page 443

The singleton configuration must be merged with or replaced by the information in the Object ele-
ment, depending on the merge attribute as described in Assigning a Value on page 444.

115.3.3 Example
For example, bundle A uses a factory configuration with the factory PID com.acme.a and bundle B
uses a singleton configuration with PID com.acme.b . They define the following configuration prop-
erties:

com.acme.a:
gear Integer
ratio Vector of Float

com.acme.b:
foo String
bar Short[]

For proper operation, a Deployment Package P needs a configuration for com.acme.a and
com.acme.b with the following values:

 gear = 3
 ratio = {3.14159, 1.41421356, 6.022E23}
 foo = "Zaphod Beeblebrox"
 bar = {1,2,3,4,5}

The corresponding autoconf.xml resource associated with Deployment Package P would look like:

<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData
 xmlns:metatype=
 "http://www.osgi.org/xmlns/metatype/v1.1.0">

 <OCD id="a">
 <AD id="gear" type="Integer" cardinality="0" />
 <AD id="ratio" type="Float" cardinality="-3" />
 </OCD>

 <OCD id="b">
 <AD id="foo" type="String" cardinality="0"/>
 <AD id="bar" type="Short" cardinality="5"/>
 </OCD>

 <Designate pid="x" factoryPid="com.acme.a"
 bundle="osgi-dp:com.acme.a">
 <Object ocdref="a">
 <Attribute adref="gear" content="3" />
 <Attribute adref="ratio">
 <Value>3.14159</Value>
 <Value>1.41421356"</Value>
 <Value>6.022E23"</Value>
 </Attribute>
 </Object>
 </Designate>

 <Designate pid="com.acme.b"
 bundle="osgi-dp:com.acme.B">
 <Object ocdref="b">

Security Considerations Auto Configuration Specification Version 1.0

Page 444 OSGi Compendium Release 6

 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
 </Designate>
</metatype:MetaData>

115.3.4 Assigning a Value
The Autoconf resources share a scheme and can cooperate with the Metatype Service Specification on
page 131. An Autoconf resource primarily contains a number of values for configuration objects in
the Designate elements. Designate elements:

• Are for a factory or singleton configuration (factoryPid attribute)
• Are bound to a bundle location (bundle attribute)
• Are meant to be merged with an existing value or replace an existing value (merge attribute).

Merging means only setting the values for which the existing Configurat ion object has no value.
• Provide a value for the Configurat ion object with the Object element.

Designate elements contain an Object element that contains the actual value. Object elements refer
to an OCD element by name. The OCD elements act as a descriptor of the properties.

The OCD elements that are referred from an Object element can be contained in the Autoconf re-
source, or they can come from the Meta Type service. The reference takes place through the ocdref
attribute of the Object element. The Autoconf Resource Processor must first match this name to any
OCD elements in the Autoconf resources. If the reference cannot be found in this file, it must con-
sult the Meta Type service (if present) for the bundle that is associated with the PID that is config-
ured.

115.3.5 Process Ordering
The Autoconf Processor must create any factory and singleton configurations when it is called with
an Autoconf resource. This phase should perform as much validation as possible. The configura-
tions must be created in the order of appearance in the Autoconf resource.

In the commit method, the Autoconf Resource Processor must first delete all Configurat ion objects
that were uninstalled. Thereafter, it must set or update the appropriate Configurat ion objects.

This ordering implies that a customizer bundle cannot receive configuration parameters from an
Autoconf resource.

115.4 Security Considerations
Allowing a deployment package's Autoconf resources to (re)configure arbitrary configurations cre-
ates security threats. The possible threats are discussed in the following sections.

115.4.1 Location Binding
As described in Configuration Admin Service Specification on page 87, it is possible for a malicious bun-
dle to register a Managed Service under a PID used by another (legitimate) bundle. This activity es-
sentially hijacks the Managed Service PID, and constitutes a denial of service attack on the legitimate

Auto Configuration Specification Version 1.0 Security Considerations

OSGi Compendium Release 6 Page 445

bundle (as it never receives the configuration information it needs). The Configuration Admin spec-
ification describes a location binding technique that can be used to prevent this attack. The Auto-
conf Resource Processor must bind Configurat ion objects to locations specified in the Autoconf re-
sources using the mandatory bundle attribute.

115.4.2 Autoconf Resource Permissions
The capabilities of an Autoconf Resource Processor must be limited to the permissions that are
granted to the signer of a Deployment Package. This is the specified way for the Deployment Admin
service to act. The Autoconf Resource Processor does not have to take any special actions; all its ac-
tions are automatically scoped by the signer of the Deployment Package.

This restriction implies, however, that the Autoconf Resource Processor must do a doPriv i leged
method for any actions that should not be scoped: for example, when it persists the associations of
the alias → actual PID.

A Deployment Package that requires any activity from the Autoconf Resource processor must at
least provide Configurat ionPermission[*,CONFIGURE] .

Security Considerations Auto Configuration Specification Version 1.0

Page 446 OSGi Compendium Release 6

Application Admin Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 447

116 Application Admin Specification

Version 1.1

116.1 Introduction
The OSGi Application Admin specification is intended to simplify the management of an environ-
ment with many different types of applications that are simultaneously available. A diverse set of ap-
plication types are a fact of life because backward compatibility and normal evolution require mod-
ern devices to be able to support novel as well as legacy applications. End users do not care if an ap-
plication is an Applet, a Midlet, a bundle, a Symbian, or a BREW application. This specification en-
ables applications that manage other applications, regardless of application type. These applications
are called application managers. This specification supports enumerating, launching, stopping and
locking applications. This specification does not specify a user interface or end-user interactions.

The OSGi Framework is an excellent platform on which to host different Application Containers.
The class loading and code sharing mechanisms available in the OSGi Framework can be used to im-
plement powerful and extendable containers for Java based application models with relative ease.
Native code based application models like Symbian and BREW can be supported with proxies.

116.1.1 Essentials

• Generic Model - The Application Admin specification defines how all applications, regardless
of type, can be launched and destroyed. This application-type neutral model allows a screen or
desktop manager access to all executable content in a uniform manner.

• Schedule - A mechanism that allows the launching of applications at a predefined time, interval,
or event.

• Dynamic - Detects installations and uninstallations of applications in real time.
• Locking - Allows applications to be persistently locked so that they cannot be launched.
• Exit Value - Provide a return value for an application that has exited.

116.1.2 Entities

• Application - A software component, which has well-defined entry and exit criteria. Applications
can be started and destroyed, and usually are designed for user interaction. Applications may be
of various types, each having their own specification. Applications and application instances are
visible through the their Application Descriptor services and Application Handle services.

• Application Container - An implementation of a runtime environment for one or more application
types. It provides specialized Application Descriptor and Application Handle services that corre-
spond to the supported application type and their instances. The design of a particular Applica-
tion Container is defined by other specifications. For example, an Application Container which
implements MIDlets must follow the appropriate JSR specifications for MIDP.

• Application Handle - A service that represents an instance of an application. This service is avail-
able in the OSGi service registry as long as the application instance exists.

• Application Instance - The actual application that has been launched. Registered in the service reg-
istry as long as the application is running.

Application Managers Application Admin Specification Version 1.1

Page 448 OSGi Compendium Release 6

• Application Descriptor - A service that represents an installed Application and provides informa-
tion about the application as well as launching, scheduling and locking features. An Application
Descriptor must be registered for each application as long as the Application is installed

• Application Manager - A bundle that manages a number of applications.
• Scheduled Application - An information record for a scheduled application.

Figure 116.1 Application Management Diagram org.osgi.service.application package

Application Admin implementation

<<service-class>>
Application
Descriptor

<<service-class>>
Application
Handle

Application
Container Impl

Application
Instance impl

Application
Manager Impl.

discovery life cycle

<<interface>>
Scheduled
Application

* 1

Scheduled
Application Impl

implemented in implemented in

116.1.3 Synopsis
Different types of applications can be accommodated in the Application Admin specification using
a model of Application Containers. An Application Container typically follows an external speci-
fication, for example, the MIDP specification. In an OSGi environment, the implementer of such a
specification can allow its applications (MIDlets in the previous example) to participate in the OSGi
Application Model by registering an Application Descriptor service for each of its installed applica-
tions, and an Application Handle service for each of its running instances.

This model leverages the capabilities of the OSGi service registry. Installed applications and running
applications can be found by enumerating the appropriate services, possibly using a filter if a spe-
cific application is sought. The service registry provides necessary isolation of the clients of the ap-
plications and their implementers. Typical clients of this specification are desktop/screen managers
that provide the end user access to the installed applications.

116.2 Application Managers
An application manager (a bundle or application that manages other applications) must be able
to discover the available applications, present them to an end user and launch applications on de-
mand. A bundle that maintains the display of a mobile phone is a typical client of this specification.

116.2.1 Discovery
The primary means of discovery is the Application Descriptor service. An Application Container
must register an Application Descriptor service for each of its applications. An application manager
can detect the installation and uninstallation of applications by listening to service events.

Service properties on the Application Descriptor carry most of the information that an application
manager requires to present the application to the end user. The properties as defined in the follow-
ing table.

Application Admin Specification Version 1.1 Application Managers

OSGi Compendium Release 6 Page 449

Table 116.1 Service Properties for an Application Descriptor

Key Name Type Default Description
service.pid Str ing must be set Unique identifier of the application. It is

recommended to set a value generated
from the vendor's reverse domain name,
e.g. com.acme.appl icat ion.chess . The
service.pid service property is a standard
Framework property.

appl icat ion.version Str ing empty string Specifies the version of the application.
The default value is an empty string

service.vendor Str ing empty string Specifies the vendor of the application.
appl icat ion.container Str ing must be set A unique identifier (like a PID) of the con-

tainer implementation that registered
this application descriptor.

appl icat ion. location Str ing must be set The identifier of package that contains
the application corresponding to this de-
scriptor. It represents the installation unit
that contains the corresponding applica-
tion. It should be a URL. For applications
installed as bundles, it should be the loca-
tion of the bundle. For others, it is defined
by the container implementation.

appl icat ion.vis ible Boolean true Specifies whether the application should
be visible for the user. For example, some
applications may provide features to
other applications but nothing directly
to the user. In this case the application
should not be revealed to the user to start
it individually.

appl icat ion. launchable Boolean false Specifies whether the application is ready
to be launched. If the value is true , it
means that all the requirements of the ap-
plication are fulfilled.

appl icat ion. locked Boolean false Specifies whether the represented appli-
cation is locked to prevent launching it.

Specialized application descriptors can offer further service properties and method. For example,
a MIDP container can register a property that describes that the MIDLet comes from a specific JAD
file, thereby allowing a MIDLet aware Application Manager to group these MIDLets.

Application Descriptor services must not be declarative. That is, they can be obtained from the ser-
vice registry at any time without accidentally initializing a class loader.

The following example shows how to track all visible, launchable, and unlocked applications. These
tracked applications are the ones that can be started.

public class TrackLaunchables {
 final static String filter=
 "(&(objectclass="
 + ApplicationDescriptor.class.getName()
 + ")(application.launchable=true)"
 + "(application.visible=true)"
 + "(application.locked=false))";
 static ApplicationDescriptor[] EMPTY =
 new ApplicationDescriptor[0];

Application Managers Application Admin Specification Version 1.1

Page 450 OSGi Compendium Release 6

 ServiceTracker tracker;

 public void init(BundleContext cntxt) throws Exception {
 tracker = new ServiceTracker(cntxt,
 cntxt.createFilter(filter), null);
 tracker.open();
 }

 public ApplicationDescriptor[] getActive() {
 Object [] result = tracker.getServices();
 List list = Arrays.asList(result);
 return (ApplicationDescriptor[]) list.toArray(EMPTY);
 }
}

The code is quite simple because the Service Tracker does the actual tracking. The most important
part is therefore the filter. The filter selects all the Application Descriptor services that are visible,
launchable, and not locked. The getActive method converts the Object[] that the Service Tracker
maintains into an array of Application Descriptors.

116.2.2 Application Descriptor Properties
The Application Descriptor object has an additional number of properties that are not available as
service properties. These descriptor properties can be localized. The getPropert ies(Str ing) method
therefore takes a locale Str ing object. This is a standard locale string as defined by the java.ut i l .Locale
class. The order for the locale constituents is:

• language
• country
• variant

For example, the following files provide manifest translations for English, Dutch (Belgium and the
Netherlands) and Swedish.

en nl_BE
nl_NL sv

It returns a Map object containing localized versions of the properties. This is a copy of the original
objects so changes to this Map object are not reflected in the Application Descriptor properties.

If the locale string is nul l , the localization will be based on the default locale, as specified by the
java.ut i l .Locale.getDefault method. If the locale is the empty Str ing object (""), no localization must
be used. This will contain the raw values that are usually used as keys. If a specific locale has no ap-
propriate translations, a less specific locale must be used, as described in the Locale class. As last re-
sort, the raw values must be returned.

The key names in the Map object are case-sensitive. Application Containers can add additional
properties to this Map object, however, they must avoid key names starting with appl icat ion . They
should use key names that have a prefix that does not collide with other Application Containers.

If no locale specific value of an application property is available then the default one must be re-
turned. The following case-sensitive key names are treated as standard for locale specific values in
the Map object. Additional elements may also be stored in the Map object. The specified properties
are explained in the following table.

Table 116.2 Descriptor localized properties

Key Name Type Default Description
appl icat ion.name Str ing must be set The name of the application.

Application Admin Specification Version 1.1 Application Managers

OSGi Compendium Release 6 Page 451

Key Name Type Default Description
appl icat ion. icon URL No Icon A URL an icon's image resource. A com-

pliant implementation of this specifica-
tion must support the [1] PNG Image For-
mat.

appl icat ion.version Str ing 0.0.0 The version of the application
service.vendor Str ing The vendor of the application
appl icat ion.vis ible Boolean true
appl icat ion. launchable Boolean true If the application can be launched
appl icat ion. locked Boolean true If the application is locked
appl icat ion.descr ipt ion Str ing A description of the application
appl icat ion.documentation Str ing Document
appl icat ion.copyright Str ing A Copyright statement
appl icat ion. l icense Str ing A URL to the license related to the appli-

cation
appl icat ion.container Str ing must be set The PID of the associated container
appl icat ion. location Str ing The URL of the location of the corre-

sponding JAR file of the application, if ex-
ists.

116.2.3 Launching
The Application Descriptor provides the launch(Map) methods for application managers to launch
an application. Launching consists of creating the specific application object, starting it, registering
an Application Handle service that represents that instance and return the Application Handle ser-
vice.

The Map object parameter is application specific. Applications should use unique names for the
keys in this map, for example com.acme.r ingsignal . This specification does not specify any keys for
this map except for:

• org.osgi .tr iggeringevent - This property is set to the Event object that cause the application to be
launched (if any).

When an application is started successfully the corresponding Application Handle service will be
registered with the service registry.

116.2.4 Application States
An Application Handle service represents an instance of an application. The application handle is
registered by the Application Container after successfully launching a new application instance.

An Application Handle service can be used to query the state and manipulate the application in-
stance. It is the responsibility of the Application Handle service to maintain the application instance
life cycle state by interacting with the implementation object of the application.

A running instance can have the following state according to this specification:

• RUNNING - This is the state of the Application Handle when it gets registered. It indicates that the
application instance is active.

• STOPPING - The application is stopping. This is a transient state.

Application Containers can extend the number of states.

The Application Handle service maintains the service properties as listed in the following table. Spe-
cialized application handles may offer further service properties, but the key names specified in the
table below must not be used for other purposes.

Application Managers Application Admin Specification Version 1.1

Page 452 OSGi Compendium Release 6

Table 116.3 Application Handle service properties

Key Name Type Default Description
service.pid Str ing must be set The Application Instance ID as returned

by the getInstanceId method.
appl icat ion.state Str ing must be set Contains the current state of the applica-

tion instance represented by this applica-
tion handle. These states can be applica-
tion model specific.

appl icat ion.descr iptor Str ing must be set The PID of the associated Application De-
scriptor service

Specialized application handles may offer further application states. The name of additional states
must be qualified names (dotted); non-qualified names are reserved for future specifications.

116.2.5 Destroying an Application Instance
An application instance can be stopped with its associated Application Handle using the destroy()
method. This first turns the state of the Application to STOPPING . The application instance may
save its persistent data before termination and it must release all the used resources. The application
instance's artifacts should not be reused any more. The Application Admin implementation and the
application container should ensure (even forcefully) that all allocated resources are cleaned up.

If the application instance has completely stopped, then its Application Handle must be unregis-
tered.

116.2.6 Getting the Exit Value of an Application
Many application containers allow an application to specify a value when the application is
stopped. This value is called the exit value. The Application Handle can therefore return the exit val-
ue when this is supported by the underlying application model. It is possible to find out if the un-
derlying container support exit values because not all application containers support exit values.

The Application Descriptor has a special service property that it must set when it sup-
ports exit values. This service property name is defined on the Appl icat ionHandle class as
APPLICATION_SUPPORTS_EXITVALUE . Setting this property to any value signals that the applica-
tion instance supports an exit value return.

The getExitValue(long) method on the Appl icat ionHandle class returns the exit value object from
the underlying application container. If the application container does not support exit values, then
this method must always throw an Unsupported Operation Exception.

The method takes a time out value which allows it to wait for the application instance to finish.
This time-out can take the following values:

• negative - When the time-out is negative, there is no waiting. If the application instance has fin-
ished, the exit value will be returned. Otherwise an Application Exception must be thrown with
the error code set to APPLICATION_EXITVALUE_NOT_AVAILABLE .

• zero - The method will wait indefinitely until the application is finished.
• positive - The method will wait for the application to finish the given number of milliseconds. If

after that time the application instance is still not finished, an Application Exception must be
thrown with the error code set to APPLICATION_EXITVALUE_NOT_AVAILABLE .

The type of the exit value is undefined, it is a generic Java object. It is up to the application container
to define the actual type for this Object.

116.2.7 Locking an Application
Applications represented by the application descriptors can be locked. If an application is locked
then no new instance of the represented application can be started until it is unlocked. The locking

Application Admin Specification Version 1.1 Application Managers

OSGi Compendium Release 6 Page 453

state of the application has no effect on the already launched instance(s). The Application Descrip-
tor provides the methods lock and unlock to set, unset the locking state. Locking and unlocking an
application represented by an Application Descriptor requires the proper Application Admin Per-
mission. The methods to lock, unlock, and query the locked status of an application are implement-
ed as final methods of the abstract application descriptor class to ensure that an application contain-
er implementation will not be able to circumvent this security policy.

116.2.8 Scheduling
Scheduling can be used to launch an a new application instance in the future when a specific event
occurs, if needed on a recurring basis.

The Application Descriptor service provides the schedule(Str ing,Map,Str ing,Str ing,boolean)
method to schedule an application to be launched when an specific event occurs. The parameters to
this method are:

• Schedule Id - (Str ing) An id for this application that identifies the schedule, even over system
restarts. Ids must be unique for one application. This id will be registered as service property on
the Scheduled Application service under the name of SCHEDULE_ID . The name must match the
following format:

 scheduleId ::= symbolic-name
 // See General Syntax Definitions in Core

• Arguments - (Map) These arguments will be passed to the application in the launch method. The
keys in this map must not be null or the empty string.

• Topic - (Str ing) The topic of the event that must trigger the launch of the application.
• Filter - (Str ing) A filter that is passed to the Event Admin for subscribing to specific events, can be

nul l . The syntax of the string is the same as an OSGi Framework filter.
• Recurring - (boolean) Repeatedly launch the application when the specified events occur until

the schedule is canceled.

The schedule method must register a Scheduled Application service with the service registry and re-
turn the Schedule Application service object.

For example, the invocation

appDesc.schedule(
 null, // System generates schedule id
 null, // No arguments
 "org/osgi/application/timer",
 "(&(hour_of_day=0)(minute=0))",
 true)

Schedules the application to be launched when a timer event is received and the hour_of_day and
minute properties are zero.

The Scheduled Application service must have the following properties:

• APPLICATION_PID - (Str ing) The PID of the Application Descriptor service.
• SCHEDULE_ID - (Str ing) a unique id (within the schedules for one application).

The list of active Scheduled Application services can be obtained from the service registry. A non-re-
current Scheduled Application service is unregistered once the application is successfully launched.

The timer used to start an application from a schedule has a resolution of one minute. It is therefore
possible that an application is delayed up to a minute before it is started.

Application Containers Application Admin Specification Version 1.1

Page 454 OSGi Compendium Release 6

116.2.9 Application Exceptions
Exceptional conditions that arise during processing of application requests. The Exception identi-
fies the actual error with an integer code. The following codes are supported:

• APPLICATION_INTERNAL_ERROR - An internal error occurred.
• APPLICATION_LOCKED - The application is locked and can therefore not be launched.
• APPLICATION_NOT_LAUNCHABLE - The application could not be launched.
• APPLICATION_SCHEDULING_FAILED - The application scheduling could not be created due to

some internal error. This entails that the scheduling information is not persisted.
• APPLICATION_DUPLICATE_SCHEDULE_ID - The application scheduling failed because the speci-

fied identifier is already in use.

116.2.10 Application Events
The event mechanism of the Application Admin specification is based on the OSGi service registry
event model. Both Application Descriptor and Application Handle are services. Bundles can listen to
these events registering a ServiceListener object with a Bundle Context or they can listen to events
from the Event Admin, see for more information Service Event on page 375.

• Application Descriptor service
• REGISTERED - A new application has become available. Depending on its properties, this ap-

plication could be launched.
• MODIFIED - The visibility, launchable or locked status is changed.
• UNREGISTERING - The application is no longer available. All running instances of this appli-

cation must be destroyed before this event is delivered.
• Application Handle service

• REGISTERED - A new instance is created and started running.
• MODIFIED - The application instance is changed its state. This specification only specifies the

STOPPING state but application containers are free to add additional states. Transitions be-
tween all these states must be signaled with the MODIFIED service event.

• UNREGISTERING - The application instance is no longer running.

116.3 Application Containers
Application Containers provide the implementation of a specific application model like MIDP,
BREW,.NET, or Symbian. Application Containers can be implemented inside the OSGi environment
or run externally, in another VM or as native code. When the container runs externally, it is neces-
sary to run a proxy inside the OSGi environment that communicates with the external container.
This is shown in Figure 116.2.

Application Admin Specification Version 1.1 Application Containers

OSGi Compendium Release 6 Page 455

Figure 116.2 Application Container Model with Proxy

Native Application
Container Impl

<<service>>
Application
Descriptor

Appl. Container
Impl

<<service>>
Application
Handle

proxy communication

Native Executable Application
Instance Process1 *

OSGi Environment

External Process

116.3.1 The Application Descriptor
The first responsibility of the Application Container is to register an Application Descriptor for
each available application. The Application Container must therefore extend the Appl icat ionDe-
scr iptor base class that is provided by the Application Admin implementer and provided in the
org.osgi .service.appl icat ion package. The base class is defined as an abstract class in this specifica-
tion with only minimal implementation code. Implementers of the Application Admin implemen-
tation can replace this class with an implementation that enforces their desired policies.

The Application Container must override the methods that have a Specif ic suffix. These methods
are:

• Appl icat ionDescr iptor(Str ing) - The Base class Application Descriptor takes the PID of the Appli-
cation Descriptor as argument.

• getPropert iesSpecif ic(Str ing) - Return the properties (including service properties) based on a
specific locale. See the locale rules at Application Descriptor Properties on page 450. The Appli-
cation Container must fill the returned Map object with the properties listed in Table 116.2 on
page 450 as well as other service properties. Non-localized data is returned if the correspond-
ing application container doesn't support the localization of application properties. Changes in
the Map object must not be reflected in Application Descriptor properties.

• launchSpecif ic(Map) - Launch a new instance and return its handle. The container must ensure
that the application is started in a doPriv i leged block I.e. the permissions of the caller must not
influence the capabilities of the started application.

• lockSpecif ic() - Do the specific locking of the Application Descriptor.
• unlockSpecif ic() - Do the specific unlocking of the Application Descriptor.
• isLaunchableSpecif ic() - This method must return true when the application can be launched.

This method can be called by the Application Descriptor implementation to find out if an appli-
cation can be launched according to the container.

The specific methods must be made protected because the specific Application Descriptor is regis-
tered as a service and is intended to be used by a wide array of clients. These clients can call public
methods so care should be taken to ensure that no intrusion can take place this way. The Applica-

Application Containers Application Admin Specification Version 1.1

Page 456 OSGi Compendium Release 6

tion Admin implementer must provide the implementation for the publ ic methods and perform the
appropriate security checks.

The specific Application Descriptor must be registered for each possible application with the set of
service properties listed in Table 116.1 on page 449.

An application is launched with the launchSpecif ic method. This method is called by the Applica-
tion Admin implementation, as implemented in the Appl icat ionDescr iptor base class. The imple-
mentation of the launchSpecif ic method must return expediently. The Application Descriptor must
perform the following steps (in the given order):

1. Create a new instance of the associated application
2. Start the application in another process or thread.
3. If the application cannot be started, an appropriate Exception must be thrown.
4. Register an Application Handle for this running application. The registration of the Application

Handle must be accompanied by the service properties from Table 116.3 on page 452.
5. Return the new Application Handle.

116.3.2 The Application Handle
The Application Handle represents the running instance. The Application Container must extend
the provided base class and implement the following methods:

• Appl icat ionHandle(Str ing,Appl icat ionDescr iptor) - The constructor of the base class takes the
executable id and the Application Descriptor as parameter.

• destroySpecif ic() - Clients of the Application Admin specification use the destroy method on the
Application Handle service to make an application instance quit. The Application Admin imple-
menter must at an appropriate time call the destroySpecif ic method. The Application Container
must destroy the application instance (if it had not destroyed already) and clean up.

• getAppl icat ionDescr iptor() - Return the Application Descriptor that belongs to this Application
Handle.

• getInstanceId() - A unique id for this instance.
• getState() - Returns the state for the instance. The Application Admin specification only speci-

fies two states: RUNNING and STOPPING . Application Containers can add new states to represent
for example PAUSED . States are strings and must be qualified to prevent conflicts. For example,
the Midlet state for paused could be MIDLET.PAUSED .

The most important method is destroySpecif ic . This method must perform the following actions in
the given order:

1. Set the state to STOPPING
2. Modify the service properties of the Service Handle to reflect the new state. This sends out a ser-

vice event.
3. If the application instance is active, use any proprietary mechanism to stop it. Any errors and

problems should be logged.
4. Using proprietary means, clean up any resources on the system that were used by the applica-

tion: locks, open files, etc.
5. Unregister the Application Handle service.

The Application container should monitor the progress of its instances. If an instance stops, for
example due an exception or it quits voluntarily, the Application Container must call the destroy
method on the Application Handle itself and handle the fact correctly that the instance is already
stopped in the destroySpecif ic method.

Application Admin Specification Version 1.1 Application Containers

OSGi Compendium Release 6 Page 457

116.3.3 Certificates
The following method on the Application Descriptor provides access to the certificate chain that
was used to sign the application. This method is used by the Application Permission.

• matchDNChain(Str ing) - Verifies that the given pattern matches one or more of the certificates
that were used to sign the application. This method is primarily used by the Application Admin
Permission to verify permissions. Matching certificates is described in Certificate Matching of OS-
Gi Core Release 6.

116.3.4 Application Descriptor Example
This is an Application Container that scans a directory for executables. Each executable is registered
as an Application Descriptor. The example assumes that there is a bundle activator that creates the
Application Descriptor services. This activator must also ensure that when it is stopped no handles
remain.

The example is not an robust implementation, its only intention is to show the concepts of the Ap-
plication Admin specification in practice.

The (simple) Application Descriptor could look like:

public class SimpleDescriptor extends ApplicationDescriptor{
 ServiceRegistration registration;
 File executable;
 SimpleModel model;
 boolean locked;
 static URL genericIcon = SimpleDescriptor.class
 .getResource("icon.png");

 SimpleDescriptor(SimpleModel model, File executable) {
 super("com.acme." + executable.getName());
 this.model = model;
 this.executable = executable;
 }

 public Map getPropertiesSpecific(String locale) {
 Map map = new Hashtable();
 map.put(APPLICATION_ICON, genericIcon);
 map.put(APPLICATION_NAME, executable.getName());
 return map;
 }

 protected ApplicationHandle launchSpecific(
 final Map args) throws Exception {
 final SimpleDescriptor descriptor = this;

 return (ApplicationHandle) AccessController
 .doPrivileged(new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 SimpleHandle handle =
 new SimpleHandle(descriptor, args);
 handle.registration =
 model.register(handle);
 return handle;
 }
 });

Application Containers Application Admin Specification Version 1.1

Page 458 OSGi Compendium Release 6

 }

 Dictionary getServiceProperties() {
 Hashtable p = new Hashtable();
 p.put(APPLICATION_LAUNCHABLE, Boolean.TRUE);
 p.put(APPLICATION_LOCKED, Boolean.valueOf(locked));
 p.put(Constants.SERVICE_PID, getApplicationId());
 return p;
 }

 protected void lockSpecific() { locked = true; }
 protected void unlockSpecific() { locked = false; }
 public boolean matchDNChain(String arg) { return false; }
 protected boolean isLaunchableSpecific() { return true; }
}

The associated Application Handle must launch the external executable and track its process. If the
process dies autonomously or is stopped via the destroy method, it must unregister the Application
Handle service. The class could be implemented like:

public class SimpleHandle extends
 ApplicationHandle implements Runnable {

 ServiceRegistration registration;
 Process process;
 int instance;
 String state = RUNNING;
 static int INSTANCE = 0;
 Thread thread;

 public SimpleHandle(SimpleDescriptor descriptor,
 Map arguments) throws IOException {
 super(descriptor.getApplicationId()
 + ":" + (INSTANCE++), descriptor);
 String path = descriptor.executable.getAbsolutePath();
 process = Runtime.getRuntime().exec(path);
 thread = new Thread(this, getInstanceId());
 thread.start();
 }

 public String getState() { return state; }

 protected void destroySpecific() throws Exception {
 state = STOPPING;
 registration.setProperties(getServiceProperties());
 thread.interrupt();
 }

 // Wait until process finishes or when
 // interrupted
 public void run() {
 try {
 process.waitFor();
 destroy();
 }

Application Admin Specification Version 1.1 Application Containers

OSGi Compendium Release 6 Page 459

 catch (InterruptedException ie) {
 process.destroy();
 try {
 process.waitFor();
 }
 catch (InterruptedException iee) {
 // Ignore
 }
 }
 catch(Exception e) {
 .. logging
 }
 registration.unregister();
 }

 Dictionary getServiceProperties() {
 Hashtable p = new Hashtable();
 p.put(APPLICATION_PID, getInstanceId());
 p.put(APPLICATION_STATE, state);
 p.put(APPLICATION_DESCRIPTOR,
 getApplicationDescriptor().getApplicationId());
 return p;
 }
}

The Application Container must create the Application Descriptor services from some source. Care
should be taken to optimize this scanning so that the initialization time is not significantly in-
creased. Running application instances should be stopped if the Application Container is stopped.
The following code shows a possible implementation:

public class SimpleModel implements BundleActivator{
 BundleContext context;
 Set handles = new HashSet();

 public ServiceRegistration register(SimpleHandle handle){
 handles.add(handle);
 return context.registerService(
 ApplicationHandle.class.getName(),
 handle, handle.getServiceProperties());
 }

 public void start(BundleContext context) throws Exception
 {
 this.context = context;

 File file = new File("c:/windows");
 final SimpleModel me = this;

 file.list(new FilenameFilter() {
 public boolean accept(File dir, String name) {
 if (name.endsWith(".exe")) {
 SimpleDescriptor sd = new SimpleDescriptor(me,
 new File(dir, name));
 sd.registration = me.context.registerService(
 ApplicationDescriptor.class.getName(),

Application Admin Implementations Application Admin Specification Version 1.1

Page 460 OSGi Compendium Release 6

 sd, sd.getServiceProperties());
 }
 // We ignore the return anyway
 return false;
 }});}

 public void stop(BundleContext context) throws Exception{
 for (Iterator handle = handles.iterator();
 handle.hasNext();) {
 SimpleHandle sh = (SimpleHandle) handle.next();
 try {
 sh.destroy();
 }
 catch (Exception e) {
 // We are cleaning up ...
 }
}}}

116.4 Application Admin Implementations

116.4.1 Implementing the Base Classes
The OSGi specified org.osgi .service.appl icat ion package that is delivered with the specification in
a JAR file is a dummy implementation. The intention of this package is to be replaced by an Appli-
cation Admin implementation. This implementation can then enforce policies by intercepting the
calls from any Application Managers to the Application Containers.

The Application Admin implementer must re-implement the following methods in the Appl ica-
t ionDescr iptor class:

• launch(Map) - The method can perform any checks before it must call the launchSpecif ic(Map)
method. This must be a protected method. The implementation must perform any security
checks. If these succeed, the launchSpecif ic method must not be called in a doPriv i leged block.

• lock() - Must call the lockSpecif ic method.
• unlock() - Must call the unlockSpecif ic method.
• schedule(Str ing,Map,Str ing,Str ing,boolean) - Register a new Scheduled Application service with

the given arguments, thereby scheduling the application for launching when the topic and filter
match an event. A virtual event is defined for timer based scheduling, see Virtual Timer Event on
page 462.

The Application Admin implementer must also implement the following method in the Appl ica-
t ionHandle class:

• destroy() - The Application Admin implementer should call the protected destroySpecif ic()
method after which it should perform any possible cleanup operations.

Implementers must not change the signature of the publ ic and protected parts of the Appl icat ion-
Descr iptor and Appl icat ionHandle classes. Adding fields or methods, either public or protected is ex-
plicitly forbidden.

116.4.2 Exception Handling
The implementation of the container must ensure that Security Exceptions are only thrown dur-
ing the invocation of any of the Application Descriptor methods when the required permissions are

Application Admin Specification Version 1.1 Application Admin Implementations

OSGi Compendium Release 6 Page 461

lacking. If the Application Descriptor is not valid, an Illegal State Exception must be thrown and
never a Security Exception.

116.4.3 Launching
The launch method of the Application Descriptor must be implemented by the Application Admin
implementer. Launching must be performed in the following steps:

1. Verify that the caller has the appropriate permissions, see Security on page 464.
2. Verify that the Application Descriptor is not locked and launchable
3. Perform any policy actions that are deemed necessary before the application is really launched.
4. Call the protected launchSpecif ic method. If the method throws an Exception, then this excep-

tion should be logged, and must be re-thrown.
5. Otherwise, return the received Application Handle

116.4.4 Destroying
The implementation of the Appl icat ionHandle destroy method must follow the following steps:

1. Verify that the caller has the appropriate permissions, see Security on page 464.
2. Call the destroySpecif ic method. If an Exception is thrown, then this should be logged but must

be further ignored.
3. Perform any cleanup deemed necessary.

116.4.5 Scheduling
Application Descriptor services can be scheduled by calling the schedule method, as described in
Scheduling on page 453. This method must be implemented by the Application Admin imple-
menter.

Application Admin implementations must make a reasonable effort to launch scheduled applica-
tions in a timely manner. However, launching is not guaranteed, implementations can drop and for-
get events if it is necessary in order to preserve the stability and integrity of the device. The granular-
ity of the timer should also be taken into account, this granularity is one minute so the actual time
an application will be launched can be shifted up to 60 seconds.

If an event would launch multiple applications then the order of launching is not defined, it is im-
plementation specific.

Launching a scheduled application is constrained by the same rules as application launching. Thus,
attempting to launch a locked application on the specified event must fail to launch. Launching can
only succeed when the application is unlocked.

If the scheduling is non-recurring and launching a new instance fails then when the specified event
occurs again launching the application must be attempted again until it succeeds. Non recurring
schedules must be removed once the launch succeeds.

The triggering event will be delivered to the starting application instance as an additional item iden-
tified by the org.osgi .tr iggeringevent argument in its startup parameters. This property must not
be used for other purposes in the startup parameters. To ensure that no events are leaked to applica-
tions without the appropriate permission, the event is delivered in a java.security.GuardedObject ,
where the guarding permission is the Topic Permission for the topic to which the event was posted.

Scheduling and unscheduling an application, or retrieving information about scheduled applica-
tions requires the Application Admin Permission for the target application to be scheduled. If the
target is the unique identifier of the scheduling application itself then it can schedule itself. In addi-
tion, the scheduling entity must have Topic Permission for the specified topic.

Interaction Application Admin Specification Version 1.1

Page 462 OSGi Compendium Release 6

116.4.6 Virtual Timer Event
The application scheduler can use a virtual timer event for time scheduled applications. This event
is not actually sent out by the Event Admin; this virtual event is only used for the syntax to specify a
recurring launch.

The topic name of this virtual timer event is:

org/osgi/application/timer

The properties of the virtual timer event are:

• year - (Integer) The year of the specified date. The value is defined by Calendar.YEAR field.
• month - (Integer) The month of the year. The value is defined by Calendar.MONTH field.
• day_of_month - (Integer) The day of the month. The value is defined by the

Calendar.DAY_OF_MONTH field.
• day_of_week - (Integer) The day of the week. The value is defined by the

Calendar.DAY_OF_WEEK field.
• hour_of_day - (Integer) The hour of the day. The value is defined by the Calendar.HOUR_OF_DAY

field.
• minute - (Integer) The minute of the hour. The value is defined by the Calendar.MINUTE field.

The timer has a resolution of a minute. That is, it is not possible to schedule per second.

A property that is not included into the filter matches any value. Not including a field implies that it
always matches. For example, if the minute=0 clause from the filter is missing, the timer event will
be fired every minute.

The following examples are filters for the timer event to specify certain time in the device local
time. The topic is always org/osgi/appl icat ion/t imer .

Noon every day:

(&(hour_of_day=12)(minute=0))

Every whole hour, on every Sunday:

(&(day_of_week=0)(minute=0))

Every whole hour:

(minute=0)

116.5 Interaction

116.5.1 Application Installation
Figure 116.3 shows how an application manager can be notified about the installation of a new ap-
plication. The actual installation may be done prior to the notification or may be done by the appli-
cation container. At the end of the successful installation the application container must register a
specialized Application Descriptor service which properly represents the installed application. If
the installed application's dependencies are fulfilled (which are container specific) then the applica-
tion descriptor's appl icat ion.vis ible and appl icat ion. launchable properties should be set to true .

Application Admin Specification Version 1.1 Interaction

OSGi Compendium Release 6 Page 463

Figure 116.3 Installing a bundle that is managed by an Application Container

Application
Manager Impl

Application
Descriptor

Application
Container

Framework

install bundle
bundle event

create

register

service event

116.5.2 Launching an Application
Firstly the appropriate Application Descriptor service on which the operation will be made is
fetched from the service registry. This Application Descriptor is a container specific sub-class of the
Application Descriptor class. Its launch method is called which is in the base class.

The application instance may not receive the startup arguments if its application container does
not support startup arguments. The launch method checks if the a new application instance can be
launched, for example, that the necessary rights are granted, the application is not locked and the
application is not a singleton that already has an instance.

If the application can be launched then the launchSpecif ic method, which is in the subclass, will
create and start a new application instance according to its application container. It will create a spe-
cific application handle and associate the newly created application instance to it. The launchSpe-
cif ic method will register the application handle with proper service properties. The value of
appl icat ion.state service property must be RUNNING . The call chain returns the application handle.

Figure 116.4 Launching an application

Application
Manager Impl

Application
Descriptor Impl.

Framework

get descriptor
service

create

service event

launch

Application
Handle Impl.

register

Application
Instance

.. start

new

launchSpecific

116.5.3 Destroying an Application Instance
To destroy an application, the proper application handle has to be fetched from the service registry
to call its destroy() method. It checks if the instance can be destroyed, for example that the neces-
sary permissions are granted, it then calls the destroySpecif ic method to let its implementation de-
stroy the instance in an application container specific way. First, it sets the appl icat ion.state ser-
vice property to STOPPING then stops the application instance. Finally it unregisters the application
handle.

Security Application Admin Specification Version 1.1

Page 464 OSGi Compendium Release 6

116.6 Security
The Application Admin specification is an interaction of the:

• Application Container implementers
• Applications
• Application Managers

There are two permissions used in the security model of the Application Admin specification. The
first is the Service Permission that grants access to getting or registering the Application Descriptor
and Application Handle services. The second security is specific for the Application Admin specifi-
cation and is the Application Permission.

The Application Container must be very powerful because it starts the application code, which
should be able to perform almost any function.

The security checks are performed in the Appl icat ionDescr iptor and Appl icat ionHandle base class-
es.

116.6.1 Application Admin Permissions
This Appl icat ionAdminPermission class implements permissions for manipulating applications and
their instances. The permission must be held by any bundle that manipulates application descrip-
tors or application handles.

The target of the Application Admin Permission is an OSGi filter that matches a number of proper-
ties. This is similar to the Admin Permission in the Framework. Alternatively, instead of the filter
the pseudo target <<SELF>> can be used.

The following properties can be tested in the filter:

• signer - A Distinguished Name chain that is used to sign the application. The matching of this
property must be done according to the rules described for DN matching in OSGi Core Release
6. The Application Admin Permission must use the Appl icat ionDescrptor class' matchDNChain
method. Matching DN's is described in Certificate Matching of OSGi Core Release 6.

• pid - The PID of the target application.

The pseudo target <<SELF>> indicates that the calling application is allowed to manipulate its own
descriptors and handlers.

The following actions can be granted:

• SCHEDULE_ACTION - The caller is allowed to schedule an application., i.e. call the Appl icat ion-
Descr iptor schedule method. This action implies LIFECYCLE_ACTION .

• LIFECYCLE_ACTION - The caller is allowed to manipulate the life cycle state of an application in-
stance: launch and destroy.

• LOCK_ACTION - The caller is allowed to the lock and unlock methods.

116.6.2 Service and Package Permissions

116.6.2.1 Application Admin Implementation

The Application Admin implementation must have the following permissions:

ServicePermission ..ScheduledApplication REGISTER
ServicePermission ..ApplicationDescriptor GET
ServicePermission ..ApplicationHandle GET
PackagePermission org.osgi.service.application EXPORTONLY

Application Admin Specification Version 1.1 org.osgi.service.application

OSGi Compendium Release 6 Page 465

ServicePermission ..ApplicationDescriptor GET
ServicePermission ..ApplicationHandle GET
ApplicationAdminPermission * *

116.6.2.2 Application Container

ServicePermission ..ApplicationDescriptor REGISTER
ServicePermission ..ApplicationHandle REGISTER
PackagePermission org.osgi.service.application IMPORT

Additionally, an Application Container requires all the permissions that are needed to run the appli-
cations. This is likely to be All Permission.

116.7 org.osgi.service.application

Application Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.appl icat ion; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.appl icat ion; vers ion="[1.1 ,1 .2)"

116.7.1 Summary

• Appl icat ionAdminPermission - This class implements permissions for manipulating applica-
tions and their instances.

• Appl icat ionDescr iptor - An OSGi service that represents an installed application and stores in-
formation about it.

• Appl icat ionException - This exception is used to indicate problems related to application lifecy-
cle management.

• Appl icat ionHandle - ApplicationHandle is an OSGi service interface which represents an in-
stance of an application.

• ScheduledAppl icat ion - It is allowed to schedule an application based on a specific event.

116.7.2 public class ApplicationAdminPermission
extends Permission
This class implements permissions for manipulating applications and their instances.

ApplicationAdminPermission can be targeted to applications that matches the specified filter.

ApplicationAdminPermission may be granted for different actions: l i fecycle , schedule and lock . The
permission schedule implies the permission l i fecycle .

116.7.2.1 public static final String LIFECYCLE_ACTION = "lifecycle"

Allows the lifecycle management of the target applications.

116.7.2.2 public static final String LOCK_ACTION = "lock"

Allows setting/unsetting the locking state of the target applications.

org.osgi.service.application Application Admin Specification Version 1.1

Page 466 OSGi Compendium Release 6

116.7.2.3 public static final String SCHEDULE_ACTION = "schedule"

Allows scheduling of the target applications. The permission to schedule an application implies
that the scheduler can also manage the lifecycle of that application i.e. schedule implies l i fecycle

116.7.2.4 public ApplicationAdminPermission(String filter,String actions) throws InvalidSyntaxException

filter filter to identify application. The value nul l is equivalent to "*" and it indicates "all application".

actions comma-separated list of the desired actions granted on the applications or "*" means all the actions.
It must not be nul l . The order of the actions in the list is not significant.

□ Constructs an ApplicationAdminPermission. The f i l ter specifies the target application. The f i l ter is
an LDAP-style filter, the recognized properties are signer and pid . The pattern specified in the signer
is matched with the Distinguished Name chain used to sign the application. Wildcards in a DN are
not matched according to the filter string rules, but according to the rules defined for a DN chain.
The attribute pid is matched with the PID of the application according to the filter string rules.

If the f i l ter is nul l then it matches "*" . If actions is "*" then it identifies all the possible actions.

Throws Inval idSyntaxException– is thrown if the specified f i l ter is not syntactically correct.

NullPointerException– is thrown if the actions parameter is nul l

See Also ApplicationDescriptor, org.osgi.framework.AdminPermission

116.7.2.5 public ApplicationAdminPermission(ApplicationDescriptor application,String actions)

application The target of the operation, it must not be nul l .

actions The required operation, it must not be nul l .

□ This constructor should be used when creating Appl icat ionAdminPermission instance for checkPer-
mission call.

Throws NullPointerException– If any of the arguments is null.

116.7.2.6 public boolean equals(Object with)

116.7.2.7 public String getActions()

□ Returns the actions of this permission.

Returns the actions specified when this permission was created

116.7.2.8 public int hashCode()

116.7.2.9 public boolean implies(Permission otherPermission)

otherPermission the implied permission

□ Checks if the specified permission is implied by this permission. The method returns true under the
following conditions:

• This permission was created by specifying a filter (see ApplicationAdminPermission(String,
String))

• The implied otherPermission was created for a particular ApplicationDescriptor (see
ApplicationAdminPermission(ApplicationDescriptor, String))

• The f i l ter of this permission matches the Appl icat ionDescr iptor specified in the otherPermis-
sion . If the filter in this permission is the <<SELF>> pseudo target, then the currentApplicationId
set in the otherPermission is compared to the application Id of the target Appl icat ionDescr iptor .

• The list of permitted actions in this permission contains all actions required in the otherPermis-
sion

Otherwise the method returns false.

Application Admin Specification Version 1.1 org.osgi.service.application

OSGi Compendium Release 6 Page 467

Returns true if this permission implies the otherPermission , false otherwise.

116.7.2.10 public ApplicationAdminPermission setCurrentApplicationId(String applicationId)

applicationId the ID of the current application.

□ This method can be used in the java.security.ProtectionDomain implementation in the impl ies
method to insert the application ID of the current application into the permission being checked.
This enables the evaluation of the <<SELF>> pseudo targets.

Returns the permission updated with the ID of the current application

116.7.3 public abstract class ApplicationDescriptor
An OSGi service that represents an installed application and stores information about it. The appli-
cation descriptor can be used for instance creation.

116.7.3.1 public static final String APPLICATION_CONTAINER = "application.container"

The property key for the application container of the application.

116.7.3.2 public static final String APPLICATION_COPYRIGHT = "application.copyright"

The property key for the localized copyright notice of the application.

116.7.3.3 public static final String APPLICATION_DESCRIPTION = "application.description"

The property key for the localized description of the application.

116.7.3.4 public static final String APPLICATION_DOCUMENTATION = "application.documentation"

The property key for the localized documentation of the application.

116.7.3.5 public static final String APPLICATION_ICON = "application.icon"

The property key for the localized icon of the application.

116.7.3.6 public static final String APPLICATION_LAUNCHABLE = "application.launchable"

The property key for the launchable property of the application.

116.7.3.7 public static final String APPLICATION_LICENSE = "application.license"

The property key for the localized license of the application.

116.7.3.8 public static final String APPLICATION_LOCATION = "application.location"

The property key for the location of the application.

116.7.3.9 public static final String APPLICATION_LOCKED = "application.locked"

The property key for the locked property of the application.

116.7.3.10 public static final String APPLICATION_NAME = "application.name"

The property key for the localized name of the application.

116.7.3.11 public static final String APPLICATION_PID = "service.pid"

The property key for the unique identifier (PID) of the application.

116.7.3.12 public static final String APPLICATION_VENDOR = "service.vendor"

The property key for the name of the application vendor.

116.7.3.13 public static final String APPLICATION_VERSION = "application.version"

The property key for the version of the application.

org.osgi.service.application Application Admin Specification Version 1.1

Page 468 OSGi Compendium Release 6

116.7.3.14 public static final String APPLICATION_VISIBLE = "application.visible"

The property key for the visibility property of the application.

116.7.3.15 protected ApplicationDescriptor(String applicationId)

applicationId The identifier of the application. Its value is also available as the service.pid service property of this
Appl icat ionDescr iptor service. This parameter must not be nul l .

□ Constructs the Appl icat ionDescr iptor .

Throws NullPointerException– if the specified appl icat ionId is null.

116.7.3.16 public final String getApplicationId()

□ Returns the identifier of the represented application.

Returns the identifier of the represented application

116.7.3.17 public final Map getProperties(String locale)

locale the locale string, it may be null, the value null means the default locale. If the provided locale is the
empty String ("")then raw (non-localized) values are returned.

□ Returns the properties of the application descriptor as key-value pairs. The return value contains the
locale aware and unaware properties as well. The returned Map will include the service properties of
this Appl icat ionDescr iptor as well.

This method will call the getPropert iesSpecif ic method to enable the container implementation to
insert application model and/or container implementation specific properties.

The returned java.util.Map will contain the standard OSGi service properties as well (e.g. service.id,
service.vendor etc.) and specialized application descriptors may offer further service properties. The
returned Map contains a snapshot of the properties. It will not reflect further changes in the proper-
ty values nor will the update of the Map change the corresponding service property.

Returns copy of the service properties of this application descriptor service, according to the specified locale.
If locale is null then the default locale's properties will be returned. (Since service properties are al-
ways exist it cannot return null.)

Throws I l legalStateException– if the application descriptor is unregistered

116.7.3.18 protected abstract Map getPropertiesSpecific(String locale)

locale the locale to be used for localizing the properties. If nul l the default locale should be used. If it is the
empty String ("") then raw (non-localized) values should be returned.

□ Container implementations can provide application model specific and/or container implemen-
tation specific properties via this method. Localizable properties must be returned localized if the
provided locale argument is not the empty String. The value nul l indicates to use the default locale,
for other values the specified locale should be used. The returned java.util.Map must contain the
standard OSGi service properties as well (e.g. service.id, service.vendor etc.) and specialized applica-
tion descriptors may offer further service properties. The returned Map contains a snapshot of the
properties. It will not reflect further changes in the property values nor will the update of the Map
change the corresponding service property.

Returns the application model specific and/or container implementation specific properties of this applica-
tion descriptor.

Throws I l legalStateException– if the application descriptor is unregistered

116.7.3.19 protected abstract boolean isLaunchableSpecific()

□ This method is called by launch() to verify that according to the container, the application is launch-
able.

Application Admin Specification Version 1.1 org.osgi.service.application

OSGi Compendium Release 6 Page 469

Returns true, if the application is launchable according to the container, false otherwise.

Throws I l legalStateException– if the application descriptor is unregistered

116.7.3.20 public final ApplicationHandle launch(Map arguments) throws ApplicationException

arguments Arguments for the newly launched application, may be null

□ Launches a new instance of an application. The args parameter specifies the startup parameters for
the instance to be launched, it may be null.

The following steps are made:

• Check for the appropriate permission.
• Check the locking state of the application. If locked then throw an ApplicationException with

the reason code ApplicationException.APPLICATION_LOCKED.
• Calls the launchSpecif ic() method to create and start an application instance.
• Returns the Appl icat ionHandle returned by the launchSpecific()

The caller has to have ApplicationAdminPermission(applicationPID, "launch") in order to be able to
perform this operation.

The Map argument of the launch method contains startup arguments for the application. The keys
used in the Map must be non-null, non-empty Str ing objects. They can be standard or application
specific. OSGi defines the org.osgi .tr iggeringevent key to be used to pass the triggering event to a
scheduled application, however in the future it is possible that other well-known keys will be de-
fined. To avoid unwanted clashes of keys, the following rules should be applied:

• The keys starting with the dash (-) character are application specific, no well-known meaning
should be associated with them.

• Well-known keys should follow the reverse domain name based naming. In particular, the keys
standardized in OSGi should start with org.osgi . .

The method is synchronous, it return only when the application instance was successfully started
or the attempt to start it failed.

This method never returns nul l . If launching an application fails, the appropriate exception is
thrown.

Returns the registered ApplicationHandle, which represents the newly launched application instance. Never
returns nul l .

Throws SecurityException– if the caller doesn't have "lifecycle" ApplicationAdminPermission for the appli-
cation.

Appl icat ionException– if starting the application failed

I l legalStateException– if the application descriptor is unregistered

I l legalArgumentException– if the specified Map contains invalid keys (null objects, empty Str ing or
a key that is not Str ing)

116.7.3.21 protected abstract ApplicationHandle launchSpecific(Map arguments) throws Exception

arguments the startup parameters of the new application instance, may be null

□ Called by launch() to create and start a new instance in an application model specific way. It also
creates and registers the application handle to represent the newly created and started instance and
registers it. The method is synchronous, it return only when the application instance was success-
fully started or the attempt to start it failed.

This method must not return nul l . If launching the application failed, and exception must be
thrown.

org.osgi.service.application Application Admin Specification Version 1.1

Page 470 OSGi Compendium Release 6

Returns the registered application model specific application handle for the newly created and started in-
stance.

Throws I l legalStateException– if the application descriptor is unregistered

Exception– if any problem occurs.

116.7.3.22 public final void lock()

□ Sets the lock state of the application. If an application is locked then launching a new instance is
not possible. It does not affect the already launched instances.

Throws SecurityException– if the caller doesn't have "lock" ApplicationAdminPermission for the applica-
tion.

I l legalStateException– if the application descriptor is unregistered

116.7.3.23 protected abstract void lockSpecific()

□ This method is used to notify the container implementation that the corresponding application has
been locked and it should update the appl icat ion. locked service property accordingly.

Throws I l legalStateException– if the application descriptor is unregistered

116.7.3.24 public abstract boolean matchDNChain(String pattern)

pattern a pattern for a chain of Distinguished Names. It must not be null.

□ This method verifies whether the specified pattern matches the Distinguished Names of any of the
certificate chains used to authenticate this application.

The pattern must adhere to the syntax defined in
org.osgi.service.application.ApplicationAdminPermission for signer attributes.

This method is used by ApplicationAdminPermission.implies(java.security.Permission) method to
match target Appl icat ionDescr iptor and filter.

Returns true if the specified pattern matches at least one of the certificate chains used to authenticate this
application

Throws NullPointerException– if the specified pattern is null.

I l legalStateException– if the application descriptor was unregistered

116.7.3.25 public final ScheduledApplication schedule(String scheduleId,Map arguments,String topic,String
eventFilter,boolean recurring) throws InvalidSyntaxException, ApplicationException

scheduleId the identifier of the created schedule. It can be nul l , in this case the identifier is automatically gener-
ated.

arguments the startup arguments for the scheduled application, may be null

topic specifies the topic of the triggering event, it may contain a trailing asterisk as wildcard, the empty
string is treated as "*", must not be null

eventFilter specifies and LDAP filter to filter on the properties of the triggering event, may be null

recurring if the recurring parameter is false then the application will be launched only once, when the event
firstly occurs. If the parameter is true then scheduling will take place for every event occurrence; i.e.
it is a recurring schedule

□ Schedules the application at a specified event. Schedule information should not get lost even if the
framework or the device restarts so it should be stored in a persistent storage. The method registers a
ScheduledApplication service in Service Registry, representing the created schedule.

Application Admin Specification Version 1.1 org.osgi.service.application

OSGi Compendium Release 6 Page 471

The Map argument of the method contains startup arguments for the application. The keys used
in the Map must be non-null, non-empty Str ing objects. The argument values must be of primitive
types, wrapper classes of primitive types, Str ing or arrays or collections of these.

The created schedules have a unique identifier within the scope of this Appl icat ionDescr iptor . This
identifier can be specified in the scheduleId argument. If this argument is nul l , the identifier is auto-
matically generated.

Returns the registered scheduled application service

Throws NullPointerException– if the topic is nul l

Inval idSyntaxException– if the specified eventFi l ter is not syntactically correct

Appl icat ionException– if the schedule couldn't be created. The possible error codes are

• ApplicationException.APPLICATION_DUPLICATE_SCHEDULE_ID if the specified scheduleId is
already used for this Appl icat ionDescr iptor

• ApplicationException.APPLICATION_SCHEDULING_FAILED if the scheduling failed due to
some internal reason (e.g. persistent storage error).

• ApplicationException.APPLICATION_INVALID_STARTUP_ARGUMENT if the specified startup
argument doesn't satisfy the type or value constraints of startup arguments.

SecurityException– if the caller doesn't have "schedule" ApplicationAdminPermission for the appli-
cation.

I l legalStateException– if the application descriptor is unregistered

I l legalArgumentException– if the specified Map contains invalid keys (null objects, empty Str ing or
a key that is not Str ing)

116.7.3.26 public final void unlock()

□ Unsets the lock state of the application.

Throws SecurityException– if the caller doesn't have "lock" ApplicationAdminPermission for the applica-
tion.

I l legalStateException– if the application descriptor is unregistered

116.7.3.27 protected abstract void unlockSpecific()

□ This method is used to notify the container implementation that the corresponding application has
been unlocked and it should update the appl icat ion. locked service property accordingly.

Throws I l legalStateException– if the application descriptor is unregistered

116.7.4 public class ApplicationException
extends Exception
This exception is used to indicate problems related to application lifecycle management. Appl ica-
t ionException object is created by the Application Admin to denote an exception condition in the
lifecycle of an application. Appl icat ionException s should not be created by developers. Appl ica-
t ionException s are associated with an error code. This code describes the type of problem reported
in this exception. The possible codes are:

• APPLICATION_LOCKED - The application couldn't be launched because it is locked.
• APPLICATION_NOT_LAUNCHABLE - The application is not in launchable state.
• APPLICATION_INTERNAL_ERROR - An exception was thrown by the application or its contain-

er during launch.
• APPLICATION_SCHEDULING_FAILED - The scheduling of an application failed.

org.osgi.service.application Application Admin Specification Version 1.1

Page 472 OSGi Compendium Release 6

• APPLICATION_DUPLICATE_SCHEDULE_ID - The application scheduling failed because the
specified identifier is already in use.

• APPLICATION_EXITVALUE_NOT_AVAILABLE - The exit value is not available for an applica-
tion instance because the instance has not terminated.

• APPLICATION_INVALID_STARTUP_ARGUMENT - One of the specified startup arguments is in-
valid, for example its type is not permitted.

116.7.4.1 public static final int APPLICATION_DUPLICATE_SCHEDULE_ID = 5

The application scheduling failed because the specified identifier is already in use.

116.7.4.2 public static final int APPLICATION_EXITVALUE_NOT_AVAILABLE = 6

The exit value is not available for an application instance because the instance has not terminated.

Since 1.1

116.7.4.3 public static final int APPLICATION_INTERNAL_ERROR = 3

An exception was thrown by the application or the corresponding container during launch. The ex-
ception is available from getCause() .

116.7.4.4 public static final int APPLICATION_INVALID_STARTUP_ARGUMENT = 7

One of the specified startup arguments is invalid, for example its type is not permitted.

Since 1.1

116.7.4.5 public static final int APPLICATION_LOCKED = 1

The application couldn't be launched because it is locked.

116.7.4.6 public static final int APPLICATION_NOT_LAUNCHABLE = 2

The application is not in launchable state, it's ApplicationDescriptor.APPLICATION_LAUNCHABLE
attribute is false.

116.7.4.7 public static final int APPLICATION_SCHEDULING_FAILED = 4

The application schedule could not be created due to some internal error (for example, the schedule
information couldn't be saved due to some storage error).

116.7.4.8 public ApplicationException(int errorCode)

errorCode The code of the error

□ Creates an Appl icat ionException with the specified error code.

116.7.4.9 public ApplicationException(int errorCode,Throwable cause)

errorCode The code of the error

cause The cause of this exception.

□ Creates a Appl icat ionException that wraps another exception.

116.7.4.10 public ApplicationException(int errorCode,String message)

errorCode The code of the error

message The associated message

□ Creates an Appl icat ionException with the specified error code.

116.7.4.11 public ApplicationException(int errorCode,String message,Throwable cause)

errorCode The code of the error

Application Admin Specification Version 1.1 org.osgi.service.application

OSGi Compendium Release 6 Page 473

message The associated message.

cause The cause of this exception.

□ Creates a Appl icat ionException that wraps another exception.

116.7.4.12 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

116.7.4.13 public int getErrorCode()

□ Returns the error code associated with this exception.

Returns The error code of this exception.

116.7.5 public abstract class ApplicationHandle
ApplicationHandle is an OSGi service interface which represents an instance of an application. It
provides the functionality to query and manipulate the lifecycle state of the represented application
instance. It defines constants for the lifecycle states.

116.7.5.1 public static final String APPLICATION_DESCRIPTOR = "application.descriptor"

The property key for the pid of the corresponding application descriptor.

116.7.5.2 public static final String APPLICATION_PID = "service.pid"

The property key for the unique identifier (PID) of the application instance.

116.7.5.3 public static final String APPLICATION_STATE = "application.state"

The property key for the state of this application instance.

116.7.5.4 public static final String APPLICATION_SUPPORTS_EXITVALUE = "application.supports.exitvalue"

The property key for the supports exit value property of this application instance.

Since 1.1

116.7.5.5 public static final String RUNNING = "RUNNING"

The application instance is running. This is the initial state of a newly created application instance.

116.7.5.6 public static final String STOPPING = "STOPPING"

The application instance is being stopped. This is the state of the application instance during the ex-
ecution of the destroy() method.

116.7.5.7 protected ApplicationHandle(String instanceId,ApplicationDescriptor descriptor)

instanceId the instance identifier of the represented application instance. It must not be null.

descriptor the Appl icat ionDescr iptor of the represented application instance. It must not be null.

□ Application instance identifier is specified by the container when the instance is created. The in-
stance identifier must remain static for the lifetime of the instance, it must remain the same even
across framework restarts for the same application instance. This value must be the same as the
service.pid service property of this application handle.

The instance identifier should follow the following scheme: <application descriptor PID>.<index>
where <application descriptor PID> is the PID of the corresponding Appl icat ionDescr iptor and <index>
is a unique integer index assigned by the application container. Even after destroying the applica-
tion index the same index value should not be reused in a reasonably long timeframe.

Throws NullPointerException– if any of the arguments is null.

org.osgi.service.application Application Admin Specification Version 1.1

Page 474 OSGi Compendium Release 6

116.7.5.8 public final void destroy()

□ The application instance's lifecycle state can be influenced by this method. It lets the application in-
stance perform operations to stop the application safely, e.g. saving its state to a permanent storage.

The method must check if the lifecycle transition is valid; a STOPPING application cannot be
stopped. If it is invalid then the method must exit. Otherwise the lifecycle state of the application
instance must be set to STOPPING. Then the destroySpecific() method must be called to perform
any application model specific steps for safe stopping of the represented application instance.

At the end the Appl icat ionHandle must be unregistered. This method should free all the resources
related to this Appl icat ionHandle .

When this method is completed the application instance has already made its operations for safe
stopping, the ApplicationHandle has been unregistered and its related resources has been freed. Fur-
ther calls on this application should not be made because they may have unexpected results.

Throws SecurityException– if the caller doesn't have "lifecycle" Appl icat ionAdminPermission for the corre-
sponding application.

I l legalStateException– if the application handle is unregistered

116.7.5.9 protected abstract void destroySpecific()

□ Called by the destroy() method to perform application model specific steps to stop and destroy an
application instance safely.

Throws I l legalStateException– if the application handle is unregistered

116.7.5.10 public final ApplicationDescriptor getApplicationDescriptor()

□ Retrieves the Appl icat ionDescr iptor to which this Appl icat ionHandle belongs.

Returns The corresponding Appl icat ionDescr iptor

116.7.5.11 public Object getExitValue(long timeout) throws ApplicationException, InterruptedException

timeout The maximum time in milliseconds to wait for the application to timeout.

□ Returns the exit value for the application instance. The timeout specifies how the method behaves
when the application has not yet terminated. A negative, zero or positive value may be used.

• negative - The method does not wait for termination. If the application has not terminated then
an Appl icat ionException is thrown.

• zero - The method waits until the application terminates.
• positive - The method waits until the application terminates or the timeout expires. If the time-

out expires and the application has not terminated then an Appl icat ionException is thrown.

The default implementation throws an UnsupportedOperationException . The application model
should override this method if exit values are supported.

Returns The exit value for the application instance. The value is application specific.

Throws UnsupportedOperationException– If the application model does not support exit values.

InterruptedException– If the thread is interrupted while waiting for the timeout.

Appl icat ionException– If the application has not terminated. The error code will be
ApplicationException.APPLICATION_EXITVALUE_NOT_AVAILABLE.

Since 1.1

116.7.5.12 public final String getInstanceId()

□ Returns the unique identifier of this instance. This value is also available as a service property of this
application handle's service.pid.

Application Admin Specification Version 1.1 org.osgi.service.application

OSGi Compendium Release 6 Page 475

Returns the unique identifier of the instance

116.7.5.13 public abstract String getState()

□ Get the state of the application instance.

Returns the state of the application.

Throws I l legalStateException– if the application handle is unregistered

116.7.6 public interface ScheduledApplication
It is allowed to schedule an application based on a specific event. ScheduledApplication service
keeps the schedule information. When the specified event is fired a new instance must be launched.
Note that launching operation may fail because e.g. the application is locked.

Each ScheduledAppl icat ion instance has an identifier which is unique within the scope of the appli-
cation being scheduled.

ScheduledAppl icat ion instances are registered as services. The APPLICATION_PID service property
contains the PID of the application being scheduled, the SCHEDULE_ID service property contains
the schedule identifier.

116.7.6.1 public static final String APPLICATION_PID = "service.pid"

The property key for the identifier of the application being scheduled.

116.7.6.2 public static final String DAY_OF_MONTH = "day_of_month"

The name of the day of month attribute of a virtual timer event. The value is defined by
java.util.Calendar.DAY_OF_MONTH.

116.7.6.3 public static final String DAY_OF_WEEK = "day_of_week"

The name of the day of week attribute of a virtual timer event. The value is defined by
java.util.Calendar.DAY_OF_WEEK.

116.7.6.4 public static final String HOUR_OF_DAY = "hour_of_day"

The name of the hour of day attribute of a virtual timer event. The value is defined by
java.util.Calendar.HOUR_OF_DAY.

116.7.6.5 public static final String MINUTE = "minute"

The name of the minute attribute of a virtual timer event. The value is defined by
java.util.Calendar.MINUTE.

116.7.6.6 public static final String MONTH = "month"

The name of the month attribute of a virtual timer event. The value is defined by
java.util.Calendar.MONTH.

116.7.6.7 public static final String SCHEDULE_ID = "schedule.id"

The property key for the schedule identifier. The identifier is unique within the scope of the applica-
tion being scheduled.

116.7.6.8 public static final String TIMER_TOPIC = "org/osgi/application/timer"

The topic name for the virtual timer topic. Time based schedules should be created using this topic.

116.7.6.9 public static final String TRIGGERING_EVENT = "org.osgi.triggeringevent"

The key for the startup argument used to pass the event object that triggered the schedule to launch
the application instance. The event is passed in a java.security.GuardedObject protected by the cor-
responding org.osgi.service.event.TopicPermission.

References Application Admin Specification Version 1.1

Page 476 OSGi Compendium Release 6

116.7.6.10 public static final String YEAR = "year"

The name of the year attribute of a virtual timer event. The value is defined by
java.util.Calendar.YEAR.

116.7.6.11 public ApplicationDescriptor getApplicationDescriptor()

□ Retrieves the ApplicationDescriptor which represents the application and necessary for launching.

Returns the application descriptor that represents the scheduled application

Throws I l legalStateException– if the scheduled application service is unregistered

116.7.6.12 public Map getArguments()

□ Queries the startup arguments specified when the application was scheduled. The method returns a
copy of the arguments, it is not possible to modify the arguments after scheduling.

Returns the startup arguments of the scheduled application. It may be null if null argument was specified.

Throws I l legalStateException– if the scheduled application service is unregistered

116.7.6.13 public String getEventFilter()

□ Queries the event filter for the triggering event.

Returns the event filter for triggering event

Throws I l legalStateException– if the scheduled application service is unregistered

116.7.6.14 public String getScheduleId()

□ Returns the identifier of this schedule. The identifier is unique within the scope of the application
that the schedule is related to.

Returns the identifier of this schedule

116.7.6.15 public String getTopic()

□ Queries the topic of the triggering event. The topic may contain a trailing asterisk as wildcard.

Returns the topic of the triggering event

Throws I l legalStateException– if the scheduled application service is unregistered

116.7.6.16 public boolean isRecurring()

□ Queries if the schedule is recurring.

Returns true if the schedule is recurring, otherwise returns false

Throws I l legalStateException– if the scheduled application service is unregistered

116.7.6.17 public void remove()

□ Cancels this schedule of the application.

Throws SecurityException– if the caller doesn't have "schedule" ApplicationAdminPermission for the sched-
uled application.

I l legalStateException– if the scheduled application service is unregistered

116.8 References

[1] PNG Image Format
http://www.libpng.org/pub/png/

Dmt Admin Service Specification Version 2.0 Introduction

OSGi Compendium Release 6 Page 477

117 Dmt Admin Service Specification

Version 2.0

117.1 Introduction
There are a large number of Device Management standards available today. Starting with the ITU
X.700 series in the seventies, SNMP in the eighties and then an explosion of different protocols
when the use of the Internet expanded in the nineties. Many device management standards have
flourished, and some subsequently withered, over the last decades. Some examples:

• X.700 CMIP
• IETF SNMP
• IETF LDAP
• OMA DM
• Broadband Forum TR-069
• UPnP Forum's Device Management
• IETF NETCONF
• OASIS WS Distributed Management

This heterogeneity of the remote management for OSGi Framework based devices is a problem for
device manufacturers. Since there is often no dominant protocol these manufacturers have to devel-
op multiple solutions for different remote management protocols. It is also problematic for device
operators since they have to choose a specific protocol but by that choice could exclude a class of de-
vices that do not support that protocol. There is therefore a need to allow the use of multiple proto-
cols at minimal costs.

Almost all management standards are based on hierarchical object models and provide primitives
like:

• Get and replace values
• Add/Remove instances
• Discovery of value names and instance ids
• Provide notifications

A Device Management standard consists of a protocol stack and a number of object models. The pro-
tocol stack is generic and shared for all object types; the object model describes a specific device's
properties and methods. For example, the protocol stack can consist of a set of SOAP message for-
mats and an object model is a Deployment Unit . An object model consists of a data model and some-
times a set of functions.

The core problem is that the generic Device Management Tree must be mapped to device specific
functions. This specification therefore defines an API for managing a device using general device
management concepts but providing an effective plugin model to link the generic tree to the specif-
ic device functions.

The API is decomposed in the following packages/functionality:

• org.osgi .service.dmt - Main package that provides access to the local Device Management Tree.
Access is session based.

Introduction Dmt Admin Service Specification Version 2.0

Page 478 OSGi Compendium Release 6

• org.osgi .service.dmt.noti f icat ion - The notification package provides the capability to send
alerts to a management server.

• org.osgi .service.dmt.spi - Provides the capability to register subtree handlers in the Device Man-
agement Tree.

• org.osgi .service.dmt.noti f icat ion.spi - The API to provide the possibility to extend the notifica-
tion system.

• org.osgi .service.dmt.security - Permission classes.

117.1.1 Entities

• Device Management Tree - The Device Management Tree (DMT) is the logical view of manageable
aspects of an OSGi Environment, implemented by plugins and structured in a tree with named
nodes.

• Dmt Admin - A service through which the DMT can be manipulated. It is used by Local Managers
or by Protocol Adapters that initiate DMT operations. The Dmt Admin service forwards selected
DMT operations to Data Plugins and execute operations to Exec Plugins; in certain cases the Dmt
Admin service handles the operations itself. The Dmt Admin service is a singleton.

• Dmt Session - A session groups a set of operations on a sub-tree with optional transactionality
and locking. Dmt Session objects are created by the Dmt Admin service and are given to a plugin
when they first join the session.

• Local Manager - A bundle which uses the Dmt Admin service directly to read or manipulate the
DMT. Local Managers usually do not have a principal associated with the session.

• Protocol Adapter - A bundle that communicates with a management server external to the device
and uses the Dmt Admin service to operate on the DMT. Protocol Adapters usually have a princi-
pal associated with their sessions.

• Meta Node - Information provided by the node implementer about a node for the purpose of per-
forming validation and providing assistance to users when these values are edited.

• Multi nodes - Interior nodes that have a homogeneous set of children. All these children share the
same meta node.

• Plugin - Services which take the responsibility over a given sub-tree of the DMT: Data Plugin ser-
vices and Exec Plugin services.

• Data Plugin - A Plugin that can create a Readable Data Session, Read Write Data Session, or Trans-
actional Data Session for data operations on a sub-tree for a Dmt Session.

• Exec Plugin - A Plugin that can handle execute operations.
• Readable Data Session - A plugin session that can only read.
• Read Write Data Session - A plugin session that can read and write.
• Transactional Data Session - A plugin session that is transactional.
• Principal - Represents the optional identity of an initiator of a Dmt Session. When a session has a

principal, the Dmt Admin must enforce ACLs and must ignore Dmt Permissions.
• ACL - An Access Control List is a set of principals that is associated with permitted operations.
• Dmt Event - Information about a modification of the DMT.
• Dmt Event Listener - Listeners to Dmt Events. These listeners are services according to the white

board pattern.
• Mount Point - A point in the DMT where a Plugin or the Dmt Admin service allows other Plugins

to have their root.

The overall service interaction diagram is depicted in Figure 117.1.

Dmt Admin Service Specification Version 2.0 Introduction

OSGi Compendium Release 6 Page 479

Figure 117.1 Overall Service Diagram

Dmt Admin Impl
Dmt Admin

Notification
Service

Data
Plugin

Exec
Plugin

Remote Alert
Sender

Event Handler
(Event Admin)

Dmt Event
Listener

The entities used in the Dmt Admin operations and notifications are depicted in Figure 117.2.

Figure 117.2 Using Dmt Admin service, org.osgi.service.dmt and org.osgi.service.dmt.notification.* packages

<<service>>
Dmt Admin

administers

DMT Admin Impl

<<service>>
Notification
Service

Local Manager or
Protocol Adapter

sends alerts

<<class>>
Alert Item

<<class>>
Acl

<<interface>>
Meta Node

<<class>>
Dmt Data

<<interface>>
Dmt Session

Session Impl Alert Sender Impl

0..*

1

0..*

1

<<service>>
Remote Alert
Sender

Remote Alert
Sender Impl

0..*

1

<<service>>
Dmt Event
Listener

<<class>>
Dmt Event

0..*

1

Listener Impl

Extending the Dmt Admin service with Plugins is depicted in Figure 117.3.

The Device Management Model Dmt Admin Service Specification Version 2.0

Page 480 OSGi Compendium Release 6

Figure 117.3 Extending the Dmt Admin service, org.osgi.service.dmt.spi package

Dmt Admin ImplSession Impl

<<service>>
Data Plugin

<<service>>
Exec Plugin

<<interface>>
Readable Data
Session

Data Plugin Impl Exec Plugin Impl

<<interface>>
Read Write
Data Session

<<interface>>
Transactional
Data Session

Session Impl

<<interface>>
Mount Plugin

Mount Point Impl

<<interface>>
Mount Point

117.2 The Device Management Model
The standard-based features of the DMT model are:

• The Device Management Tree consists of interior nodes and leaf nodes. Interior nodes can have
children and leaf nodes have primitive values.

• All nodes have a set of properties: Name, Title, Format, ACL, Version, Size, Type, Value, and
TimeStamp.

• The storage of the nodes is undefined. Nodes typically map to peripheral registers, settings, con-
figuration, databases, etc.

• A node's name must be unique among its siblings.
• Nodes can have Access Control Lists (ACLs), associating operations allowed on those nodes with

a particular principal.
• Nodes can have Meta Nodes that describe actual nodes and their siblings.
• Base value types (called formats in the standard) are

• integer
• long
• string
• boolean
• binary data (multiple types)
• datetime
• time

Dmt Admin Service Specification Version 2.0 The Device Management Model

OSGi Compendium Release 6 Page 481

• float
• XML fragments

• Leaf nodes in the tree can have default values specified in the meta node.
• Meta Nodes define allowed access operations (Get , Add , Replace , Delete and Exec)

Figure 117.4 Device Management Tree example

root node.

Vendor Operator

ScreenSavers

OSGiOMA DM

RingSignals

Bach Popcorn Sinatra

interior node

leaf node

leaf node

interior node

117.2.1 Tree Terminology
In the following sections, the DMT is discussed frequently. Thus, well-defined terms for all the con-
cepts that the DMT introduces are needed. The different terms are shown in Figure 117.5.

Figure 117.5 DMT naming, relative to node F

.

E

G

F

f1 f2

A

DC

IH J

parent

self
siblings

ancestors

descendants
children sub-tree

K

All terms are defined relative to node F . For this node, the terminology is as follows:

• URI - The path consisting of node names that uniquely defines a node, see The DMT Addressing
URI on page 483.

• ancestors - All nodes that are above the given node ordered in proximity. The closest node must be
first in the list. In the example, this list is [./E , .]

• parent - The first ancestor, in this example this is . /E .
• children - A list of nodes that are directly beneath the given node without any preferred ordering.

For node F this list is { ./E/F/f1, . /E/F/f2, . /E/F/G } .
• siblings - An unordered list of nodes that have the same parent. All siblings must have different

names. For F , this is { ./E/K}
• descendants - A list of all nodes below the given node. For F this is { ./E/F/f1, . /E/F/G, . /E/F/f2, . /E/

F/G/H, . /E/F/G/I , . /E/F/G/J }
• sub-tree - The given node plus the list of all descendants. For node F this is { ./E/F, . /E/F/f1, . /E/F/

G, . /E/F/f2, . /E/F/G/H, . /E/F/G/I , . /E/F/G/J }

The Device Management Model Dmt Admin Service Specification Version 2.0

Page 482 OSGi Compendium Release 6

• overlap - Two given URIs overlap if they share any node in their sub-trees. In the example, the
sub-tree . /E/F and . /E/F/G overlap.

• data root URI - A URI which represents the root of a Data Plugin.
• exec root URI - A URI which represents the root of an Exec Plugin.
• Parent Plugin - A Plugin A is a Parent Plugin of Plugin B if B 's root is a in A 's sub-tree, this requires a

Parent Plugin to at least have one mount point.
• Child Plugin - A Plugin A is a Child Plugin of Plugin B if A 's root is in B 's sub-tree.
• Scaffold Node - An ancestor node of a Plugin that is managed by the Dmt Admin service to ensure

that all nodes are discoverable by traversing from the root.

117.2.2 Actors
There are two typical users of the Dmt Admin service:

• Remote manager - The typical client of the Dmt Admin service is a Protocol Adapter. A manage-
ment server external to the device can issue DMT operations over some management protocol.
The protocol to be used is not specified by this specification. For example, OMA DM, TR-069,
or others could be used. The protocol operations reach the Framework through the Protocol
Adapter, which forwards the calls to the Dmt Admin service in a session. Protocol Adapters
should authenticate the remote manager and set the principal in the session. This association
will make the Dmt Admin service enforce the ACLs. This requires that the principal is equal to
the server name.

The Dmt Admin service provides a facility to send notifications to the remote manager with the
Notification Service.

• Local Manager - A bundle which uses the Dmt Admin service to operate on the DMT: for example,
a GUI application that allows the end user to change settings through the DMT.

Although it is possible to manage some aspects of the system through the DMT, it can be easi-
er for such applications to directly use the services that underlie the DMT; many of the manage-
ment features available through the DMT are also available as services. These services shield the
callers from the underlying details of the abstract, and sometimes hard to use DMT structure. As
an example, it is more straightforward to use the Monitor Admin service than to operate upon
the monitoring sub-tree. The local management application might listen to Dmt Events if it is in-
terested in updates in the tree made by other entities, however, these events do not necessarily
reflect the accurate state of the underlying services.

Figure 117.6 Actors

<<service>>
Dmt Admin

Protocol Adapter
Impl

remote management
protocol

<<interface>>
Dmt Session

Local Manager
Impl

Remote Server

principal

Dmt Admin Service Specification Version 2.0 The DMT Admin Service

OSGi Compendium Release 6 Page 483

117.3 The DMT Admin Service
The Dmt Admin service operates on the Device Management Tree of an OSGi-based device. The Dmt
Admin API is loosely modeled after the OMA DM protocol: the operations for Get , Replace , Add ,
Delete and Exec are directly available. The Dmt Admin is a singleton service.

Access to the DMT is session-based to allow for locking and transactionality. The sessions are, in
principle, concurrent, but implementations that queue sessions can be compliant. The client indi-
cates to the Dmt Admin service what kind of session is needed:

• Exclusive Update Session - Two or more updating sessions cannot access the same part of the tree
simultaneously. An updating session must acquire an exclusive lock on the sub-tree which
blocks the creation of other sessions that want to operate on an overlapping sub-tree.

• Multiple Readers Session - Any number of read-only sessions can run concurrently, but ongoing
read-only sessions must block the creation of an updating session on an overlapping sub-tree.

• Atomic Session - An atomic session is the same as an exclusive update session, except that the ses-
sion can be rolled back at any moment, undoing all changes made so far in the session. The par-
ticipants must accept the outcome: rollback or commit. There is no prepare phase. The lack of
full two phase commit can lead to error situations which are described later in this document;
see Plugins and Transactions on page 496.

Although the DMT represents a persistent data store with transactional access and without size lim-
itations, the notion of the DMT should not be confused with a general purpose database. The in-
tended purpose of the DMT is to provide a dynamic view of the management state of the device; the
DMT model and the Dmt Admin service are designed for this purpose.

117.4 Manipulating the DMT

117.4.1 The DMT Addressing URI
The OMA DM limits URIs to the definition of a URI in [8] RFC 2396 Uniform Resource Identifiers (URI):
Generic Syntax. The Uri utility classes handles nearly all escaping issues with a number of static
methods. All URIs in any of the API methods can use the full Unicode character set. For example, the
following URIs as used in Java code are valid URIs for the Dmt Admin service.

"./ACME © 2000/A/x"
"./ACME/Address/Street/9C, Avenue St. Drézéry"

This strategy has a number of consequences.

• A solidus (' / ' \u002F) collides with the use of the solidus as separator of the node names. Soli-
di must therefore be escaped using a reverse solidus (' \ ' \u005C). The reverse solidus must be
escaped with a double reverse solidus sequence. The Dmt Admin service must ignore a reverse
solidus when it is not followed by a solidus or reverse solidus. The solidus and reverse solidus
must not be escaped using the %00 like escaping defined for URIs. For example, a node that has
the name of a MIME type could look like:

./OSGi/mime/application\/png

In Java, a reverse solidus must be escaped as well, therefore requiring double reverse solidi:

String a = "./OSGi/mime/application\\/png";

A literal reverse solidus would therefore require 4 reverse solidi in a Java string.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 484 OSGi Compendium Release 6

• The length of a node name is defined to be the length of the byte array that results from UTF-8
encoding a string.

The Uri class provides an encode(Str ing) method to escape a string and a decode(Str ing) method to
unescape a string. Though in general the Dmt Admin service implementations should not impose
unnecessary constraints on the node name length, it is possible that an implementation runs out of
space. In that case it must throw a DmtException URI_TOO_LONG .

Nodes are addressed by presenting a relative or absolute URI for the requested node. The URI is de-
fined with the following grammar:

uri ::= relative-uri | absolute-uri
absolute-uri ::= './' relative-uri
relative-uri ::= segment ('/' segment)*
segment ::= (~['/'])*

The Uri isAbsoluteUri(Str ing) method makes it simple to find out if a URI is relative or absolute. Rel-
ative URIs require a base URI that is for example provided by the session, see Locking and Sessions on
page 484.

Each node name is appended to the previous ones using a solidus (' / ' \u002F) as the separating char-
acter. The first node of an absolute URI must be the full stop ('.' \u002E). For example, to access the
Bach leaf node in the RingTones interior node from Figure 117.4 on page 481, the URI must be:

./Vendor/RingSignals/Bach

The URI must be given with the root of the management tree as the starting point. URIs used in the
DMT must be treated and interpreted as case-sensitive. I.e.. /Vendor and . /vendor designate two differ-
ent nodes. The following mandatory restrictions on URI syntax are intended to simplify the parsing
of URIs.

The full stop has no special meaning in a node name. That is, sequences like. . do not imply parent
node. The isVal idUri(Str ing) method verifies that a URI fulfills all its obligations and is valid.

117.4.2 Locking and Sessions
The Dmt Admin service is the main entry point into the DMT, its usage is to create sessions. A
simple example is getting a session on a specific sub-tree. Such a session can be created with the
getSession(Str ing) method. This method creates an updating session with an exclusive lock on the
given sub-tree. The given sub-tree can be a single leaf node, if so desired.

Each session has an ID associated with it which is unique to the machine and is never reused. This
id is always greater than 0. The value -1 is reserved as place holder to indicate a situation has no ses-
sion associated with it, for example an event generated from an underlying service. The URI argu-
ment addresses the sub-tree root. If nul l , it addresses the root of the DMT. All nodes can be reached
from the root, so specifying a session root node is not strictly necessary but it permits certain opti-
mizations in the implementations.

If the default exclusive locking mode of a session is not adequate, it is possible to specify the locking
mode with the getSession(Str ing, int) and getSession(Str ing,Str ing, int) method. These methods
supports the following locking modes:

• LOCK_TYPE_SHARED - Creates a shared session. It is limited to read-only access to the given sub-
tree, which means that multiple sessions are allowed to read the given sub-tree at the same time.

• LOCK_TYPE_EXCLUSIVE - Creates an exclusive session. The lock guarantees full read-write access to
the tree. Such sessions, however, cannot share their sub-tree with any other session. This type of
lock requires that the underlying implementation supports Read Write Data Sessions.

• LOCK_TYPE_ATOMIC - Creates an atomic session with an exclusive lock on the sub-tree, but with
added transactionality. Operations on such a session must either succeed together or fail togeth-

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Compendium Release 6 Page 485

er. This type of lock requires that the underlying implementation supports Transactional Data
Sessions. If the Dmt Admin service does not support transactions, then it must throw a Dmt Ex-
ception with the FEATURE_NOT_SUPPORTED code. If the session accesses data plugins that are
not transactional in write mode, then the Dmt Admin service must throw a Dmt Exception with
the TRANSACTION_ERROR code. That is, data plugins can participate in a atomic sessions as long
as they only perform read operations.

The Dmt Admin service must lock the sub-tree in the requested mode before any opera-
tions are performed. If the requested sub-tree is not accessible, the getSession(Str ing, int) ,
getSession(Str ing,Str ing, int) , or getSession(Str ing) method must block until the sub-tree becomes
available. The implementation can decide after an implementation-dependent period to throw a
Dmt Exception with the SESSION_CREATION_TIMEOUT code.

As a simplification, the Dmt Admin service is allowed to lock the entire tree irrespective of the giv-
en sub-tree. For performance reasons, implementations should provide more fine-grained locking
when possible.

Persisting the changes of a session works differently for exclusive and atomic sessions. Changes
to the sub-tree in an atomic session are not persisted until the commit() or close() method of the
session is called. Changes since the last transaction point can be rolled back with the rol lback()
method.

The commit() and rol lback() methods can be called multiple times in a session; they do not close the
session. The open , commit() , and rol lback() methods all establish a transaction point. The rollback op-
eration cannot roll back further than the last transaction point.

Once a fatal error is encountered (as defined by the DmtException isFatal() method), all successful
changes must be rolled back automatically to the last transaction point. Non-fatal errors do not roll-
back the session. Any error/exception in the commit or rol lback methods invalidates and closes the
session. This can happen if, for example, the mapping state of a plugin changes that has its plugin
root inside the session's sub-tree.

Changes in an exclusive session are persisted immediately after each separate operation. Errors do
not roll back any changes made in such a session.

Due to locking and transactional behavior, a session of any type must be closed once it is no longer
used. Locks must always be released, even if the close() method throws an exception.

Once a session is closed no further operations are allowed and manipulation methods must throw a
Dmt Illegal State Exception when called. Certain information methods like for example getState()
and getRootUri() can still be called for logging or diagnostic purposes. This is documented with the
Dmt Session methods.

The close() or commit() method can be expected to fail even if all or some of the individual opera-
tions were successful. This failure can occur due to multi-node constraints defined by a specific im-
plementation. The details of how an implementation specifies such constraints is outside the scope
of this specification.

Events in an atomic session must only be sent at commit time.

117.4.3 Associating a Principal
Protocol Adapters must use the getSession(Str ing,Str ing, int) method which features the principal
as the first parameter. The principal identifies the external entity on whose behalf the session is cre-
ated. This server identification string is determined during the authentication process in a way spe-
cific to the management protocol.

For example, the identity of the OMA DM server can be established during the handshake between
the OMA DM agent and the server. In the simpler case of OMA CP protocol, which is a one-way pro-
tocol based on WAP Push, the identity of the principal can be a fixed value.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 486 OSGi Compendium Release 6

117.4.4 Relative Addressing
All DMT operation methods are found on the session object. Most of these methods accept a relative
or absolute URI as their first parameter: for example, the method isLeafNode(Str ing) . This URI is ab-
solute or relative to the sub-tree with which the session is associated. For example, if the session is
opened on:

./Vendor

then the following URIs address the Bach ring tone:

RingTones/Bach
./Vendor/RingTones/Bach

Opening the session with a nul l URI is identical to opening the session at the root. But the absolute
URI can be used to address the Bach ring tone as well as a relative URI.

./Vendor/RingTones/Bach
Vendor/RingTones/Bach

If the URI specified does not correspond to a legitimate node in the tree, a Dmt Exception must be
thrown. The only exception to this rule is the isNodeUri(Str ing) method that can verify if a node is
actually valid. The getMetaNode(Str ing) method must accept URIs to non-existing nodes if an ap-
plicable meta node is available; otherwise it must also throw a Dmt Exception.

117.4.5 Creating Nodes
The methods that create interior nodes are:

• createInter iorNode(Str ing) - Create a new interior node using the default meta data. If the prin-
cipal does not have Replace access rights on the parent of the new node then the session must au-
tomatically set the ACL of the new node so that the creating server has Add , Delete and Replace
rights on the new node.

• createInter iorNode(Str ing,Str ing) - Create a new interior node. The meta data for this new node
is identified by the second argument, which is a URI identifying an OMA DM Device Description
Framework (DDF) file, this does not have to be a valid location. It uses a format like org.osgi/1.0/
LogManagementObject . This meta node must be consistent with any meta information from the
parent node.

• createLeafNode(Str ing) - Create a new leaf node with a default value.
• createLeafNode(Str ing,DmtData) - Create a leaf node and assign a value to the leaf-node.
• createLeafNode(Str ing,DmtData,Str ing) - Create a leaf node and assign a value for the node. The

last argument is the MIME type, which can be nul l .

For a node to be created, the following conditions must be fulfilled:

• The URI of the new node has to be a valid URI.
• The principal of the Dmt Session, if present, must have ACL Add permission to add the node to

the parent. Otherwise, the caller must have the necessary permission.
• All constraints of the meta node must be verified, including value constraints, name constraints,

type constraints, and MIME type constraints. If any of the constraints fail, a Dmt Exception must
be thrown with an appropriate code.

117.4.6 Node Properties
A DMT node has a number of runtime properties that can be set through the session object. These
properties are:

• Title - (Str ing) A human readable title for the object. The title is distinct from the node name. The
title can be set with setNodeTit le(Str ing,Str ing) and read with getNodeTit le(Str ing) . This spec-

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Compendium Release 6 Page 487

ification does not define how this information is localized. This property is optional depending
on the implementation that handles the node.

• Type -(Str ing) The MIME type, as defined in [9] MIME Media Types, of the node's value when it is
a leaf node. The type of an interior node is a string identifying a DDF type. These types can be set
with setNodeType(Str ing,Str ing) and read with getNodeType(Str ing) .

• Version - (int) Version number, which must start at 0, incremented after every modification (for
both a leaf and an interior node) modulo 0x10000. Changes to the value or any of the properties
(including ACLs), or adding/deleting nodes, are considered changes. The getNodeVersion(Str ing)
method returns this version; the value is read-only. In certain cases, the underlying data structure
does not support change notifications or makes it difficult to support versions. This property is
optional depending on the node's implementation.

• Size - (int) The size measured in bytes is read-only and can be read with getNodeSize(Str ing) . Not
all nodes can accurately provide this information.

• Time Stamp -(Date) Time of the last change in version. The getNodeTimestamp(Str ing) returns
the time stamp. The value is read only. This property is optional depending on the node's imple-
mentation.

• ACL - The Access Control List for this and descendant nodes. The property can be set with
setNodeAcl(Str ing,Acl) and obtained with getNodeAcl(Str ing) .

If a plugin that does not implement an optional property is accessed, a Dmt Exception with the code
FEATURE_NOT_SUPPORTED must be thrown.

117.4.7 Setting and Getting Data
Values are represented as DmtData objects, which are immutable. The are acquired with the
getNodeValue(Str ing) method and set with the setNodeValue(Str ing,DmtData) method.

DmtData objects are dynamically typed by an integer enumeration. In OMA DM, this integer is
called the format of the data value. The format of the DmtData class is similar to the type of a vari-
able in a programming language, but the word format is used here. The available data formats are
listed in the following table.

Table 117.1 Data Formats

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_BASE64 byte[] base64 DmtData(byte[] ,boolean) getBase64() Binary type that must be
encoded with base 64, see
[10] RFC 3548 The Base16,
Base32, and Base64 Data
Encodings.

FORMAT_BINARY byte[] binary DmtData(byte[])
DmtData(byte[] ,boolean)

getBinary() A byte array. The DmtData
object is created with the
constructor. The byte ar-
ray can only be acquired
with the method.

FORMAT_BOOLEAN boolean boolean DmtData(boolean) getBoolean() Boolean. There are two
constants for this type:

• FALSE_VALUE
• TRUE_VALUE

FORMAT_DATE Str ing date DmtData(Str ing, int) getStr ing()

getDate()

A Date (no time). Syn-
tax defined in [13] XML
Schema Part 2: Datatypes
Second Edition as the date
type.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 488 OSGi Compendium Release 6

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_DATE_TIME Str ing date-
Time

DmtData(Date) getDateTime() A Date object representing
a point in time.

FORMAT_FLOAT float float DmtData(float) getFloat() Float
FORMAT_INTEGER int integer DmtData(int) getInt() Integer
FORMAT_LONG long long DmtData(long) getLong() Long
FORMAT_NODE Object NODE DmtData(Object) getNode() A DmtData object

can have a format of
FORMAT_NODE . This
value is returned from a
MetaNode getFormat()
method if the node is an
interior node or for a da-
ta value when the Plugin
supports complex values.

FORMAT_NULL No valid data is avail-
able. DmtData objects
with this format cannot
be constructed; the only
instance is the DmtData
NULL_VALUE constant.

FORMAT_RAW_BINARY byte[] <cus-
tom>

DmtData(Str ing,byte[]) getRawBinary() A raw binary format is al-
ways created with a for-
mat name. This format
name allows the creator
to define a proprietary for-
mat. The format name is
available from the get-
FormatName() method,
which has predefined val-
ues for the standard for-
mats.

FORMAT_RAW_STRING Str ing <cus-
tom>

DmtData(Str ing,Str ing) getRawStr ing() A raw string format is al-
ways created with a for-
mat name. This format
name allows the creator
to define a proprietary for-
mat. The format name is
available from the get-
FormatName() method,
which has predefined val-
ues for the standard for-
mats.

FORMAT_STRING Str ing str ing DmtData(Str ing) getStr ing() String
FORMAT_TIME Str ing time DmtData(Str ing, int) getStr ing() Time of Day. Syntax de-

fined in [13] XML Schema
Part 2: Datatypes Second
Edition as the t ime type.

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Compendium Release 6 Page 489

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_XML Str ing xml DmtData(Str ing, int) getXml() A string containing an
XML fragment. It can be
obtained with. The valid-
ity of the XML must not
be verified by the Dmt Ad-
min service.

117.4.8 Complex Values
The OMA DM model prescribes that only leaf nodes have primitive values. This model maps very
well to remote managers. However, when a manager is written in Java and uses the Dmt Admin API
to access the tree, there are often unnecessary conversions from a complex object, to leaf nodes, and
back to a complex object. For example, an interior node could hold the current GPS position as an
OSGi Posit ion object, which consists of a longitude, latitude, altitude, speed, and direction. All these
objects are Measurement objects which consist of value, error, and unit. Reading such a Posit ion ob-
ject through its leaf nodes only to make a new Posit ion object is wasting resources. It is therefore
that the Dmt Admin service also supports complex values as a supplementary facility.

If a complex value is used then the leaves must also be accessible and represent the same semantics
as the complex value. A manager unaware of complex values must work correctly by only using the
leaf nodes. Setting or getting the complex value of an interior node must be identical to setting or
getting the leaf nodes.

Accessing a complex value requires Get access to the node and all its descendants. Setting a complex
value requires Replace access to the interior node. Replacing a complex value must only generate a
single Replace event.

Trying to set or get a complex value on an interior node that does not support complex values must
throw a Dmt Exception with the code FEATURE_NOT_SUPPORTED .

117.4.9 Nodes and Types
The node's type can be set with the setNodeType(Str ing,Str ing) method and acquired with
getNodeType(Str ing) . The namespaces for the types differ for interior and leaf nodes. A leaf node is
typed with a MIME type and an interior node is typed with a DDF Document URI. However, in both
cases the Dmt Admin service must not verify the syntax of the type name.

The createLeafNode(Str ing,DmtData,Str ing) method takes a MIME type as last argument that will
type the leaf node. The MIME type reflects how the data of the node should be interpreted. For exam-
ple, it is possible to store a GIF and a JPEG image in a DmtData object with a FORMAT_BINARY for-
mat. Both the GIF and the JPEG object share the same format, but will have MIME types of image/jpg
and image/gif respectively. The Meta Node provides a list of possible MIME types.

The createInter iorNode(Str ing,Str ing) method takes a DDF Document URI as the last argument
that will type the interior node. This specification defines the DDF Document URIs listed in the fol-
lowing table for interior nodes that have a particular meaning in this specification.

Table 117.2 Standard Interior Node Types

Interior Node Type Description
DDF_SCAFFOLD Scaffold nodes are automatically generated nodes by the

Dmt Admin service to provide the children node names so
that Plugins are reachable from the root. See Scaffold Nodes
on page 497.

DDF_MAP MAP nodes define a key -> value mapping construct using
the node name (key) and the node value (value). See MAP
Nodes on page 525.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 490 OSGi Compendium Release 6

Interior Node Type Description
DDF_LIST LIST nodes use the node name to maintain an index in a

list. See LIST Nodes on page 523.

117.4.10 Deleting Nodes
The deleteNode(Str ing) method on the session represents the Delete operation. It deletes the sub-
tree of that node. This method is applicable to both leaf and interior nodes. Nodes can be deleted by
the Dmt Admin service in any order. The root node of the session cannot be deleted.

For example, given Figure 117.7, deleting node P must delete the nodes . /P , . /P/ M , . /P/M/X , . /P/M/n2
and . /P/M/n3 in any order.

Figure 117.7 DMT node and deletion

.

P

X

M

n2 n3

117.4.11 Copying Nodes
The copy(Str ing,Str ing,boolean) method on the DmtSession object represents the Copy operation.
A node is completely copied to a new URI. It can be specified with a boolean if the whole sub-tree
(true) or just the indicated node is copied.

The ACLs must not be copied; the new access rights must be the same as if the caller had created the
new nodes individually. This restriction means that the copied nodes inherit the access rights from
the parent of the destination node, unless the calling principal does not have Replace rights for the
parent. See Creating Nodes on page 486 for details.

117.4.12 Renaming Nodes
The renameNode(Str ing,Str ing) method on the DmtSession object represents the Rename opera-
tion, which replaces the node name. It requires permission for the Replace operation. The root node
for the current session can not be renamed.

117.4.13 Execute
The execute(Str ing,Str ing) and execute(Str ing,Str ing,Str ing) methods can execute a node. Execut-
ing a node is intended to be used when a problem is hard to model as a set of leaf nodes. This can be
related to synchronization issues or data manipulation. The execute methods can provide a correla-
tor for a notification and an opaque string that is forwarded to the implementer of the node.

Execute operations can not take place in a read only session because simultaneous execution could
make conflicting changes to the tree.

117.4.14 Closing
When all the changes have been made, the session must be closed by calling the close() method on
the session. The Dmt Admin service must then finalize, clean up, and release any locks. For atomic
sessions, the Dmt Admin service must automatically commit any changes that were made since the
last transaction point.

Dmt Admin Service Specification Version 2.0 Meta Data

OSGi Compendium Release 6 Page 491

A session times out and is invalidated after an extended period of inactivity. The exact length of this
period is not specified, but is recommended to be at least 1 minute and at most 24 hours. All meth-
ods of an invalidated session must throw an Dmt Illegal State Exception after the session is invali-
dated.

A session's state is one of the following: STATE_CLOSED , STATE_INVALID or STATE_OPEN , as can be
queried by the getState() call. The invalid state is reached either after a fatal error case is encoun-
tered or after the session is timed out. When an atomic session is invalidated, it is automatically
rolled back to the last transaction point of the session.

117.5 Meta Data
The getMetaNode(Str ing) method returns a MetaNode object for a given URI. This node is called
the meta node. A meta node provides information about nodes.

Any node can optionally have a meta node associated with it. The one or more nodes that are de-
scribed by the meta nodes are called the meta node's related instances. A meta node can describe a sin-
gleton-related instance, or it can describe all the children of a given parent if it is a multi-node. That is
to say, meta nodes can exist without an actual instance being present. In order to retrieve the meta
node of a multi-node any name can be used.

For example, if a new ring tone, Grieg , was created in Figure 117.8 it would be possible to get the
Meta Node for. /Vendor/RingSignals/Grieg before the node was created. This is usually the case for
multi nodes. The model is depicted in Figure 117.8.

Figure 117.8 Nodes and meta nodes

meta node

Vendor

RingSignals

Bach Popcorn ...

./Vendor/RingSingals

<>

related instance

A URI is generally associated with the same Meta Node. The getMetaNode(Str ing) should return
the same meta node for the same URI except in the case of Scaffold Nodes on page 497. As the own-
ership of scaffold nodes can change from the Dmt Admin service to the Parent Plugin service, or
from a Parent Plugin to a Child Plugin, the Meta Node can change as well.

The last segment of the URI to get a Meta Node can be any valid node name, for example, instead of
Grieg it would have been possible to retrieve the same Meta Node with the name . /Vendor/RingSig-
nals/0 , . /Vendor/RingSignals/anyName , . /Vendor/RingSignals/<> , etc.

The actual meta data can come from two sources:

• Dmt Admin - Each Dmt Admin service likely has a private meta data repository. This meta data is
placed in the device in a proprietary way.

• Plugins - Plugins can carry meta nodes and provide these to the Dmt Admin service by imple-
menting the getMetaNode(Str ing[]) method. If a plugin returns a non-null value, the Dmt Ad-
min service must use that value, possibly complemented by its own metadata for elements not
provided by the plugin.

Meta Data Dmt Admin Service Specification Version 2.0

Page 492 OSGi Compendium Release 6

The MetaNode interface supports methods to retrieve read-only meta data. The following sections
describes this meta-data in more detail.

117.5.1 Operations
The can(int) method provide information as to whether the associated node can perform the given
operation. This information is only about the capability; it can still be restricted in runtime by ACLs
and permissions.

For example, if the can(MetaNode.CMD_EXECUTE) method returns true , the target object supports
the Execute operation. That is, calling the execute(Str ing,Str ing) method with the target URI is pos-
sible.

The can(int) method can take the following constants as parameters:

• CMD_ADD
• CMD_DELETE
• CMD_EXECUTE
• CMD_GET
• CMD_REPLACE

For example:

void foo(DmtSession session, String nodeUri) {
 MetaNode meta = session.getMetaNode(nodeUri);
 if (meta !=null && meta.can(MetaNode.CMD_EXECUTE))
 session.execute(nodeUri,"foo");
}

117.5.2 Scope
The scope is part of the meta information of a node. It provides information about what the life cy-
cle role is of the node. The getScope() method on the Meta Node provides this information. The val-
ue of the scope can be one of the following:

• DYNAMIC - Dynamic nodes are intended to be created and deleted by a management system or
an other controlling source. This does not imply that it actually is possible to add new nodes
and delete nodes, the actions can still allow or deny this. However, in principle nodes that can be
added or deleted have the DYNAMIC scope. The LIST and MAP nodes, see OSGi Object Modeling on
page 519, always have DYNAMIC scope.

• PERMANENT - Permanent nodes represent an entity in the system. This can be a network inter-
face, a device description, etc. Permanent nodes in general map to an object in an object orient-
ed language. Despite their name, PERMANENT nodes can appear and disappear, for example the
plugging in of a USB device might create a new PERMANENT node. Generally, the Plugin roots
map to PERMANENT nodes.

• AUTOMATIC - Automatic nodes map in general to nodes that are closely tied to the parent. They
are similar to fields of an object in an object oriented language. They cannot be deleted or added.

For example, a node representing the Battery can never be deleted because it is an intrinsic part of
the device; it will therefore be PERMANENT . The Level and number of ChargeCycle nodes will be AU-
TOMATIC . A new ring tone is dynamically created by a manager and is therefore DYNAMIC .

117.5.3 Description and Default

• getDescr ipt ion() - (Str ing) A description of the node. Descriptions can be used in dialogs with
end users: for example, a GUI application that allows the user to set the value of a node. Localiza-
tion of these values is not defined.

Dmt Admin Service Specification Version 2.0 Meta Data

OSGi Compendium Release 6 Page 493

• getDefault() - (DmtData) A default data value.

117.5.4 Validation
The validation information allows the runtime system to verify constraints on the values; it also al-
lows user interfaces to provide guidance.

A node does not have to exist in the DMT in order to have meta data associated with it. Nodes may
exist that have only partial meta data, or no metadata, associated with them. For each type of meta-
data, the default value to assume when it is omitted is described in MetaNode .

117.5.5 Data Types
A leaf node can be constrained to a certain format and one of a set of MIME types.

• getFormat() - (int) The required type. This type is a logical OR of the supported formats.
• getRawFormatNames() - Return an array of possible raw format names. This is only applicable

when the getFormat() returns the FORMAT_RAW_BINARY or FORMAT_RAW_STRING formats. The
method must return nul l otherwise.

• getMimeTypes() - (Str ing[]) A list of MIME types for leaf nodes or DDF types for interior nodes.
The Dmt Admin service must verify that the actual type of the node is part of this set.

117.5.6 Cardinality
A meta node can constrain the number of siblings (i.e., not the number of children) of an interior
or leaf node. This constraint can be used to verify that a node must not be deleted, because there
should be at least one node left on that level (isZeroOccurrenceAl lowed()), or to verify that a node
cannot be created, because there are already too many siblings (getMaxOccurrence()).

If the cardinality of a meta node is more than one, all siblings must share the same meta node to
prevent an invalid situation. For example, if a node has two children that are described by different
meta nodes, and any of the meta nodes has a cardinality >1, that situation is invalid.

For example, the . /Vendor/RingSignals/<> meta node (where <> stands for any name) could specify
that there should be between 0 and 12 ring signals.

• getMaxOccurrence() - (int) A value greater than 0 that specifies the maximum number of in-
stances for this node.

• isZeroOccurrenceAl lowed() - (boolean) Returns true if zero instances are allowed. If not, the last
instance must not be deleted.

117.5.7 Matching
The following methods provide validation capabilities for leaf nodes.

• isVal idValue(DmtData) - (DmtData) Verify that the given value is valid for this meta node.
• getVal idValues() - (DmtData[]) A set of possible values for a node, or nul l otherwise. This can for

example be used to give a user a set of options to choose from.

117.5.8 Numeric Ranges
Numeric leaf nodes (format must be FORMAT_INTEGER , FORMAT_LONG , or FORMAT_FLOAT) can be
checked for a minimum and maximum value.

Minimum and maximum values are inclusive. That is, the range is [getMin() ,getMax()] . For exam-
ple, if the maximum value is 5 and the minimum value is -5, then the range is [-5,5]. This means that
valid values are -5,-4,-3,-2... 4, 5.

• getMax() - (double) The value of the node must be less than or equal to this maximum value.

Plugins Dmt Admin Service Specification Version 2.0

Page 494 OSGi Compendium Release 6

• getMin() - (double) The value of the node must be greater than or equal to this minimum value.

If no meta data is provided for the minimum and maximum values, the meta node must return the
Double.MIN_VALUE , and Double.MAX_VALUE respectively.

117.5.9 Name Validation
The meta node provides the following name validation facilities for both leaf and interior nodes:

• isVal idName(Str ing) - (Str ing) Verifies that the given name matches the rules for this meta node.
• getVal idNames() - (Str ing[]) An array of possible names. A valid name for this node must appear

in this list.

117.5.10 User Extensions
The Meta Node provides an extension mechanism; each meta node can be associated with a number
of properties. These properties are then interpreted in a proprietary way. The following methods are
used for user extensions:

• getExtensionPropertyKeys() - Returns an array of key names that can be provided by this meta
node.

• getExtensionProperty(Str ing) - Returns the value of an extension property.

For example, a manufacturer could use a regular expression to validate the node names with the
isVal idName(Str ing) method. In a web based user interface it is interesting to provide validity
checking in the browser, however, in such a case the regular expression string is required. This
string could then be provided as a user extension under the key x-acme-regex-javascr ipt .

117.6 Plugins
The Plugins take the responsibility of handling DMT operations within certain sub-trees of the
DMT. It is the responsibility of the Dmt Admin service to forward the operation requests to the ap-
propriate plugin. The only exceptions are the ACL manipulation commands. ACLs must be enforced
by the Dmt Admin service and never by the plugin. The model is depicted in Figure 117.9.

Figure 117.9 Device Management Tree example

Device Operator

ScreenSavers

OSGiOMA DM

Battery

Level Temp Cycles

<<service>>
Data Pluginhandled by

Battery Handler
Impl

.
Plugin root node

Plugins are OSGi services. The Dmt Admin service must dynamically map and unmap the plugins,
acting as node handler, as they are registered and unregistered. Service properties are used to speci-
fy the sub-tree that the plugin can manage as well as mount points that it provides to Child Plugins;
plugins that manage part of the Plugin's sub-tree.

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Compendium Release 6 Page 495

For example, a plugin related to Configuration Admin handles the sub-tree which stores configu-
ration data. This sub-tree could start at . /OSGi/Configurat ion . When the client wants to add a new
configuration object to the DMT, it must issue an Add operation to the . /OSGi/Configurat ion node.
The Dmt Admin service then forwards this operation to the configuration plugin. The plugin maps
the request to one or more method calls on the Configuration Admin service. Such a plugin can be a
simple proxy to the Configuration Admin service, so it can provide a DMT view of the configuration
data store.

There are two types of Dmt plugins: data plugins and exec plugins. A data plugin is responsible for
handling the sub-tree retrieval, addition and deletion operations, and handling of meta data, while
an exec plugin handles a node execution operation.

117.6.1 Data Sessions
Data Plugins must participate in the Dmt Admin service sessions. A Data Plugin provider must
therefore register a Data Plugin service. Such a service can create a session for the Dmt Admin ser-
vice when the given sub-tree is accessed by a Dmt Session. If the associated Dmt Session is later
closed, the Data Session will also be closed. Three types of sessions provide different capabilities.
Data Plugins do not have to implement all session types; if they choose not to implement a session
type they can return nul l .

• Readable Data Session - Must always be supported. It provides the basic read-only access to the
nodes and the close() method. The Dmt Admin service uses this session type when the lock
mode is LOCK_TYPE_SHARED for the Dmt Session. Such a session is created with the plugin's
openReadOnlySession(Str ing[] ,DmtSession) , method which returns a ReadableDataSession
object.

• Read Write Data Session - Extends the Readable Data Session with capabilities to modify the DMT.
This is used for Dmt Sessions that are opened with LOCK_TYPE_EXCLUSIVE . Such a session is cre-
ated with the plugin's openReadWriteSession(Str ing[] ,DmtSession) method, which returns a
ReadWriteDataSession object.

• Transactional Data Session - Extends the Read Write Data Session with commit and rollback
methods so that this session can be used with transactions. It is used when the Dmt Session
is opened with lock mode LOCK_TYPE_ATOMIC . Such a session is created with the plugin's
openAtomicSession(Str ing[] ,DmtSession) method, which returns a TransactionalDataSession
object.

117.6.2 URIs and Plugins
The plugin Data Sessions do not use a simple string to identify a node as the Dmt Session does. In-
stead the URI parameter is a Str ing[] . The members of this Str ing[] are the different segments. The
first node after the root is the second segment and the node name is the last segment. The different
segments require escaping of the solidus (' / ' \u002F) and reverse solidus (' \ ' \u005C).

The reason to use Str ing[] objects instead of the original string is to reduce the number times that
the URI is parsed. The entry String objects, however, are still escaped. For example, the URI . /A/B/ im-
age\/ jpg gives the following Str ing[] :

{ ".", "A", "B", "image\/jpg" }

A plugin can assume that the path is validated and can be used directly.

117.6.3 Associating a sub-tree
Each plugin is associated with one or more DMT sub-trees. The top node of a sub-tree is called the
plugin root. The plugin root is defined by a service registration property. This property is different for
exec plugins and data plugins:

• DATA_ROOT_URIS - (Str ing+) A sequence of data URI, defining a plugin root for data plugins.

Plugins Dmt Admin Service Specification Version 2.0

Page 496 OSGi Compendium Release 6

• EXEC_ROOT_URIS - (Str ing+) A sequence of exec URI, defining a plugin root for exec plugins.

If the Plugin modifies these service properties then the Dmt Admin service must reflect these
changes as soon as possible. The reason for the different properties is to allow a single service to reg-
ister both as a Data Plugin service as well as an Exec Plugin service.

Data and Exec Plugins live in independent trees and can fully overlap. However, an Exec Plugin can
only execute a node when the there exists a valid node at the corresponding node in the Data tree.
That is, to be able to execute a node it is necessary that isNodeUri(Str ing) would return true .

For example, a data plugin can register itself in its activator to handle the sub-tree . /Dev/Battery :

public void start(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(Constants.SERVICE_PID, "com.acme.data.plugin");
 ht.put(DataPlugin.DATA_ROOT_URIS, "./Dev/Battery");
 context.registerService(
 DataPlugin.class.getName(),
 new BatteryHandler(context);
 ht);
}

If this activator was executed, an access to . /Dev/Battery must be forwarded by the Dmt Admin ser-
vice to this plugin via one of the data session.

117.6.4 Synchronization with Dmt Admin Service
The Dmt Admin service can, in certain cases, detect that a node was changed without the plugin
knowing about this change. For example, if the ACL is changed, the version and timestamp must be
updated; these properties are maintained by the plugin. In these cases, the Dmt Admin service must
open a ReadableDataSession and call nodeChanged(Str ing[]) method with the changed URI.

117.6.5 Plugin Meta Data
Plugins can provide meta data; meta data from the Plugin must take precedence over the meta data
of the Dmt Admin service. If a plugin provides meta information, the Dmt Admin service must veri-
fy that an operation is compatible with the meta data of the given node.

For example if the plugin reports in its meta data that the . /A leaf node can only have the text/plain
MIME type, the createLeafNode(Str ing) calls must not be forwarded to the Plugin if the third argu-
ment specifies any other MIME type. If this contract between the Dmt Admin service and the plugin
is violated, the plugin should throw a Dmt Exception METADATA_MISMATCH .

117.6.6 Plugins and Transactions
For the Dmt Admin service to be transactional, transactions must be supported by the data plug-
ins. This support is not mandatory in this specification, and therefore the Dmt Admin service has
no transactional guarantees for atomicity, consistency, isolation or durability. The DmtAdmin inter-
face and the DataPlugin (or more specifically the data session) interfaces, however, are designed to
support Data Plugin services that are transactional. Exec plugins need not be transaction-aware be-
cause the execute method does not provide transactional semantics, although it can be executed in
an atomic transaction.

Data Plugins do not have to support atomic sessions. When the Dmt Admin service creates a Trans-
actional Data Session by calling openAtomicSession(Str ing[] ,DmtSession) the Data Plugin is al-
lowed to return nul l . In that case, the plugin does not support atomic sessions. The caller receives a
Dmt Exception.

Plugins must persist any changes immediately for Read Write Data Sessions. Transactional Data Ses-
sions must delay changes until the commit() method is called, which can happen multiple times

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Compendium Release 6 Page 497

during a session. The opening of an atomic session and the commit() and rol lback() methods all es-
tablish a transaction point. Rollback can never go further back than the last transaction point.

• commit() - Commit any changes that were made to the DMT but not yet persisted. This method
should not throw an Exception because other Plugins already could have persisted their data and
can no longer roll it back. The commit method can be called multiple times in an open session,
and if so, the commit must make persistent the changes since the last transaction point.

• rol lback() - Undo any changes made to the sub-tree since the last transaction point.
• close() - Clean up and release any locks. The Dmt Admin service must call the commit methods

before the close method is called. A Plugin must not perform any persistency operations in the
close method.

The commit() , rol lback() , and close() plugin data session methods must all be called in reverse order
of that in which Plugins joined the session.

If a Plugin throws a fatal exception during an operation, the Dmt Session must be rolled back imme-
diately, automatically rolling back all data plugins, as well as the plugins that threw the fatal Dmt
Exception. The fatality of an Exception can be checked with the Dmt Exception isFatal() method.

If a plugin throws a non-fatal exception in any method accessing the DMT, the current operation
fails, but the session remains open for further commands. All errors due to invalid parameters (e.g.
non-existing nodes, unrecognized values), all temporary errors, etc. should fall into this category.

A rollback of the transaction can take place due to any irregularity during the session. For example:

• A necessary Plugin is unregistered or unmapped
• A fatal exception is thrown while calling a plugin
• Critical data is not available
• An attempt is made to breach the security

Any Exception thrown during the course of a commit() or rol lback() method call is considered fa-
tal, because the session can be in a half-committed state and is not safe for further use. The opera-
tion in progress should be continued with the remaining Plugins to achieve a best-effort solution in
this limited transactional model. Once all plugins have been committed or rolled back, the Dmt Ad-
min service must throw an exception, specifying the cause exception(s) thrown by the plugin(s),
and should log an error.

117.6.7 Side Effects
Changing a node's value will have a side effect of changing the system. A plugin can also, however,
cause state changes with a get operation. Sometimes the pattern to use a get operation to perform
a state changing action can be quite convenient. The get operation, however, is defined to have no
side effects. This definition is reflected in the session model, which allows the DMT to be shared
among readers. Therefore, plugins should refrain from causing side effects for read-only operations.

117.6.8 Copying
Plugins do not have to support the copy operation. They can throw a Dmt Exception with a code
FEATURE_NOT_SUPPORTED . In this case, the Dmt Admin service must do the copying node by
node. For the clients of the Dmt Admin service, it therefore appears that the copy method is always
supported.

117.6.9 Scaffold Nodes
As Plugins can be mapped anywhere into the DMT it is possible that a part of the URI has no corre-
sponding Plugin, such a plugin would not be reachable unless the intermediate nodes were provid-
ed. A program that would try to discover the DMT would not be able to find the registered Plugins as
the intermediate nodes would not be discoverable.

Plugins Dmt Admin Service Specification Version 2.0

Page 498 OSGi Compendium Release 6

These intermediate nodes that will make all plugins reachable must therefore be provided by the
Dmt Admin service, they are called the scaffold nodes. The only purpose of the scaffold nodes is to al-
low every node to be discovered when the DMT is traversed from the root down. Scaffold nodes are
provided both for Data Plugins as well as Exec Plugins as well as for Child Plugins that are mounted
inside a Parent Plugin, see Sharing the DMT on page 500. In Figure 117.10 the Device node is a scaf-
fold node because there is no plugin associated with it. The Dmt Admin service must, however, pro-
vide the Battery node as child node of the Device node.

Figure 117.10 Scaffold Nodes

Device

Battery

Level Temp Cycles

.

Scaffold node

Plugin Root Node for
plugin with root ./Device/Battery

Scaffold node

A scaffold node is always an interior node and has limited functionality, it must have a type of
DDF_SCAFFOLD . It has no value, it is impossible to add or delete nodes to it, and the methods that
are allowed for a scaffold node are specified in the following table.

Table 117.3 Supported Scaffold Node Methods

Method Description
getNodeAcl(Str ing) Must inherit from the root node.
getChi ldNodeNames(Str ing) Answer the child node names such that plugin's in the sub-tree

are reachable.
getMetaNode(Str ing) Provides the Meta Node defined in Table 117.4
getNodeSize(Str ing) Must throw a DmtException COMMAND_NOT_ALLOWED
getNodeTit le(Str ing) nul l
getNodeTimestamp(Str ing) Time first created
getNodeType(Str ing) DDF_SCAFFOLD
isNodeUri(Str ing) true
isLeafNode(Str ing) false
getNodeVersion(Str ing) Away returns 0
copy(Str ing,Str ing,boolean) Not allowed for a single scaffold node as nodeUri ,

if the recurse parameter is fa lse the DmtException
COMMAND_NOT_ALLOWED

Any other operations must throw a DmtException with error code COMMAND_NOT_ALLOWED .
The scope of a scaffold node is always PERMANENT . Scaffold nodes must have a Meta Node provided
by the Dmt Admin service. This Meta Node must act as defined in the following table.

Table 117.4 Scaffold Meta Node Supported Methods

Method Description
can(int) CMD_GET
getDefault() nul l

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Compendium Release 6 Page 499

Method Description
getDescr ipt ion() nul l
getFormat() FORMAT_NODE
getMax() Double.MAX_VALUE
getMaxOccurrence() 1
getMimeTypes() DDF_SCAFFOLD
getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() PERMANENT
getVal idNames() nul l
getVal idValues() nul l
isLeaf() false
isVal idName(Str ing) true
isVal idValue(DmtData) false
isZeroOccurrenceAl lowed() true

If a Plugin is registered then it is possible that a scaffold node becomes a Data Plugin root node. In
that case the node and the Meta Node must subsequently be provided by the Data Plugin and can
thus become different. Scaffold nodes are virtual, there are therefore no events associated with the
life cycle of a scaffold node.

For example, there are three plugins registered:

URI Plugin Children
./A/B P1 ba
./A/C P2 ca
./A/X/Y P3 ya,yb

In this example, node B , C , and Y are the plugin roots of the different plugins. As there is no plugin
the manage node A and X these must be provided by the Dmt Admin service. In this example, the
child names returned from each node are summarized as follows:

Node Children Provided by
. { A } Dmt Admin (scaffold node)
A { X, C, B } Dmt Admin (scaffold node)
B { ba } P1
C { ca } P2
X { Y } Dmt Admin (scaffold node)
Y { ya, yb } P3

Figure 117.11 Example Scaffold Nodes

.
.

BC

Y

.

P1

A

X P2

P3

ya yb

ca ba

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 500 OSGi Compendium Release 6

117.7 Sharing the DMT
The Dmt Admin service provides a model to integrate the management of the myriad of compo-
nents that make up an OSGi device. This integration is achieved by sharing a single namespace: the
DMT. Sharing a single namespace requires rules to prevent conflicts and to resolve any conflicts
when Plugins register with plugin roots that overlap. It also requires rules for the Dmt Admin ser-
vice when nodes are accessed for which there is no Plugin available.

This section defines the management of overlapping plugins through the mount points, places where
a Parent Plugin can allow a Child Plugin to take over.

117.7.1 Mount Points
With multiple plugins the DMT is a shared namespace. Sharing requires rules to ensure that conflicts
are avoided and when they occur, can be resolved in a consistent way. The most powerful and flexi-
ble model is to allow general overlapping. However, in practice this flexibility comes at the cost of
ordering issues and therefore timing dependent results. A best practice is therefore to strictly con-
trol the points where the DMT can be extended for both Data and Exec Plugins.

A mount point is such a place. A Dmt Admin service at start up provides virtual mount points any-
where in the DMT and provides scaffold nodes for any intermediate nodes between the root of the
DMT and the Plugin's root URI. Once a Plugin is mounted it is free to use its sub-tree (the plugin root
and any ancestors) as it sees fit. However, this implies that the Plugin must implement the full sub-
tree. In reality, many object models use a pattern where the different levels in the object model map
to different domains.

For example, an Internet Gateway could have an object model where the general information, like
the name, vendor, etc. is stored in the first level but any attached interfaces are stored in the sub-tree.
However, It is highly unlikely that the code that handles the first level with the general information
is actually capable of handling the details of, for example, the different network interfaces. It is actu-
ally likely that these network interfaces are dynamic. A Virtual Private Network (VPN) can add vir-
tual network interfaces on demand. Such a could have the object model depicted in Figure 117.12.

Figure 117.12 Data Modeling

.
..

Gateway

Name Interface

WANLAN

VPN

Forcing these different levels to be implemented by the same plugin violates one of the primary
rules of modularity: cohesion. Plugins forced to handle all aspects become complex and hard to main-
tain. A Plugin like the one managing the Gateway node could provide its own Plugin mechanism
but that would force a lot of replication and is error prone. For this reason, the Dmt Admin service
allows a Plugin to provide mount points inside its sub-tree. A Plugin can specify that it has mount
points by registering a MOUNT_POINTS service property (the constant is defined both in DataPlug-
in and ExecPlugin but have the same constant value). The type of this property must be Str ing+ , each
string specifies a mount point. Each mount point is specified as a URI that is relative from the plug-

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Compendium Release 6 Page 501

in root. That is, when the plugin root is . /A/B and the mount point is specified as C then the absolute
URI of the mount point is . /A/B/C .

A Plugin that has mount points acts as a Parent Plugin to a number of Child Plugins. In the previ-
ous example, the LAN, VPN, and WAN nodes, can then be provided by separate Child Plugins even
though the Gateway/Name node is provided by the Parent Plugin. In this case, the mount points are
children of the Interface node.

A mount point can be used by a number of child plugins. In the previous example, there was a Child
Plugin for the LAN node, the VPN node, and the WAN node. This model has the implicit problem
that it requires coordination to ensure that their names are unique. Such a coordination between in-
dependent parties is complicated and error prone. Its is therefore possible to force the Dmt Admin
service to provide unique names for these nodes, see Shared Mount Points on page 502.

A Parent Plugin is not responsible for any scaffolding nodes to make its Child Plugins reachable.
However, Dmt Admin may assume that a Plugin Root node always exists and may not provide a scaf-
fold node on the Plugin Root. A Plugin is recommended to always provide the Plugin Root node to
make its Child Plugins reachable. When a Parent Plugin provides the nodes to its mount points, the
nodes should be the correct interior nodes to make its Child Plugins reachable.

For example, the following setup of plugins:

Plugin Plugin Root Mount Points
P1 ./A X/B
P2 ./A/X/B

This setup is depicted in Figure 117.13.

Figure 117.13 Example Scaffold Nodes For Child Plugin

..

A

B

.

P1

X

P2

g

g

mount
point

f

If the child node names are requested for the . /A node then the plugin P1 is asked for the child node
names and must return the names [f,g] . However, if plugin P2 is mapped then the Dmt Admin ser-
vice must add the scaffold node name that makes this plugin reachable from that level, the returned
set must therefore be [f, g, X] .

117.7.2 Parent Plugin
If a Plugin is registered with mount points then it is a Parent Plugin. A Parent Plugin must register
with a single plugin root URI, that is the DATA_ROOT_URIS or EXEC_ROOT_URIS service properties
must contain only one element. A Parent Plugin is allowed to be a Data and Exec Plugin at the same
time. If a Parent Plugin is registered with multiple plugin root URIs then the Dmt Admin service
must log an error and ignore the registration of such a Parent Plugin. A Parent Plugin can in itself al-
so be a Child Plugin.

For example, a Plugin P1 that has a plugin root of . /A/B and provides a mount point at . /A/B/C and . /
A/B/E/F. as depicted in Figure 117.14.

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 502 OSGi Compendium Release 6

Figure 117.14 Example Mount Points

.
.

B

.

A

P1

C

Mount point

E

F

Registering such a Plugin would have to register the following service properties to allow the exam-
ple configuration of the DMT:

dataRootUris ./A/B
mountPoints [C, E/F]

117.7.3 Shared Mount Points
Mount points can be shared between different Plugins. In the earlier example about the Gateway
the Interface node contained a sub-tree of network interfaces. It is very likely in such an example
that the Plugins for the VPN interface will be provided by a different organization than the WAN
and LAN network interfaces. However, all these network interface plugins must share a single par-
ent node, the Interface node, under which they would have to mount. Sharing therefore requires a
prior agreement and a naming scheme.

The naming scheme is defined by using the number sign ('# ' \u0023) to specify a shared mount point.
A plugin root that ends with the number sign, for example . /A/B/# , indicates that it is willing to
get any node under node B , leaving the naming of that node up to the Dmt Admin service. Shared
mount points cannot overlap with normal mount points, the first one will become mapped and
subsequent ones are in error, they are incompatible with each other. A Parent Plugin must specify a
mount point explicitly as a shared mount point by using the number sign at the end of the mount
point's relative URI.

A plugin is compatible with other plugins if all other plugins specify a shared mount point to the
same URI. It is compatible with its Parent Plugin if the child's plugin root and the mount point are
either shared or not.

The Dmt Admin service must provide a name for a plugin root that identifies a shared mount
point such that every Plugin on that mount point has a unique integer name for that node lev-
el. The integer name must be >= 1. The name must be convertible to an int with the static Integer
parseInt(Str ing) method.

A management system in general requires permanent links to nodes. It is therefore necessary to
choose the same integer every time a plugin is mapped to a shared mount point. A Child Plugin on
a shared mount point must therefore get a permanent integer node name when it registers with a
Persistent ID (PID). That is, it registers with the service property service.pid . The permanent link is
then coupled to the PID and the bundle id since different bundles must be able to use the same PID.
If a Plugin is registered with multiple PIDs then the first one must be used. Since permanent links
can stay around for a long time implementations must strive to not reuse these integer names.

If no PID is provided then the Dmt Admin service must choose a new number that has not been used
yet nor matches any persistently stored names that are currently not registered.

The Gateway example would require the following Plugin registrations:

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Compendium Release 6 Page 503

Root URI Mount Points Plugin Role
./Gateway [Interface/#] Gateway Parent
./Gateway/Interface/# [] WAN If. Child
./Gateway/Interface/# [] LAN If. Child
./Gateway/Interface/# [] VPN.1 Child

This setup is depicted in Figure 117.15.

Figure 117.15 Mount Point Sharing

.
..

Gateway

Name Interface

WAN
If.

LAN
If.

VPN
.1

12 33 42 Assigned by Dmt Admin

The Meta Node for a Node on the level of the Mount Point can specify either an existing Plugin or it
can refer to a non-existing node. If the node exists, the corresponding Plugin must provide the Meta
Node. If the node does not exist, the Dmt Admin service must provide the Meta Node. Such a Meta
Node must provide the responses as specified in Table 117.4.

Table 117.5 Shared Mount Point Meta Node Supported Methods

Method Description
can(int) CMD_GET
getDefault() nul l
getDescr ipt ion() nul l
getFormat() FORMAT_NODE
getMax() Double.MAX_VALUE
getMaxOccurrence() Integer.MAX_VALUE
getMimeTypes() nul l
getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() The scope will depend on the Parent
getVal idNames() nul l
getVal idValues() nul l
isLeaf() false
isVal idName(Str ing) name >=1 && name < Integer.MAX_VALUE
isVal idValue(DmtData) false
isZeroOccurrenceAl lowed() true

A URI can cross multiple mount points, shared and unshared. For example, if a network interface
could be associated with a number of firewall rules then it is possible to register a URI on the desig-
nated network interface that refers to the Firewall rules. For the previous example, a Plugin could
register a Firewall if the following registrations were done:

Root URI Mount Points Plugin Parent Name

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 504 OSGi Compendium Release 6

./Gateway [Interface/#] Gw

./Gateway/Interface/# [Fw/#] WAN If. Gw 11

./Gateway/Interface/# [] LAN If. Gw 33

./Gateway/Interface/# [] VPN.1 Gw 42

./Gateway/Interface/11/Fw/# [] Fw.1 WAN If. 97

This example DMT is depicted in Figure 117.16.

Figure 117.16 Mount Point Multiple Sharing

.
..

Name Interface

WAN
LAN

VPN

11 33 42 Assigned by Dmt Admin

Fw

97Fw#1

Gateway

117.7.4 Mount Points are Excluded
Mount nodes are logically not included in the sub-tree of a Plugin. The Dmt Admin service must
never ask any information from/about a Mount Point node to its Parent Plugin. A Parent Plugin
must also not return the name of a mount point in the list of child node names, the Mount Point
and its subtree is logically excluded from the sub-tree. For the Dmt Admin service an unoccupied
mount point is a node that does not exist. Its name, must only be discoverable if a Plugin has actual-
ly mounted the node. The Dmt Admin service must ensure that the names of the mounted Plugins
are included for that level.

In the case of shared mount points the Dmt Admin service must provide the children names of all
registered Child Plugins that share that node level.

For example, a Plugin P1 registered with the plugin root of . /A/B , having two leaf nodes E , and a
mount point C must not return the name C when the child node names for node B are requested.
This is depicted in Figure 117.17. The Dmt Admin service must ensure that C is returned in the list of
names when a Plugin is mounted on that node.

Figure 117.17 Example Exclusion

.
.

B

.

A

P1

CE
not returned in getChildNodeNames
method of the Plugin

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Compendium Release 6 Page 505

117.7.5 Mapping a Plugin
A Plugin is not stand alone, its validity can depend on other Plugins. Invalid states make it possible
that a Plugin is either mapped or unmapped. When a Plugin is mapped it is available in the DMT and
when it is unmapped it is not available. Any registration, unregistration, or modification of its ser-
vices properties of a Plugin can potentially alter the mapped state of any related Plugin. A plugin be-
comes eligible for mapping when it is registered.

A plugin can have multiple roots. However, the mapping is described as if there is a single plugin
root. Plugins with multiple roots must be treated as multiple plugins that can each independently
be mapped or unmapped depending on the context.

If no Parent Plugin is available, the Dmt Admin service must act as a virtual Parent Plugin that al-
lows mount points anywhere in the tree where there is no mapped plugin yet.

When a Plugin becomes eligible then the following assertions must be valid for that Plugin to be-
come mapped:

• If it has one or more mount points then
• It must have at most one Data and/or Exec Root URI.
• None of its mount points must overlap.
• Any already mapped Child Plugins must be compatible with its mount points.

• If no mount points are specified then there must be no Child Plugins already registered.
• The plugin root must be compatible with the corresponding parent's mount point. When a Par-

ent Plugin is available, the plugin root must match exactly to the absolute URI of the parent's
mount point.

• The plugin root must be compatible with any other plugins on that mount point.

If either of these assertions fail then the Dmt Admin service must log an error and ignore the
registered Plugin, it must not become mapped. If, through the unregistration or modification of
the service properties, the assertions can become valid then the Dmt Admin service must retry
mapping the Plugin so that it can become available in the DMT. Any mappings and unmap-
pings that affect nodes that are in the sub-tree of an active session must abort that session with a
CONCURRENT_ACCESS exception.

When there are errors in the configuration then the ordering will define which plugins are mapped
or not. Since this is an error situation no ordering is defined between conflicting plugins.

For example, a number of Plugins are registered in the given order:

Plugin Root Children Mount Points Plugin
./A/B E C P1
./A/B/C P2
./A/B/D P3

The first Plugin P1 will be registered immediately without problems. It has only a single plugin root
as required by the fact that it is a Parent Plugin (it has a mount point). There are no Child Plugins yet
so it is impossible to have a violation of the mount points. As there is no Parent Plugin registered,
the Dmt Admin service will map plugin P1 and automatically provide the scaffold node A .

When Plugin P2 is registered its plugin root maps to a mount point in Plugin P1 . As P2 is not a Parent
Plugin it is only necessary that it has no Child Plugins. As it has no Child Plugins, the mapping will
succeed.

Plugin P3 cannot be mapped because the Parent Plugin is P1 but P1 does not provide a mount point
for P3 's plugin root . /A/B/D .

If, at a later time P1 is unregistered then the Dmt Admin service must map plugin P3 and leave plug-
in P2 mapped. This sequence of action is depicted in Figure 117.18.

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 506 OSGi Compendium Release 6

If plugin P1 becomes registered again at a later time it can then in its turn not be mapped as there
would be a child plugin (P3) that would not map to its mount point.

Figure 117.18 Plugin Activation

.

B

.

A

P1

CE

.

B

.

A

P1

CE

.

B

.

A

P1

CEP2

D

P2

P3

P1 Registered
and mapped

P2 registered
and mapped

P3 is registered
but cannot be mapped

??

..

A

CDP3 C P2

B

P1 is unregistered
mapping P3

117.7.6 Mount Plugins
In Mapping a Plugin on page 505 it is specified that a Plugin can be mapped or not. The mapped
state of a Plugin can change depending on other plugins that are registered and unregistered. Plug-
ins require in certain cases to know:

• What is the name of their root node if they mount on a shared mount point.
• What is the mapping state of the Plugin.

To find out these details a Plugin can implement the MountPlugin interface; this is a mixin inter-
face, it is not necessary to register it as MountPlugin service. The Dmt Admin service must do an in-
stanceof operation on Data Plugin services and Exec Plugin services to detect if they are interested
in the mount point information.

The Mount Point interface is used by the Dmt Admin service to notify the Plugin when it becomes
mapped and when it becomes unmapped. The Plugin will be informed about each plugin root sepa-
rately.

The Mount Plugin specifies the following methods that are called synchronously:

• mountPointAdded(MountPoint) - The Dmt Admin service must call this method after it has
mapped a plugin root. From this point on the given mount point provides the actual path until
the mountPointRemoved(MountPoint) is called with an equal object. The given Mount Point can
be used to post events.

• mountPointRemoved(MountPoint) - The Dmt Admin service must call this method after it has
unmapped the given mount point. This method must always be called when a plugin root is un-
mapped, even if this is caused by the unregistration of the plugin.

As the mapping and unmapping of a plugin root can happen any moment in time a Plugin that im-
plements the Mount Plugin interface must be prepared to handle these events at any time on any
thread.

The MountPoint interface has two separate responsibilities:

• Path - The path that this Mount Point is associated with. This path is a plugin root of the plugin.
This path is identical to the Plugin's root except when it is mounted on a shared mount point;
in that case the URI ends in the name chosen by the Dmt Admin service. The getMountPath()
method provides the path.

Dmt Admin Service Specification Version 2.0 Access Control Lists

OSGi Compendium Release 6 Page 507

• Events - Post events about the given sub-tree that signal internal changes that occur outside
a Dmt Session. The Dmt Admin service must treat these events as they were originated from
modifications to the DMT. That is, they need to be forwarded to the Event Admin as well as
the Dmt Listeners. For this purpose there are the postEvent(Str ing,Str ing[] ,Dict ionary) and
postEvent(Str ing,Str ing[] ,Str ing[] ,Dict ionary) methods.

For example, a Data Plugin monitoring one of the batteries registers with the following service prop-
erties:

dataRootURIs "./Device/Battery/#"

The Device node is from a Parent Plugin that provided the shared mount point. The Battery Plugin
implements the MountPlugin interface so it gets called back when it is mapped. This will cause the
Dmt Admin service to call the mountPointAdded(MountPoint) method on the plugin. In this case, it
will get just one mount point, the mount point for its plugin root. If the Dmt Admin service would
have assigned the Battery Plugin number 101 then the getMountPath() would return:

[".", "Device", "Battery", "101"]

As the Plugin monitors the charge state of the battery it can detect a significant change. In that case
it must send an event to notify any observers. The following code shows how this could be done:

@Component(properties="dataRootURIs=./Device/Battery/#",
 provide=DataPlugin.class)
public class Battery implements DataPlugin, MountPlugin {
 Timer timer;
 volatile float charge;
 TimerTask task;

 public void mountPointsAdded(final MountPoint[] mountPoints){
 task = new TimerTask() {
 public void run() {
 float next = measure();
 if (Math.abs(charge - next) > 0.2) {
 charge = next;
 mountPoints[0].postEvent(DmtConstants.EVENT_TOPIC_REPLACED,
 new String[] { "Charge" }, null);
 }
 }
 };
 timer.schedule(task, 1000);
 }

 public void mountPointsRemoved(MountPoint[] mountPoints){
 task.cancel();
 task = null;
 }
 ... // Other methods
}

117.8 Access Control Lists
Each node in the DMT can be protected with an access control list, or ACL. An ACL is a list of associa-
tions between Principal and Operation:

Access Control Lists Dmt Admin Service Specification Version 2.0

Page 508 OSGi Compendium Release 6

• Principal - The identity that is authorized to use the associated operations. Special principal is the
wildcard ('* ' \u002A); the operations granted to this principal are called the global permissions.
The global permissions are available to all principals.

• Operation - A list of operations: ADD, DELETE, GET, REPLACE, EXECUTE .

DMT ACLs are defined as strings with an internal syntax in [1] OMA DM-TND v1.2 draft. Instances of
the ACL class can be created by supplying a valid OMA DM ACL string as its parameter. The syntax
of the ACL is presented here in shortened form for convenience:

acl ::= (acl-entry ('&' acl-entry)*)
acl-entry ::= command '=' (principals | '*')
principals ::= principal ('+' principal)*
principal ::= ~['=' '&' '*' '+' '\t' '\n' '\r']+

The principal name should only use printable characters according to the OMA DM specification.

command ::= 'Add' | 'Delete' | 'Exec'| 'Get' | 'Replace'

White space between tokens is not allowed.

Examples:

Add=*&Replace=*&Get=*

Add=www.sonera.fi-8765&Delete=www.sonera.fi-8765& «
Replace=www.sonera.fi-8765+321_ibm.com&Get=*

The Acl(Str ing) constructor can be used to construct an ACL from an ACL string. The toStr ing()
method returns a Str ing object that is formatted in the specified form, also called the canonical
form. In this form, the principals must be sorted alphabetically and the order of the commands is:

 ADD, DELETE, EXEC, GET, REPLACE

The Acl class is immutable, meaning that a Acl object can be treated like a string, and that the object
cannot be changed after it has been created.

ACLs must only be verified by the Dmt Admin service when the session has an associated principal.

ACLs are properties of nodes. If an ACL is not set (i.e. contains no commands nor principals), the ef-
fective ACL of that node must be the ACL of its first ancestor that has a non-empty ACL. This effec-
tive ACL can be acquired with the getEffect iveNodeAcl(Str ing) method. The root node of DMT
must always have an ACL associated with it. If this ACL is not explicitly set, it should be set to
Add=*&Get=*&Replace=* .

This effect is shown in Figure 117.19. This diagram shows the ACLs set on a node and their effect
(which is shown by the shaded rectangles). Any principal can get the value of p , q and r , but they
cannot replace, add or delete the node. Node t can only be read and replaced by principal S1 .

Node X is fully accessible to any authenticated principal because the root node specifies that all prin-
cipals have Get , Add and Replace access (*->G,A,R).

Dmt Admin Service Specification Version 2.0 Access Control Lists

OSGi Compendium Release 6 Page 509

Figure 117.19 ACL inheritance

.

X

B

p q r

A

* -> Get,Add,Replace

S1 -> Get,Replace

* -> Get
t

The definition and example demonstrate the access rights to the properties of a node, which in-
cludes the value.

Changing the ACL property itself has different rules. If a principal has Replace access to an interi-
or node, the principal is permitted to change its own ACL property and the ACL properties of all its
child nodes. Replace access on a leaf node does not allow changing the ACL property itself.

In the previous example, only principal S1 is authorized to change the ACL of node B because it has
Replace permission on node B 's parent node A .

Figure 117.20 ACLs for the ACL property

.

B

t

A

* -> Get,Add,Replace

S1 -> Get,Replace

S1 -> Get

S1 -> Get,Replace

Figure 117.20 demonstrates the effect of this rule with an example. Server S1 can change the ACL
properties of all interior nodes. A more detailed analysis:

• Root - The root allows all authenticated principals to access it. The root is an interior node so the
Replace permission permits the change of the ACL property.

• Node A - Server S1 has Replace permission and node A is an interior node so principal S1 can
modify the ACL.

• Node B - Server S1 has no Replace permission for node B, but the parent node A of node B grants
principal S1 Replace permission, and S1 is therefore permitted to change the ACL.

• Node t - Server S1 must not be allowed to change the ACL of node t , despite the fact that it has Re-
place permission on node t . For leaf nodes, permission to change an ACL is defined by the Re-
place permission in the parent node's ACL. This parent, node B, has no such permission set and
thus, access is denied.

Access Control Lists Dmt Admin Service Specification Version 2.0

Page 510 OSGi Compendium Release 6

The following methods provide access to the ACL property of the node.

• getNodeAcl(Str ing) - Return the ACL for the given node, this method must not take any ACL in-
heritance into account. The ACL may be nul l if no ACL is set.

• getEffect iveNodeAcl(Str ing) - Return the effective ACL for the given node, taking any inheri-
tance into account.

• setNodeAcl(Str ing,Acl) - Set the node's ACL. The ACL can be nul l , in which case the ef-
fective permission must be derived from an ancestor. The Dmt Admin service must call
nodeChanged(Str ing[]) on the data session with the given plugin to let the plugin update any
timestamps and versions.

The Acl class maintains the permissions for a given principal in a bit mask. The following permis-
sion masks are defined as constants in the Acl class:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

The class features methods for getting permissions for given principals. A number of methods allow
an existing ACL to be modified while creating a new ACL.

• addPermission(Str ing, int) - Return a new Acl object where the given permissions have been
added to permissions of the given principal.

• deletePermission(Str ing, int) - Return a new Acl object where the given permissions have been re-
moved from the permissions of the given principal.

• setPermission(Str ing, int) - Return a new Acl object where the permissions of the given principal
are overwritten with the given permissions.

Information from a given ACL can be retrieved with:

• getPermissions(Str ing) - (int) Return the combined permission mask for this principal.
• getPr incipals() - (Str ing[]) Return a list of principals (Str ing objects) that have been granted per-

missions for this node.

Additionally, the isPermitted(Str ing, int) method verifies if the given ACL authorizes the given per-
mission mask. The method returns true if all commands in the mask are allowed by the ACL.

For example:

 Acl acl = new Acl("Get=S1&Replace=S1");

 if (acl.isPermitted("S1", Acl.GET+Acl.REPLACE))
 ... // will execute

 if (acl.isPermitted(
 "S1", Acl.GET+Acl.REPLACE+Acl.ADD))
 ... // will NOT execute

117.8.1 Global Permissions
Global permissions are indicated with the '* ' and the given permissions apply to all principals. Pro-
cessing the global permissions, however, has a number of non-obvious side effects:

• Global permissions can be retrieved and manipulated using the special '*' principal: all methods
of the Acl class that have a principal parameter also accept this principal.

Dmt Admin Service Specification Version 2.0 Notifications

OSGi Compendium Release 6 Page 511

• Global permissions are automatically granted to all specific principals. That is, the result of the
getPermissions or isPermitted methods will be based on the OR of the global permissions and
the principal-specific permissions.

• If a global permission is revoked, it is revoked from all specific principals, even if the specific
principals already had that permission before it was made global.

• None of the global permissions can be revoked from a specific principal. The OMA DM ACL for-
mat does not handle exceptions, which must be enforced by the deletePermission and setPer-
mission methods.

117.8.2 Ghost ACLs
The ACLs are fully maintained by the Dmt Admin service and enforced when the session has an
associated principal. A plugin must be completely unaware of any ACLs. The Dmt Admin service
must synchronize the ACLs with any change in the DMT that is made through its service interface.
For example, if a node is deleted through the Dmt Admin service, it must also delete an associated
ACL.

The DMT nodes, however, are mapped to plugins, and plugins can delete nodes outside the scope of
the Dmt Admin service.

As an example, consider a configuration record which is mapped to a DMT node that has an ACL. If
the configuration record is deleted using the Configuration Admin service, the data disappears, but
the ACL entry in the Dmt Admin service remains. If the configuration dictionary is recreated with
the same PID, it will get the old ACL, which is likely not the intended behavior.

This specification does not specify a solution to solve this problem. Suggestions to solve this prob-
lem are:

• Use a proprietary callback mechanism from the underlying representation to notify the Dmt Ad-
min service to clean up the related ACLs.

• Implement the services on top of the DMT. For example, the Configuration Admin service could
use a plugin that provides general data storage service.

117.9 Notifications
In certain cases it is necessary for some code on the device to alert a remote management server or to
initiate a session; this process is called sending a notification or an alert. Some examples:

• A Plugin that must send the result of an asynchronous EXEC operation.
• Sending a request to the server to start a management session.
• Notifying the server of completion of a software update operation.

Notifications can be sent to a management server using the
sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) method on the Notification Service. This method is
on the Notification Service and not on the session, because the session can already be closed when
the need for an alert arises. If an alert is related to a session, the session can provide the required
principal, even after it is closed.

The remote server is alerted with one or more Alert Item objects. The Alert Item class describes de-
tails of the alert. An alert code is an alert type identifier, usually requiring specifically formatted
Alert Item objects.

The data syntax and semantics vary widely between various alerts, and so does the optionality of
particular parameters of an alert item. If an item, such as source or type, is not defined, the corre-
sponding getter method must return nul l .

Notifications Dmt Admin Service Specification Version 2.0

Page 512 OSGi Compendium Release 6

The Alert Item class contains the following items. The value of these items must be defined in an
alert definition:

• source - (Str ing) The URI of a node that is related to this request. This parameter can be nul l .
• type - (Str ing) The type of the item. For example, x-oma-appl icat ion:syncml.samplealert in the

Generic Alert example.
• mark - (Str ing) Mark field of an alert. Contents depend on the alert type.
• data - (DmtData) The payload of the alert with its type.

An Alert Item object can be constructed with two different constructors:

• Alert Item(Str ing,Str ing,Str ing,DmtData) - This method takes all the previously defined fields.
• Alert Item(Str ing[] ,Str ing,Str ing,DmtData) - Same as previous but with a convenience parame-

ter for a segmented URI.

The Notification Service provides the following method to send Alert Item objects to the manage-
ment server:

• sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) - Send the alert to the server that is associated
with the session. The first argument is the name of the principal (identifying the remote man-
agement system) or nul l for implementation defined routing. The int argument is the alert type.
The alert types are defined by managed object types. The third argument (Str ing) can be used for
the correlation id of a previous execute operation that triggered the alert. The Alert Item objects
contain the data of the alert. The method will run asynchronously from the caller. The Notifica-
tion Service must provide a reliable delivery method for these alerts. Alerts must therefore not be
re-transmitted.

When this method is called with nul l correlator, nul l or empty Alert Item array, and a 0 code as
values, it should send a protocol specific notification that must initiate a new management ses-
sion.

Implementers should base the routing on the session or server information provided as a parame-
ter in the sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) method. Routing might even be possible
without any routing information if there is a well known remote server for the device.

If the request cannot be routed, the Alert Sender service must immediately throw a Dmt Exception
with a code of ALERT_NOT_ROUTED . The caller should not attempt to retry the sending of the noti-
fication. It is the responsibility of the Notification Service to deliver the notification to the remote
management system.

117.9.1 Routing Alerts
The Notification Service allows external parties to route alerts to their destination. This mechanism
enables Protocol Adapters to receive any alerts for systems with which they can communicate.

Such a Protocol Adapter should register a Remote Alert Sender service. It should provide the follow-
ing service property:

• principals - (Str ing+) The array of principals to which this Remote Alert Sender service can route
alerts. If this property is not registered, the Remote Alert Sender service will be treated as the de-
fault sender. The default alert sender is only used when a more specific alert sender cannot be
found.

If multiple Remote Alert Sender services register for the same principals highest ranking service is
taken as defined in the OSGi Core.

Dmt Admin Service Specification Version 2.0 Exceptions

OSGi Compendium Release 6 Page 513

117.10 Exceptions
Most of the methods of this Dmt Admin service API throw Dmt Exceptions whenever an operation
fails. The DmtException class contains numeric error codes which describe the cause of the error.
Some of the error codes correspond to the codes described by the OMA DM spec, while some are in-
troduced by the OSGi Alliance. The documentation of each method describes what codes could po-
tentially be used for that method.

The fatality of the exception decides if a thrown Exception rolls back an atomic session or not. If the
isFatal() method returns true , the Exception is fatal and the session must be rolled back.

All possible error codes are constants in the DmtException class.

117.11 Events
There are the following mechanisms to work with events when using the Dmt Admin service.

• Event Admin service - Standard asynchronous notifications
• Dmt Event Listener service - A white board model for listener. A registered DmtEventListener ser-

vice can use service properties to filter the received events

In both cases events are delivered asynchronously and ordered per listener unless otherwise speci-
fied. Events to the DMT can occur because of modifications made in a session or they can occur be-
cause a Plugin changes its internal state and notifies the Dmt Admin service through the Mount-
Point interface.

Changes made through a session always start with a SESSION_OPENED event directly after the ses-
sion is opened. This event must contain the properties defined in Life Cycle Event Properties on page
516.

If events originate from an atomic session then these events must be queued until the sessions is
successfully committed, which can happen multiple times over the life time of a session. If the ses-
sion is rolled back or runs into an error then none of the queued events must be sent.

When a session is closed, which can happen automatically when the session fails, then the
SESSION_CLOSED event must be sent. This event must happen after any queued events. This closed
event must contain the properties defined in Life Cycle Event Properties on page 516.

An event must only be sent when that type of event actually occurred.

117.11.1 Event Admin
Event Admin, when present, must be used to deliver the Dmt Admin events asynchronously. The
event types are specified in Table 117.7 on page 514, the Topic column defines the Event Admin
topic. The Table 117.10 on page 516 and Table 117.9 on page 516 define the Life Cycle and Ses-
sion properties that must be passed as the event properties of Event Admin.

117.11.2 Dmt Event Listeners
To receive the Dmt Admin events it is necessary to register a Dmt Event Listener service. It is possi-
ble to filter the events by registering a combination of the service properties defined in the follow-
ing table.

Events Dmt Admin Service Specification Version 2.0

Page 514 OSGi Compendium Release 6

Table 117.6 Service Properties for the Dmt Event Listener

Service Property Data Type Default Description
FILTER_EVENT Integer All Events A bitmap of DmtEvent types: SESSION_OPENED ,

ADDED , COPIED , DELETED , RENAMED , REPLACED , and
SESSION_CLOSED . A Dmt Event's type must occur in the
bitmap to be delivered.

FILTER_PRINCIPAL Str ing+ Any node Only deliver Dmt Events for which at least one of the giv-
en principals has the right to Get that node.

FILTER_SUBTREE Str ing+ Any node This property defines a number of sub-trees by specifying
the URI of the top nodes of these sub-trees. Only events
that occur in one of the sub-trees must be delivered.

A Dmt Event must only be delivered to a Dmt Event Listener if the Bundle that registers the Dmt
Event Listener service has the GET Dmt Permission for each of the nodes used in the nodes and
newNodes properties as tested with the Bundle hasPermission method.

The Dmt Admin service must track Dmt Event Listener services and deliver matching events as long
as a Dmt Event Listener service is registered. Any changes in the service properties must be expedi-
ently handled.

A Dmt Event Listener must implement the changeOccurred(DmtEvent) method. This method is
called asynchronously from the actual event occurrence but each listener must receive the events in
order.

Events are delivered with a DmtEvent object. This object provides access to the properties of
the event. Some properties are available as methods others must be retrieved through the
getProperty(Str ing) method. The methods that provide property information are listed in the prop-
erty tables, see Table 117.10 on page 516.

117.11.3 Atomic Sessions and Events
The intent of the events is that a listener can follow the modifications to the DMT from the events
alone. However, from an efficiency point of view certain events should be coalesced to minimize the
number of events that a listener need to handle. For this reason, the Dmt Admin service must coa-
lesce events if possible.

Two consecutive events can be coalesced when they are of the same type. In that case the nodes and,
if present, the newNodes of the second event can be concatenated with the first event and the t ime-
stamp must be derived from the first event. It is not necessary to remove duplicates from the nodes
and newNodes . This guarantees that the order of the nodes is in the order of the events.

117.11.4 Event Types
This section describes the events that can be generated by the Dmt Admin service. Table 117.7 enu-
merates all the events and provides the name of the topic of Event Admin and the Dmt Event type
for the listener model.

There are two kinds of events:

• Life Cycle Events - The events for session open and closed are the session events.
• Session Events - ADDED , DELETED , REPLACED , RENAMED , and COPIED .

Session and life cycle events have different properties.

Table 117.7 Event Types

Event Topic Dmt Event Type Description
SESSION OPENED org/osgi/service/dmt/DmtEvent/

SESSION_OPENED
SESSION_OPENED A new session was opened. The event

must the properties defined in Table
117.9 on page 516.

Dmt Admin Service Specification Version 2.0 Events

OSGi Compendium Release 6 Page 515

Event Topic Dmt Event Type Description
ADDED org/osgi/service/dmt/DmtEvent/

ADDED
ADDED One or more nodes were added.

DELETED org/osgi/service/dmt/DmtEvent/
DELETED

DELETED One or more existing nodes were
deleted.

REPLACED org/osgi/service/dmt/DmtEvent/RE-
PLACED

REPLACED Values of nodes were replaced.

RENAMED org/osgi/service/dmt/DmtEvent/RE-
NAMED

RENAMED Existing nodes were renamed.

COPIED org/osgi/service/dmt/DmtEvent/
COPIED

COPIED Existing nodes were copied. A copy
operation does not trigger an ADDED
event (in addition to the COPIED
event), even though new node(s) are
created. For efficiency reasons, recur-
sive copy and delete operations must
only generate a single COPIED and
DELETED event for the root of the af-
fected sub-tree.

SESSION CLOSED org/osgi/service/dmt/DmtEvent/
SESSION_CLOSED

SESSION_CLOSED A session was closed either because it
was closed explicitly or because there
was an error detected. The event must
the properties defined in Table 117.9
on page 516.

117.11.5 General Event Properties
The following properties must be available as the event properties in Event Admin service and the
properties in the Dmt Event for Dmt Event Listener services.

Table 117.8 General Event

Property Name Type Dmt Event Description
event.topics Str ing Event topic, required by Event Admin but must al-

so be present in the Dmt Events.
session. id Integer getSessionId() A unique identifier for the session that triggered

the event. This property has the same value as
getSessionId() of the associated DMT session. If
this event is generated outside a session then the
session id must be -1, otherwise it must be >=1.

timestamp Long The time the event was started as defined by
System.currentTimeMil l is()

bundle Bundle The initiating Bundle, this is the bundle that
caused the event. This is either the Bundle that
opened the associated session or the Plugin's bun-
dle when there is no session (i.e. the session id is
-1).

bundle.signer String+ The signer of the initiating Bundle
bundle.symbolicName String The Bundle Symbolic name of the initiating Bun-

dle
bundle.version Version The Bundle version of the initiating Bundle.
bundle.id Long The Bundle Id of the initiating Bundle.

Events Dmt Admin Service Specification Version 2.0

Page 516 OSGi Compendium Release 6

117.11.6 Session Event Properties
All session events must have the properties defined in the following table.

Table 117.9 Event Properties For Session Events

Property Name Type Dmt Session Description
session.rooturi Str ing getRootUri() The root URI of the session that triggered the

event.
session.pr incipal Str ing getPr incipal() The principal of the session, or absent if no prin-

cipal is associated with this session. In the latter
case the method returns nul l .

session. locktype Integer getLockType() The lock type of the session. The number is
mapped as follows:

• LOCK_TYPE_SHARED - 0
• LOCK_TYPE_EXCLUSIVE - 1
• LOCK_TYPE_ATOMIC - 2

session.t imeout Boolean If the session timed out then this property must
be set to true . If it did not time out this property
must be fa lse .

exception Throwable The name of the actual exception class if the ses-
sion had a fatal exception.

exception.message String Must describe the exception if the session had a
fatal exception.

exception.class String The name of the actual exception class if the ses-
sion had a fatal exception.

117.11.7 Life Cycle Event Properties
All Life Cycle events must have the properties defined in the following table.

Table 117.10 Event Properties for Life Cycle Events

Property Name Type Dmt Event Description
nodes Str ing[] getNodes() The absolute URIs of each affected node. This is

the nodeUri parameter of the Dmt API methods.
The order of the URIs in the array corresponds to
the chronological order of the operations. In case
of a recursive delete or copy, only the session root
URI is present in the array.

newnodes Str ing[] getNewNodes() The absolute URIs of new renamed or copied
nodes. Only the RENAMED and COPIED events
have this property.

The newnodes array runs parallel to the nodes ar-
ray. In case of a rename, newnodes[i] must con-
tains the new name of nodes[i] , and in case of a
copy, newnodes[i] is the URI to which nodes[i]
was copied.

117.11.8 Example Event Delivery
The example in this section shows the change of a non-trivial tree and the events that these changes
will cause.

Dmt Admin Service Specification Version 2.0 Events

OSGi Compendium Release 6 Page 517

Figure 117.21 Example DMT before

.

Q

z

P X

YB

A M

n1

R

s1 s2

value=1

For example, in a given session, when the DMT in Figure 117.21 is modified with the following oper-
ations:

• Open atomic session 42 on the root URI
• Add node . /A/B/C
• Add node . /A/B/C/D
• Rename . /M/n1 to./M/n2
• Copy . /M/n2 to . /M/n3
• Delete node . /P/Q
• Add node . /P/Q
• Delete node . /P/Q
• Replace . /X/Y/z with 3
• Commit
• Close

Figure 117.22 Example DMT after

.

P X

YB

A M

n2

C

D

n3

z value=3

When the Dmt Session is opened, the following event is published:

SESSION_OPENED {
 session.id = 42
 session.rooturi=.
 session.principal=null
 session.locktype=2

Events Dmt Admin Service Specification Version 2.0

Page 518 OSGi Compendium Release 6

 timestamp=1313411544752
 bundle =<Bundle>
 bundle.signer=[]
 bundle.symbolicname"com.acme.bundle"
 bundle.version=1.2.4711
 bundle.id=442
 ...
}

When the Dmt Session is closed (assuming it is atomic), the following events are published:

ADDED {
 nodes = [./A/B/C, ./A/B/C/D] # note the coalescing
 session.id = 42
 ...
}
RENAMED {
 nodes = [./M/n1]
 newnodes = [./M/n2]
 session.id = 42
 ...
}
COPIED {
 nodes = [./M/n2]
 newnodes = [./M/n3]
 session.id = 42
 ...
}
DELETED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
ADDED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
DELETED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
REPLACED {
 nodes = [./X/Y/z]
 session.id = 42
 ...
}
SESSION_CLOSED {
 session.id = 42
 session.rooturi=.
 session.principal=null
 session.locktype=2
 ...
}

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 6 Page 519

117.12 OSGi Object Modeling

117.12.1 Object Models
Management protocols define only half the picture; the object models associated with a particular
protocol are the other half. Object models are always closely associated with a remote management
protocol since they are based on the data types and actions that are defined in the protocol. Even
small differences between the data types of a protocol and its differences make accurate mapping
between protocols virtually impossible. It is therefore necessary to make the distinction between na-
tive and foreign protocols for an object model.

A native protocol for an object model originates from the same specification organization. For ex-
ample, OMA DM consists of a protocol based on SyncML and a number of object models that define
the structure and behavior of the nodes of the DMT. The FOMA specification defines an OMA DM
native object model, it defines how firmware management is done. This is depicted in Figure 117.23.

Figure 117.23 Device Management Architecture

Remote
Manager

Protocol
Adapter

Dmt Admin

Plugin

protocol
object models

Dmt Admin object models

Dmt Admin object model

If an object implements a standardized data model it must be visible through its native Protocol
Adapter, that is the Protocol Adapter that belongs to the object model's standard. For example, an Ex-
ecutionUnit node defined in UPnP Device Management could be implemented as a bundle, exposed
through a Data Plugin for the Dmt Admin service, and then translated by its native UPnP Protocol
Adapter.

If an object is present in the Dmt Admin service it is also available to foreign Protocol Adapters. A for-
eign Protocol Adapter is any Protocol Adapter except its native Protocol Adapter. For example, the
Broadband Forum's ExecutionUnit could be browsed on the foreign OMA DM protocol.

In a foreign Protocol Adapter the object model should be browsable but it would not map to one of
its native object models. Browsable means that the information is available to the Protocol Adapter's
remote manager but not recognized as a standard model for the manager. Browse can include, po-
tentially limited, manipulation.

In a native Protocol Adapter it is paramount that the mapping from the DMT to the native object is
fully correct. It is the purpose of this part of the Dmt Admin service specification to allow the native
Protocol Adapter to map the intentions of the Plugin without requiring knowledge of the specific
native object model. That is, a TR-069 Plugin implementing a WAN interface must be available over

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 520 OSGi Compendium Release 6

the TR-069 protocol without the Protocol Adapter having explicit knowledge about the WAN inter-
faces object models from Broadband Forum.

Therefore, the following use cases are recognized:

• Foreign Mapping - Foreign mapping can is best-effort as there is no object model to follow. Each
Protocol Adapter must define how the Dmt Admin model is mapped for this browse mode.

• Native Mapping - Native mapping must be 100% correct. As it is impossible automatically map
DMTs to arbitrary protocols this specification provides the concept of a mapping model that al-
lows a Plugin to instruct its native Protocol Adapter using Meta Nodes.

117.12.2 Protocol Mapping
The OSGi Alliance specifies an Execution Environment that can be used as a basis for residential
gateways, mobiles, or other devices. This raises the issue how to expose the manageability of an OS-
Gi device and the objects, the units of manageability, that are implemented through Plugins. Ideally,
an object should be able to expose its management interface once and then Protocol Adapters con-
vert the management interface to specific device management stacks. For example, an object can be
exposed through the Dmt Admin service where then a TR-069 Protocol Adapter maps the DMT to
the TR-069 Remote Procedure Calls (RPC).

Figure 117.24 shows an example of a TR-069 Protocol Adapter and an OMA DM Protocol Adapter.
The TR-069 Protocol Adapter should be able to map native TR-069 objects in the DMT (the Software
Modules Impl in the figure) to Broadband Forum's object models. It should also be able to browse the
foreign DMT and other objects that are not defined in Broadband forum but can be accessed with
the TR-069 RPCs.

Figure 117.24 Implementing & Browsing

TR-157a3
Software
Module Impl

OSGi RMT Impl

Dmt Admin

TR-069
Protocol Adapter

OMA DM
Protocol Adapter

ACS OMA DM
ManagerOMA DM

Manager

nativenative

foreign

A Protocol Mapping is a document that describes the default mapping and the native mechanism for
exact mapping.

The following sections specify how Plugins must implement an object model that is exposed
through the Dmt Admin service. This model is limited from the full Dmt Admin service capabilities
so that for each protocol it is possible to specify a default mapping for browsing as well as a mecha-
nism to ensure that special conversion requirements can be communicated from a Plugin to its na-
tive Protocol Adapter.

117.12.3 Hierarchy
The Dmt Admin model provides an hierarchy of nodes. Each node has a type that is reflected by its
Meta Node. A node is addressed with a URI. The flexibility of the Dmt Admin service allows a large

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 6 Page 521

number of constructs, for example, the name of the node can be used as a value, a feature that some
management standards support. To simplify mapping to foreign Protocol Adapters, some of the fun-
damental constructs have been defined in the following sections.

117.12.4 General Restriction Guidelines
The Dmt Admin service provides a very rich tool to model complex object structures. Many choic-
es can be made that would make it very hard to browse DMTs on non-OMA DM protocols or make
the DMT hard to use through the Dmt Admin service. As Plugins can always signal special case han-
dling to their native Protocol Adapter, any object model design should strive to be easy to use for the
developers and managers. Therefore, this section provides a number of guidelines for the design of
such object models that will improve the browsing experience for many Protocol Adapters.

• Reading of a node must not change the state of a device - Management systems must be able to browse
a tree without causing any side effects. If reading modified the DMT, a management system
would have no way to warn the user that the system is modified. There are a number of technical
reasons as well (race conditions, security holes, and eventing) but the most important reason is
the browseability of the device.

• No use of recursive structures - The Dmt Admin service provides a very rich tree model that has no
problem with recursion. However, this does not have to be true for other models. To increase the
changes that a model is browsable on another device it is strongly recommended to prevent re-
cursive models. For example, TR-069 cannot handle recursive models.

• Only a single format per meta node - Handling different types in different nodes simplifies the da-
ta conversion for both foreign and native protocols. Having a single choice from the Meta Node
makes the conversion straightforward and does not require guessing.

• All nodes must provide a Meta Node - Conversion without a Meta Node makes the conversion very
hard since object model schemas are often not available in the Protocol Adapter.

• Naming - Structured node members must have names only consisting of [a-zA-Z0-9] and must
always start with a character [a-zA-z] . Member names must be different regardless of the case,
that is Abc and ABC must not both be members of the same structured node. The reason for this
restriction is that it makes it more likely that the chosen names are compatible with the support-
ed protocols and do not require escaping.

• Typing - Restrict the used formats to formats that maximize both the interoperability as the ease
of use for Java developers. The following type are widely supported and are easy to use from Java:
• FORMAT_STRING
• FORMAT_BOOLEAN
• FORMAT_INTEGER
• FORMAT_LONG
• FORMAT_FLOAT
• FORMAT_DATE_TIME
• FORMAT_BINARY

117.12.5 DDF
The Data Description Format is part of OMA DM; it provides a description language for the object
model. The following table provides an example of the Data Description Format as used in the OSGi
specifications.

Name Actions Type Card. S Description
FaultType Get integer 1 P ...

The columns have the following meanings:

• Name - The name of the node

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 522 OSGi Compendium Release 6

• Actions - The set of actions that can be executed on the node, see Operations on page 492.
• Type - The type of the node. All lower case are primitives, a name starting with an upper case is

an interior node type. MAP, LIST, and SCAFFOLD are the special types. The NODE type is like
an ANY type. Other type names are then further specified in the document. See Types on page
522.

• Cardinality - The number of occurrences of the node, see Cardinality on page 493.
• Scope - The scope of the node, see Scope on page 492.
• Description - A description of the node.

117.12.6 Types
Each node is considered to have a type. The Dmt Admin service has a number of constructs that have
typing like behavior. There are therefore the following kind of types:

• Primitives - Primitives are data types like integers and strings; they include all the Dmt Admin da-
ta formats. See Primitives on page 523. Primitive type names are always lower case to distin-
guish them from the interior node type names.

• Structured Types - A structured type types a structured node. See Structured Nodes on page 523.
A structured type has a type name that starts with an uppercase. Object models generally consist
of defining these types.

• NODE - A general unqualified Dmt Admin node.
• LIST - A node that represents a homogeneous collection of child nodes; the name of the child

nodes is the index in the collection. See LIST Nodes on page 523.
• MAP - A node that represents a mapping from a key, the name of the child node, and a value, the

value of the child node. All values have the same type. See MAP Nodes on page 525.
• SCAFFOLD - A node provided by the Dmt Admin service or a Parent Plugin to make it possible to

discover a DMT, see Scaffold Nodes on page 497.

Nodes are treated as if there is a single type system. However, the Dmt Admin type system has the
following mechanisms to type a node:

• Format - The Dmt Admin primitive types used for leaf nodes, as defined on Dmt Data.
• MIME - A MIME type on a leaf node which is available through getNodeType(Str ing) .
• DDF Document URI - A Data Description Format URI that provides a type name for an interior

node. The URI provides a similar role as the MIME type for the leaf node and is also available
through getNodeType(Str ing) .

The Dmt Admin service provides the MIME type for leaf nodes and the DDF Document URI for inte-
rior nodes through the getNodeType(Str ing) method. As both are strings they can both be used as
type identifiers. The different types are depicted in Figure 117.25.

Figure 117.25 Type inheritance and structure

Type

Structured
Type

PrimitiveLIST MAP NODE

value type

1

index type

1

n

members

SCAFFOLD

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 6 Page 523

117.12.7 Primitives
A primitive is a value stored in a leaf node. In the Dmt Admin service, the type of the primitive is
called the format. The Dmt Admin service supports a large number of types that have semantic over-
lap. A Protocol Mapping must provide a unique mapping from each Dmt Admin format to the corre-
sponding protocol type and provide conversion from a protocol type to the corresponding Dmt Ad-
min types defined in a Meta Node.

Primitives are documented in OSGi object models with a lower case name that is the last part of
their format definition. For example, for FORMAT_STRING the DDF type name is str ing . A primitive
DDF for an integer leaf node therefore looks like:

Name Act Type Card. S Description
FaultType Get integer 1 P ...

117.12.8 Structured Nodes
A structured node is like a struct in C or a class in an object oriented languages. A structured node is
an interior node with a set of members (child nodes) with fixed names, it is never possible to add
or remove such members dynamically. The meaning of each named node and its type is usually de-
fined in a management specification. For example, a node representing the OSGi Bundle could have
a BundleId child-node that maps to the getBundleId() method on the Bundle interface.

It is an error to add or delete members to a Structured node, this must be reflected in the correspond-
ing Meta Node, that is, Structured nodes must never have the Add or Delete action.

A structured node is defined in a structured type to allow the reuse of the same information in differ-
ent places in an object model. A structured type defines the members and their behaviors. A struc-
tured type can be referred by its name. The name of the type is often, but not required, the name of
the member.

For example, a Unit structured type could look like:

Name Act Type Card. S Description
Id Get long 1 P ...
URL Get Set str ing 1 P ...
Name Get str ing 1 P ...
Cert i f icate Get LIST 1 P
 [index] Get Cert i f icate 1 D Note the use of a structured

type.

117.12.9 LIST Nodes
A LIST node is an interior node representing a collection of elements. The elements are stored in the
child nodes of the LIST node, they are called the index nodes. All index nodes must have the same
type. The names of the index nodes are synthesized and represent the index of the index node. The
first node is always named 0 and the sibling is 1, 2, etc. The sequence must be continuous and must
have no missing indexes. A node name is always a string, it is therefore the responsibility of the plu-
gin to provide the proper names. The index is assumed to be a signed positive integer limiting the
LIST nodes size to Integer.MAX_VALUE elements.

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 524 OSGi Compendium Release 6

Figure 117.26 LIST Nodes

1

LIST node
(org.osgi/1.0/.LIST)

1

0..n 0..n
index nodes

(name is int >= 0 and cont.)

structured LIST primitive LIST

Index nodes should only be used for types where the value of the index node is the identity. For ex-
ample, a network interface has an identity; a manager will expect that a node representing such as
a network interface node will always have the same URI even if other interfaces are added and delet-
ed. Since LIST nodes renumber the index node names when an element is deleted or added, the URI
would fail if a network interface was added or removed. If such a case, a MAP node should be used,
see MAP Nodes on page 525, as they allow the key to be managed by the remote manager.

LIST nodes can be mutable if the Meta Node of its index nodes support the Add or Delete action. A
LIST node is modeled after a java.ut i l .L ist that can automatically accommodate new elements. Get
and Replace operations use the node name to index in this list.

To rearrange the list the local manager can Add and Delete nodes or rename them as it sees fit.
At any moment in time the underlying implementation must maintain a list that runs from 0 to
max(index) (inclusive), where index is the name of the LIST child nodes. Inserting a node requires re-
naming all subsequent nodes. Any missing indexes must automatically be provided by the plugin
when the child node names are retrieved.

For example, a LIST node named L contains the following nodes:

L/0 A
L/1 B
L/2 C

To insert a node after B , L/2 must be renamed to L/3 . This will automatically extend the LIST node to
4 elements. That is, even though L/2 is renamed, the implementation must automatically provide a
new L/2 node. The value of this node depends on the underlying implementation. The value of the
list will therefore then be: [A,B,?,C] . If node 1 is deleted, then the list will be [A,?,C] . If a node L/5 is
added then the list will be [A,?,C,?,?,?] . It is usually easiest to use the LIST node as a complex value,
this is discussed in the next section.

117.12.9.1 Complex Collections

An implementation of a LIST node must support a complex node value if its members are primi-
tive; the interior node must then have a value of a Java object implementing the Collect ion interface
from java.ut i l . The elements in this map must be converted according to the following table.

Table 117.11 Conversion for Collections

Format Associated Java Type
FORMAT_STRING Str ing
FORMAT_BOOLEAN Boolean
FORMAT_INTEGER Integer
FORMAT_LONG Long
FORMAT_FLOAT Float
FORMAT_DATE_TIME Date
FORMAT_BINARY byte[]

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 6 Page 525

Alternatively, the Collection may contain Dmt Data objects but the collection must be homoge-
neous. The collection must always be a copy and changes made to the collection must not affect the
DMT.

For example, a LIST type for a list of URIs could look like:

Name Act Type Card. S Description
URIs Get LIST 1 P A List of URIs
 [index] Get Set

Add Del
str ing 0. .n D A primitive index node

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for the LIST node.

117.12.10 MAP Nodes
A MAP node represents a mapping from a key to a value. The key is the name of the node and the val-
ue is the node's value. A MAP node performs the same functions as a Java Map. See Figure 117.27.

Figure 117.27 MAP Nodes

1

MAP node
(org.osgi/1.0/MAP)

1

0..n 0..n
key nodes

(name is anything)

structured MAP primitive MAP

A MAP node has key nodes as children. A key node is an association between the name of the key
node (which is the key) and the value of the key node. Key nodes are depicted with [<type>] , where
the <type> indicates the type used for the string name. For example, a long type will have node
names that can be converted to a long . A key type must always be one of the primitive types. For ex-
ample, a list of Bundle locations can be handled with a MAP with [str ing] key nodes that have a val-
ue type of string. Since the key is used in URIs it must always be escaped, see The DMT Addressing
URI on page 483.

For example:

Name Act Type Card. S Description
Location Get MAP 1 P A MAP of location where

the index node is the Bun-
dle Id.

 [long] Get Set
Add Del

str ing 0. .n D Name is the Bundle Id and
the value is the location.

117.12.10.1 Complex Value

An implementation of a MAP node must support an interior node value if its child nodes are prim-
itive; the interior node must then be associated with a Java object implementing the Map inter-
face from java.ut i l . The values in this Map must homogeneous and be converted according to Table
117.11 or the given values must of type DmtData . The Map object must a copy and does not track
changes in the DMT or vice-versa.

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for that node.

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 526 OSGi Compendium Release 6

117.12.11 Instance Id
Some protocols cannot handle arbitrary names in the access URI, they need a well defined instance
id to index in a table or put severe restrictions on the node name's character set, length, or other as-
pects. For example, TR-069 can access an object with the following URI:

Device.VOIP.12.Name

The more natural model for the DMT is to use:

Device.VOIP.<Name>...

To provide assistance to these protocols this section defines a mechanism that can be used by Proto-
col Adapters to simplify access.

An Object Model can define a child node InstanceId . The InstanceId node, if present, holds a long
value that has the following qualities:

• Its value must be between 1 and Long.MAX_VALUE .
• No other index/key node on the same level must have the same value for the InstanceId node
• The value must be persistent between sessions and restarts of the plugin
• A value must not be reused when a node is deleted until the number space is exhausted

Protocol Adapters can use this information to provide alternative access paths for the DMT.

117.12.12 Conversions
Each Protocol Mapping document should define a default conversion from the Dmt Admin data for-
mats to the protocol types and vice versa, including the LIST and MAP nodes. However, this default
mapping is likely to be too constraining in real world models since different protocols support dif-
ferent data types and a 1:1 mapping is likely to be impossible.

For this reason, the Protocol Mapping document should define a number of protocol specific MIME
types for each unique data type that they support. A Data Plugin can associate such a MIME type
with a node. The Protocol Adapter can then look for this MIME type. If none of the Protocol Adapter
specific MIME types are available in a node the default conversion is used.

For example, in the TR-069 Protocol Adapter specification there is a MIME type for each TR-069 da-
ta type. If for a given leaf node the Meta Node's type specifies TR069_MIME_UNSIGNED_INTand the
node specifies the format FORMAT_INTEGER then the Protocol Adapter must convert the integer to
an unsigned integer and encode the value as such in the response message. The Protocol Adapter
there does not have to have specific knowledge of the object model, the Plugin drives the Protocol
Adapter by providing the protocol specific MIME types on the leaf node Meta Nodes. This model is
depicted in Figure 117.28.

Figure 117.28 Conversions

Dmt Admin
FORMAT_INTEGER

TR-069
unsignedInteger

Meta Node
MIME type
UNSIGNED_INT

Since a Meta Node can contain multiple MIME types, there is no restrictions on the number of Pro-
tocol Adapters; a Plugin can specify the MIME types of multiple Protocol Adapters.

Dmt Admin Service Specification Version 2.0 Security

OSGi Compendium Release 6 Page 527

117.12.13 Extensions
All interior nodes in this specification can have a node named Ext . These nodes are the extension
nodes. If an implementation needs to expose additional details about an interior node then they
should expose these extensions under the corresponding Ext node. To reduce name conflicts, it is
recommended to group together implementation specific extensions under a unique name, rec-
ommended is to use the reverse domain name. For example, the following DDF defines an Ext node
with extensions for the ACME provider.

Name Act Type Card. S Description
Framework Get Framework 1 P ...
 Ext Get 1 P Extension node
 com.acme Get AcmeFrameworkExt 1 P The node for the ACME ex-

tensions
 Transact ional Get boolean 1 P ...

117.13 Security
A key aspect of the Dmt Admin service model is the separation from DMT clients and plugins. The
Dmt Admin service receives all the operation requests and, after verification of authority, forwards
the requests to the plugins.

Figure 117.29 Separation of clients and plugins

<<service>>
Dmt Admin

<<service>>
Data Plugin

<<service>>
Exec Plugin

Client

Data Plugin Impl

Exec Plugin Impl

forward

request
<<service>>
Dmt Session

This architecture makes it straightforward to use the OSGi security architecture to protect the dif-
ferent actors.

117.13.1 Principals
The caller of the getSession(Str ing,Str ing, int) method must have the Dmt Principal Permission
with a target that matches the given principal. This Dmt Principal Permission is used to enforce that
only trusted entities can act on behalf of remote managers.

The Dmt Admin service must verify that all operations from a session with a principal can be exe-
cuted on the given nodes using the available ACLs.

The other two forms of the getSession method are meant for local management applications where
no principal is available. No special permission is defined to restrict the usage of these methods. The
callers that want to execute device management commands, however, need to have the appropriate
Dmt Permissions.

Security Dmt Admin Service Specification Version 2.0

Page 528 OSGi Compendium Release 6

117.13.2 Operational Permissions
The operational security of a Local Manager and a remote manager is distinctly different. The dis-
tinction is made on the principal. Protocol Adapters should use the getSession method that takes an
authenticated principal. Local Managers should not specify a principal.

Figure 117.30 Access control context, for Local Manager and Protocol Adapter operation

Local Manager

Protocol Adapter

Dmt Admin
Dmt Admin

Plugin

Proxied Service

Plugin

Proxied Service

Principal

Some caller

security
check

doPrivileged

security
check

Protocol AdapterLocal Manager

117.13.3 Protocol Adapters
A Protocol Adapter must provide a principal to the Dmt Admin service when it gets a session. It
must use the getSession(Str ing,Str ing, int) method. The Protocol Adapter must have Dmt Princi-
pal Permission for the given principal. The Dmt Admin service must then use this principal to deter-
mine the security scope of the given principal. This security scope is a set of permissions. How these
permissions are found is not defined in this specification; they are usually in the management tree
of a device. For example, the Mobile Specification stores these under the $/Pol icy/ Java/DmtPrinci-
palPermission sub-tree.

Additionally, a Dmt Session with a principal implies that the Dmt Admin service must verify the
ACLs on the node for all operations.

Any operation that is requested by a Protocol Adapter must be executed in a doPriv i leged block that
takes the principal's security scope. The doPriv i leged block effectively hides the permissions of the
Protocol Adapter; all operations must be performed under the security scope of the principal.

The security check for a Protocol Adapter is therefore as follows:

• The operation method calls doPriv i leged with the security scope of the principal.
• The operation is forwarded to the appropriate plugin. The underlying service must perform its

normal security checks. For example, the Configuration Admin service must check for the appro-
priate Configuration Permission.

The Access Control context is shown in Figure 117.30 within the Protocol Adapter column.

This principal-based security model allows for minimal permissions on the Protocol Adapter, be-
cause the Dmt Admin service performs a doPriv i leged on behalf of the principal, inserting the per-
missions for the principal on the call stack. This model does not guard against malicious Protocol
Adapters, though the Protocol Adapter must have the appropriate Dmt Principal Permission.

The Protocol Adapter is responsible for the authentication of the principal. The Dmt Admin service
must trust that the Protocol Adapter has correctly verified the identity of the other party. This spec-
ification does not address the type of authentication mechanisms that can be used. Once it has per-
mission to use that principal, it can use any DMT command that is permitted for that principal at
any time.

117.13.4 Local Manager
A Local Manager does not specify a principal. Security checks are therefore performed against the
security scope of the Local Manager bundle, as shown in Figure 117.30 with the Local Manager
stack. An operation is checked only with a Dmt Permission for the given node URI and operation. A

Dmt Admin Service Specification Version 2.0 Security

OSGi Compendium Release 6 Page 529

thrown Security Exception must be passed unmodified to the caller of the operation method. The
Dmt Admin service must not check the ACLs when no principal is set.

A Local Manager, and all its callers, must therefore have sufficient permission to handle the DMT
operations as well as the permissions required by the plugins when they proxy other services
(which is likely an extensive set of Permissions).

117.13.5 Plugin Security
Plugins are required to hold the maximum security scope for any services they proxy. For exam-
ple, the plugin that manages the Configuration Admin service must have Configurat ionPermis-
sion("*","*") to be effective.

Plugins should not make doPriv i leged calls, but should use the caller's context on the stack for per-
mission checks.

117.13.6 Events and Permissions
Dmt Event Listener services must have the appropriate Dmt Permission to receive the event since
this must be verified with the hasPermission() method on Bundle.

The Dmt Event Listener services registered with a FILTER_PRINCIPAL service property requires Dmt
Principal Permission for the given principal. In this case, the principal must have Get access to see
the nodes for the event. Any nodes that the listener does not have access to must be removed from
the event.

Plugins are not required to have access to the Event Admin service. If they send an event through
the MountPoint interface then the Dmt Admin service must use a doPriv i leged block to send the
event to the Event Admin service.

117.13.7 Dmt Principal Permission
Execution of the getSession methods of the Dmt Admin service featuring an explicit principal
name is guarded by the Dmt Principal Permission. This permission must be granted only to Protocol
Adapters that open Dmt Sessions on behalf of remote management servers.

The DmtPrincipalPermission class does not have defined actions; it must always be created with a *
to allow future extensions. The target is the principal name. A wildcard character is allowed at the
end of the string to match a prefix.

Example:

new DmtPrincipalPermission("com.acme.dep*","*")

117.13.8 Dmt Permission
The Dmt Permission controls access to management objects in the DMT. It is intended to control on-
ly the local access to the DMT. The Dmt Permission target string identifies the target node's URI (ab-
solute path is required, starting with the '. / ' prefix) and the action field lists the management com-
mands that are permitted on the node.

The URI can end in a wildcard character * to indicate it is a prefix that must be matched. This com-
parison is string based so that node boundaries can be ignored.

The following actions are defined:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

Security Dmt Admin Service Specification Version 2.0

Page 530 OSGi Compendium Release 6

For example, the following code creates a Dmt Permission for a bundle to add and replace nodes in
any URI that starts with . /D .

new DmtPermission("./D*", "Add,Replace")

This permission must imply the following permission:

new DmtPermission("./Dev/Operator/Name", "Replace")

117.13.9 Alert Permission
The Alert Permission permits the holder of this permission to send a notification to a specific target
principal. The target is identical to Dmt Principal Permission on page 529. No actions are defined for
Alert Permission.

117.13.10 Security Summary

117.13.10.1 Dmt Admin Service and Notification Service

The Dmt Admin service is likely to require All Permission. This requirement is caused by the plug-
in model. Any permission required by any of the plugins must be granted to the Dmt Admin service.
This set of permissions is large and hard to define. The following list shows the minimum permis-
sions required if the plugin permissions are left out.

ServicePermission ..DmtAdmin REGISTER
ServicePermission ..NotificationService REGISTER
ServicePermission ..DataPlugin GET
ServicePermission ..ExecPlugin GET
ServicePermission ..EventAdmin GET
ServicePermission ..RemoteAlertSender GET
ServicePermission ..DmtEventListener GET
DmtPermission * *
DmtPrincipalPermission * *
PackagePermission org.osgi.service.dmt EXPORTONLY
PackagePermission org.osgi.service.dmt.spi EXPORTONLY
PackagePermission org.osgi.service.dmt.notification EXPORTONLY
PackagePermission org.osgi.service.dmt.notification.spi EXPORTONLY
PackagePermission org.osgi.service.dmt.registry EXPORTONLY
PackagePermission org.osgi.service.dmt.security EXPORTONLY

117.13.10.2 Dmt Event Listener Service

ServicePermission ..DmtEventListener REGISTER
PackagePermission org.osgi.service.dmt IMPORT

Dmt Event Listeners must have the appropriate DmtPermission to see the nodes in the events. If
they are registered with a principal then they also need DmtPrincipalPermission for the given prin-
cipals.

117.13.10.3 Data and Exec Plugin

ServicePermission ..NotificationService GET
ServicePermission ..DataPlugin REGISTER
ServicePermission ..ExecPlugin REGISTER
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.notification IMPORT
PackagePermission org.osgi.service.dmt.spi IMPORT
PackagePermission org.osgi.service.dmt.security IMPORT

The plugin is also required to have any permissions to call its underlying services.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 531

117.13.10.4 Local Manager

ServicePermission ..DmtAdmin GET
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.security IMPORT
DmtPermission <scope> ...

Additionally, the Local Manager requires all permissions that are needed by the plugins it addresses.

117.13.10.5 Protocol Adapter

The Protocol Adapter only requires Dmt Principal Permission for the instances that it is permitted to
manage. The other permissions are taken from the security scope of the principal.

ServicePermission ..DmtAdmin GET
ServicePermission ..RemoteAlertSender REGISTER
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.notification.spi IMPORT
PackagePermission org.osgi.service.dmt.notification IMPORT
DmtPrincipalPermission <scope>

117.14 org.osgi.service.dmt

Device Management Tree Package Version 2.0.

This package contains the public API for the Device Management Tree manipulations. Permission
classes are provided by the org.osgi .service.dmt.security package, and DMT plugin interfaces can
be found in the org.osgi .service.dmt.spi package. Asynchronous notifications to remote manage-
ment servers can be sent using the interfaces in the org.osgi .service.dmt.noti f icat ion package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt; vers ion="[2.0,2.1)"

117.14.1 Summary

• Acl - Acl is an immutable class representing structured access to DMT ACLs.
• DmtAdmin - An interface providing methods to open sessions and register listeners.
• DmtConstants - Defines standard names for DmtAdmin .
• DmtData - An immutable data structure representing the contents of a leaf or interior node.
• DmtEvent - Event class storing the details of a change in the tree.
• DmtEventListener - Registered implementations of this class are notified via DmtEvent objects

about important changes in the tree.
• DmtException - Checked exception received when a DMT operation fails.
• DmtI l legalStateException - Unchecked illegal state exception.
• DmtSession - DmtSession provides concurrent access to the DMT.
• MetaNode - The MetaNode contains meta data as standardized by OMA DM but extends it

(without breaking the compatibility) to provide for better DMT data quality in an environment
where many software components manipulate this data.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 532 OSGi Compendium Release 6

• Uri - This class contains static utility methods to manipulate DMT URIs.

117.14.2 public final class Acl
Acl is an immutable class representing structured access to DMT ACLs. Under OMA DM the ACLs
are defined as strings with an internal syntax.

The methods of this class taking a principal as parameter accept remote server IDs (as passed to
DmtAdmin.getSession), as well as " * " indicating any principal.

The syntax for valid remote server IDs:

<server-identifier> ::= All printable characters except '= ' , '& ' , '* ' , '+ ' or white-space characters.

117.14.2.1 public static final int ADD = 2

Principals holding this permission can issue ADD commands on the node having this ACL.

117.14.2.2 public static final int ALL_PERMISSION = 31

Principals holding this permission can issue any command on the node having this ACL. This per-
mission is the logical OR of ADD, DELETE, EXEC, GET and REPLACE permissions.

117.14.2.3 public static final int DELETE = 8

Principals holding this permission can issue DELETE commands on the node having this ACL.

117.14.2.4 public static final int EXEC = 16

Principals holding this permission can issue EXEC commands on the node having this ACL.

117.14.2.5 public static final int GET = 1

Principals holding this permission can issue GET command on the node having this ACL.

117.14.2.6 public static final int REPLACE = 4

Principals holding this permission can issue REPLACE commands on the node having this ACL.

117.14.2.7 public Acl(String acl)

acl The string representation of the ACL as defined in OMA DM. If nul l or empty then it represents an
empty list of principals with no permissions.

□ Create an instance of the ACL from its canonical string representation.

Throws I l legalArgumentException– if acl is not a valid OMA DM ACL string

117.14.2.8 public Acl(String[] principals,int[] permissions)

principals The array of principals

permissions The array of permissions

□ Creates an instance with a specified list of principals and the permissions they hold. The two arrays
run in parallel, that is principals[i] will hold permissions[i] in the ACL.

A principal name may not appear multiple times in the 'principals' argument. If the "*" principal
appears in the array, the corresponding permissions will be granted to all principals (regardless of
whether they appear in the array or not).

Throws I l legalArgumentException– if the length of the two arrays are not the same, if any array element is
invalid, or if a principal appears multiple times in the principals array

117.14.2.9 public synchronized Acl addPermission(String principal,int permissions)

principal The entity to which permissions should be granted, or "*" to grant permissions to all principals.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 533

permissions The permissions to be given. The parameter can be a logical or of more permission constants defined
in this class.

□ Create a new Acl instance from this Acl with the given permission added for the given principal. The
already existing permissions of the principal are not affected.

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class

117.14.2.10 public synchronized Acl deletePermission(String principal,int permissions)

principal The entity from which permissions should be revoked, or "*" to revoke permissions from all princi-
pals.

permissions The permissions to be revoked. The parameter can be a logical or of more permission constants de-
fined in this class.

□ Create a new Acl instance from this Acl with the given permission revoked from the given principal.
Other permissions of the principal are not affected.

Note, that it is not valid to revoke a permission from a specific principal if that permission is granted
globally to all principals.

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal

117.14.2.11 public boolean equals(Object obj)

obj the object to compare with this Acl instance

□ Checks whether the given object is equal to this Acl instance. Two Acl instances are equal if they al-
low the same set of permissions for the same set of principals.

Returns true if the parameter represents the same ACL as this instance

117.14.2.12 public synchronized int getPermissions(String principal)

principal The entity whose permissions to query, or "*" to query the permissions that are granted globally, to
all principals

□ Get the permissions associated to a given principal.

Returns The permissions of the given principal. The returned int is a bitmask of the permission constants de-
fined in this class

Throws I l legalArgumentException– if principal is not a valid principal name

117.14.2.13 public String[] getPrincipals()

□ Get the list of principals who have any kind of permissions on this node. The list only includes
those principals that have been explicitly assigned permissions (so "*" is never returned), globally
set permissions naturally apply to all other principals as well.

Returns The array of principals having permissions on this node.

117.14.2.14 public int hashCode()

□ Returns the hash code for this ACL instance. If two Acl instances are equal according to the
equals(Object) method, then calling this method on each of them must produce the same integer re-
sult.

Returns hash code for this ACL

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 534 OSGi Compendium Release 6

117.14.2.15 public synchronized boolean isPermitted(String principal,int permissions)

principal The entity to check, or "*" to check whether the given permissions are granted to all principals glob-
ally

permissions The permissions to check

□ Check whether the given permissions are granted to a certain principal. The requested permissions
are specified as a bitfield, for example (Acl .ADD | Acl .DELETE | Acl .GET) .

Returns true if the principal holds all the given permissions

Throws I l legalArgumentException– if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class

117.14.2.16 public synchronized Acl setPermission(String principal,int permissions)

principal The entity to which permissions should be granted, or "*" to globally grant permissions to all princi-
pals.

permissions The set of permissions to be given. The parameter is a bitmask of the permission constants defined
in this class.

□ Create a new Acl instance from this Acl where all permissions for the given principal are overwritten
with the given permissions.

Note, that when changing the permissions of a specific principal, it is not allowed to specify a set of
permissions stricter than the global set of permissions (that apply to all principals).

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal

117.14.2.17 public synchronized String toString()

□ Give the canonical string representation of this ACL. The operations are in the following order:
{Add, Delete, Exec, Get, Replace}, principal names are sorted alphabetically.

Returns The string representation as defined in OMA DM.

117.14.3 public interface DmtAdmin
An interface providing methods to open sessions and register listeners. The implementation of Dm-
tAdmin should register itself in the OSGi service registry as a service. DmtAdmin is the entry point
for applications to use the DMT API.

The getSession methods are used to open a session on a specified subtree of the DMT. A typical way
of usage:

 serviceRef = context.getServiceReference(DmtAdmin.class.getName());
 DmtAdmin admin = (DmtAdmin) context.getService(serviceRef);
 DmtSession session = admin.getSession("./OSGi/Configuration");
 session.createInteriorNode("./OSGi/Configuration/my.table");

The methods for opening a session take a node URI (the session root) as a parameter. All segments of
the given URI must be within the segment length limit of the implementation, and the special char-
acters '/' and '\' must be escaped (preceded by a '\').

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

It is possible to specify a lock mode when opening the session (see lock type constants in DmtSes-
sion). This determines whether the session can run in parallel with other sessions, and the kinds of
operations that can be performed in the session. All Management Objects constituting the device

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 535

management tree must support read operations on their nodes, while support for write operations
depends on the Management Object. Management Objects supporting write access may support
transactional write, non-transactional write or both. Users of DmtAdmin should consult the Manage-
ment Object specification and implementation for the supported update modes. If Management Ob-
ject definition permits, implementations are encouraged to support both update modes.

117.14.3.1 public DmtSession getSession(String subtreeUri) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

□ Opens a DmtSession for local usage on a given subtree of the DMT with non transac-
tional write lock. This call is equivalent to the following: getSession(nul l , subtreeUri ,
DmtSession.LOCK_TYPE_EXCLUSIVE)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
• COMMAND_FAILED if subtreeUri specifies a relative URI, or some unspecified error is encoun-

tered while attempting to complete the command

SecurityException– if the caller does not have DmtPermission for the given root node with the Get
action present

117.14.3.2 public DmtSession getSession(String subtreeUri,int lockMode) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

□ Opens a DmtSession for local usage on a specific DMT subtree with a given lock mode. This call is
equivalent to the following: getSession(nul l , subtreeUri , lockMode)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and

lockMode requests an atomic session
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 536 OSGi Compendium Release 6

• COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some un-
specified error is encountered while attempting to complete the command

SecurityException– if the caller does not have DmtPermission for the given root node with the Get
action present

117.14.3.3 public DmtSession getSession(String principal,String subtreeUri,int lockMode) throws DmtException

principal the identifier of the remote server on whose behalf the data manipulation is performed, or nul l for
local sessions

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

□ Opens a DmtSession on a specific DMT subtree using a specific lock mode on behalf of a remote
principal. If local management applications are using this method then they should provide nul l as
the first parameter. Alternatively they can use other forms of this method without providing a prin-
cipal string.

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

This method is guarded by DmtPrincipalPermission in case of remote sessions. In addition, the caller
must have Get access rights (ACL in case of remote sessions, DmtPermission in case of local sessions)
on the subtreeUri node to perform this operation.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• PERMISSION_DENIED if principal is not nul l and the ACL of the node does not allow the Get oper-

ation for the principal on the given root node
• FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and

lockMode requests an atomic session
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
• COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some un-

specified error is encountered while attempting to complete the command

SecurityException– in case of remote sessions, if the caller does not have the required DmtPrin-
cipalPermission with a target matching the principal parameter, or in case of local sessions, if the
caller does not have DmtPermission for the given root node with the Get action present

117.14.4 public class DmtConstants
Defines standard names for DmtAdmin .

Since 2.0

117.14.4.1 public static final String DDF_LIST = "org.osgi/1.0/LIST"

A string defining a DDF URI, indicating that the node is a LIST node.

117.14.4.2 public static final String DDF_MAP = "org.osgi/1.0/MAP"

A string defining a DDF URI, indicating that the node is a MAP node.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 537

117.14.4.3 public static final String DDF_SCAFFOLD = "org.osgi/1.0/SCAFFOLD"

A string defining a DDF URI, indicating that the node is a SCAFFOLD node.

117.14.4.4 public static final String EVENT_PROPERTY_NEW_NODES = "newnodes"

A string defining the property key for the newnodes property in node related events.

117.14.4.5 public static final String EVENT_PROPERTY_NODES = "nodes"

A string defining the property key for the @{code nodes} property in node related events.

117.14.4.6 public static final String EVENT_PROPERTY_SESSION_ID = "session.id"

A string defining the property key for the session. id property in node related events.

117.14.4.7 public static final String EVENT_TOPIC_ADDED = "org/osgi/service/dmt/DmtEvent/ADDED"

A string defining the topic for the event that is sent for added nodes.

117.14.4.8 public static final String EVENT_TOPIC_COPIED = "org/osgi/service/dmt/DmtEvent/COPIED"

A string defining the topic for the event that is sent for copied nodes.

117.14.4.9 public static final String EVENT_TOPIC_DELETED = "org/osgi/service/dmt/DmtEvent/DELETED"

A string defining the topic for the event that is sent for deleted nodes.

117.14.4.10 public static final String EVENT_TOPIC_RENAMED = "org/osgi/service/dmt/DmtEvent/RENAMED"

A string defining the topic for the event that is sent for renamed nodes.

117.14.4.11 public static final String EVENT_TOPIC_REPLACED = "org/osgi/service/dmt/DmtEvent/REPLACED"

A string defining the topic for the event that is sent for replaced nodes.

117.14.4.12 public static final String EVENT_TOPIC_SESSION_CLOSED = "org/osgi/service/dmt/DmtEvent/
SESSION_CLOSED"

A string defining the topic for the event that is sent for a closed session.

117.14.4.13 public static final String EVENT_TOPIC_SESSION_OPENED = "org/osgi/service/dmt/DmtEvent/
SESSION_OPENED"

A string defining the topic for the event that is sent for a newly opened session.

117.14.5 public final class DmtData
An immutable data structure representing the contents of a leaf or interior node. This structure rep-
resents only the value and the format property of the node, all other properties (like MIME type) can
be set and read using the DmtSession interface.

Different constructors are available to create nodes with different formats. Nodes of nul l format can
be created using the static NULL_VALUE constant instance of this class.

FORMAT_RAW_BINARY and FORMAT_RAW_STRING enable the support of future data formats.
When using these formats, the actual format name is specified as a Str ing . The application is re-
sponsible for the proper encoding of the data according to the specified format.

Concurrency Immutable

117.14.5.1 public static final DmtData FALSE_VALUE

Constant instance representing a boolean fa lse value.

Since 2.0

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 538 OSGi Compendium Release 6

117.14.5.2 public static final int FORMAT_BASE64 = 128

The node holds an OMA DM b64 value. Like FORMAT_BINARY, this format is also represented by
the Java byte[] type, the difference is only in the corresponding OMA DM format. This format does
not affect the internal storage format of the data as byte[] . It is intended as a hint for the external
representation of this data. Protocol Adapters can use this hint for their further processing.

117.14.5.3 public static final int FORMAT_BINARY = 64

The node holds an OMA DM bin value. The value of the node corresponds to the Java byte[] type.

117.14.5.4 public static final int FORMAT_BOOLEAN = 8

The node holds an OMA DM bool value.

117.14.5.5 public static final int FORMAT_DATE = 16

The node holds an OMA DM date value.

117.14.5.6 public static final int FORMAT_DATE_TIME = 16384

The node holds a Date object. If the getTime() equals zero then the date time is not known. If the get-
Time() is negative it must be interpreted as a relative number of milliseconds.

Since 2.0

117.14.5.7 public static final int FORMAT_FLOAT = 2

The node holds an OMA DM f loat value.

117.14.5.8 public static final int FORMAT_INTEGER = 1

The node holds an OMA DM int value.

117.14.5.9 public static final int FORMAT_LONG = 8192

The node holds a long value. The getFormatName() method can be used to get the actual format
name.

Since 2.0

117.14.5.10 public static final int FORMAT_NODE = 1024

Format specifier of an internal node. An interior node can hold a Java object as value (see
DmtData.DmtData(Object) and DmtData.getNode()). This value can be used by Java programs that
know a specific URI understands the associated Java type. This type is further used as a return value
of the MetaNode.getFormat() method for interior nodes.

117.14.5.11 public static final int FORMAT_NULL = 512

The node holds an OMA DM nul l value. This corresponds to the Java nul l type.

117.14.5.12 public static final int FORMAT_RAW_BINARY = 4096

The node holds raw protocol data encoded in binary format. The getFormatName() method can be
used to get the actual format name.

117.14.5.13 public static final int FORMAT_RAW_STRING = 2048

The node holds raw protocol data encoded as Str ing . The getFormatName() method can be used to
get the actual format name.

117.14.5.14 public static final int FORMAT_STRING = 4

The node holds an OMA DM chr value.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 539

117.14.5.15 public static final int FORMAT_TIME = 32

The node holds an OMA DM t ime value.

117.14.5.16 public static final int FORMAT_XML = 256

The node holds an OMA DM xml value.

117.14.5.17 public static final DmtData NULL_VALUE

Constant instance representing a leaf node of nul l format.

117.14.5.18 public static final DmtData TRUE_VALUE

Constant instance representing a boolean true value.

Since 2.0

117.14.5.19 public DmtData(String string)

string the string value to set

□ Create a DmtData instance of chr format with the given string value. The nul l string argument is
valid.

117.14.5.20 public DmtData(Date date)

date the Date object to set

□ Create a DmtData instance of dateTime format with the given Date value. The given Date value
must be a non-null Date object.

117.14.5.21 public DmtData(Object complex)

complex the complex data object to set

□ Create a DmtData instance of node format with the given object value. The value represents com-
plex data associated with an interior node.

Certain interior nodes can support access to their subtrees through such complex values, making it
simpler to retrieve or update all leaf nodes in a subtree.

The given value must be a non-nul l immutable object.

117.14.5.22 public DmtData(String value,int format)

value the string, XML, date, or time value to set

format the format of the DmtData instance to be created, must be one of the formats specified above

□ Create a DmtData instance of the specified format and set its value based on the given string. Only
the following string-based formats can be created using this constructor:

• FORMAT_STRING - value can be any string
• FORMAT_XML - value must contain an XML fragment (the validity is not checked by this con-

structor)
• FORMAT_DATE - value must be parsable to an ISO 8601 calendar date in complete representa-

tion, basic format (pattern CCYYMMDD)
• FORMAT_TIME - value must be parsable to an ISO 8601 time of day in either local time, com-

plete representation, basic format (pattern hhmmss) or Coordinated Universal Time, basic for-
mat (pattern hhmmssZ)

* The nul l string argument is only valid if the format is string or XML.

Throws I l legalArgumentException– if format is not one of the allowed formats, or value is not a valid string
for the given format

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 540 OSGi Compendium Release 6

NullPointerException– if a string, XML, date, or time is constructed and value is nul l

117.14.5.23 public DmtData(int integer)

integer the integer value to set

□ Create a DmtData instance of int format and set its value.

117.14.5.24 public DmtData(float flt)

flt the float value to set

□ Create a DmtData instance of f loat format and set its value.

117.14.5.25 public DmtData(long lng)

lng the long value to set

□ Create a DmtData instance of long format and set its value.

Since 2.0

117.14.5.26 public DmtData(boolean bool)

bool the boolean value to set

□ Create a DmtData instance of bool format and set its value.

117.14.5.27 public DmtData(byte[] bytes)

bytes the byte array to set, must not be nul l

□ Create a DmtData instance of bin format and set its value.

Throws NullPointerException– if bytes is nul l

117.14.5.28 public DmtData(byte[] bytes,boolean base64)

bytes the byte array to set, must not be nul l

base64 if true , the new instance will have b64 format, if fa lse , it will have bin format

□ Create a DmtData instance of bin or b64 format and set its value. The chosen format is specified by
the base64 parameter.

Throws NullPointerException– if bytes is nul l

117.14.5.29 public DmtData(byte[] bytes,int format)

bytes the byte array to set, must not be nul l

format the format of the DmtData instance to be created, must be one of the formats specified above

□ Create a DmtData instance of the specified format and set its value based on the given byte[] . Only
the following byte[] based formats can be created using this constructor:

• FORMAT_BINARY
• FORMAT_BASE64

Throws I l legalArgumentException– if format is not one of the allowed formats

NullPointerException– if bytes is nul l

117.14.5.30 public DmtData(String formatName,String data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 541

□ Create a DmtData instance in FORMAT_RAW_STRING format. The data is provided encoded as a
Str ing . The actual data format is specified in formatName . The encoding used in data must conform
to this format.

Throws NullPointerException– if formatName or data is nul l

117.14.5.31 public DmtData(String formatName,byte[] data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

□ Create a DmtData instance in FORMAT_RAW_BINARY format. The data is provided encoded as bi-
nary. The actual data format is specified in formatName . The encoding used in data must conform
to this format.

Throws NullPointerException– if formatName or data is nul l

117.14.5.32 public boolean equals(Object obj)

obj the object to compare with this DmtData

□ Compares the specified object with this DmtData instance. Two DmtData objects are considered
equal if their format is the same, and their data (selected by the format) is equal.

In case of FORMAT_RAW_BINARY and FORMAT_RAW_STRING the textual name of the data for-
mat - as returned by getFormatName() - must be equal as well.

Returns true if the argument represents the same DmtData as this object

117.14.5.33 public byte[] getBase64()

□ Gets the value of a node with base 64 (b64) format.

Returns the binary value

Throws DmtI l legalStateException– if the format of the node is not base 64.

117.14.5.34 public byte[] getBinary()

□ Gets the value of a node with binary (bin) format.

Returns the binary value

Throws DmtI l legalStateException– if the format of the node is not binary

117.14.5.35 public boolean getBoolean()

□ Gets the value of a node with boolean (bool) format.

Returns the boolean value

Throws DmtI l legalStateException– if the format of the node is not boolean

117.14.5.36 public String getDate()

□ Gets the value of a node with date format. The returned date string is formatted according to the ISO
8601 definition of a calendar date in complete representation, basic format (pattern CCYYMMDD).

Returns the date value

Throws DmtI l legalStateException– if the format of the node is not date

117.14.5.37 public Date getDateTime()

□ Gets the value of a node with dateTime format.

Returns the Date value

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 542 OSGi Compendium Release 6

Throws DmtI l legalStateException– if the format of the node is not time

Since 2.0

117.14.5.38 public float getFloat()

□ Gets the value of a node with f loat format.

Returns the float value

Throws DmtI l legalStateException– if the format of the node is not f loat

117.14.5.39 public int getFormat()

□ Get the node's format, expressed in terms of type constants defined in this class. Note that the 'for-
mat' term is a legacy from OMA DM, it is more customary to think of this as 'type'.

Returns the format of the node

117.14.5.40 public String getFormatName()

□ Returns the format of this DmtData as Str ing . For the predefined data formats this is the OMA DM
defined name of the format. For FORMAT_RAW_STRING and FORMAT_RAW_BINARY this is the
format specified when the object was created.

Returns the format name as Str ing

117.14.5.41 public int getInt()

□ Gets the value of a node with integer (int) format.

Returns the integer value

Throws DmtI l legalStateException– if the format of the node is not integer

117.14.5.42 public long getLong()

□ Gets the value of a node with long format.

Returns the long value

Throws DmtI l legalStateException– if the format of the node is not long

Since 2.0

117.14.5.43 public Object getNode()

□ Gets the complex data associated with an interior node (node format).

Certain interior nodes can support access to their subtrees through complex values, making it sim-
pler to retrieve or update all leaf nodes in the subtree.

Returns the data object associated with an interior node

Throws DmtI l legalStateException– if the format of the data is not node

117.14.5.44 public byte[] getRawBinary()

□ Gets the value of a node in raw binary (FORMAT_RAW_BINARY) format.

Returns the data value in raw binary format

Throws DmtI l legalStateException– if the format of the node is not raw binary

117.14.5.45 public String getRawString()

□ Gets the value of a node in raw Str ing (FORMAT_RAW_STRING) format.

Returns the data value in raw Str ing format

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 543

Throws DmtI l legalStateException– if the format of the node is not raw Str ing

117.14.5.46 public int getSize()

□ Get the size of the data. The returned value depends on the format of data in the node:

• FORMAT_STRING, FORMAT_XML, FORMAT_BINARY, FORMAT_BASE64,
FORMAT_RAW_STRING, and FORMAT_RAW_BINARY: the length of the stored data, or 0 if the
data is nul l

• FORMAT_INTEGER and FORMAT_FLOAT: 4
• FORMAT_LONG and FORMAT_DATE_TIME: 8
• FORMAT_DATE and FORMAT_TIME: the length of the date or time in its string representation
• FORMAT_BOOLEAN: 1
• FORMAT_NODE: -1 (unknown)
• FORMAT_NULL: 0

Returns the size of the data stored by this object

117.14.5.47 public String getString()

□ Gets the value of a node with string (chr) format.

Returns the string value

Throws DmtI l legalStateException– if the format of the node is not string

117.14.5.48 public String getTime()

□ Gets the value of a node with time format. The returned time string is formatted according to the
ISO 8601 definition of the time of day. The exact format depends on the value the object was initial-
ized with: either local time, complete representation, basic format (pattern hhmmss) or Coordinated
Universal Time, basic format (pattern hhmmssZ).

Returns the time value

Throws DmtI l legalStateException– if the format of the node is not time

117.14.5.49 public String getXml()

□ Gets the value of a node with xml format.

Returns the XML value

Throws DmtI l legalStateException– if the format of the node is not xml

117.14.5.50 public int hashCode()

□ Returns the hash code value for this DmtData instance. The hash code is calculated based on the da-
ta (selected by the format) of this object.

Returns the hash code value for this object

117.14.5.51 public String toString()

□ Gets the string representation of the DmtData . This method works for all formats.

For string format data - including FORMAT_RAW_STRING - the string value itself is returned, while
for XML, date, time, integer, float, boolean, long and node formats the string form of the value is re-
turned. Binary - including FORMAT_RAW_BINARY - base64 data is represented by two-digit hexa-
decimal numbers for each byte separated by spaces. The NULL_VALUE data has the string form of "
nul l". Data of string or XML format containing the Java nul l value is represented by an empty string.
DateTime data is formatted as yyyy-MM-dd'T'HH:mm:SS'Z').

Returns the string representation of this DmtData instance

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 544 OSGi Compendium Release 6

117.14.6 public interface DmtEvent
Event class storing the details of a change in the tree. DmtEvent is used by DmtAdmin to notify reg-
istered EventListeners services about important changes. Events are generated after every success-
ful DMT change, and also when sessions are opened or closed. If a DmtSession is opened in atomic
mode, DMT events are only sent when the session is committed, when the changes are actually per-
formed.

The type of the event describes the change that triggered the event delivery. Each event carries the
unique identifier of the session in which the described change happened or -1 when the change
originated outside a session. The events describing changes in the DMT carry the list of affected
nodes. In case of COPIED or RENAMED events, the event carries the list of new nodes as well.

117.14.6.1 public static final int ADDED = 1

Event type indicating nodes that were added.

117.14.6.2 public static final int COPIED = 2

Event type indicating nodes that were copied.

117.14.6.3 public static final int DELETED = 4

Event type indicating nodes that were deleted.

117.14.6.4 public static final int RENAMED = 8

Event type indicating nodes that were renamed.

117.14.6.5 public static final int REPLACED = 16

Event type indicating nodes that were replaced.

117.14.6.6 public static final int SESSION_CLOSED = 64

Event type indicating that a session was closed. This type of event is sent when the session is closed
by the client or becomes inactive for any other reason (session timeout, fatal errors in business
methods, etc.).

117.14.6.7 public static final int SESSION_OPENED = 32

Event type indicating that a new session was opened.

117.14.6.8 public String[] getNewNodes()

□ This method can be used to query the new nodes, when the type of the event is COPIED or RE-
NAMED. For all other event types this method returns nul l .

The array returned by this method runs parallel to the array returned by getNodes(), the elements in
the two arrays contain the source and destination URIs for the renamed or copied nodes in the same
order. All returned URIs are absolute.

This method returns only those nodes where the caller has the GET permission for the source or
destination node of the operation. Therefore, it is possible that the method returns an empty array.

Returns the array of newly created nodes

117.14.6.9 public String[] getNodes()

□ This method can be used to query the subject nodes of this event. The method returns nul l for
SESSION_OPENED and SESSION_CLOSED.

The method returns only those affected nodes that the caller has the GET permission for (or in case
of COPIED or RENAMED events, where the caller has GET permissions for either the source or the

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 545

destination nodes). Therefore, it is possible that the method returns an empty array. All returned
URIs are absolute.

Returns the array of affected nodes

See Also getNewNodes()

117.14.6.10 public Object getProperty(String key)

key the name of the requested property

□ This method can be used to get the value of a single event property.

Returns the requested property value or null, if the key is not contained in the properties

See Also getPropertyNames()

Since 2.0

117.14.6.11 public String[] getPropertyNames()

□ This method can be used to query the names of all properties of this event.

The returned names can be used as key value in subsequent calls to getProperty(String).

Returns the array of property names

See Also getProperty(String)

Since 2.0

117.14.6.12 public int getSessionId()

□ This method returns the identifier of the session in which this event took place. The ID is guaran-
teed to be unique on a machine.

For events that do not result from a session, the session id is -1.

The availability of a session.id can also be check by using getProperty() with "session.id" as key.

Returns the unique identifier of the session that triggered the event or -1 if there is no session associated

117.14.6.13 public int getType()

□ This method returns the type of this event.

Returns the type of this event.

117.14.7 public interface DmtEventListener
Registered implementations of this class are notified via DmtEvent objects about important changes
in the tree. Events are generated after every successful DMT change, and also when sessions are
opened or closed. If a DmtSession is opened in atomic mode, DMT events are only sent when the
session is committed, when the changes are actually performed.

Dmt Event Listener services must have permission DmtPermission.GET for the nodes in the nodes
and newNodes property in the Dmt Event.

117.14.7.1 public static final String FILTER_EVENT = "osgi.filter.event"

A number of event types packed in a bitmap. If this service property is provided with a Dmt Event
Listener service registration than that listener must only receive events where one of the Dmt Event
types occur in the bitmap. The type of this service property must be Integer .

117.14.7.2 public static final String FILTER_PRINCIPAL = "osgi.filter.principal"

A number of names of principals. If this service property is provided with a Dmt Event Listener ser-
vice registration than that listener must only receive events for which at least one of the given prin-
cipals has Get rights. The type of this service property is Str ing+ .

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 546 OSGi Compendium Release 6

117.14.7.3 public static final String FILTER_SUBTREE = "osgi.filter.subtree"

A number of sub-tree top nodes that define the scope of the Dmt Event Listener. If this service prop-
erty is registered then the service must only receive events for nodes that are part of one of the sub-
trees. The type of this service property is Str ing+ .

117.14.7.4 public void changeOccurred(DmtEvent event)

event the DmtEvent describing the change in detail

□ DmtAdmin uses this method to notify the registered listeners about the change. This method is
called asynchronously from the actual event occurrence.

117.14.8 public class DmtException
extends Exception
Checked exception received when a DMT operation fails. Beside the exception message, a DmtEx-
ception always contains an error code (one of the constants specified in this class), and may option-
ally contain the URI of the related node, and information about the cause of the exception.

Some of the error codes defined in this class have a corresponding error code defined in OMA DM, in
these cases the name and numerical value from OMA DM is used. Error codes without counterparts
in OMA DM were given numbers from a different range, starting from 1.

The cause of the exception (if specified) can either be a single Throwable instance, or a list of such
instances if several problems occurred during the execution of a method. An example for the latter
is the close method of DmtSession that tries to close multiple plugins, and has to report the excep-
tions of all failures.

Each constructor has two variants, one accepts a Str ing node URI, the other accepts a Str ing[] node
path. The former is used by the DmtAdmin implementation, the latter by the plugins, who receive
the node URI as an array of segment names. The constructors are otherwise identical.

Getter methods are provided to retrieve the values of the additional parameters, and the
printStackTrace(Pr intWriter) method is extended to print the stack trace of all causing throwables
as well.

117.14.8.1 public static final int ALERT_NOT_ROUTED = 5

An alert can not be sent from the device to the given principal. This can happen if there is no Re-
mote Alert Sender willing to forward the alert to the given principal, or if no principal was given
and the DmtAdmin did not find an appropriate default destination.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.2 public static final int COMMAND_FAILED = 500

The recipient encountered an error which prevented it from fulfilling the request.

This error code is only used in situations not covered by any of the other error codes that a method
may use. Some methods specify more specific error situations for this code, but it can generally be
used for any unexpected condition that causes the command to fail.

This error code corresponds to the OMA DM response status code 500 "Command Failed".

117.14.8.3 public static final int COMMAND_NOT_ALLOWED = 405

The requested command is not allowed on the target node. This includes the following situations:

• an interior node operation is requested for a leaf node, or vice versa (e.g. trying to retrieve the
children of a leaf node)

• an attempt is made to create a node where the parent is a leaf node

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 547

• an attempt is made to rename or delete the root node of the tree
• an attempt is made to rename or delete the root node of the session
• a write operation (other than setting the ACL) is performed in a non-atomic write session on a

node provided by a plugin that is read-only or does not support non-atomic writing
• a node is copied to its descendant
• the ACL of the root node is changed not to include Add rights for all principals

This error code corresponds to the OMA DM response status code 405 "Command not allowed".

117.14.8.4 public static final int CONCURRENT_ACCESS = 4

An error occurred related to concurrent access of nodes. This can happen for example if a configu-
ration node was deleted directly through the Configuration Admin service, while the node was ma-
nipulated via the tree.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.5 public static final int DATA_STORE_FAILURE = 510

An error related to the recipient data store occurred while processing the request. This error code
may be thrown by any of the methods accessing the tree, but whether it is really used depends on
the implementation, and the data store it uses.

This error code corresponds to the OMA DM response status code 510 "Data store failure".

117.14.8.6 public static final int FEATURE_NOT_SUPPORTED = 406

The requested command failed because an optional feature required by the command is not sup-
ported. For example, opening an atomic session might return this error code if the DmtAdmin im-
plementation does not support transactions. Similarly, accessing the optional node properties (Title,
Timestamp, Version, Size) might not succeed if either the DmtAdmin implementation or the under-
lying plugin does not support the property.

When getting or setting values for interior nodes (an optional optimization feature), a plugin can
use this error code to indicate that the given interior node does not support values.

This error code corresponds to the OMA DM response status code 406 "Optional feature not support-
ed".

117.14.8.7 public static final int INVALID_URI = 3

The requested command failed because the target URI or node name is nul l or syntactically invalid.
This covers the following cases:

• the URI or node name ends with the '\' or '/' character
• the URI is an empty string (only invalid if the method does not accept relative URIs)
• the URI contains the segment "." at a position other than the beginning of the URI
• the node name is ". ." or the URI contains such a segment
• the node name contains an unescaped '/' character

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

This code is only used if the URI or node name does not match any of the criteria for
URI_TOO_LONG. This error code does not correspond to any OMA DM response status code. It
should be translated to the code 404 "Not Found" when transferring over OMA DM.

117.14.8.8 public static final int LIMIT_EXCEEDED = 413

The requested operation failed because a specific limit was exceeded, e.g. if a requested resource ex-
ceeds a size limit.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 548 OSGi Compendium Release 6

This error code corresponds to the OMA DM response status code 413 "Request entity too large".

Since 2.0

117.14.8.9 public static final int METADATA_MISMATCH = 2

Operation failed because of meta data restrictions. This covers any attempted deviation from the pa-
rameters defined by the MetaNode objects of the affected nodes, for example in the following situa-
tions:

• creating, deleting or renaming a permanent node, or modifying its type
• creating an interior node where the meta-node defines it as a leaf, or vice versa
• any operation on a node which does not have the required access type (e.g. executing a node that

lacks the MetaNode.CMD_EXECUTE access type)
• any node creation or deletion that would violate the cardinality constraints
• any leaf node value setting that would violate the allowed formats, values, mime types, etc.
• any node creation that would violate the allowed node names

This error code can also be used to indicate any other meta data violation, even if it cannot be de-
scribed by the MetaNode class. For example, detecting a multi-node constraint violation while com-
mitting an atomic session should result in this error.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 405 "Command not allowed" when transferring over OMA DM.

117.14.8.10 public static final int NODE_ALREADY_EXISTS = 418

The requested node creation operation failed because the target already exists. This can occur if the
node is created directly (with one of the create. . . methods), or indirectly (during a copy operation).

This error code corresponds to the OMA DM response status code 418 "Already exists".

117.14.8.11 public static final int NODE_NOT_FOUND = 404

The requested target node was not found. No indication is given as to whether this is a temporary or
permanent condition, unless otherwise noted.

This is only used when the requested node name is valid, otherwise the more specific error codes
URI_TOO_LONG or INVALID_URI are used. This error code corresponds to the OMA DM response
status code 404 "Not Found".

117.14.8.12 public static final int PERMISSION_DENIED = 425

The requested command failed because the principal associated with the session does not have ad-
equate access control permissions (ACL) on the target. This can only appear in case of remote ses-
sions, i.e. if the session is associated with an authenticated principal.

This error code corresponds to the OMA DM response status code 425 "Permission denied".

117.14.8.13 public static final int REMOTE_ERROR = 1

A device initiated remote operation failed. This is used when the protocol adapter fails to send an
alert for any reason.

Alert routing errors (that occur while looking for the proper protocol adapter to use) are indicated
by ALERT_NOT_ROUTED, this code is only for errors encountered while sending the routed alert.
This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.14 public static final int ROLLBACK_FAILED = 516

The rollback command was not completed successfully. The tree might be in an inconsistent state
after this error.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 549

This error code corresponds to the OMA DM response status code 516 "Atomic roll back failed".

117.14.8.15 public static final int SESSION_CREATION_TIMEOUT = 7

Creation of a session timed out because of another ongoing session. The length of time while the
DmtAdmin waits for the blocking session(s) to finish is implementation dependent.

This error code does not correspond to any OMA DM response status code. OMA has several status
codes related to timeout, but these are meant to be used when a request times out, not if a session
can not be established. This error code should be translated to the code 500 "Command Failed" when
transferring over OMA DM.

117.14.8.16 public static final int TRANSACTION_ERROR = 6

A transaction-related error occurred in an atomic session. This error is caused by one of the follow-
ing situations:

• an updating method within an atomic session can not be executed because the underlying plug-
in is read-only or does not support atomic writing

• a commit operation at the end of an atomic session failed because one of the underlying plugins
failed to close

The latter case may leave the tree in an inconsistent state due to the lack of a two-phase commit sys-
tem, see DmtSession.commit() for details.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.17 public static final int UNAUTHORIZED = 401

The originator's authentication credentials specify a principal with insufficient rights to complete
the command.

This status code is used as response to device originated sessions if the remote management server
cannot authorize the device to perform the requested operation.

This error code corresponds to the OMA DM response status code 401 "Unauthorized".

117.14.8.18 public static final int URI_TOO_LONG = 414

The requested command failed because the target URI is too long for what the recipient is able or
willing to process.

This error code corresponds to the OMA DM response status code 414 "URI too long".

See Also OSGi Service Platform, Mobi le Specif icat ion Release 4

117.14.8.19 public DmtException(String uri,int code,String message)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

□ Create an instance of the exception. The uri and message parameters are optional. No originating ex-
ception is specified.

117.14.8.20 public DmtException(String uri,int code,String message,Throwable cause)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 550 OSGi Compendium Release 6

cause the originating exception, or nul l if there is no originating exception

□ Create an instance of the exception, specifying the cause exception. The uri , message and cause pa-
rameters are optional.

117.14.8.21 public DmtException(String uri,int code,String message,Vector causes,boolean fatal)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

fatal whether the exception is fatal

□ Create an instance of the exception, specifying the list of cause exceptions and whether the excep-
tion is a fatal one. This constructor is meant to be used by plugins wishing to indicate that a serious
error occurred which should invalidate the ongoing atomic session. The uri , message and causes pa-
rameters are optional.

If a fatal exception is thrown, no further business methods will be called on the originator plugin. In
case of atomic sessions, all other open plugins will be rolled back automatically, except if the fatal
exception was thrown during commit.

117.14.8.22 public DmtException(String[] path,int code,String message)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

□ Create an instance of the exception, specifying the target node as an array of path segments. This
method behaves in exactly the same way as if the path was given as a URI string.

See Also DmtException(String, int, String)

117.14.8.23 public DmtException(String[] path,int code,String message,Throwable cause)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

cause the originating exception, or nul l if there is no originating exception

□ Create an instance of the exception, specifying the target node as an array of path segments, and
specifying the cause exception. This method behaves in exactly the same way as if the path was giv-
en as a URI string.

See Also DmtException(String, int, String, Throwable)

117.14.8.24 public DmtException(String[] path,int code,String message,Vector causes,boolean fatal)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 551

fatal whether the exception is fatal

□ Create an instance of the exception, specifying the target node as an array of path segments, the list
of cause exceptions, and whether the exception is a fatal one. This method behaves in exactly the
same way as if the path was given as a URI string.

See Also DmtException(String, int, String, Vector, boolean)

117.14.8.25 public Throwable getCause()

□ Get the cause of this exception. Returns non-nul l , if this exception is caused by one or more other ex-
ceptions (like a NullPointerException in a DmtPlugin). If there are more than one cause exceptions,
the first one is returned.

Returns the cause of this exception, or nul l if no cause was given

117.14.8.26 public Throwable[] getCauses()

□ Get all causes of this exception. Returns the causing exceptions in an array. If no cause was specified,
an empty array is returned.

Returns the list of causes of this exception

117.14.8.27 public int getCode()

□ Get the error code associated with this exception. Most of the error codes within this exception cor-
respond to OMA DM error codes.

Returns the error code

117.14.8.28 public String getMessage()

□ Get the message associated with this exception. The returned string also contains the associated
URI (if any) and the exception code. The resulting message has the following format (parts in square
brackets are only included if the field inside them is not nul l):

 <exception_code>[: '<uri>'][: <error_message>]

Returns the error message in the format described above

117.14.8.29 public String getURI()

□ Get the node on which the failed DMT operation was issued. Some operations like
DmtSession.close() don't require an URI, in this case this method returns nul l .

Returns the URI of the node, or nul l

117.14.8.30 public boolean isFatal()

□ Check whether this exception is marked as fatal in the session. Fatal exceptions trigger an automat-
ic rollback of atomic sessions.

Returns whether the exception is marked as fatal

117.14.8.31 public void printStackTrace(PrintStream s)

s PrintStream to use for output

□ Prints the exception and its stacktrace to the specified print stream. Any causes that were specified
for this exception are also printed, together with their stacktraces.

117.14.9 public class DmtIllegalStateException
extends RuntimeException
Unchecked illegal state exception. This class is used in DMT because java.lang.IllegalStateException
does not exist in CLDC.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 552 OSGi Compendium Release 6

117.14.9.1 public DmtIllegalStateException()

□ Create an instance of the exception with no message.

117.14.9.2 public DmtIllegalStateException(String message)

message the reason for the exception

□ Create an instance of the exception with the specified message.

117.14.9.3 public DmtIllegalStateException(Throwable cause)

cause the cause of the exception

□ Create an instance of the exception with the specified cause exception and no message.

117.14.9.4 public DmtIllegalStateException(String message,Throwable cause)

message the reason for the exception

cause the cause of the exception

□ Create an instance of the exception with the specified message and cause exception.

117.14.10 public interface DmtSession
DmtSession provides concurrent access to the DMT. All DMT manipulation commands for manage-
ment applications are available on the DmtSession interface. The session is associated with a root
node which limits the subtree in which the operations can be executed within this session.

Most of the operations take a node URI as parameter, which can be either an absolute URI (starting
with "./") or a URI relative to the root node of the session. The empty string as relative URI means
the root URI the session was opened with. All segments of a URI must be within the segment length
limit of the implementation, and the special characters '/' and '\' must be escaped (preceded by a '\').

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

If the URI specified does not correspond to a legitimate node in the tree an exception is thrown. The
only exception is the isNodeUri(String) method which returns fa lse in case of an invalid URI.

Each method of DmtSession that accesses the tree in any way can throw DmtI l legalStateException
if the session has been closed or invalidated (due to timeout, fatal exceptions, or unexpectedly un-
registered plugins).

117.14.10.1 public static final int LOCK_TYPE_ATOMIC = 2

LOCK_TYPE_ATOMIC is an exclusive lock with transactional functionality. Commands of an atomic
session will either fail or succeed together, if a single command fails then the whole session will be
rolled back.

117.14.10.2 public static final int LOCK_TYPE_EXCLUSIVE = 1

LOCK_TYPE_EXCLUSIVE lock guarantees full access to the tree, but can not be shared with any other
locks.

117.14.10.3 public static final int LOCK_TYPE_SHARED = 0

Sessions created with LOCK_TYPE_SHARED lock allows read-only access to the tree, but can be
shared between multiple readers.

117.14.10.4 public static final int STATE_CLOSED = 1

The session is closed, DMT manipulation operations are not available, they throw DmtI l legalState-
Exception if tried.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 553

117.14.10.5 public static final int STATE_INVALID = 2

The session is invalid because a fatal error happened. Fatal errors include the timeout of the session,
any DmtException with the 'fatal' flag set, or the case when a plugin service is unregistered while in
use by the session. DMT manipulation operations are not available, they throw DmtI l legalStateEx-
ception if tried.

117.14.10.6 public static final int STATE_OPEN = 0

The session is open, all session operations are available.

117.14.10.7 public void close() throws DmtException

□ Closes a session. If the session was opened with atomic lock mode, the DmtSession must first persist
the changes made to the DMT by calling commit() on all (transactional) plugins participating in the
session. See the documentation of the commit() method for details and possible errors during this
operation.

The state of the session changes to DmtSession.STATE_CLOSED if the close operation completed
successfully, otherwise it becomes DmtSession.STATE_INVALID .

Throws DmtException– with the following possible error codes:

• METADATA_MISMATCH in case of atomic sessions, if the commit operation failed because of
meta-data restrictions

• CONCURRENT_ACCESS in case of atomic sessions, if the commit operation failed because of
some modification outside the scope of the DMT to the nodes affected in the session

• TRANSACTION_ERROR in case of atomic sessions, if an underlying plugin failed to commit
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if an underlying plugin failed to close, or if some unspecified error is en-

countered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.8 public void commit() throws DmtException

□ Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

An error situation can arise due to the lack of a two phase commit mechanism in the underlying
plugins. As an example, if plugin A has committed successfully but plugin B failed, the whole ses-
sion must fail, but there is no way to undo the commit performed by A. To provide predictable be-
havior, the commit operation should continue with the remaining plugins even after detecting a
failure. All exceptions received from failed commits are aggregated into one TRANSACTION_ERROR
exception thrown by this method.

In many cases the tree is not the only way to manage a given part of the system. It may happen
that while modifying some nodes in an atomic session, the underlying settings are modified in par-
allel outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException– with the following possible error codes:

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 554 OSGi Compendium Release 6

• METADATA_MISMATCH if the operation failed because of meta-data restrictions
• CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope

of the DMT to the nodes affected in the session's operations
• TRANSACTION_ERROR if an error occurred during the commit of any of the underlying plugins
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

DmtI l legalStateException– if the session was not opened using the LOCK_TYPE_ATOMIC lock type,
or if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.9 public void copy(String nodeUri,String newNodeUri,boolean recursive) throws DmtException

nodeUri the node or root of a subtree to be copied

newNodeUri the URI of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

□ Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most prop-
erties are also copied, with the exception of the ACL (Access Control List), Timestamp and Version
properties.

The copy method is essentially a convenience method that could be substituted with a sequence of
retrieval and update operations. This determines the permissions required for copying. However,
some optimization can be possible if the source and target nodes are all handled by DmtAdmin or
by the same plugin. In this case, the handler might be able to perform the underlying management
operation more efficiently: for example, a configuration table can be copied at once instead of read-
ing each node for each entry and creating it in the new tree.

This method may result in any of the errors possible for the contributing operations. Most of
these are collected in the exception descriptions below, but for the full list also consult the
documentation of getChildNodeNames(String), isLeafNode(String), getNodeValue(String),
getNodeType(String), getNodeTitle(String), setNodeTitle(String, String), createLeafNode(String,
DmtData, String) and createInteriorNode(String, String).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri or newNodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node, or if newNodeUri points to a node

that cannot exist in the tree according to the meta-data (see getMetaNode(String))
• NODE_ALREADY_EXISTS if newNodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the copied

node(s) does not allow the Get operation, or the ACL of the parent of the target node does not al-
low the Add operation for the associated principal

• COMMAND_NOT_ALLOWED if nodeUri is an ancestor of newNodeUri , or if any of the implied re-
trieval or update operations are not allowed

• METADATA_MISMATCH if any of the meta-data constraints of the implied retrieval or update op-
erations are violated

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 555

• COMMAND_FAILED if either URI is not within the current session's subtree, or if some unspeci-
fied error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the copied node(s) with the Get action present, or for the parent of the target node with the Add ac-
tion

117.14.10.10 public void createInteriorNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

□ Create an interior node. If the parent node does not exist, it is created automatically, as if this
method were called for the parent URI. This way all missing ancestor nodes leading to the specified
node are created. Any exceptions encountered while creating the ancestors are propagated to the
caller of this method, these are not explicitly listed in the error descriptions below.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

117.14.10.11 public void createInteriorNode(String nodeUri,String type) throws DmtException

nodeUri the URI of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 556 OSGi Compendium Release 6

□ Create an interior node with a given type. The type of interior node, if specified, is a URI iden-
tifying a DDF document. If the parent node does not exist, it is created automatically, as if
createInteriorNode(String) were called for the parent URI. This way all missing ancestor nodes lead-
ing to the specified node are created. Any exceptions encountered while creating the ancestors are
propagated to the caller of this method, these are not explicitly listed in the error descriptions be-
low.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Interior node type identifiers must follow the format defined in section 7.7.7.2 of the OMA Device
Management Tree and Description document. Checking the validity of the type string does not have
to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid un-
necessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if the type string is in-

valid (see above), or if some unspecified error is encountered while attempting to complete the
command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createInteriorNode(String), OMA Device Management Tree and Description v1.2 draft [http://
member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-
TND-V1_2-20050615-C.zip]

117.14.10.12 public void createLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

□ Create a leaf node with default value and MIME type. If a node does not have a default value or
MIME type, this method will throw a DmtException with error code METADATA_MISMATCH . Note

http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 557

that a node might have a default value or MIME type even if there is no meta-data for the node or its
meta-data does not specify the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, and the creation of the new node must not cause the maximum
occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createLeafNode(String, DmtData)

117.14.10.13 public void createLeafNode(String nodeUri,DmtData value) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

□ Create a leaf node with a given value and the default MIME type. If the specified value is nul l , the de-
fault value is taken. If the node does not have a default MIME type or value (if needed), this method
will throw a DmtException with error code METADATA_MISMATCH . Note that a node might have a
default value or MIME type even if there is no meta-data for the node or its meta-data does not speci-
fy the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 558 OSGi Compendium Release 6

ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, and the
creation of the new node must not cause the maximum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

117.14.10.14 public void createLeafNode(String nodeUri,DmtData value,String mimeType) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

□ Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l ,
their default values are taken. If the node does not have the necessary defaults, this method will
throw a DmtException with error code METADATA_MISMATCH . Note that a node might have a de-
fault value or MIME type even if there is no meta-data for the node or its meta-data does not specify
the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 559

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, the MIME
type must be among the listed types, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

The MIME type string must conform to the definition in RFC 2045. Checking its validity does not
have to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid
unnecessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if mimeType is not a

proper MIME type string (see above), or if some unspecified error is encountered while attempt-
ing to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createLeafNode(String, DmtData), RFC 2045 [http://www.ietf.org/rfc/rfc2045.txt]

117.14.10.15 public void deleteNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node
is deleted. It is not allowed to delete the root node of the session.

If meta-data is available for a node, several checks are made before deleting it. The node must be
non-permanent, it must have the MetaNode.CMD_DELETE access type, and if zero occurrences of
the node are not allowed, it must not be the last one.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 560 OSGi Compendium Release 6

• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-
ly on systems with limited resources)

• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Delete operation for the associated principal
• COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic ses-

sions if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Delete action present

117.14.10.16 public void execute(String nodeUri,String data) throws DmtException

nodeUri the node on which the execute operation is issued

data the parameter of the execute operation, can be nul l

□ Executes a node. This corresponds to the EXEC operation in OMA DM. This method cannot be
called in a read-only session.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if the node does not exist
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Execute operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is a scaffold node
• METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have

MetaNode.CMD_EXECUTE access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if no DmtExecPlugin is

associated with the node and the DmtAdmin can not execute the node, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Exec action present

See Also execute(String, String, String)

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 561

117.14.10.17 public void execute(String nodeUri,String correlator,String data) throws DmtException

nodeUri the node on which the execute operation is issued

correlator an identifier to associate this operation with any notifications sent in response to it, can be nul l if
not needed

data the parameter of the execute operation, can be nul l

□ Executes a node, also specifying a correlation ID for use in response notifications. This operation
corresponds to the EXEC command in OMA DM. This method cannot be called in a read-only ses-
sion.

The semantics of an execute operation and the data parameter it takes depends on the definition
of the managed object on which the command is issued. If a correlation ID is specified, it should be
used as the correlator parameter for notifications sent in response to this execute operation.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if the node does not exist
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Execute operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is a scaffold node
• METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have

MetaNode.CMD_EXECUTE access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if no DmtExecPlugin is

associated with the node, or if some unspecified error is encountered while attempting to com-
plete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Exec action present

See Also execute(String, String)

117.14.10.18 public String[] getChildNodeNames(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the list of children names of a node. The returned array contains the names - not the URIs - of
the immediate children nodes of the given node. The elements are in no particular order. The re-
turned array must not contain nul l entries.

Returns the list of child node names as a string array or an empty string array if the node has no children

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 562 OSGi Compendium Release 6

• COMMAND_NOT_ALLOWED if the specified node is not an interior node
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.19 public Acl getEffectiveNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Gives the Access Control List in effect for a given node. The returned Acl takes inheritance into ac-
count, that is if there is no ACL defined for the node, it will be derived from the closest ancestor hav-
ing an ACL defined.

Returns the Access Control List belonging to the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the

node does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
with the Get action present

See Also getNodeAcl(String)

117.14.10.20 public int getLockType()

□ Gives the type of lock the session has.

Returns the lock type of the session, one of LOCK_TYPE_SHARED, LOCK_TYPE_EXCLUSIVE and
LOCK_TYPE_ATOMIC

117.14.10.21 public MetaNode getMetaNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the meta data which describes a given node. Meta data can only be inspected, it can not be
changed.

The MetaNode object returned to the client is the combination of the meta data returned by the data
plugin (if any) plus the meta data returned by the DmtAdmin. If there are differences in the meta da-
ta elements known by the plugin and the DmtAdmin then the plugin specific elements take prece-
dence.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 563

Note, that a node does not have to exist for having meta-data associated with it. This method
may provide meta-data for any node that can possibly exist in the tree (any node defined in the
specification). For nodes that are not defined, it may throw DmtException with the error code
NODE_NOT_FOUND . To allow easier implementation of plugins that do not provide meta-data, it is
allowed to return nul l for any node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.22 public Acl getNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the Access Control List associated with a given node. The returned Acl object does not take in-
heritance into account, it gives the ACL specifically given to the node.

Returns the Access Control List belonging to the node or nul l if none defined

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the

node does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
with the Get action present

See Also getEffectiveNodeAcl(String)

117.14.10.23 public int getNodeSize(String nodeUri) throws DmtException

nodeUri the URI of the leaf node

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 564 OSGi Compendium Release 6

□ Get the size of the data in a leaf node. The returned value depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is not a leaf node
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Size property is not supported by the DmtAdmin implementa-

tion or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

See Also DmtData.getSize()

117.14.10.24 public Date getNodeTimestamp(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the timestamp when the node was created or last modified.

Returns the timestamp of the last modification

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the DmtAdmin im-

plementation or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 565

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.25 public String getNodeTitle(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implemen-

tation or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.26 public String getNodeType(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of
an interior node is a URI identifying a DDF document; a nul l type means that there is no DDF docu-
ment overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 566 OSGi Compendium Release 6

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.27 public DmtData getNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node to retrieve

□ Get the data contained in a leaf or interior node. When retrieving the value associated with an inte-
rior node, the caller must have rights to read all nodes in the subtree under the given node.

Returns the data of the node, can not be nul l

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node (and

the ACLs of all its descendants in case of interior nodes) do not allow the Get operation for the as-
sociated principal

• METADATA_MISMATCH if the node value cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node (and all its descendants in case of interior nodes) with the Get action present

117.14.10.28 public int getNodeVersion(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Version property is not supported by the DmtAdmin imple-

mentation or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 567

• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified
error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.29 public String getPrincipal()

□ Gives the name of the principal on whose behalf the session was created. Local sessions do not have
an associated principal, in this case nul l is returned.

Returns the identifier of the remote server that initiated the session, or nul l for local sessions

117.14.10.30 public String getRootUri()

□ Get the root URI associated with this session. Gives "." if the session was created without specifying
a root, which means that the target of this session is the whole DMT.

Returns the root URI

117.14.10.31 public int getSessionId()

□ The unique identifier of the session. The ID is generated automatically, and it is guaranteed to be
unique on a machine for a specific Dmt Admin. A session id must be larger than 0.

Returns the session identification number

117.14.10.32 public int getState()

□ Get the current state of this session.

Returns the state of the session, one of STATE_OPEN, STATE_CLOSED and STATE_INVALID

117.14.10.33 public boolean isLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 568 OSGi Compendium Release 6

117.14.10.34 public boolean isNodeUri(String nodeUri)

nodeUri the URI to check

□ Check whether the specified URI corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

Throws DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.35 public void renameNode(String nodeUri,String newName) throws DmtException

nodeUri the URI of the node to rename

newName the new name property of the node

□ Rename a node. This operation only changes the name of the node (updating the timestamp and
version properties if they are supported), the value and the other properties are not changed. The
new name of the node must be provided, the new URI is constructed from the base of the old URI
and the given name. It is not allowed to rename the root node of the session.

If available, the meta-data of the original and the new nodes are checked before performing the re-
name operation. Neither node can be permanent, their leaf/interior property must match, and the
name change must not violate any of the cardinality constraints. The original node must have the
MetaNode.CMD_REPLACE access type, and the name of the new node must conform to the valid
names.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri or newName is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node, or if the new node is not defined in

the tree according to the meta-data (see getMetaNode(String))
• NODE_ALREADY_EXISTS if there already exists a sibling of nodeUri with the name newName
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic ses-

sions if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 569

117.14.10.36 public void rollback() throws DmtException

□ Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

Throws DmtException– with the error code ROLLBACK_FAILED in case the rollback did not succeed

DmtI l legalStateException– if the session was not opened using the LOCK_TYPE_ATOMIC lock type,
or if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.37 public void setDefaultNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Set the value of a leaf or interior node to its default. The default can be defined by the node's MetaN-
ode . The method throws a METADATA_MISMATCH exception if the node does not have a default val-
ue.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-

data (does not have the MetaNode.CMD_REPLACE access type), or if there is no default value de-
fined for this node

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

See Also setNodeValue(String, DmtData)

117.14.10.38 public void setNodeAcl(String nodeUri,Acl acl) throws DmtException

nodeUri the URI of the node

acl the Access Control List to be set on the node, can be nul l

□ Set the Access Control List associated with a given node. To perform this operation, the caller needs
to have replace rights (Acl .REPLACE or the corresponding Java permission depending on the session
type) as described below:

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 570 OSGi Compendium Release 6

• if nodeUri specifies a leaf node, replace rights are needed on the parent of the node
• if nodeUri specifies an interior node, replace rights on either the node or its parent are sufficient

If the given acl is nul l or an empty ACL (not specifying any permissions for any principals), then the
ACL of the node is deleted, and the node will inherit the ACL from its parent node.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node or its

parent (see above) does not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the command attempts to set the ACL of the root node not to in-

clude Add rights for all principals
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
or its parent (see above) with the Replace action present

117.14.10.39 public void setNodeTitle(String nodeUri,String title) throws DmtException

nodeUri the URI of the node

title the title text of the node, can be nul l

□ Set the title property of a node. The length of the title string in UTF-8 encoding must not exceed 255
bytes.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node cannot be modified according to the meta-data (does not have

the MetaNode.CMD_REPLACE access type)
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implemen-

tation or the underlying plugin
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the title string is too long, if the URI is not within the current session's sub-

tree, or if some unspecified error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 571

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

117.14.10.40 public void setNodeType(String nodeUri,String type) throws DmtException

nodeUri the URI of the node

type the type of the node, can be nul l

□ Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, a nul l type string means that there is no DDF document overriding the tree struc-
ture defined by the ancestors. For leaf nodes, it requests that the default MIME type is used for the
given node. If the node does not have a default MIME type this method will throw a DmtException
with error code METADATA_MISMATCH . Note that a node might have a default MIME type even if
there is no meta-data for the node or its meta-data does not specify the default.

MIME types must conform to the definition in RFC 2045. Interior node type identifiers must follow
the format defined in section 7.7.7.2 of the OMA Device Management Tree and Description docu-
ment. Checking the validity of the type string does not have to be done by the DmtAdmin, this can
be left to the plugin handling the node (if any), to avoid unnecessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-

data (does not have the MetaNode.CMD_REPLACE access type), and in case of leaf nodes, if nul l is
given and there is no default MIME type, or the given MIME type is not allowed

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if the type string is in-

valid (see above), or if some unspecified error is encountered while attempting to complete the
command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

See Also RFC 2045 [http://www.ietf.org/rfc/rfc2045.txt], OMA Device Management Tree and Description v1.2
draft [http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/
OMA-TS-DM-TND-V1_2-20050615-C.zip]

117.14.10.41 public void setNodeValue(String nodeUri,DmtData data) throws DmtException

nodeUri the URI of the node

data the data to be set, can be nul l

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 572 OSGi Compendium Release 6

□ Set the value of a leaf or interior node. The format of the node is contained in the DmtData object.
For interior nodes, the format must be FORMAT_NODE , while for leaf nodes this format must not be
used.

If the specified value is nul l , the default value is taken. In this case, if the node does not have a de-
fault value, this method will throw a DmtException with error code METADATA_MISMATCH . Nodes
of nul l format can be set by using DmtData.NULL_VALUE as second argument.

An Event of type REPLACE is sent out for a leaf node. A replaced interior node sends out events for
each of its children in depth first order and node names sorted with Arrays.sort(String[]). When set-
ting a value on an interior node, the values of the leaf nodes under it can change, but the structure of
the subtree is not modified by the operation.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the given data has FORMAT_NODE format but the node is a leaf

node (or vice versa), or in non-atomic sessions if the underlying plugin is read-only or does not
support non-atomic writing

• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-
data (does not have the MetaNode.CMD_REPLACE access type), or if the given value does not con-
form to the meta-data value constraints

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

117.14.11 public interface MetaNode
The MetaNode contains meta data as standardized by OMA DM but extends it (without breaking the
compatibility) to provide for better DMT data quality in an environment where many software com-
ponents manipulate this data.

The interface has several types of functions to describe the nodes in the DMT. Some methods can be
used to retrieve standard OMA DM metadata such as access type, cardinality, default, etc., others are
for data extensions such as valid names and values. In some cases the standard behavior has been ex-
tended, for example it is possible to provide several valid MIME types, or to differentiate between
normal and automatic dynamic nodes.

Most methods in this interface receive no input, just return information about some aspect of
the node. However, there are two methods that behave differently, isValidName(String) and
isValidValue(DmtData). These validation methods are given a potential node name or value (respec-
tively), and can decide whether it is valid for the given node. Passing the validation methods is a nec-

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 573

essary condition for a name or value to be used, but it is not necessarily sufficient: the plugin may
carry out more thorough (more expensive) checks when the node is actually created or set.

If a MetaNode is available for a node, the DmtAdmin must use the information provided by it to fil-
ter out invalid requests on that node. However, not all methods on this interface are actually used
for this purpose, as many of them (e.g. getFormat() or getValidNames()) can be substituted with the
validating methods. For example, isValidValue(DmtData) can be expected to check the format, mini-
mum, maximum, etc. of a given value, making it unnecessary for the DmtAdmin to call getFormat(),
getMin(), getMax() etc. separately. It is indicated in the description of each method if the DmtAdmin
does not enforce the constraints defined by it - such methods are only for external use, for example
in user interfaces.

Most of the methods of this class return nul l if a certain piece of meta information is not defined for
the node or providing this information is not supported. Methods of this class do not throw excep-
tions.

117.14.11.1 public static final int AUTOMATIC = 2

Constant for representing an automatic node in the tree. This must be returned by getScope(). AU-
TOMATIC nodes are part of the life cycle of their parent node, they usually describe attributes/prop-
erties of the parent.

117.14.11.2 public static final int CMD_ADD = 0

Constant for the ADD access type. If can(int) returns true for this operation, this node can potential-
ly be added to its parent. Nodes with PERMANENT or AUTOMATIC scope typically do not have this
access type.

117.14.11.3 public static final int CMD_DELETE = 1

Constant for the DELETE access type. If can(int) returns true for this operation, the node can poten-
tially be deleted.

117.14.11.4 public static final int CMD_EXECUTE = 2

Constant for the EXECUTE access type. If can(int) returns true for this operation, the node can po-
tentially be executed.

117.14.11.5 public static final int CMD_GET = 4

Constant for the GET access type. If can(int) returns true for this operation, the value, the list of
child nodes (in case of interior nodes) and the properties of the node can potentially be retrieved.

117.14.11.6 public static final int CMD_REPLACE = 3

Constant for the REPLACE access type. If can(int) returns true for this operation, the value and other
properties of the node can potentially be modified.

117.14.11.7 public static final int DYNAMIC = 1

Constant for representing a dynamic node in the tree. This must be returned by getScope(). Dynam-
ic nodes can be added and deleted.

117.14.11.8 public static final int PERMANENT = 0

Constant for representing a PERMANENT node in the tree. This must be returned by getScope() if the
node cannot be added, deleted or modified in any way through tree operations. PERMANENT nodes
in general map to the roots of Plugins.

117.14.11.9 public boolean can(int operation)

operation One of the MetaNode.CMD_.. . constants.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 574 OSGi Compendium Release 6

□ Check whether the given operation is valid for this node. If no meta-data is provided for a node, all
operations are valid.

Returns fa lse if the operation is not valid for this node or the operation code is not one of the allowed con-
stants

117.14.11.10 public DmtData getDefault()

□ Get the default value of this node if any.

Returns The default value or nul l if not defined

117.14.11.11 public String getDescription()

□ Get the explanation string associated with this node. Can be nul l if no description is provided for
this node.

Returns node description string or nul l for no description

117.14.11.12 public Object getExtensionProperty(String key)

key the key for the extension property

□ Returns the value for the specified extension property key. This method only works if the provider
of this MetaNode provides proprietary extensions to node meta data.

Returns the value of the requested property, cannot be nul l

Throws I l legalArgumentException– if the specified key is not supported by this MetaNode

117.14.11.13 public String[] getExtensionPropertyKeys()

□ Returns the list of extension property keys, if the provider of this MetaNode provides proprietary ex-
tensions to node meta data. The method returns nul l if the node doesn't provide such extensions.

Returns the array of supported extension property keys

117.14.11.14 public int getFormat()

□ Get the node's format, expressed in terms of type constants defined in DmtData. If there are mul-
tiple formats allowed for the node then the format constants are OR-ed. Interior nodes must have
DmtData.FORMAT_NODE format, and this code must not be returned for leaf nodes. If no meta-data
is provided for a node, all applicable formats are considered valid (with the above constraints regard-
ing interior and leaf nodes).

Note that the 'format' term is a legacy from OMA DM, it is more customary to think of this as 'type'.

The formats returned by this method are not checked by DmtAdmin, they are only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed format(s) of the node

117.14.11.15 public double getMax()

□ Get the maximum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no upper limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long format. The returned limit has double type, as this
can be used to denote all numeric limits with full precision. The actual maximum should be the
largest integer, float or long number that does not exceed the returned value.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed maximum, or Double.MAX_VALUE if there is no upper limit defined or the node's for-
mat is not one of the numeric formats integer, float, or long

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 575

117.14.11.16 public int getMaxOccurrence()

□ Get the number of maximum occurrences of this type of nodes on the same level in the DMT. Re-
turns Integer.MAX_VALUE if there is no upper limit. Note that if the occurrence is greater than 1
then this node can not have siblings with different metadata. In other words, if different types of
nodes coexist on the same level, their occurrence can not be greater than 1. If no meta-data is provid-
ed for a node, there is no upper limit on the number of occurrences.

Returns The maximum allowed occurrence of this node type

117.14.11.17 public String[] getMimeTypes()

□ Get the list of MIME types this node can hold. The first element of the returned list must be the de-
fault MIME type.

All MIME types are considered valid if no meta-data is provided for a node or if nul l is returned by
this method. In this case the default MIME type cannot be retrieved from the meta-data, but the
node may still have a default. This hidden default (if it exists) can be utilized by passing nul l as the
type parameter of DmtSession.setNodeType(String, String) or DmtSession.createLeafNode(String,
DmtData, String).

Returns the list of allowed MIME types for this node, starting with the default MIME type, or nul l if all types
are allowed

117.14.11.18 public double getMin()

□ Get the minimum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no lower limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long format. The returned limit has double type, as this
can be used to denote both integer and float limits with full precision. The actual minimum should
be the smallest integer, float or long value that is equal or larger than the returned value.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed minimum, or Double.MIN_VALUE if there is no lower limit defined or the node's format
is not one of the numeric formats integer, float, or long

117.14.11.19 public String[] getRawFormatNames()

□ Get the format names for any raw formats supported by the node. This method is only meaningful
if the list of supported formats returned by getFormat() contains DmtData.FORMAT_RAW_STRING
or DmtData.FORMAT_RAW_BINARY: it specifies precisely which raw format(s) are actually sup-
ported. If the node cannot contain data in one of the raw types, this method must return nul l .

The format names returned by this method are not checked by DmtAdmin, they are only for exter-
nal use, for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking
the value, its behavior should be consistent with this method.

Returns the allowed format name(s) of raw data stored by the node, or nul l if raw formats are not supported

117.14.11.20 public int getScope()

□ Return the scope of the node. Valid values are MetaNode.PERMANENT, MetaNode.DYNAMIC and
MetaNode.AUTOMATIC. Note that a permanent node is not the same as a node where the DELETE
operation is not allowed. Permanent nodes never can be deleted, whereas a non-deletable node can
disappear in a recursive DELETE operation issued on one of its parents. If no meta-data is provided
for a node, it can be assumed to be a dynamic node.

Returns PERMANENT for permanent nodes, AUTOMATIC for nodes that are automatically created, and DY-
NAMIC otherwise

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 576 OSGi Compendium Release 6

117.14.11.21 public String[] getValidNames()

□ Return an array of Strings if valid names are defined for the node, or nul l if no valid name list is de-
fined or if this piece of meta info is not supported. If no meta-data is provided for a node, all names
are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidName(String) for checking the name, its
behavior should be consistent with this method.

Returns the valid values for this node name, or nul l if not defined

117.14.11.22 public DmtData[] getValidValues()

□ Return an array of DmtData objects if valid values are defined for the node, or nul l otherwise. If no
meta-data is provided for a node, all values are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the valid values for this node, or nul l if not defined

117.14.11.23 public boolean isLeaf()

□ Check whether the node is a leaf node or an internal one.

Returns true if the node is a leaf node

117.14.11.24 public boolean isValidName(String name)

name the node name to check for validity

□ Checks whether the given name is a valid name for this node. This method can be used for example
to ensure that the node name is always one of a predefined set of valid names, or that it matches a
specific pattern. This method should be consistent with the values returned by getValidNames() (if
any), the DmtAdmin only calls this method for name validation.

This method may return true even if not all aspects of the name have been checked, expensive op-
erations (for example those that require external resources) need not be performed here. The actual
node creation may still indicate that the node name is invalid.

Returns fa lse if the specified name is found to be invalid for the node described by this meta-node, true oth-
erwise

117.14.11.25 public boolean isValidValue(DmtData value)

value the value to check for validity

□ Checks whether the given value is valid for this node. This method can be used to ensure that the
value has the correct format and range, that it is well formed, etc. This method should be consistent
with the constraints defined by the getFormat(), getValidValues(), getMin() and getMax() methods (if
applicable), as the Dmt Admin only calls this method for value validation.

This method may return true even if not all aspects of the value have been checked, expensive op-
erations (for example those that require external resources) need not be performed here. The actual
value setting method may still indicate that the value is invalid.

Returns fa lse if the specified value is found to be invalid for the node described by this meta-node, true other-
wise

117.14.11.26 public boolean isZeroOccurrenceAllowed()

□ Check whether zero occurrence of this node is valid. If no meta-data is returned for a node, zero oc-
currences are allowed.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 6 Page 577

Returns true if zero occurrence of this node is valid

117.14.12 public final class Uri
This class contains static utility methods to manipulate DMT URIs.

Syntax of valid DMT URIs:

• A slash (' / ' \u002F) is the separator of the node names. Slashes used in node name must therefore
be escaped using a backslash slash ("\/"). The backslash must be escaped with a double backslash
sequence. A backslash found must be ignored when it is not followed by a slash or backslash.

• The node name can be constructed using full Unicode character set (except the Supplementary
code, not being supported by CLDC/CDC). However, using the full Unicode character set for node
names is discouraged because the encoding in the underlying storage as well as the encoding
needed in communications can create significant performance and memory usage overhead.
Names that are restricted to the URI set [-a-zA-Z0-9_. !~*'()] are most efficient.

• URIs used in the DMT must be treated and interpreted as case sensitive.
• No End Slash: URI must not end with the delimiter slash (' / ' \u002F). This implies that the root

node must be denoted as "." and not ". /" .
• No parent denotation: URI must not be constructed using the character sequence ". . / " to traverse

the tree upwards.
• Single Root: The character sequence ". /" must not be used anywhere else but in the beginning of a

URI.

117.14.12.1 public static final String PATH_SEPARATOR = "/"

This constant stands for a string identifying the path separator in the DmTree ("/").

Since 2.0

117.14.12.2 public static final char PATH_SEPARATOR_CHAR = 47

This constant stands for a char identifying the path separator in the DmTree ('/').

Since 2.0

117.14.12.3 public static final String ROOT_NODE = "."

This constant stands for a string identifying the root of the DmTree (".").

Since 2.0

117.14.12.4 public static final char ROOT_NODE_CHAR = 46

This constant stands for a char identifying the root of the DmTree ('.').

Since 2.0

117.14.12.5 public static String decode(String nodeName)

nodeName the node name to be decoded

□ Decode the node name so that back slash and forward slash are unescaped from a back slash.

Returns the decoded node name

Since 2.0

117.14.12.6 public static String encode(String nodeName)

nodeName the node name to be encoded

□ Encode the node name so that back slash and forward slash are escaped with a back slash. This
method is the reverse of decode(String).

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 578 OSGi Compendium Release 6

Returns the encoded node name

Since 2.0

117.14.12.7 public static boolean isAbsoluteUri(String uri)

uri the URI to be checked, must not be nul l and must contain a valid URI

□ Checks whether the specified URI is an absolute URI. An absolute URI contains the complete path
to a node in the DMT starting from the DMT root (".").

Returns whether the specified URI is absolute

Throws NullPointerException– if the specified URI is nul l

I l legalArgumentException– if the specified URI is malformed

117.14.12.8 public static boolean isValidUri(String uri)

uri the URI to be validated

□ Checks whether the specified URI is valid. A URI is considered valid if it meets the following con-
straints:

• the URI is not nul l ;
• the URI follows the syntax defined for valid DMT URIs;

The exact definition of the length of a URI and its segments is given in the descriptions of the get-
MaxUriLength() and getMaxSegmentNameLength() methods.

Returns whether the specified URI is valid

117.14.12.9 public static String mangle(String nodeName)

nodeName the node name to be mangled (if necessary), must not be nul l or empty

□ Returns a node name that is valid for the tree operation methods, based on the given node name.
This transformation is not idempotent, so it must not be called with a parameter that is the result of
a previous mangle method call.

Node name mangling is needed in the following cases:

• if the name contains '/' or '\' characters

A node name that does not suffer from either of these problems is guaranteed to remain unchanged
by this method. Therefore the client may skip the mangling if the node name is known to be valid
(though it is always safe to call this method).

The method returns the normalized nodeName as described below. Invalid node names are normal-
ized in different ways, depending on the cause. If the name contains '/' or '\' characters, then these
are simply escaped by inserting an additional '\' before each occurrence. If the length of the name
does exceed the limit, the following mechanism is used to normalize it:

• the SHA 1 digest of the name is calculated
• the digest is encoded with the base 64 algorithm
• all '/' characters in the encoded digest are replaced with '_'
• trailing '=' signs are removed

Returns the normalized node name that is valid for tree operations

Throws NullPointerException– if nodeName is nul l

I l legalArgumentException– if nodeName is empty

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 6 Page 579

117.14.12.10 public static String[] toPath(String uri)

uri the URI to be split, must not be nul l

□ Split the specified URI along the path separator '/' characters and return an array of URI segments.
Special characters in the returned segments are escaped. The returned array may be empty if the
specified URI was empty.

Returns an array of URI segments created by splitting the specified URI

Throws NullPointerException– if the specified URI is nul l

I l legalArgumentException– if the specified URI is malformed

117.14.12.11 public static String toUri(String[] path)

path a possibly empty array of URI segments, must not be nul l

□ Construct a URI from the specified URI segments. The segments must already be mangled.

If the specified path is an empty array then an empty URI ("") is returned.

Returns the URI created from the specified segments

Throws NullPointerException– if the specified path or any of its segments are nul l

I l legalArgumentException– if the specified path contains too many or malformed segments or the
resulting URI is too long

117.15 org.osgi.service.dmt.spi

Device Management Tree SPI Package Version 2.0.

This package contains the interface classes that compose the Device Management SPI (Service
Provider Interface). These interfaces are implemented by DMT plugins; users of the DmtAdmin inter-
face do not interact directly with these.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.spi ; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.spi ; vers ion="[2.0,2.1)"

117.15.1 Summary

• DataPlugin - An implementation of this interface takes the responsibility of handling data re-
quests in a subtree of the DMT.

• ExecPlugin - An implementation of this interface takes the responsibility of handling node exe-
cute requests in a subtree of the DMT.

• MountPlugin - This interface can be optionally implemented by a DataPlugin or ExecPlugin in or-
der to get information about its absolute mount points in the overall DMT.

• MountPoint - This interface can be implemented to represent a single mount point.
• ReadableDataSession - Provides read-only access to the part of the tree handled by the plugin

that created this session.
• ReadWriteDataSession - Provides non-atomic read-write access to the part of the tree handled

by the plugin that created this session.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 580 OSGi Compendium Release 6

• TransactionalDataSession - Provides atomic read-write access to the part of the tree handled by
the plugin that created this session.

117.15.2 public interface DataPlugin
An implementation of this interface takes the responsibility of handling data requests in a subtree
of the DMT.

In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the data-
RootURIs registration parameter.

When the first reference in a session is made to a node handled by this plugin, the DmtAdmin calls
one of the open. . . methods to retrieve a plugin session object for processing the request. The called
method depends on the lock type of the current session. In case of openReadWriteSession(String[],
DmtSession) and openAtomicSession(String[], DmtSession), the plugin may return nul l to
indicate that the specified lock type is not supported. In this case the DmtAdmin may call
openReadOnlySession(String[], DmtSession) to start a read-only plugin session, which can be used as
long as there are no write operations on the nodes handled by this plugin.

The sessionRoot parameter of each method is a String array containing the segments of the URI
pointing to the root of the session. This is an absolute path, so the first segment is always ".". Special
characters appear escaped in the segments.

117.15.2.1 public static final String DATA_ROOT_URIS = "dataRootURIs"

The string to be used as key for the “dataRootURIs” property when an DataPlugin is registered.

Since 2.0

117.15.2.2 public static final String MOUNT_POINTS = "mountPoints"

The string to be used as key for the mount points property when a DataPlugin is registered with
mount points.

117.15.2.3 public TransactionalDataSession openAtomicSession(String[] sessionRoot,DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of an atomic read-write session when the first reference is
made within a DmtSession to a node which is handled by this plugin. Session information is given
as it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read-write operations in an atomic block, or nul l if the plugin
does not support atomic read-write sessions

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.2.4 public ReadableDataSession openReadOnlySession(String[] sessionRoot,DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is accessed in the current session, must not be nul l

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 6 Page 581

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of a read-only session when the first reference is made with-
in a DmtSession to a node which is handled by this plugin. Session information is given as it is
needed for sending alerts back from the plugin.

The plugin can assume that there are no writing sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read operations

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.2.5 public ReadWriteDataSession openReadWriteSession(String[] sessionRoot,DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of a non-atomic read-write session when the first reference
is made within a DmtSession to a node which is handled by this plugin. Session information is giv-
en as it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read-write operations, or nul l if the plugin does not support
non-atomic read-write sessions

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.3 public interface ExecPlugin
An implementation of this interface takes the responsibility of handling node execute requests in a
subtree of the DMT.

In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the exec-
RootURIs registration parameter.

117.15.3.1 public static final String EXEC_ROOT_URIS = "execRootURIs"

The string to be used as key for the “execRootURIs” property when an ExecPlugin is registered.

Since 2.0

117.15.3.2 public static final String MOUNT_POINTS = "mountPoints"

The string to be used as key for the mount points property when an Exec Plugin is registered with
mount points.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 582 OSGi Compendium Release 6

117.15.3.3 public void execute(DmtSession session,String[] nodePath,String correlator,String data) throws
DmtException

session a reference to the session in which the operation was issued, must not be nul l

nodePath the absolute path of the node to be executed, must not be nul l

correlator an identifier to associate this operation with any alerts sent in response to it, can be nul l

data the parameter of the execute operation, can be nul l

□ Execute the given node with the given data. This operation corresponds to the EXEC command in
OMA DM.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued. Session information is given as it is needed for
sending alerts back from the plugin. If a correlation ID is specified, it should be used as the correla-
tor parameter for alerts sent in response to this execute operation.

The nodePath parameter contains an array of path segments identifying the node to be executed in
the subtree of this plugin. This is an absolute path, so the first segment is always ".". Special charac-
ters appear escaped in the segments.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if the node does not exist
• METADATA_MISMATCH if the command failed because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

See Also DmtSession.execute(String, String), DmtSession.execute(String, String, String)

117.15.4 public interface MountPlugin
This interface can be optionally implemented by a DataPlugin or ExecPlugin in order to get informa-
tion about its absolute mount points in the overall DMT.

This is especially interesting, if the plugin is mapped to the tree as part of a list. In such a case the id
for this particular data plugin is determined by the DmtAdmin after the registration of the plugin
and therefore unknown to the plugin in advance.

This is not a service interface, the Data or Exec Plugin does not also have to register this interface as
a service, the Dmt Admin should use an instanceof to detect that a Plugin is also a Mount Plugin.

Since 2.0

117.15.4.1 public void mountPointAdded(MountPoint mountPoint)

mountPoint the newly mapped mount point

□ Provides the MountPoint describing the path where the plugin is mapped in the overall DMT. The
given mountPoint is withdrawn with the mountPointRemoved(MountPoint) method. Correspond-
ing mount points must compare equal and have an appropriate hash code.

117.15.4.2 public void mountPointRemoved(MountPoint mountPoint)

mountPoint The unmapped mount point array of MountPoint objects that have been removed from the mapping

□ Informs the plugin that the provided MountPoint objects have been removed from the mapping.
The given mountPoint is withdrawn method. Mount points must compare equal and have an appro-
priate hash code with the given Mount Point in mountPointAdded(MountPoint).

NOTE: attempts to invoke the postEvent method on the provided MountPoint must be ignored.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 6 Page 583

117.15.5 public interface MountPoint
This interface can be implemented to represent a single mount point.

It provides function to get the absolute mounted uri and a shortcut method to post events via the
DmtAdmin.

Since 2.0

117.15.5.1 public boolean equals(Object other)

□ This object must provide a suitable hash function such that a Mount Point given in
MountPlugin.mountPointAdded(MountPoint) is equal to the corresponding Mount Point in
MountPlugin.mountPointRemoved(MountPoint). Object.equals(Object)

117.15.5.2 public String[] getMountPath()

□ Provides the absolute mount path of this MountPoint

Returns the absolute mount path of this MountPoint

117.15.5.3 public int hashCode()

□ This object must provide a suitable hash function such that a Mount Point given in
MountPlugin.mountPointAdded(MountPoint) has the same hashCode as the corresponding Mount
Point in MountPlugin.mountPointRemoved(MountPoint). Object.hashCode()

117.15.5.4 public void postEvent(String topic,String[] relativeURIs,Dictionary properties)

topic the topic of the event to send. Valid values are:

• org/osgi/service/dmt/DmtEvent/ADDED if the change was caused by an add action
• org/osgi/service/dmt/DmtEvent/DELETED if the change was caused by a delete action
• org/osgi/service/dmt/DmtEvent/REPLACED if the change was caused by a replace action

Must not be nul l .

relativeURIs an array of affected node URI 's. All URI 's specified here are relative to the current MountPoint 's
mountPath. The value of this parameter determines the value of the event property
EVENT_PROPERTY_NODES . An empty array or nul l is permitted. In both cases the value of the
events EVENT_PROPERTY_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to be send
by the DMTAdmin. If the properties contain a key EVENT_PROPERTY_NODES , then the value of this
property is ignored and will be overwritten by relat iveURIs .

□ Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws I l legalArgumentException– if the topic has not one of the defined values

117.15.5.5 public void postEvent(String topic,String[] relativeURIs,String[] newRelativeURIs,Dictionary properties)

topic the topic of the event to send. Valid values are:

• org/osgi/service/dmt/DmtEvent/RENAMED if the change was caused by a rename action
• org/osgi/service/dmt/DmtEvent/COPIED if the change was caused by a copy action

Must not be nul l .

relativeURIs an array of affected node URI 's.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 584 OSGi Compendium Release 6

All URI 's specified here are relative to the current MountPoint 's mountPath. The value of this para-
meter determines the value of the event property EVENT_PROPERTY_NODES . An empty array or
nul l is permitted. In both cases the value of the events EVENT_PROPERTY_NODES property will be
set to an empty array.

newRelativeURIs an array of affected node URI 's. The value of this parameter determines the value of the event prop-
erty EVENT_PROPERTY_NEW_NODES . An empty array or nul l is permitted. In both cases the value of
the events EVENT_PROPERTY_NEW_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to
be send by the DMTAdmin. If the properties contain the keys EVENT_PROPERTY_NODES or
EVENT_PROPERTY_NEW_NODES , then the values of these properties are ignored and will be over-
written by relat iveURIs and newRelat iveURIs .

□ Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws I l legalArgumentException– if the topic has not one of the defined values

117.15.6 public interface ReadableDataSession
Provides read-only access to the part of the tree handled by the plugin that created this session.

Since the ReadWriteDataSession and TransactionalDataSession interfaces inherit from this inter-
face, some of the method descriptions do not apply for an instance that is only a ReadableDataSes-
sion . For example, the close() method description also contains information about its behavior
when invoked as part of a transactional session.

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first
segment is always ".". Special characters appear escaped in the segments.

Error handling

When a tree access command is called on the DmtAdmin service, it must perform an exten-
sive set of checks on the parameters and the authority of the caller before delegating the call
to a plugin. Therefore plugins can take certain circumstances for granted: that the path is
valid and is within the subtree of the plugin and the session, the command can be applied to
the given node (e.g. the target of getChi ldNodeNames is an interior node), etc. All errors de-
scribed by the error codes DmtException.INVALID_URI, DmtException.URI_TOO_LONG,
DmtException.PERMISSION_DENIED, DmtException.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode. If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to in-
dicate such discrepancies.

The DmtAdmin does not check that the targeted node exists before calling the plugin. It is the re-
sponsibility of the plugin to perform this check and to throw a DmtException.NODE_NOT_FOUND
if needed. In this case the DmtAdmin must pass through this exception to the caller of the corre-
sponding DmtSession method.

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.

117.15.6.1 public void close() throws DmtException

□ Closes a session. This method is always called when the session ends for any reason: if the session is
closed, if a fatal error occurs in any method, or if any error occurs during commit or rollback. In case
the session was invalidated due to an exception during commit or rollback, it is guaranteed that no

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 6 Page 585

methods are called on the plugin until it is closed. In case the session was invalidated due to a fatal
exception in one of the tree manipulation methods, only the rollback method is called before this
(and only in atomic sessions).

This method should not perform any data manipulation, only cleanup operations. In non-atom-
ic read-write sessions the data manipulation should be done instantly during each tree operation,
while in atomic sessions the DmtAdmin always calls TransactionalDataSession.commit() automati-
cally before the session is actually closed.

Throws DmtException– with the error code COMMAND_FAILED if the plugin failed to close for any reason

117.15.6.2 public String[] getChildNodeNames(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the list of children names of a node. The returned array contains the names - not the URIs - of
the immediate children nodes of the given node. The returned array may contain nul l entries, but
these are removed by the DmtAdmin before returning it to the client.

Returns the list of child node names as a string array or an empty string array if the node has no children

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.3 public MetaNode getMetaNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the meta data which describes a given node. Meta data can be only inspected, it can not be
changed.

Meta data support by plugins is an optional feature. It can be used, for example, when a data plugin
is implemented on top of a data store or another API that has their own metadata, such as a relation-
al database, in order to avoid metadata duplication and inconsistency. The meta data specific to the
plugin returned by this method is complemented by meta data from the DmtAdmin before return-
ing it to the client. If there are differences in the meta data elements known by the plugin and the
DmtAdmin then the plugin specific elements take precedence.

Note, that a node does not have to exist for having meta-data associated with it. This method may
provide meta-data for any node that can possibly exist in the tree (any node defined by the Manage-
ment Object provided by the plugin). For nodes that are not defined, a DmtException may be thrown
with the NODE_NOT_FOUND error code. To allow easier implementation of plugins that do not pro-
vide meta-data, it is allowed to return nul l for any node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 586 OSGi Compendium Release 6

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.4 public int getNodeSize(String[] nodePath) throws DmtException

nodePath the absolute path of the leaf node

□ Get the size of the data in a leaf node. The value to return depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Size property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtData.getSize()

117.15.6.5 public Date getNodeTimestamp(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the timestamp when the node was last modified.

Returns the timestamp of the last modification

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.6 public String getNodeTitle(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 6 Page 587

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.7 public String getNodeType(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of
an interior node is a URI identifying a DDF document; a nul l type means that there is no DDF docu-
ment overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.8 public DmtData getNodeValue(String[] nodePath) throws DmtException

nodePath the absolute path of the node to retrieve

□ Get the data contained in a leaf or interior node.

Returns the data of the leaf node, must not be nul l

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java

object values
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.9 public int getNodeVersion(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException– with the following possible error codes:

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 588 OSGi Compendium Release 6

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Version property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.10 public boolean isLeafNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.11 public boolean isNodeUri(String[] nodePath)

nodePath the absolute path to check

□ Check whether the specified path corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

117.15.6.12 public void nodeChanged(String[] nodePath) throws DmtException

nodePath the absolute path of the node that has changed

□ Notifies the plugin that the given node has changed outside the scope of the plugin, therefore the
Version and Timestamp properties must be updated (if supported). This method is needed because
the ACL property of a node is managed by the DmtAdmin instead of the plugin. The DmtAdmin
must call this method whenever the ACL property of a node changes.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

117.15.7 public interface ReadWriteDataSession
extends ReadableDataSession
Provides non-atomic read-write access to the part of the tree handled by the plugin that created this
session.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 6 Page 589

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first
segment is always ".". Special characters appear escaped in the segments.

Error handling

When a tree manipulation command is called on the DmtAdmin service, it must perform
an extensive set of checks on the parameters and the authority of the caller before delegat-
ing the call to a plugin. Therefore plugins can take certain circumstances for granted: that
the path is valid and is within the subtree of the plugin and the session, the command can
be applied to the given node (e.g. the target of setNodeValue is a leaf node), etc. All errors de-
scribed by the error codes DmtException.INVALID_URI, DmtException.URI_TOO_LONG,
DmtException.PERMISSION_DENIED, DmtException.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode. If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to in-
dicate such discrepancies.

The DmtAdmin does not check that the targeted node exists (or that it does not exist, in case of a
node creation) before calling the plugin. It is the responsibility of the plugin to perform this check
and to throw a DmtException.NODE_NOT_FOUND or DmtException.NODE_ALREADY_EXISTS if
needed. In this case the DmtAdmin must pass through this exception to the caller of the correspond-
ing DmtSession method.

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.

117.15.7.1 public void copy(String[] nodePath,String[] newNodePath,boolean recursive) throws DmtException

nodePath an absolute path specifying the node or the root of a subtree to be copied

newNodePath the absolute path of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

□ Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most prop-
erties managed by the plugin must also be copied, with the exception of the Timestamp and Version
properties.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node, or if newNodePath points to a
node that cannot exist in the tree

• NODE_ALREADY_EXISTS if newNodePath points to a node that already exists
• METADATA_MISMATCH if the node could not be copied because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the copy operation is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.copy(String, String, boolean)

117.15.7.2 public void createInteriorNode(String[] nodePath,String type) throws DmtException

nodePath the absolute path of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 590 OSGi Compendium Release 6

□ Create an interior node with a given type. The type of interior node, if specified, is a URI identifying
a DDF document.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createInteriorNode(String), DmtSession.createInteriorNode(String, String)

117.15.7.3 public void createLeafNode(String[] nodePath,DmtData value,String mimeType) throws DmtException

nodePath the absolute path of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

□ Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l ,
their default values must be taken.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
• NODE_ALREADY_EXISTS if nodePath points to a node that already exists
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createLeafNode(String), DmtSession.createLeafNode(String, DmtData),
DmtSession.createLeafNode(String, DmtData, String)

117.15.7.4 public void deleteNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node to delete

□ Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node
is deleted.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.deleteNode(String)

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 6 Page 591

117.15.7.5 public void renameNode(String[] nodePath,String newName) throws DmtException

nodePath the absolute path of the node to rename

newName the new name property of the node

□ Rename a node. This operation only changes the name of the node (updating the timestamp and
version properties if they are supported), the value and the other properties are not changed. The
new name of the node must be provided, the new path is constructed from the base of the old path
and the given name.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node, or if the new node is not defined
in the tree

• NODE_ALREADY_EXISTS if there already exists a sibling of nodePath with the name newName
• METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.renameNode(String, String)

117.15.7.6 public void setNodeTitle(String[] nodePath,String title) throws DmtException

nodePath the absolute path of the node

title the title text of the node, can be nul l

□ Set the title property of a node. The length of the title is guaranteed not to exceed the limit of 255
bytes in UTF-8 encoding.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the title could not be set because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeTitle(String, String)

117.15.7.7 public void setNodeType(String[] nodePath,String type) throws DmtException

nodePath the absolute path of the node

type the type of the node, can be nul l

□ Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, the nul l type should remove the reference (if any) to a DDF document overriding
the tree structure defined by the ancestors. For leaf nodes, it requests that the default MIME type is
used for the given node.

Throws DmtException– with the following possible error codes:

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 592 OSGi Compendium Release 6

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the type could not be set because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeType(String, String)

117.15.7.8 public void setNodeValue(String[] nodePath,DmtData data) throws DmtException

nodePath the absolute path of the node

data the data to be set, can be nul l

□ Set the value of a leaf or interior node. The format of the node is contained in the DmtData object.
For interior nodes, the format is FORMAT_NODE , while for leaf nodes this format is never used.

If the specified value is nul l , the default value must be taken; if there is no default value, a DmtEx-
ception with error code METADATA_MISMATCH must be thrown.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the value could not be set because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java

object values
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeValue(String, DmtData)

117.15.8 public interface TransactionalDataSession
extends ReadWriteDataSession
Provides atomic read-write access to the part of the tree handled by the plugin that created this ses-
sion.

117.15.8.1 public void commit() throws DmtException

□ Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

In many cases the tree is not the only way to manage a given part of the system. It may happen
that while modifying some nodes in an atomic session, the underlying settings are modified in par-
allel outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException– with the following possible error codes

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification

OSGi Compendium Release 6 Page 593

• METADATA_MISMATCH if the operation failed because of meta-data restrictions
• CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope

of the DMT to the nodes affected in the session's operations
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.8.2 public void rollback() throws DmtException

□ Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit and rollback calls.

Throws DmtException– with the error code ROLLBACK_FAILED in case the rollback did not succeed

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.16 org.osgi.service.dmt.notification

Device Management Tree Notification Package Version 2.0.

This package contains the public API of the Notification service. This service enables the send-
ing of asynchronous notifications to management servers. Permission classes are provided by the
org.osgi .service.dmt.security package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion="[2.0,2.1)"

117.16.1 Summary

• Alert Item - Immutable data structure carried in an alert (client initiated notification).
• Notif icat ionService - NotificationService enables sending asynchronous notifications to a man-

agement server.

117.16.2 public class AlertItem
Immutable data structure carried in an alert (client initiated notification). The Alert Item describes
details of various notifications that can be sent by the client, for example as alerts in the OMA DM
protocol. The use cases include the client sending a session request to the server (alert 1201), the
client notifying the server of completion of a software update operation (alert 1226) or sending back
results in response to an asynchronous EXEC command.

The data syntax and semantics varies widely between various alerts, so does the optionality of par-
ticular parameters of an alert item. If an item, such as source or type, is not defined, the correspond-
ing getter method returns nul l . For example, for alert 1201 (client-initiated session) all elements will
be nul l .

org.osgi.service.dmt.notification Dmt Admin Service Specification Version 2.0

Page 594 OSGi Compendium Release 6

The syntax used in Alert Item class corresponds to the OMA DM alert format. NotificationService
implementations on other management protocols should map these constructs to the underlying
protocol.

117.16.2.1 public AlertItem(String source,String type,String mark,DmtData data)

source the URI of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

□ Create an instance of the alert item. The constructor takes all possible data entries as parameters.
Any of these parameters can be nul l . The semantics of the parameters may be refined by the defini-
tion of a specific alert, identified by its alert code (see NotificationService.sendNotification(String,
int, String, AlertItem[])). In case of Generic Alerts for example (code 1226), the mark parameter con-
tains a severity string.

117.16.2.2 public AlertItem(String[] source,String type,String mark,DmtData data)

source the path of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

□ Create an instance of the alert item, specifying the source node URI as an array of path segments.
The constructor takes all possible data entries as parameters. Any of these parameters can be nul l .
The semantics of the parameters may be refined by the definition of a specific alert, identified by
its alert code (see NotificationService.sendNotification(String, int, String, AlertItem[])). In case of
Generic Alerts for example (code 1226), the mark parameter contains a severity string.

117.16.2.3 public DmtData getData()

□ Get the data associated with the alert item. The returned DmtData object contains the format and
the value of the data in the alert item. There might be no data associated with the alert item.

Returns the data associated with the alert item, or nul l if there is no data

117.16.2.4 public String getMark()

□ Get the mark parameter associated with the alert item. The interpretation of the
mark parameter depends on the alert being sent, as identified by the alert code in
NotificationService.sendNotification(String, int, String, AlertItem[]) . There might be no mark asso-
ciated with the alert item.

Returns the mark associated with the alert item, or nul l if there is no mark

117.16.2.5 public String getSource()

□ Get the node which is the source of the alert. There might be no source associated with the alert
item.

Returns the URI of the node which is the source of this alert, or nul l if there is no source

117.16.2.6 public String getType()

□ Get the type associated with the alert item. The type string is a MIME type or a URN that identifies
the type of the data in the alert item (returned by getData()). There might be no type associated with
the alert item.

Returns the type associated with the alert item, or nul l if there is no type

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification

OSGi Compendium Release 6 Page 595

117.16.2.7 public String toString()

□ Returns the string representation of this alert item. The returned string includes all parameters of
the alert item, and has the following format:

 AlertItem(<source>, <type>, <mark>, <data>)

The last parameter is the string representation of the data value. The format of the data is not explic-
itly included.

Returns the string representation of this alert item

117.16.3 public interface NotificationService
NotificationService enables sending asynchronous notifications to a management server. The im-
plementation of Notif icat ionService should register itself in the OSGi service registry as a service.

117.16.3.1 public void sendNotification(String principal,int code,String correlator,AlertItem[] items) throws
DmtException

principal the principal name which is the recipient of this notification, can be nul l

code the alert code, can be 0 if not needed

correlator optional field that contains the correlation identifier of an associated exec command, can be nul l if
not needed

items the data of the alert items carried in this alert, can be nul l or empty if not needed

□ Sends a notification to a named principal. It is the responsibility of the Notif ica-
t ionService to route the notification to the given principal using the registered
org.osgi.service.dmt.notification.spi.RemoteAlertSender services.

In remotely initiated sessions the principal name identifies the remote server that created the ses-
sion, this can be obtained using the session's getPrincipal call.

The principal name may be omitted if the client does not know the principal name. Even in this
case the routing might be possible if the Notification Service finds an appropriate default destina-
tion (for example if it is only connected to one protocol adapter, which is only connected to one
management server).

Since sending the notification and receiving acknowledgment for it is potentially a very time-con-
suming operation, notifications are sent asynchronously. This method should attempt to ensure
that the notification can be sent successfully, and should throw an exception if it detects any prob-
lems. If the method returns without error, the notification is accepted for sending and the imple-
mentation must make a best-effort attempt to deliver it.

In case the notification is an asynchronous response to a previous execute command, a correlation
identifier can be specified to provide the association between the execute and the notification.

In order to send a notification using this method, the caller must have an AlertPermission with a
target string matching the specified principal name. If the principal parameter is nul l (the principal
name is not known), the target of the AlertPermission must be "*".

When this method is called with null correlator, null or empty AlertItem array, and a 0 code as val-
ues, it should send a protocol specific default notification to initiate a management session. For ex-
ample, in case of OMA DM this is alert 1201 "Client Initiated Session". The principal parameter can
be used to determine the recipient of the session initiation request.

Throws DmtException– with the following possible error codes:

• UNAUTHORIZED when the remote server rejected the request due to insufficient authorization
• ALERT_NOT_ROUTED when the alert can not be routed to the given principal
• REMOTE_ERROR in case of communication problems between the device and the destination

org.osgi.service.dmt.notification.spi Dmt Admin Service Specification Version 2.0

Page 596 OSGi Compendium Release 6

• COMMAND_FAILED for unspecified errors encountered while attempting to complete the com-
mand

• FEATURE_NOT_SUPPORTED if the underlying management protocol doesn't support asynchro-
nous notifications

SecurityException– if the caller does not have the required AlertPermission with a target matching
the principal parameter, as described above

117.17 org.osgi.service.dmt.notification.spi

Device Management Tree Notification SPI Package Version 2.0.

This package contains the SPI (Service Provider Interface) of the Notification service. These inter-
faces are implemented by Protocol Adapters capable of delivering notifications to management
servers on a specific protocol. Users of the Notif icat ionService interface do not interact directly with
this package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion="[2.0,2.1)"

117.17.1 Summary

• RemoteAlertSender - The RemoteAlertSender can be used to send notifications to (remote) enti-
ties identified by principal names.

117.17.2 public interface RemoteAlertSender
The RemoteAlertSender can be used to send notifications to (remote) entities identi-
fied by principal names. This service is provided by Protocol Adapters, and is used by the
org.osgi.service.dmt.notification.NotificationService when sending alerts. Implementations of this
interface have to be able to connect and send alerts to one or more management servers in a proto-
col specific way.

The properties of the service registration should specify a list of destinations (principals) where the
service is capable of sending alerts. This can be done by providing a Str ing array of principal names
in the principals registration property. If this property is not registered, the service will be treated as
the default sender. The default alert sender is only used when a more specific alert sender cannot be
found.

The principals registration property is used when the
org.osgi.service.dmt.notification.NotificationService.sendNotification(String, int, String,
AlertItem[]) method is called, to find the proper RemoteAlertSender for the given destination. If
the caller does not specify a principal, the alert is only sent if the Notification Sender finds a default
alert sender, or if the choice is unambiguous for some other reason (for example if only one alert
sender is registered).

117.17.2.1 public void sendAlert(String principal,int code,String correlator,AlertItem[] items) throws Exception

principal the name identifying the server where the alert should be sent, can be nul l

code the alert code, can be 0 if not needed

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Compendium Release 6 Page 597

correlator the correlation identifier of an associated EXEC command, or nul l if there is no associated EXEC

items the data of the alert items carried in this alert, can be empty or nul l if no alert items are needed

□ Sends an alert to a server identified by its principal name. In case the alert is sent in response to a
previous execute command, a correlation identifier can be specified to provide the association be-
tween the execute and the alert.

The principal parameter specifies which server the alert should be sent to. This parameter can be
nul l if the client does not know the name of the destination. The alert should still be delivered if pos-
sible; for example if the alert sender is only connected to one destination.

Any exception thrown on this method will be propagated to the original sender of the event,
wrapped in a DmtException with the code REMOTE_ERROR .

Since sending the alert and receiving acknowledgment for it is potentially a very time-consuming
operation, alerts are sent asynchronously. This method should attempt to ensure that the alert can
be sent successfully, and should throw an exception if it detects any problems. If the method returns
without error, the alert is accepted for sending and the implementation must make a best-effort at-
tempt to deliver it.

Throws Exception– if the alert can not be sent to the server

117.18 org.osgi.service.dmt.security

Device Management Tree Security Package Version 2.0.

This package contains the permission classes used by the Device Management API in environments
that support the Java 2 security model.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.security; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.security; vers ion="[2.0,2.1)"

117.18.1 Summary

• AlertPermission - Indicates the callers authority to send alerts to management servers, identified
by their principal names.

• DmtPermission - Controls access to management objects in the Device Management Tree
(DMT).

• DmtPrincipalPermission - Indicates the callers authority to create DMT sessions on behalf of a
remote management server.

117.18.2 public class AlertPermission
extends Permission
Indicates the callers authority to send alerts to management servers, identified by their principal
names.

AlertPermission has a target string which controls the principal names where alerts can be sent. A
wildcard is allowed at the end of the target string, to allow sending alerts to any principal with a
name matching the given prefix. The "*" target means that alerts can be sent to any destination.

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0

Page 598 OSGi Compendium Release 6

117.18.2.1 public AlertPermission(String target)

target the name of a principal, can end with * to match any principal identifier with the given prefix

□ Creates a new AlertPermission object with its name set to the target string. Name must be non-null
and non-empty.

Throws NullPointerException– if name is nul l

I l legalArgumentException– if name is empty

117.18.2.2 public AlertPermission(String target,String actions)

target the name of the server, can end with * to match any server identifier with the given prefix

actions no actions defined, must be "*" for forward compatibility

□ Creates a new AlertPermission object using the 'canonical' two argument constructor. In this ver-
sion this class does not define any actions, the second argument of this constructor must be "*" so
that this class can later be extended in a backward compatible way.

Throws NullPointerException– if name or actions is nul l

I l legalArgumentException– if name is empty or actions is not "*"

117.18.2.3 public boolean equals(Object obj)

obj the object to compare to this AlertPermission instance

□ Checks whether the given object is equal to this AlertPermission instance. Two AlertPermission in-
stances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance

117.18.2.4 public String getActions()

□ Returns the action list (always * in the current version).

Returns the action string "*"

117.18.2.5 public int hashCode()

□ Returns the hash code for this permission object. If two AlertPermission objects are equal according
to the equals(Object) method, then calling this method on each of the two AlertPermission objects
must produce the same integer result.

Returns hash code for this permission object

117.18.2.6 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this AlertPermission object implies the specified permission. Another AlertPermission in-
stance is implied by this permission either if the target strings are identical, or if this target can be
made identical to the other target by replacing a trailing "*" with any string.

Returns true if this AlertPermission instance implies the specified permission

117.18.2.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing AlertPermission objects.

Returns the new PermissionCollection

117.18.3 public class DmtPermission
extends Permission
Controls access to management objects in the Device Management Tree (DMT). It is intended to
control local access to the DMT. DmtPermission target string identifies the management object URI

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Compendium Release 6 Page 599

and the action field lists the OMA DM commands that are permitted on the management object. Ex-
ample:

 DmtPermission("./OSGi/bundles", "Add,Replace,Get");

This means that owner of this permission can execute Add, Replace and Get commands on the ./
OSGi/bundles management object. It is possible to use wildcards in both the target and the actions
field. Wildcard in the target field means that the owner of the permission can access children nodes
of the target node. Example:

 DmtPermission("./OSGi/bundles/*", "Get");

This means that owner of this permission has Get access on every child node of ./OSGi/bundles. The
asterisk does not necessarily have to follow a '/' character. For example the ". /OSGi/a*" target match-
es the . /OSGi/appl icat ions subtree.

If wildcard is present in the actions field, all legal OMA DM commands are allowed on the designat-
ed nodes(s) by the owner of the permission. Action names are interpreted case-insensitively, but the
canonical action string returned by getActions() uses the forms defined by the action constants.

117.18.3.1 public static final String ADD = "Add"

Holders of DmtPermission with the Add action present can create new nodes in the DMT, that
is they are authorized to execute the createInteriorNode() and createLeafNode() methods of the
DmtSession. This action is also required for the copy() command, which needs to perform node cre-
ation operations (among others).

117.18.3.2 public static final String DELETE = "Delete"

Holders of DmtPermission with the Delete action present can delete nodes from the DMT, that is
they are authorized to execute the deleteNode() method of the DmtSession.

117.18.3.3 public static final String EXEC = "Exec"

Holders of DmtPermission with the Exec action present can execute nodes in the DMT, that is they
are authorized to call the execute() method of the DmtSession.

117.18.3.4 public static final String GET = "Get"

Holders of DmtPermission with the Get action present can query DMT node value or properties,
that is they are authorized to execute the isLeafNode(), getNodeAcl(), getEffectiveNodeAcl(), get-
MetaNode(), getNodeValue(), getChildNodeNames(), getNodeTitle(), getNodeVersion(), getNode-
TimeStamp(), getNodeSize() and getNodeType() methods of the DmtSession. This action is also re-
quired for the copy() command, which needs to perform node query operations (among others).

117.18.3.5 public static final String REPLACE = "Replace"

Holders of DmtPermission with the Replace action present can update DMT node value or proper-
ties, that is they are authorized to execute the setNodeAcl(), setNodeTitle(), setNodeValue(), setNode-
Type() and renameNode() methods of the DmtSession. This action is also be required for the copy()
command if the original node had a title property (which must be set in the new node).

117.18.3.6 public DmtPermission(String dmtUri,String actions)

dmtUri URI of the management object (or subtree)

actions OMA DM actions allowed

□ Creates a new DmtPermission object for the specified DMT URI with the specified actions. The giv-
en URI can be:

• "*" , which matches all valid (see Uri.isValidUri(String)) absolute URIs;

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0

Page 600 OSGi Compendium Release 6

• the prefix of an absolute URI followed by the * character (for example ". /OSGi/L*"), which
matches all valid absolute URIs beginning with the given prefix;

• a valid absolute URI, which matches itself.

Since the * character is itself a valid URI character, it can appear as the last character of a valid ab-
solute URI. To distinguish this case from using * as a wildcard, the * character at the end of the URI
must be escaped with the \ character. For example the URI ". /a*" matches ". /a" , ". /aa" , ". /a/b" etc.
while ". /a*" matches ". /a*" only.

The actions string must either be "*" to allow all actions, or it must contain a non-empty subset of
the valid actions, defined as constants in this class.

Throws NullPointerException– if any of the parameters are nul l

I l legalArgumentException– if any of the parameters are invalid

117.18.3.7 public boolean equals(Object obj)

obj the object to compare to this DmtPermission instance

□ Checks whether the given object is equal to this DmtPermission instance. Two DmtPermission in-
stances are equal if they have the same target string and the same action mask. The "*" action mask
is considered equal to a mask containing all actions.

Returns true if the parameter represents the same permissions as this instance

117.18.3.8 public String getActions()

□ Returns the String representation of the action list. The allowed actions are listed in the following
order: Add, Delete, Exec, Get, Replace. The wildcard character is not used in the returned string, even
if the class was created using the "*" wildcard.

Returns canonical action list for this permission object

117.18.3.9 public int hashCode()

□ Returns the hash code for this permission object. If two DmtPermission objects are equal according
to the equals(Object) method, then calling this method on each of the two DmtPermission objects
must produce the same integer result.

Returns hash code for this permission object

117.18.3.10 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this DmtPermission object "implies" the specified permission. This method returns fa lse if
and only if at least one of the following conditions are fulfilled for the specified permission:

• it is not a DmtPermission
• its set of actions contains an action not allowed by this permission
• the set of nodes defined by its path contains a node not defined by the path of this permission

Returns true if this DmtPermission instance implies the specified permission

117.18.3.11 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DmtPermission objects.

Returns the new PermissionCollection

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Compendium Release 6 Page 601

117.18.4 public class DmtPrincipalPermission
extends Permission
Indicates the callers authority to create DMT sessions on behalf of a remote management server. On-
ly protocol adapters communicating with management servers should be granted this permission.

DmtPrincipalPermission has a target string which controls the name of the principal on whose be-
half the protocol adapter can act. A wildcard is allowed at the end of the target string, to allow using
any principal name with the given prefix. The "*" target means the adapter can create a session in
the name of any principal.

117.18.4.1 public DmtPrincipalPermission(String target)

target the name of the principal, can end with * to match any principal with the given prefix

□ Creates a new DmtPrincipalPermission object with its name set to the target string. Name must be
non-null and non-empty.

Throws NullPointerException– if name is nul l

I l legalArgumentException– if name is empty

117.18.4.2 public DmtPrincipalPermission(String target,String actions)

target the name of the principal, can end with * to match any principal with the given prefix

actions no actions defined, must be "*" for forward compatibility

□ Creates a new DmtPrincipalPermission object using the 'canonical' two argument constructor. In
this version this class does not define any actions, the second argument of this constructor must be
"*" so that this class can later be extended in a backward compatible way.

Throws NullPointerException– if name or actions is nul l

I l legalArgumentException– if name is empty or actions is not "*"

117.18.4.3 public boolean equals(Object obj)

obj the object to compare to this DmtPrincipalPermission instance

□ Checks whether the given object is equal to this DmtPrincipalPermission instance. Two DmtPrinci-
palPermission instances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance

117.18.4.4 public String getActions()

□ Returns the action list (always * in the current version).

Returns the action string "*"

117.18.4.5 public int hashCode()

□ Returns the hash code for this permission object. If two DmtPrincipalPermission objects are equal
according to the equals(Object) method, then calling this method on each of the two DmtPrinci-
palPermission objects must produce the same integer result.

Returns hash code for this permission object

117.18.4.6 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this DmtPrincipalPermission object implies the specified permission. Another DmtPrin-
cipalPermission instance is implied by this permission either if the target strings are identical, or if
this target can be made identical to the other target by replacing a trailing "*" with any string.

References Dmt Admin Service Specification Version 2.0

Page 602 OSGi Compendium Release 6

Returns true if this DmtPrincipalPermission instance implies the specified permission

117.18.4.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DmtPrincipalPermission objects.

Returns the new PermissionCollection

117.19 References

[1] OMA DM-TND v1.2 draft
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-
TS-DM-TND-V1_2-20050615-C.zip

[2] OMA DM-RepPro v1.2 draft:
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-
DM-RepPro-V1_2_0-20050131-D.zip

[3] IETF RFC2578. Structure of Management Information
Version 2 (SMIv2)
http://www.ietf.org/rfc/rfc2578.txt

[4] Java™ Management Extensions Instrumentation and Agent Specification v1.2, October 2002,
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

[5] JSR 9 - Federated Management Architecture (FMA) Specification
Version 1.0, January 2000
http://www.jcp.org/en/jsr/detailid=9

[6] WBEM Profile Template, DSP1000
Status: Draft, Version 1.0 Preliminary, March 11, 2004
http://www.dmtf.org/standards/wbem

[7] SNMP
http://www.wtcs.org/snmp4tpc/snmp_rfc.htm#rfc

[8] RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[9] MIME Media Types
http://www.iana.org/assignments/media-types/

[10] RFC 3548 The Base16, Base32, and Base64 Data Encodings
http://www.ietf.org/rfc/rfc3548.txt

[11] Secure Hash Algorithm 1
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[12] TR-069 CPE WAN Management Protocol (CWMP)
Customer Premises Equipment Wide Area Network Management Protocol (CWMP)
http://en.wikipedia.org/wiki/TR-069

[13] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/

Monitor Admin Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 603

119 Monitor Admin Service
Specification

Version 1.0

119.1 Introduction
Applications and services may publish status information that management systems can receive to
monitor the status of the device. For example, a bundle could publish Status Variables for a number
key VM variables like the amount of available memory, battery power, number of SMSs sent, etc.

Status Variables can be used in performance management, fault management as well as in customer
relations management systems.

This specification outlines how a bundle can publish Status Variables and how administrative bun-
dles can discover Status Variables as well as read and reset their values.

119.1.1 Entities

• Status Variable - Application specific variables that a Status Variable Provider publishes with a
Monitorable service to the Monitor Admin service. Status Variable values can be long , double ,
boolean or Str ing objects.

• Status Variable Provider - A bundle which has a number of Status Variables that it publishes with
one or more Monitorable services.

• Monitor Admin - Provides unified and secure access to available Status Variables as well as provid-
ing a function to create monitoring jobs to monitor the Status Variables.

• Monitorable - A service that is registered by a Status Variable Provider to publish its Status Vari-
ables.

• Monitor Job - An event or time based query of a given set of Status Variables. When a monitored
Status Variable is updated, or the timer expires, the Monitor Admin must generate an event via
the Event Admin service.

• Local Administrator - A management application which uses the Monitor Admin service to query
Status Variables and to initiate monitoring jobs.

• Status Variable Name - The unique name, within a Monitorable service, of a Status Variable.
• Status Variable Path - A string that uniquely identifies the Status Variable in an OSGi environ-

ment. It consists of the PID of the Monitorable service and the Status Variable name separated by
a solidus (' / ' \u002F).

Monitorable Monitor Admin Service Specification Version 1.0

Page 604 OSGi Compendium Release 6

Figure 119.1 Monitor Admin Diagram org.osgi.service.monitor package

administrates

<<interface>>
Monitor
Admin

Monitor Admin
Impl

<<interface>>
Monitorable

Status Variable
Provider

<<interface>>
Monitoring
Job

Monitoring
Job Impl

Local
Administrator

<<class>>
Status
Variable1

1..n

0..n

1

<<interface>>
Monitor
Listener

tracks

notifies

1
0..n

1

1..n

119.1.2 Synopsis
A bundle that provides a Status Variable must register a Monitorable service. This service is used by
the Monitor Admin to get Status Variables and provide meta information to clients.

Clients can use the Monitor Admin to obtain Status Variables in a protected way. Clients can also
create Monitoring Jobs. These Monitoring Jobs send out notifications to the clients when the value
changes or periodically.

119.2 Monitorable
A Status Variable is a simple scalar that represents some key indicator of the environment, for ex-
ample amount of available memory. Status Variables are further discussed in Status Variable on page
606.

A Status Variable Provider must therefore register a Monitorable service with the service property
service.pid set to a PID. This PID must have the following format:

monitorable-pid ::= symbolic-name // See General Syntax Definitions in Core

The length of this PID must fit in 32 bytes when UTF-8 encoded.

Monitorable services are tracked by the Monitor Admin service. The Monitor Admin service can
provide the local administrator unified access to all the Status Variables in the system. This is depict-
ed in Figure 119.2.

Figure 119.2 Access to Status Variables

<<interface>>
Monitor
Admin

Local
Administrator

Monitorable0..n 0..n0..n 1

name

The main responsibility of a Monitorable service is therefore to provide access to its own Status Vari-
ables as well as providing information about those Status Variables.

The Monitorable interface contains the following methods:

Monitor Admin Service Specification Version 1.0 Monitorable

OSGi Compendium Release 6 Page 605

• getStatusVariableNames() - Provides a list of the Status Variable names. The status variables can
subsequently be acquired with the getStatusVariable(Str ing) method.

• getStatusVariable(Str ing) - Given the name of a Status Variable, return the StatusVariable object,
if exists.

• resetStatusVariable(Str ing) - Reset the given Status Variable if there is a reasonable reset value.
If the Status Variable could not be reset, fa lse is returned. Otherwise true is returned. Resetting a
Status Variable triggers a Monitor Event, as described in Monitoring events on page 611.

• notif iesOnChange(Str ing) - Tells whether the given Status Variable sends a notification when
its value changes or when it is reset. This is further discussed in Providing Notifications on page
605.

• getDescr ipt ion(Str ing) - Provide a non-localized description of the given Status Variable.

119.2.1 Providing Notifications
If a Monitorable service returns true for the notif iesOnChange(Str ing) method then it must notify
all Monitor Listener services when the related Status Variable changes. These Status Variables are
called dynamic Status Variables.

After the value of a dynamic Status Variable is changed, the Monitorable service must get the single-
ton Monitor Listener service and call the updated(Str ing,StatusVariable) method. The Monitor Ad-
min service must use this notification mechanism to send out a generic event via the Event Admin
service, as described in Monitoring events on page 611. The Monitor Admin can also use this infor-
mation to signal a remote server in a proprietary way. Figure 119.3 shows a sequence diagram for
such an update. This indirection is required for security reasons.

Figure 119.3 Notification on Update

<<service>>
MonitorListener

<<service>>
Monitorable

update(StatusVariable)
sendEvent

<<service>>
Event Admin

<<service>>
Event Handler

local administratorStatus Variable Provider Monitor Admin impl

handleEvent(event)

async

119.2.2 Example Monitorable Implementation
The following code shows how a bundle could provide a Status Variable that contains the current
amount of memory.

public class MemoryMonitor
 implements BundleActivator, Monitorable {

 public void start(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put("service.pid", "com.acme.foo");
 context.registerService(
 Monitorable.class.getName(), this, ht);
 }

 public void stop(BundleContext context) {}

 public String[] getStatusVariableNames() {
 return new String[] {"memory.free"};

Status Variable Monitor Admin Service Specification Version 1.0

Page 606 OSGi Compendium Release 6

 }

 public StatusVariable getStatusVariable(String name)
 throws IllegalArgumentException {
 if ("memory.free".equals(name))
 return
 new StatusVariable(name,
 StatusVariable.CM_GAUGE,
 Runtime.getRuntime().freeMemory());
 else
 throw new IllegalArgumentException(
 "Invalid Status Variable name " + name);
 }

 public boolean notifiesOnChange(String name)
 throws IllegalArgumentException {
 return false;
 }

 public boolean resetStatusVariable(String name)
 throws IllegalArgumentException {
 return false;
 }

 public String getDescription(String name)
 throws IllegalArgumentException {
 if ("memory.free".equals(name))
 return "current amount of free memory in the JVM";
 else
 throw new IllegalArgumentException(
 "Invalid Status Variable name " + name);
 }
}

119.3 Status Variable
A Status Variable is a simple value that is published from a Monitorable service. A Status Variable
has a name, a value, a timestamp, and a collection method. Additionally, the Monitorable service
that publishes the Status Variable can be used to reset the Status Variable and provide a description
of it.

The OSGi Specification provides an implementation class for a Status Variable. This class is final
and immutable, it must be treated as a value.

119.3.1 Name
Each Status Variable must have a unique identity in the scope of a Monitorable service. This identity
can be obtained with the getID() method. A Status Variable identity must have the following syntax:

status-variable-name ::= symbolic-name // See General Syntax Definitions in Core

The name should be descriptive and concise. Additionally, it has the following limitations:

• The length must be limited to 32 characters in UTF-8 encoded form.
• It must be unique in the scope of the Monitorable service.

Monitor Admin Service Specification Version 1.0 Using Monitor Admin Service

OSGi Compendium Release 6 Page 607

119.3.2 Value
A Status Variable provides the type of its value with the getType() method. The return value of this
method can take the following values:

• TYPE_BOOLEAN - A boolean value. The associated method to retrieve the value is getBoolean() .
The corresponding constructor is StatusVariable(Str ing, int ,boolean) .

• TYPE_INTEGER - A signed numeric value that fits in a Java int type. The associated method to re-
trieve the value is getInteger() . The corresponding constructor is StatusVariable(Str ing, int , int) .

• TYPE_FLOAT - A floating point value that fits in a Java f loat type. The associated method to re-
trieve the value is getFloat() . The corresponding constructor is StatusVariable(Str ing, int ,f loat) .

• TYPE_STRING - A Str ing object. The associated method to retrieve the value is getStr ing() .The
corresponding constructor is StatusVariable(Str ing, int ,Str ing)

If a method is called that does not match the return value of the getType() method, the Status Vari-
able must throw an Illegal State Exception.

119.3.3 Time Stamp
The time stamp must reflect the time that the measurement was taken from the standard Java
System.currentTimeMil l is method. The time stamp can be obtained with the getTimeStamp()
method.

119.3.4 Collection Method
This specification is compatible with terminology used in [2] ETSI Performance Management [TS 132
403]. An important concept of a Status Variable is the way it was collected, this is called the collec-
tion method. The collection method is independent of how (if and when) the reporting of the Sta-
tus Variables happens. The collection method is part of the Status Variable's definition and cannot
be changed. The collection method of a Status Variable can be obtained with the getCol lect ion-
Method() method.

The ETSI document defines the following collection methods:

• CM_CC - A numeric counter whose value can only increase, except when the Status Variable is
reset. An example of a CC is a variable which stores the number of incoming SMSs handled by
the protocol driver since it was started or reset.

• CM_GAUGE - A numeric counter whose value can vary up or down. An example of a GAUGE is a
variable which stores the current battery level percentage. The value of the Status Variable must
be the absolute value not a difference.

• CM_DER - (Discrete Event Registration) A status variable (numeric or string) which can change
when a certain event happens in the system one or more times. The event which fires the change
of the Status Variable is typically some event like the arrival of an SMS. The definition of a DER
counter contains an integer N which means how many events it takes for the counter to change
its value. The most usual value for N is 1, but if N is greater than 1 then it means that the variable
changes after each Nth event.

• CM_SI - (Status Inspect) The most general status variable which can be a string or numeric. An
example of an SI is a string variable which contains the name of the currently logged in user.

119.4 Using Monitor Admin Service
The Monitor Admin service is a singleton service that provides unified access to the Status Variables
in the system. It provides security checking, resolution of the Status Variable paths and scheduling
of periodic or event based Monitoring Jobs.

Using Monitor Admin Service Monitor Admin Service Specification Version 1.0

Page 608 OSGi Compendium Release 6

119.4.1 Discovery
The Monitor Admin manages the status variables from any registered Monitorable services. The
Monitorable services can be discovered using the getMonitorableNames() method. This returns a
sorted list of PIDs, potentially empty. This list can contain the PIDs of Monitorable services where
the caller has no access to any of its Status Variables.

119.4.2 Status Variable Administration
The Monitor Admin provides the following methods for manipulating the Status Variables:

• getStatusVariable(Str ing) - Return a Status Variable given a Status Variable path. A path must
have the following syntax:

status-variable-path ::= pid '/' status-variable-name

• getStatusVariableNames(Str ing) - Returns the Status Variable names given the PID of a Moni-
torable service.

• getStatusVariables(Str ing) - Returns an array of Status Variable objects given the PID of a Moni-
torable service.

• resetStatusVariable(Str ing) - Reset the value of a Status Variable.

Figure 119.4 is the simple sequence diagram for getting a Status Variable from the Monitor Ad-
min service. The caller requests a Status Variable from the Monitor Admin service with the
getStatusVariable(Str ing) method. Its sole argument specifies a path to the Status Variable. For ex-
ample:

com.acme.foo/memory.free

The Monitor Admin service finds the associated Monitorable service by looking for a Monitorable
service with the given PID (com.acme.foo). It will then query the Monitorable service for the Status
Variable memory.free , which is then subsequently returned to the caller.

Figure 119.4 Status Variable request through the Monitor Admin service

<<service>>
Monitor
Admin

Local
Administrator

<<service>>
Monitorable

getStatusVariable(path)

getStatusVariable(name)

use path to find
appropriate
Monitorable service

119.4.3 Notifications
The Monitor Admin service can receive events from Monitorable services as described in Providing
Notifications on page 605. The Monitor Admin Service can control the sending of events with the
switchEvents(Str ing,boolean) method. The argument is a path to a Status Variable, with a possible
wildcard character in place of the Status Variable or Monitorable PID. For example:

/
com.acme.sv.carots/*
*/received.packets

Monitor Admin Service Specification Version 1.0 Using Monitor Admin Service

OSGi Compendium Release 6 Page 609

The use of wildcards is the same as described in Monitor Permission on page 611 The Monitor Ad-
min service must expand this wildcard to the set of Status Variable names at the time the events are
switched. If the boolean argument is set to fa lse , no more events will be sent to the Event Admin ser-
vice.

The default state is sending events. The state of sending events must not be persistent, switching the
events off must not be remembered between system restarts.

119.4.4 Monitoring jobs
A local administrator can create a monitoring job. A monitoring job consists of a set of Status Vari-
ables and reporting rules. According to these rules, the Monitor Admin service will send events to the
Event Admin service. The same Status Variable can participate in any number of monitoring jobs.

There are two types of monitoring jobs, each created with a different method. One is based on peri-
odic measurements and one based on changes in the value of the Status Variable. The results of the
measurements are sent to the Event Admin service, these events are described in Monitoring events
on page 611.

• startScheduledJob(Str ing,Str ing[] , int , int) - Start a job based on a periodic measurement. Both
the period of measurements as well as the number of measurements can be given.

• start Job(Str ing,Str ing[] , int) - Start a job based on notifications. The load on the Event Admin ser-
vice can be minimized by specifying that only every n-th measurement must be reported. Status
Variables used with this monitoring job must support notifications, otherwise an Illegal Argu-
ment Exception must be thrown.

Both monitoring jobs take an identification Str ing object as first argument. This identification is
placed in the properties of the Event object under the key: l istener. id . The initiator of the monitor-
ing job should set this id to a unique value and so that it can discriminate the monitoring events
that are related to his monitoring job.

The second argument is a list of paths to Status Variables.

The difference between the Time based monitoring and event based monitoring is further elucidat-
ed in Figure 119.5.

Figure 119.5 Time and event based monitoring job

<<service>>
Monitor
Admin

<<service>>
Monitorable

sendEvent

<<service>>
Event Admin

<<service>>
Event
Handler

local adminStatus Variable Provider

channelEvent(event)

async

time

channelEvent(event)

startScheduledJob(...)

getStatusVariable()

update()
sendEvent()

channelEvent(event)

async

channelEvent(event)

startJob(...)

stop (via MonitorJob)

Using Monitor Admin Service Monitor Admin Service Specification Version 1.0

Page 610 OSGi Compendium Release 6

Monitoring jobs can be started also remotely by a management server through Device Management
Tree operations. The monitoring job therefore has a boolean method which tells whether it was
started locally or remotely: isLocal() .

A monitoring job is transient, it must not survive a system restart. A monitoring job can be explicit-
ly stopped with the stop() method.

119.4.4.1 Example Monitoring Job

For example, a bundle is interested in working with periodic samples of the com.acme.foo/
memory.free Status Variable. It should therefore register an Event Handler with the correct topic and
a filter on its Event Handler service. It then starts a monitoring job that is stopped in the BundleActi-
vator stop method.

public class MemoryListener
 implements BundleActivator, EventHandler {
 MonitoringJob job;

 public void start(BundleContext context) throws Exception {
 Hashtable p = new Hashtable();
 p.put(EventConstants.EVENT_TOPIC,
 new String[] { "org/osgi/service/monitor" });
 p.put(EventConstants.EVENT_FILTER,
 "(mon.listener.id=foo.bar)");

 context.registerService(
 EventHandler.class.getName(),this,p);

 job = getMonitorAdmin().startScheduledJob(
 "foo.bar", // listener.id
 new String[] {"com.acme.foo/memory.free"},
 15, // seconds
 0 // Forever
);
 }

 public void stop(BundleContext ctxt) throws Exception {
 job.stop();
 }

 public void handleEvent(Event event) {
 String value = (String) event.getProperty(
 "mon.statusvariable.value");
 String name = (String) event.getProperty(
 "mon.statusvariable.name");
 System.out.println("Mon: " name + "=" value);
 }
 ...
}

After starting the job, the Monitor Admin queries the com.acme.foo/memory.free Status Variable
every 15 seconds. At each acquisition, the Monitor Admin sends a org/osgi/service/monitor event to
the Event Admin service. The event properties contain the mon.l istener. id set to foo.bar . The Event
Admin service updates the Event Handler service that is registered by the example bundle. After re-
ceiving the event, the bundle can get the updated value of the Status Variable from the event proper-
ties.

Monitor Admin Service Specification Version 1.0 Monitoring events

OSGi Compendium Release 6 Page 611

The events are therefore repeated once every 15 seconds until the bundle stops.

119.5 Monitoring events
The Monitor Admin must send an asynchronous event to the Event Admin service when:

• A Monitorable reported the change on the Monitor Listener service
• The Status Variable was explicitly reset to its starting value with the resetStatusVariable(Str ing)

method.
• The Status Variable is queried from within a scheduled monitoring job by the Monitor Admin

service.

Event sending in the first two cases can be switched on and off, but in the case of monitoring jobs, it
cannot be disabled. Monitoring events must be sent asynchronously.

The topic of the event must be:

org/osgi/service/monitor/MonitorEvent

The properties of the event are:

• mon.monitorable.pid - (Str ing) The unique identifier of the Monitorable service which the
changed Status Variable.

• mon.statusvar iable.name - (Str ing) The name of the changed status variable.
• mon.l istener. id - (Str ing|Str ing[]) Name or names representing the initiators of any monitoring

jobs in which the Status Variable was included. Listeners can use this field for filtering, so that
they receive only events related to their own jobs. If the event is fired because of a notification on
the MonitorListener interface of the Monitor Admin service (and not because of an measurement
taken within a monitoring job) then this property is absent.

• mon.statusvar iable.value - (String) The value of the status variable in string format. The follow-
ing methods must be used to format the Str ing object.
• long - Long.toStr ing(long) .
• double - Double.toStr ing(double) .
• boolean - Boolean.toStr ing(boolean) .
• Str ing - No conversion

119.6 Security

119.6.1 Monitor Permission
Registering Monitorable services, querying and resetting Status Variables and starting monitoring
jobs requires a Monitor Permission. If the entity issuing the operation does not have this permission,
a Security Exception must be thrown.

Unless noted otherwise, the target of the Monitor Permission identifies the Status Variable paths. It
has the following format:

widldcard-path ::= wildcard-pid '/' wildcard-name
wildcard-pid ::= pid '*' | '*'
wildcard-name ::= unique-id '*' | '*'

Example:

/

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0

Page 612 OSGi Compendium Release 6

com.acme.*/*
*/count
com.acme.foo/memory.free

The actions that can be used are:

• READ -Reading of the value of the given Status Variables.
• RESET - Resetting the given Status Variables.
• PUBLISH - Publishing a Status Variable. This does not forbid the Status Variable Provider to regis-

ter the Monitorable. However, the Monitor Admin must not show a Status Variables to any caller
when the Status Variable Provider has no permission to publish that specific Status Variable.

• STARTJOB - Initiating monitoring jobs involving the given Status Variables A minimal sampling
interval can be optionally defined in the following form:

startjob:n

The n is the allowed minimal value of the schedule parameter of time based monitoring jobs. If n
is not specified or zero then there is no lower limit for the minimum sampling interval specified.
The purpose of the minimum sampling interval is to prevent the system from flooding. The tar-
get specifies the Status Variables that can be monitored.

• SWITCHEVENTS - Switch event sending on or off for the notification of value changes for the giv-
en Status Variables.

The permissions must all be checked by the Monitor Admin.

Further, the different actors must have the permissions as specified in the following table to operate
correctly.

Table 119.1 Permission for the different actors

ServicePermission Status Variable Provider Local Admin Monitor Admin
MonitorAdmin - GET REGISTER
UpdateListener GET - REGISTER
Monitorable REGISTER - GET

119.7 org.osgi.service.monitor

Monitor Admin Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.monitor ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.monitor ; vers ion="[1.0,1.1)"

119.7.1 Summary

• Monitorable - A Monitorable can provide information about itself in the form of StatusVari-
ables .

• MonitorAdmin - The MonitorAdmin service is a singleton service that handles StatusVariable
query requests and measurement job control requests.

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor

OSGi Compendium Release 6 Page 613

• Monitor ingJob - A Monitoring Job is a request for scheduled or event based notifications on up-
date of a set of StatusVariables.

• MonitorListener - The MonitorListener is used by Monitorable services to send notifications
when a StatusVariable value is changed.

• MonitorPermission - Indicates the callers authority to publish, read or reset StatusVariables, to
switch event sending on or off or to start monitoring jobs.

• StatusVariable - A StatusVariable object represents the value of a status variable taken with a
certain collection method at a certain point of time.

119.7.2 public interface Monitorable
A Monitorable can provide information about itself in the form of StatusVariables . Instances of this
interface should register themselves at the OSGi Service Registry. The MonitorAdmin listens to the
registration of Monitorable services, and makes the information they provide available also through
the Device Management Tree (DMT) for remote access.

The monitorable service is identified by its PID string which must be a non- nul l , non-empty string
that conforms to the "symbolic-name" definition in the OSGi core specification. This means that on-
ly the characters [-_.a-zA-Z0-9] may be used. The length of the PID must not exceed 32 characters.

A Monitorable may optionally support sending notifications when the status of its StatusVariables
change. Support for change notifications can be defined per StatusVariable .

Publishing StatusVariables requires the presence of the MonitorPermission with the publ ish action
string. This permission, however, is not checked during registration of the Monitorable service. In-
stead, the MonitorAdmin implementation must make sure that when a StatusVariable is queried, it
is shown only if the Monitorable is authorized to publish the given StatusVariable .

119.7.2.1 public String getDescription(String id) throws IllegalArgumentException

id the identifier of the StatusVariable , cannot be nul l

□ Returns a human readable description of a StatusVariable . This can be used by management sys-
tems on their GUI. The nul l return value is allowed if there is no description for the specified Status
Variable.

The given identifier does not contain the Monitorable PID, i.e. it specifies the name and not the path
of the Status Variable.

Returns the human readable description of this StatusVariable or nul l if it is not set

Throws I l legalArgumentException– if id points to a non-existing StatusVariable

119.7.2.2 public StatusVariable getStatusVariable(String id) throws IllegalArgumentException

id the identifier of the StatusVariable , cannot be nul l

□ Returns the StatusVariable object addressed by its identifier. The StatusVariable will hold the value
taken at the time of this method call.

The given identifier does not contain the Monitorable PID, i.e. it specifies the name and not the path
of the Status Variable.

Returns the StatusVariable object

Throws I l legalArgumentException– if id points to a non-existing StatusVariable

119.7.2.3 public String[] getStatusVariableNames()

□ Returns the list of StatusVariable identifiers published by this Monitorable . A StatusVariable name
is unique within the scope of a Monitorable . The array contains the elements in no particular order.
The returned value must not be nul l .

Returns the StatusVariable identifiers published by this object, or an empty array if none are published

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0

Page 614 OSGi Compendium Release 6

119.7.2.4 public boolean notifiesOnChange(String id) throws IllegalArgumentException

id the identifier of the StatusVariable , cannot be nul l

□ Tells whether the StatusVariable provider is able to send instant notifications when the given Sta-
tusVariable changes. If the Monitorable supports sending change updates it must notify the Mon-
itorListener when the value of the StatusVariable changes. The Monitorable finds the MonitorLis-
tener service through the Service Registry.

The given identifier does not contain the Monitorable PID, i.e. it specifies the name and not the path
of the Status Variable.

Returns true if the Monitorable can send notification when the given StatusVariable changes, fa lse other-
wise

Throws I l legalArgumentException– if id points to a non-existing StatusVariable

119.7.2.5 public boolean resetStatusVariable(String id) throws IllegalArgumentException

id the identifier of the StatusVariable , cannot be nul l

□ Issues a request to reset a given StatusVariable . Depending on the semantics of the actual Status
Variable this call may or may not succeed: it makes sense to reset a counter to its starting value, but
for example a StatusVariable of type Str ing might not have a meaningful default value. Note that
for numeric StatusVariables the starting value may not necessarily be 0. Resetting a StatusVariable
must trigger a monitor event.

The given identifier does not contain the Monitorable PID, i.e. it specifies the name and not the path
of the Status Variable.

Returns true if the Monitorable could successfully reset the given StatusVariable , fa lse otherwise

Throws I l legalArgumentException– if id points to a non-existing StatusVariable

119.7.3 public interface MonitorAdmin
The MonitorAdmin service is a singleton service that handles StatusVariable query requests and
measurement job control requests.

Note that an alternative but not recommended way of obtaining StatusVariables is that applications
having the required ServicePermissions can query the list of Monitorable services from the service
registry and then query the list of StatusVariable names from the Monitorable services. This way
all services which publish StatusVariables will be returned regardless of whether they do or do not
hold the necessary MonitorPermission for publishing StatusVariables. By using the MonitorAdmin
to obtain the StatusVariables it is guaranteed that only those Monitorable services will be accessed
who are authorized to publish StatusVariables. It is the responsibility of the MonitorAdmin imple-
mentation to check the required permissions and show only those variables which pass this check.

The events posted by MonitorAdmin contain the following properties:

• mon.monitorable.pid : The identifier of the Monitorable
• mon.statusvar iable.name : The identifier of the StatusVariable within the given Monitorable
• mon.statusvar iable.value : The value of the StatusVariable , represented as a Str ing
• mon.l istener. id : The identifier of the initiator of the monitoring job (only present if the event

was generated due to a monitoring job)

Most of the methods require either a Monitorable ID or a Status Variable path parameter, the lat-
ter in [Monitorable_ID]/[StatusVariable_ID] format. These parameters must not be nul l , and the IDs
they contain must conform to their respective definitions in Monitorable and StatusVariable. If any
of the restrictions are violated, the method must throw an I l legalArgumentException .

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor

OSGi Compendium Release 6 Page 615

119.7.3.1 public String getDescription(String path) throws IllegalArgumentException, SecurityException

path the full path of the StatusVariable in [Monitorable_ID]/[StatusVariable_ID] format

□ Returns a human readable description of the given StatusVariable . The nul l value may be returned if
there is no description for the given StatusVariable .

The entity that queries a StatusVariable needs to hold MonitorPermission for the given target with
the read action present.

Returns the human readable description of this StatusVariable or nul l if it is not set

Throws I l legalArgumentException– if path is nul l or otherwise invalid, or points to a non-existing Status-
Variable

SecurityException– if the caller does not hold a MonitorPermission for the StatusVariable specified
by path with the read action present

119.7.3.2 public String[] getMonitorableNames()

□ Returns the names of the Monitorable services that are currently registered. The Monitorable in-
stances are not accessible through the MonitorAdmin , so that requests to individual status variables
can be filtered with respect to the publishing rights of the Monitorable and the reading rights of the
caller.

The returned array contains the names in alphabetical order. It cannot be nul l , an empty array is re-
turned if no Monitorable services are registered.

Returns the array of Monitorable names

119.7.3.3 public MonitoringJob[] getRunningJobs()

□ Returns the list of currently running Monitor ingJobs. Jobs are only visible to callers that have the
necessary permissions: to receive a Monitoring Job in the returned list, the caller must hold all per-
missions required for starting the job. This means that if the caller does not have MonitorPermission
with the proper start job action for all the Status Variables monitored by a job, then that job will be
silently omitted from the results.

The returned array cannot be nul l , an empty array is returned if there are no running jobs visible to
the caller at the time of the call.

Returns the list of running jobs visible to the caller

119.7.3.4 public StatusVariable getStatusVariable(String path) throws IllegalArgumentException, SecurityException

path the full path of the StatusVariable in [Monitorable_ID]/[StatusVariable_ID] format

□ Returns a StatusVariable addressed by its full path. The entity which queries a StatusVariable needs
to hold MonitorPermission for the given target with the read action present.

Returns the StatusVariable object

Throws I l legalArgumentException– if path is nul l or otherwise invalid, or points to a non-existing Status-
Variable

SecurityException– if the caller does not hold a MonitorPermission for the StatusVariable specified
by path with the read action present

119.7.3.5 public String[] getStatusVariableNames(String monitorableId) throws IllegalArgumentException

monitorableId the identifier of a Monitorable instance

□ Returns the list of StatusVariable names published by a Monitorable instance. Only those status
variables are listed where the following two conditions are met:

• the specified Monitorable holds a MonitorPermission for the status variable with the publ ish ac-
tion present

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0

Page 616 OSGi Compendium Release 6

• the caller holds a MonitorPermission for the status variable with the read action present

All other status variables are silently ignored, their names are omitted from the list.

The returned array does not contain duplicates, and the elements are in alphabetical order. It cannot
be nul l , an empty array is returned if no (authorized and readable) Status Variables are provided by
the given Monitorable .

Returns a list of StatusVariable objects names published by the specified Monitorable

Throws I l legalArgumentException– if monitorableId is nul l or otherwise invalid, or points to a non-existing
Monitorable

119.7.3.6 public StatusVariable[] getStatusVariables(String monitorableId) throws IllegalArgumentException

monitorableId the identifier of a Monitorable instance

□ Returns the StatusVariable objects published by a Monitorable instance. The StatusVariables will
hold the values taken at the time of this method call. Only those status variables are returned where
the following two conditions are met:

• the specified Monitorable holds a MonitorPermission for the status variable with the publ ish ac-
tion present

• the caller holds a MonitorPermission for the status variable with the read action present

All other status variables are silently ignored, they are omitted from the result.

The elements in the returned array are in no particular order. The return value cannot be nul l , an
empty array is returned if no (authorized and readable) Status Variables are provided by the given
Monitorable .

Returns a list of StatusVariable objects published by the specified Monitorable

Throws I l legalArgumentException– if monitorableId is nul l or otherwise invalid, or points to a non-existing
Monitorable

119.7.3.7 public boolean resetStatusVariable(String path) throws IllegalArgumentException, SecurityException

path the identifier of the StatusVariable in [Monitorable_id]/[StatusVariable_id] format

□ Issues a request to reset a given StatusVariable . Depending on the semantics of the StatusVariable
this call may or may not succeed: it makes sense to reset a counter to its starting value, but e.g. a Sta-
tusVariable of type String might not have a meaningful default value. Note that for numeric Status-
Variables the starting value may not necessarily be 0. Resetting a StatusVariable triggers a monitor
event if the StatusVariable supports update notifications.

The entity that wants to reset the StatusVariable needs to hold MonitorPermission with the reset ac-
tion present. The target field of the permission must match the StatusVariable name to be reset.

Returns true if the Monitorable could successfully reset the given StatusVariable , fa lse otherwise

Throws I l legalArgumentException– if path is nul l or otherwise invalid, or points to a non-existing Status-
Variable

SecurityException– if the caller does not hold MonitorPermission with the reset action or if the
specified StatusVariable is not allowed to be reset as per the target field of the permission

119.7.3.8 public MonitoringJob startJob(String initiator,String[] statusVariables,int count) throws
IllegalArgumentException, SecurityException

initiator the identifier of the entity that initiated the job

statusVariables the list of StatusVariables to be monitored, with each StatusVariable name given in
[Monitorable_PID]/[StatusVariable_ID] format

count the number of changes that must happen to a StatusVariable before a new notification is sent

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor

OSGi Compendium Release 6 Page 617

□ Starts a change based Monitor ingJob with the parameters provided. Monitoring events will be
sent when the StatusVariables of this job are updated. All specified StatusVariables must exist
when the job is started, and all must support update notifications. The initiator string is used in the
mon.l istener. id field of all events triggered by the job, to allow filtering the events based on the ini-
tiator.

The count parameter specifies the number of changes that must happen to a StatusVariable before a
new notification is sent, this must be a positive integer.

The entity which initiates a Monitor ingJob needs to hold MonitorPermission for all the specified tar-
get StatusVariables with the start job action present.

Returns the successfully started job object, cannot be nul l

Throws I l legalArgumentException– if the list of StatusVariable names contains an invalid or non-existing
StatusVariable , or one that does not support notifications; if the in it iator is nul l or empty; or if count
is invalid

SecurityException– if the caller does not hold MonitorPermission for all the specified StatusVari-
ables, with the start job action present

119.7.3.9 public MonitoringJob startScheduledJob(String initiator,String[] statusVariables,int schedule,int count)
throws IllegalArgumentException, SecurityException

initiator the identifier of the entity that initiated the job

statusVariables the list of StatusVariables to be monitored, with each StatusVariable name given in
[Monitorable_PID]/[StatusVariable_ID] format

schedule the time in seconds between two measurements

count the number of measurements to be taken, or 0 for the measurement to run until explicitly stopped

□ Starts a time based Monitor ingJob with the parameters provided. Monitoring events will be sent ac-
cording to the specified schedule. All specified StatusVariables must exist when the job is started.
The initiator string is used in the mon.l istener. id field of all events triggered by the job, to allow fil-
tering the events based on the initiator.

The schedule parameter specifies the time in seconds between two measurements, it must be
greater than 0. The first measurement will be taken when the timer expires for the first time, not
when this method is called.

The count parameter defines the number of measurements to be taken, and must either be a positive
integer, or 0 if the measurement is to run until explicitly stopped.

The entity which initiates a Monitor ingJob needs to hold MonitorPermission for all the specified tar-
get StatusVariables with the start job action present. If the permission's action string specifies a min-
imal sampling interval then the schedule parameter should be at least as great as the value in the ac-
tion string.

Returns the successfully started job object, cannot be nul l

Throws I l legalArgumentException– if the list of StatusVariable names contains an invalid or non-existing
StatusVariable ; if in it iator is nul l or empty; or if the schedule or count parameters are invalid

SecurityException– if the caller does not hold MonitorPermission for all the specified StatusVari-
ables, with the start job action present, or if the permission does not allow starting the job with the
given frequency

119.7.3.10 public void switchEvents(String path,boolean on) throws IllegalArgumentException, SecurityException

path the identifier of the StatusVariable(s) in [Monitorable_id]/[StatusVariable_id] format, possibly with
the "*" wildcard at the end of either path fragment

on fa lse if event sending should be switched off, true if it should be switched on for the given path

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0

Page 618 OSGi Compendium Release 6

□ Switches event sending on or off for the specified StatusVariable s. When the MonitorAdmin is noti-
fied about a StatusVariable being updated it sends an event unless this feature is switched off. Note
that events within a monitoring job can not be switched off. The event sending state of the Status-
Variables must not be persistently stored. When a StatusVariable is registered for the first time in a
framework session, its event sending state is set to ON by default.

Usage of the "*" wildcard is allowed in the path argument of this method as a convenience feature.
The wildcard can be used in either or both path fragments, but only at the end of the fragments.
The semantics of the wildcard is that it stands for any matching StatusVariable at the time of the
method call, it does not affect the event sending status of StatusVariables which are not yet regis-
tered. As an example, when the switchEvents("MyMonitorable/*", fa lse) method is executed, event
sending from all StatusVariables of the MyMonitorable service are switched off. However, if the My-
Monitorable service starts to publish a new StatusVariable later, it's event sending status is on by de-
fault.

Throws SecurityException– if the caller does not hold MonitorPermission with the switchevents action or if
there is any StatusVariable in the path field for which it is not allowed to switch event sending on or
off as per the target field of the permission

I l legalArgumentException– if path is nul l or otherwise invalid, or points to a non-existing Status-
Variable

119.7.4 public interface MonitoringJob
A Monitoring Job is a request for scheduled or event based notifications on update of a set of Status-
Variables. The job is a data structure that holds a non-empty list of StatusVariable names, an iden-
tification of the initiator of the job, and the sampling parameters. There are two kinds of monitor-
ing jobs: time based and change based. Time based jobs take samples of all StatusVariables with a
specified frequency. The number of samples to be taken before the job finishes may be specified.
Change based jobs are only interested in the changes of the monitored StatusVariables. In this case,
the number of changes that must take place between two notifications can be specified.

The job can be started on the MonitorAdmin interface. Running the job (querying the StatusVari-
ables, listening to changes, and sending out notifications on updates) is the task of the MonitorAd-
min implementation.

Whether a monitoring job keeps track dynamically of the StatusVariables it monitors is not speci-
fied. This means that if we monitor a StatusVariable of a Monitorable service which disappears and
later reappears then it is implementation specific whether we still receive updates of the StatusVari-
able changes or not.

119.7.4.1 public String getInitiator()

□ Returns the identifier of the principal who initiated the job. This is set at the time when
MonitorAdmin.startJob method is called. This string holds the ServerID if the operation was initi-
ated from a remote manager, or an arbitrary ID of the initiator entity in the local case (used for ad-
dressing notification events).

Returns the ID of the initiator, cannot be nul l

119.7.4.2 public int getReportCount()

□ Returns the number of times MonitorAdmin will query the StatusVariables (for time based jobs),
or the number of changes of a StatusVariable between notifications (for change based jobs). Time
based jobs with non-zero report count will take getReportCount()*getSchedule() time to finish.
Time based jobs with 0 report count and change based jobs do not stop automatically, but all jobs
can be stopped with the stop() method.

Returns the number of measurements to be taken, or the number of changes between notifications

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor

OSGi Compendium Release 6 Page 619

119.7.4.3 public int getSchedule()

□ Returns the delay (in seconds) between two samples. If this call returns N (greater than 0) then the
MonitorAdmin queries each StatusVariable that belongs to this job every N seconds. The value 0
means that the job is not scheduled but event based: in this case instant notification on changes is
requested (at every n-th change of the value, as specified by the report count parameter).

Returns the delay (in seconds) between samples, or 0 for change based jobs

119.7.4.4 public String[] getStatusVariableNames()

□ Returns the list of StatusVariable names that are the targets of this measurement job. For time based
jobs, the MonitorAdmin will iterate through this list and query all StatusVariables when its timer set
by the job's frequency rate expires.

Returns the target list of the measurement job in [Monitorable_ID]/[StatusVariable_ID] format, cannot be
nul l

119.7.4.5 public boolean isLocal()

□ Returns whether the job was started locally or remotely. Jobs started by the clients of this API are al-
ways local, remote jobs can only be started using the Device Management Tree.

Returns true if the job was started from the local device, fa lse if the job was initiated from a management
server through the device management tree

119.7.4.6 public boolean isRunning()

□ Returns whether the job is running. A job is running until it is explicitly stopped, or, in case of time
based jobs with a finite report count, until the given number of measurements have been made.

Returns true if the job is still running, fa lse if it has finished

119.7.4.7 public void stop()

□ Stops a Monitoring Job. Note that a time based job can also stop automatically if the specified num-
ber of samples have been taken.

119.7.5 public interface MonitorListener
The MonitorListener is used by Monitorable services to send notifications when a StatusVariable
value is changed. The MonitorListener should register itself as a service at the OSGi Service Registry.
This interface must (only) be implemented by the Monitor Admin component.

119.7.5.1 public void updated(String monitorableId,StatusVariable statusVariable) throws IllegalArgumentException

monitorableId the identifier of the Monitorable instance reporting the change

statusVariable the StatusVariable that has changed

□ Callback for notification of a StatusVariable change.

Throws I l legalArgumentException– if the specified monitorable ID is invalid (nul l , empty, or contains illegal
characters) or points to a non-existing Monitorable , or if statusVariable is nul l

119.7.6 public class MonitorPermission
extends Permission
Indicates the callers authority to publish, read or reset StatusVariables, to switch event sending on
or off or to start monitoring jobs. The target of the permission is the identifier of the StatusVariable ,
the action can be read , publ ish , reset , start job , switchevents , or the combination of these separat-
ed by commas. Action names are interpreted case-insensitively, but the canonical action string re-
turned by getActions() uses the forms defined by the action constants.

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0

Page 620 OSGi Compendium Release 6

If the wildcard * appears in the actions field, all legal monitoring commands are allowed on the des-
ignated target(s) by the owner of the permission.

119.7.6.1 public static final String PUBLISH = "publish"

Holders of MonitorPermission with the publ ish action present are Monitorable services that are al-
lowed to publish the StatusVariables specified in the permission's target field. Note, that this per-
mission cannot be enforced when a Monitorable registers to the framework, because the Service
Registry does not know about this permission. Instead, any StatusVariables published by a Moni-
torable without the corresponding publ ish permission are silently ignored by MonitorAdmin , and
are therefore invisible to the users of the monitoring service.

119.7.6.2 public static final String READ = "read"

Holders of MonitorPermission with the read action present are allowed to read the value of the Sta-
tusVariables specified in the permission's target field.

119.7.6.3 public static final String RESET = "reset"

Holders of MonitorPermission with the reset action present are allowed to reset the value of the Sta-
tusVariables specified in the permission's target field.

119.7.6.4 public static final String STARTJOB = "startjob"

Holders of MonitorPermission with the start job action present are allowed to initiate monitoring
jobs involving the StatusVariables specified in the permission's target field.

A minimal sampling interval can be optionally defined in the following form: start job:n . This al-
lows the holder of the permission to initiate time based jobs with a measurement interval of at least
n seconds. If n is not specified or 0 then the holder of this permission is allowed to start monitoring
jobs specifying any frequency.

119.7.6.5 public static final String SWITCHEVENTS = "switchevents"

Holders of MonitorPermission with the switchevents action present are allowed to switch event
sending on or off for the value of the StatusVariables specified in the permission's target field.

119.7.6.6 public MonitorPermission(String statusVariable,String actions) throws IllegalArgumentException

statusVariable the identifier of the StatusVariable in [Monitorable_id]/[StatusVariable_id] format

actions the list of allowed actions separated by commas, or * for all actions

□ Create a MonitorPermission object, specifying the target and actions.

The statusVariable parameter is the target of the permission, defining one or more status variable
names to which the specified actions apply. Multiple status variable names can be selected by using
the wildcard * in the target string. The wildcard is allowed in both fragments, but only at the end of
the fragments.

For example, the following targets are valid: com.mycomp.myapp/queue_length ,
com.mycomp.myapp/* , com.mycomp.*/* , */* , */queue_length , */queue* .

The following targets are invalid: *.myapp/queue_length , com.*.myapp/* , * .

The actions parameter specifies the allowed action(s): read , publ ish , start job , reset , switchevents ,
or the combination of these separated by commas. String constants are defined in this class for each
valid action. Passing "*" as the action string is equivalent to listing all actions.

Throws I l legalArgumentException– if either parameter is nul l , or invalid with regard to the constraints de-
fined above and in the documentation of the used actions

119.7.6.7 public boolean equals(Object o)

o the object being compared for equality with this object

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor

OSGi Compendium Release 6 Page 621

□ Determines the equality of two MonitorPermission objects. Two MonitorPermission objects are
equal if their target strings are equal and the same set of actions are listed in their action strings.

Returns true if the two permissions are equal

119.7.6.8 public String getActions()

□ Get the action string associated with this permission. The actions are returned in the following or-
der: read , reset , publ ish , start job , switchevents .

Returns the allowed actions separated by commas, cannot be nul l

119.7.6.9 public int hashCode()

□ Create an integer hash of the object. The hash codes of MonitorPermissions p1 and p2 are the same if
p1.equals(p2) .

Returns the hash of the object

119.7.6.10 public boolean implies(Permission p)

p the permission to be checked

□ Determines if the specified permission is implied by this permission.

This method returns fa lse if and only if at least one of the following conditions are fulfilled for the
specified permission:

• it is not a MonitorPermission
• it has a broader set of actions allowed than this one
• it allows initiating time based monitoring jobs with a lower minimal sampling interval
• the target set of Monitorables is not the same nor a subset of the target set of Monitorables of this

permission
• the target set of StatusVariables is not the same nor a subset of the target set of StatusVariables

of this permission

Returns true if the given permission is implied by this permission

119.7.7 public final class StatusVariable
A StatusVariable object represents the value of a status variable taken with a certain collection
method at a certain point of time. The type of the StatusVariable can be int , f loat , boolean or Str ing .

A StatusVariable is identified by an ID string that is unique within the scope of a Monitorable . The
ID must be a non- nul l , non-empty string that conforms to the "symbolic-name" definition in the OS-
Gi core specification. This means that only the characters [-_.a-zA-Z0-9] may be used. The length of
the ID must not exceed 32 bytes when UTF-8 encoded.

119.7.7.1 public static final int CM_CC = 0

Constant for identifying 'Cumulative Counter' data collection method.

119.7.7.2 public static final int CM_DER = 1

Constant for identifying 'Discrete Event Registration' data collection method.

119.7.7.3 public static final int CM_GAUGE = 2

Constant for identifying 'Gauge' data collection method.

119.7.7.4 public static final int CM_SI = 3

Constant for identifying 'Status Inspection' data collection method.

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0

Page 622 OSGi Compendium Release 6

119.7.7.5 public static final int TYPE_BOOLEAN = 3

Constant for identifying boolean data type.

119.7.7.6 public static final int TYPE_FLOAT = 1

Constant for identifying f loat data type.

119.7.7.7 public static final int TYPE_INTEGER = 0

Constant for identifying int data type.

119.7.7.8 public static final int TYPE_STRING = 2

Constant for identifying Str ing data type.

119.7.7.9 public StatusVariable(String id,int cm,int data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants

data the int value of the StatusVariable

□ Constructor for a StatusVariable of int type.

Throws I l legalArgumentException– if the given id is not a valid StatusVariable name, or if cm is not one of
the collection method constants

NullPointerException– if the id parameter is nul l

119.7.7.10 public StatusVariable(String id,int cm,float data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants

data the f loat value of the StatusVariable

□ Constructor for a StatusVariable of f loat type.

Throws I l legalArgumentException– if the given id is not a valid StatusVariable name, or if cm is not one of
the collection method constants

NullPointerException– if the id parameter is nul l

119.7.7.11 public StatusVariable(String id,int cm,boolean data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants

data the boolean value of the StatusVariable

□ Constructor for a StatusVariable of boolean type.

Throws I l legalArgumentException– if the given id is not a valid StatusVariable name, or if cm is not one of
the collection method constants

NullPointerException– if the id parameter is nul l

119.7.7.12 public StatusVariable(String id,int cm,String data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants

data the Str ing value of the StatusVariable , can be nul l

□ Constructor for a StatusVariable of Str ing type.

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor

OSGi Compendium Release 6 Page 623

Throws I l legalArgumentException– if the given id is not a valid StatusVariable name, or if cm is not one of
the collection method constants

NullPointerException– if the id parameter is nul l

119.7.7.13 public boolean equals(Object obj)

obj the object to compare with this StatusVariable

□ Compares the specified object with this StatusVariable . Two StatusVariable objects are considered
equal if their full path, collection method and type are identical, and the data (selected by their type)
is equal.

Returns true if the argument represents the same StatusVariable as this object

119.7.7.14 public boolean getBoolean() throws IllegalStateException

□ Returns the StatusVariable value if its type is boolean .

Returns the StatusVariable value as a boolean

Throws I l legalStateException– if the type of this StatusVariable is not boolean

119.7.7.15 public int getCollectionMethod()

□ Returns the collection method of this StatusVariable . See section 3.3 b) in [ETSI TS 132 403]

Returns one of the CM_ constants

119.7.7.16 public float getFloat() throws IllegalStateException

□ Returns the StatusVariable value if its type is f loat .

Returns the StatusVariable value as a f loat

Throws I l legalStateException– if the type of this StatusVariable is not f loat

119.7.7.17 public String getID()

□ Returns the ID of this StatusVariable . The ID is unique within the scope of a Monitorable .

Returns the ID of this StatusVariable

119.7.7.18 public int getInteger() throws IllegalStateException

□ Returns the StatusVariable value if its type is int .

Returns the StatusVariable value as an int

Throws I l legalStateException– if the type of this StatusVariable is not int

119.7.7.19 public String getString() throws IllegalStateException

□ Returns the StatusVariable value if its type is Str ing .

Returns the StatusVariable value as a Str ing

Throws I l legalStateException– if the type of the StatusVariable is not Str ing

119.7.7.20 public Date getTimeStamp()

□ Returns the timestamp associated with the StatusVariable . The timestamp is stored when the Sta-
tusVariable instance is created, generally during the Monitorable.getStatusVariable(String) method
call.

Returns the time when the StatusVariable value was queried, cannot be nul l

119.7.7.21 public int getType()

□ Returns information on the data type of this StatusVariable .

References Monitor Admin Service Specification Version 1.0

Page 624 OSGi Compendium Release 6

Returns one of the TYPE_ constants indicating the type of this StatusVariable

119.7.7.22 public int hashCode()

□ Returns the hash code value for this StatusVariable . The hash code is calculated based on the full
path, collection method and value of the StatusVariable .

Returns the hash code of this object

119.7.7.23 public String toString()

□ Returns a Str ing representation of this StatusVariable . The returned Str ing contains the full path,
collection method, timestamp, type and value parameters of the StatusVariable in the following for-
mat:

 StatusVariable(<path>, <cm>, <timestamp>, <type>, <value>)

The collection method identifiers used in the string representation are "CC", "DER", "GAUGE" and
"SI" (without the quotes). The format of the timestamp is defined by the Date.toStr ing method,
while the type is identified by one of the strings "INTEGER", "FLOAT", "STRING" and "BOOLEAN".
The final field contains the string representation of the value of the status variable.

Returns the Str ing representation of this StatusVariable

119.8 References

[1] SyncML Device Management Tree Description

[2] ETSI Performance Management [TS 132 403]
http://www.etsi.org/deliver/etsi_ts/132400_132499/132403/04.01.00_60/ts_132403v040100p.pdf

[3] RFC-2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

Foreign Application Access Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 625

120 Foreign Application Access
Specification

Version 1.0

120.1 Introduction
The OSGi Framework contains an advanced collaboration model which provides a publish/find/
bind model using services. This OSGi service architecture is not natively supported by foreign appli-
cation models like MIDP, Xlets, Applets, other Java application models. The purpose of this speci-
fication is to enable these foreign applications to participate in the OSGi service oriented architec-
ture.

120.1.1 Essentials

• Interoperatbility - Full inter-operability between foreign application models and OSGi services is
required. This requires both getting services, registering services, and listening to Framework
events.

• No Change - The inter-working specification cannot modify the life cycle model of the foreign ap-
plication models. The foreign application model specifications cannot be changed.

• Familiarity - Programmers familiar with a foreign application model should be able to leverage
the services architecture without much effort.

• Simplicity - The programming model for using services must be very simple and not require the
programmer to learn many new concepts.

• Management - Support managing the foreign applications; both through proper OSGi APIs and
from a remote management server.

120.1.2 Entities

• Foreign Application - Java Applications, which must be delivered in JAR files, which are not OSGi
bundles.

• Application Container - An Application Container is responsible for controlling a foreign applica-
tion and providing the appropriate environment. It must interact with the OSGi Framework to
give the foreign application instances access to the OSGi services and package sharing.

• Application Activator - A class in the foreign application JAR file that is used to notify the applica-
tion of life cycle changes. One JAR file can contain multiple application activators.

• Framework - A class that provides access to the application container's application context for a giv-
en application activator.

• Application Context - The interface to the application container's functions to inter-work with the
OSGi Framework.

• Application Declaration - An XML resource that must be placed in the application's JAR file at
OSGI-INF/app/apps.xml . This is an optional declaration.

• Application Instance - A launched application. Most foreign application models permit an applica-
tion to be launched multiple times.

Foreign Applications Foreign Application Access Specification Version 1.0

Page 626 OSGi Compendium Release 6

Figure 120.1 Foreign Applications, org.osgi.application package

Foreign
Application
Object

<<interface>>
Application
Context

OSGI-INF/
app/apps.xml

Application
Container Impl

m
etadata

0,1

Application
Context Impl

Framework

getApplicationContext
(static)

0..n

0,1

1

0..n1

controlled by

Application
Descriptor

120.1.3 Synopsis
Foreign application JAR files can be installed in an OSGi Framework as if they were normal bundles.
Application containers running on the OSGi Framework must detect the installation of recognized
foreign applications and provide a bridge to the OSGi Environment. This bridge can include inter-
action with the Application Admin Specification on page 447, as well as provide access to the OSGi ser-
vices and Framework events.

The Application container reads the application XML resource from the JAR file and treats the for-
eign application according to this information. When the foreign application is launched, the appli-
cation container creates an application instance.

Foreign application instances can get an application context through a static method on the Frame-
work class. The Application Context provides access to getting services, registering services and reg-
istering listeners.

The foreign application instance's life cycle can be influenced by the application declaration. If de-
sired, an application can be prevented from launching or stopping when required services are, or be-
come, unavailable.

120.2 Foreign Applications
Foreign applications are Java applications that can be installed and managed through the normal
OSGi mechanisms. However, they use another application programming model than the bundle
programming model. For example: MIDP, MHP, DOJA.

Foreign applications must fulfill the following requirements to be able to inter-work with the OSGi
environment:

• The applications must be written in Java
• The applications must be delivered in JAR files. This is the common model for Java applications.
• They must have a clearly defined life cycle with a start and stop state.
• One or more classes in the application must be available to start and stop the application. For ex-

ample the Midlet in MIDP or the Xlet in MHP. This object is called the application's activator. As

Foreign Application Access Specification Version 1.0 Foreign Applications

OSGi Compendium Release 6 Page 627

the application container uses this object for life cycle control of the application, the lifetime of
this object equals the lifetime of the application.

Foreign applications are managed by application containers. Application containers provide the envi-
ronment and life cycle management as defined by foreign application model.

This specification does not require any changes in the foreign application model; existing applica-
tions must run unmodified. However, to allow the foreign applications to participate as a first class
OSGi citizen, a number of additional artifacts in the JAR file are required. These artifacts use Man-
ifest headers and an XML resource in the applications JAR file; these artifacts are permitted and ig-
nored by the foreign application models that are currently known.

120.2.1 Foreign Metadata
There are different types of metadata associated with application models. Descriptive information,
for example the name, icon, documentation etc. of the application, is usually provided in an applica-
tion model specific way. Application models can also define behavioral metadata, that is, prescribe
that the application needs to be started automatically at device startup (auto start) or whether mul-
tiple instances of an application can be executed concurrently (singleton). These kinds of metada-
ta are supported by different application models to different extent and are not in the scope of this
specification. The application container is responsible for interpreting this metadata and treating
the foreign application in the appropriate way.

120.2.2 OSGi Manifest Headers
Foreign applications can import packages by specifying the appropriate OSGi module headers in
the manifest. These headers are fully described in OSGi Core Release 6. Their semantics remain un-
changed. The following headers must not be used in foreign applications:

• Export-Package - Exporting packages is forbidden in foreign applications.
• Bundle-Activator - Foreign applications have their own activator.
• Service-Component - Service components should be bundles.

Foreign applications that intend to use the OSGi Framework features should have Bundle-Symbolic-
Name and Bundle-Version headers. If they do not have such a header, they can be deployed with De-
ployment Package, which can assign these headers in the Deployment Package manifest.

Any JAR that uses these headers must not be recognized as a foreign application, even if their man-
ifest is conforming and valid with respect to the foreign application model. This entails that a JAR
cannot both be a bundle with activator or exports and a foreign application.

For example, a MIDlet can be extended to import the org.osgi .appl icat ion package from the OSGi
environment. The Import-Package header is used to describe such an import:

Manifest-Version: 1.0
MIDlet-Name: Example
MIDlet-1: Example, , osgi.ExampleMidlet
MIDlet-Version: 1.1.0
MIDlet-Vendor: OSGi
MicroEdition-Configuration: CDC-1.0
MicroEdition-Profile: MIDP-1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: osgi.example
Import-Package: org.osgi.application;version=1.0,
 org.osgi.framework;version=1.3

Foreign Applications Foreign Application Access Specification Version 1.0

Page 628 OSGi Compendium Release 6

120.2.3 Interacting with the OSGi Framework
The application container must maintain an application context for each started application, that
is, the application instance. This context is related to the application's activator. The Application
Context can be acquired using a static getAppl icat ionContext(Object) method on the Framework
class. The parameter of this method is the application's activator itself. The getAppl icat ionContext
method cannot check if the caller is really the given application; the application activator is there-
fore a capability, any application that has this object can get the Application Context. The applica-
tion activator should never be shared with other applications. The Application Context must there-
fore deny the application activator to be used as a service object.

The getAppl icat ionContext method must not be called from the application activator's constructor;
at that time it must not be available yet.

For example, a MIDlet could acquire the application context with the following code:

import org.osgi.framework.*;
import org.osgi.application.*;
import javax.microedition.midlet.*;

public class Example extends MIDlet {
 ApplicationContext context;
 public void startApp() {
 context = Framework.getApplicationContext(this);
 }

 public void pauseApp() { ... }

 public void destroyApp(boolean unconditional) { ... }
}

The getAppl icat ionContext method must throw an Illegal Argument Exception if it is called with
an object that is not an application's activator.

The Appl icat ionContext object is singleton for the corresponding application's activator. Subse-
quent calls to the getAppl icat ionContext method with the same application's activator must return
the same Appl icat ionContext object; therefore, applications are free to forget and get the object any
number of times during their lifetime. However, it is an error to get the Appl icat ionContext object
for an application that is already stopped. Existing Appl icat ionContext objects must be invalidated
once the application's activator is stopped.

120.2.4 Introspection
The Application Context provides the following methods about the application:

• getAppl icat ionId() - Return the Application Descriptor id for this application.
• getInstanceId() - Return the instance id for this application.

120.2.5 Access to Services
Foreign applications do not have direct access to the OSGi service registry. However, the application
context provides the mechanism to interact with this service registry.

Access to services is more protected and controlled than traditional OSGi access that uses the
BundleContext object. The service model is conceptually based on the Declarative Services Specifica-
tion on page 289. It uses the same concepts as that specification. Albeit there are a number of differ-
ences due the nature of foreign applications.

Applications can use the locateService or locateServices methods of their associated application
context to obtain service objects from the OSGi service registry. Just like OSGi Declarative services,

Foreign Application Access Specification Version 1.0 Foreign Applications

OSGi Compendium Release 6 Page 629

these service objects must be declared a priori in the reference element of the metadata, see Appli-
cation Descriptor Resource on page 632. This metadata declares a number of named references; Ref-
erences contain the criteria which services are eligible for use by the application and how these de-
pendencies should be handled. The foreign application can only use services defined in references;
the application context only takes the name of a reference as parameter in the locateService and lo-
cateServices methods. That is, a foreign application cannot indiscriminately use the service registry,
it is restricted by the application declaration.

A reference selects a subset of services in the service registry. The primary selector is its interface.
However, this subset can be further narrowed down with a target filter. The target specifies an OSGi
filter expression that is used to additionally qualify the subset of appropriate services.

There are two different methods to access the services selected by the reference:

• locateService(Str ing) - Return one of the services that is selected by the reference with the given
name. If multiple services are selected by the reference, then the service with the highest rank-
ing must be returned. This is compatible with the getServiceReference method in the OSGi
Framework's BundleContext class.

• locateServices(Str ing) - Return all the services that are selected by the reference with the given
name.

Once the application instance has obtained a service object, that service is said to be bound to the ap-
plication instance. There is no method to unbind a service.

For example, a foreign application that wants to log via the Log Service, should declare the follow-
ing metadata in OSGI-INF/app/apps.xml:

<?xml version="1.0" encoding="UTF-8"?>
 <descriptor xmlns="http://www.osgi.org/xmlns/app/v1.1.0">
 <application class="com.acme.app.SampleMidlet">
 <reference name="log"
 interface="org.osgi.service.log.LogService"/>
 </application>
</descriptor>

The code to log could look like:

void log(String msg) {
 ApplicationContext ctxt=
 Framework.getApplicationContext(this);
 LogService log = (LogService) ctxt.locateService("log");
 log.log(LogService.LOG_INFO, msg);
}

120.2.6 Service Properties
The foreign applications receive the services objects they have access to directly. This means that
they cannot access the service properties that are normally associated with the service registrations.

The getServicePropert ies(Object) returns a Map object with a copy of these service properties.

120.2.7 Dependencies on Services
The availability of services can influence the life cycle of the foreign application. The life cycle is in-
fluenced by the policy and the cardinality.

The policy defines how the unregistration of a bound service must be handled. The following poli-
cies are supported:

Foreign Applications Foreign Application Access Specification Version 1.0

Page 630 OSGi Compendium Release 6

• static - The application assumes that bound services will never go away. So if a bound service be-
comes unregistered, the Application Container must stop the application to prevent it from us-
ing a stale service.

• dynamic - The application must never store service objects and will always get them on demand.
Once a service is bound, it can become unregistered without any effect on the application.

Additionally, the cardinality defines if a reference is optional. An optional reference does not influ-
ence the life cycle of an application, a mandatory reference does. The cardinality is expressed as one
of the following values:

• 0..1 or 0..n - Optional reference
• 1. .1 or 1. .n - Mandatory reference

The multiplicity is only for compatibility with the Declarative Services. Both locateService and lo-
cateServices methods can be used regardless of the given multiplicity and return the selected subset
for the given reference.

Mandatory references can influence the launching of an application. An application must only be
started when a mandatory reference is satisfied. A reference is satisfied when there is at least one reg-
istered service selected by the reference.

If a mandatory reference of an application is about to become unsatisfied, due to unregistering a ser-
vice, the application container must stop the application instance according to corresponding appli-
cation model semantics.

120.2.8 Registering Services
A common pattern in the OSGi is registering a service to listen to certain events. For example, the
Configuration Admin service requires their clients to register a callback Managed Service, so that
the service can asynchronously update the client with new configurations. The Appl icat ionContext
interface contains methods that allow the applications to register such services. These services must
be automatically unregistered by the application container after the application has been stopped.

The available methods are:

• registerService(Str ing[] ,Object ,Dict ionary) - Register a service under a single interface.
• registerService(Str ing,Object,Dict ionary) - Register a service under a number of interfaces.

Either method requires that the given object implements all the interfaces that are given. The Dic-
t ionary object provides the properties. See the OSGi registerService methods in the BundleContext
class. These identical methods specifies the behavior in detail.

The use of the application activator as a service object is explicitly forbidden. Registering the appli-
cation activator as a service allows other applications in the OSGi environment to access the Appli-
cation Context using this object and the getAppl icat ionContext method.

Both methods return a ServiceRegistrat ion object that can be used to unregister the service. Services
must be automatically unregistered when the application instance is stopped.

120.2.9 Listening to Service Events
The Application Context provides the following methods to listen to service events:

• addServiceListener(Appl icat ionServiceListener,Str ing) - Add an Application Service Listener.
The listener will receive the service events for the given reference name.

• addServiceListener(Appl icat ionServiceListener,Str ing[]) - Add an Application Service Listener
that will receive the events for all the services identified with the given reference name.

Foreign Application Access Specification Version 1.0 Application Containers

OSGi Compendium Release 6 Page 631

If a Application Service Listener is registered more than once, then the previous registration is re-
moved. Listeners can be removed with removeServiceListener(Appl icat ionServiceListener) . When
the application instance is stopped, the listeners are automatically unregistered.

120.2.10 Access to Startup Parameters
Applications can use the getStartupArguments method on the application context to obtain their
startup arguments. The startup arguments are represented as map with name and value pairs. The
name is a non-nul l and non-empty ("") Str ing object. The value can be any type of object.

The reason for providing the startup parameters through a special mechanism is that it allows for-
eign applications access to the parameters of a schedule application, see Scheduling on page 453.

This uniform access to the startup parameters provides a uniform way for applications of any for-
eign application model. This facility does not remove the need for any mechanisms required by the
foreign application model for startup parameters access.

120.2.11 Sibling Instances
Most foreign application models allow an application to be launched multiple times, creating mul-
tiple instances. In OSGi, a bundle can only be started once, which creates certain assumptions. For
example, the Service Factory concept creates a unique service object per bundle.

Each application instance must be seen as a unique bundle while it runs. That is, it should not share
anything with other instances. The foreign application container is responsible for this isolation;
implementing this isolation requires implementation dependent constructs.

120.3 Application Containers
Application containers:

• Provide management for the foreign applications
• Launches application instances in a defined environment
• Provide a specific a application model context to foreign application instances
• Interact with the Application Admin service to provide the foreign applications to application

managers.

A single OSGi environment can host multiple application containers.

120.3.1 Installation
Applications are installed into the system using OSGi bundle installation mechanism (i.e. instal l-
Bundle method of the BundleContext interface). This allows including application JARs to Deploy-
ment Packages without any changes to the Deployment Package format or Deployment Admin be-
havior. It also allows the OSGi framework to process the dependency information (the package de-
pendencies) included in the application metadata.

The application container can listen to the BundleEvent. INSTALLED events and examine the in-
stalled JARs whether they contain applications supported by the particular container. After the in-
stallation, the application container is responsible for registering the corresponding Application De-
scriptor as defined in the Application Admin Specification on page 447. Similarly, the container can rec-
ognize the removal of the package by listening to BundleEvent.UNINSTALLED events and then it can
unregister the corresponding descriptors. Additionally, application container must check the bun-
dle registry for changes when they are started.

Receiving BundleEvent. INSTALLED events via a Synchronous Bundle Listener makes it possible for
the application container to examine the package content during installation. A foreign application

Application Descriptor Resource Foreign Application Access Specification Version 1.0

Page 632 OSGi Compendium Release 6

must not become available for execution unless it is started as a bundle. This mechanism allows for-
eign applications to be installed but not yet recognized as a foreign application.

120.4 Application Descriptor Resource
Applications' dependencies on services must be declared in the OSGI-INF/app/apps.xml resource.
The XML file must use the http://www.osgi .org/xmlns/app/v1.1.0 namespace. The preferred abbre-
viation is app . The XML schema definition can be found at Component Description Schema on page
633. The apps.xml file is optional if a foreign application does not require any dependencies.

The structure of the XML must conform to the description below.

<descriptor> ::= <application> +
<application> ::= <reference> *

120.4.1 Descriptor Element
The descriptor is the top level element. The descr iptor element has no attributes.

120.4.2 Application Element
A JAR file can contain multiple application activators. The appl icat ion element can therefore be re-
peated one or more times in the descriptor element.

The appl icat ion element has the following attribute:

• class - The class attribute of the appl icat ion element must contain the fully qualified name of the
application's activator.

120.4.3 Reference Element
A reference element represents the applications use of a particular service. All services that an ap-
plication uses must be declared in a reference element.

A reference element has the following attributes:

• name - A reference element is identified by a name. This name can be used in the locateService
or locateService , see Access to Services on page 628. This name must be unique within an appli-
cation element.

• interface - The fully qualified name of the interface or class that defines the selected service.
• pol icy - The choice of action when a bound services becomes unregistered while an application

instance is running. It can have the following values:
• stat ic - If a bound service becomes unregistered, the application instance must be stopped but

the corresponding Application Descriptor is still launchable.
• dynamic - If a bound service becomes unregistered, the application can continue to run if the

mandatory reference can still be satisfied by another service.
• cardinal ity - Defines the optionality of the reference. If it starts with a 0, an application can han-

dle that the reference selects no service. That is, locateService method can return a nul l . If it
starts with 1, the reference is mandatory and at least one service must be available before an ap-
plication instance can be launched. The cardinality can have one of the following values:
• 0..1 or 0..n - Optional reference
• 1. .1 or 1. .n - Mandatory reference

• target - The optional target attribute of the element can be used to further narrow which services
are acceptable for the application by providing an OSGi filter on the properties of the services.

Foreign Application Access Specification Version 1.0 Component Description Schema

OSGi Compendium Release 6 Page 633

120.4.4 Example XML
The following example is an application declaration for a MIDlet application that depends on the
OSGi Log Service and another service:

<?xml version="1.0" encoding="UTF-8"?>
<descriptor xmlns="http://www.osgi.org/xmlns/app/v1.1.0">
 <application class="com.acme.apps.SampleMidlet">
 <reference name="log" interface="org.osgi.service.log"/>
 <reference name="foo"
 interface="com.acme.service.FooService"
 policy="dynamic"
 cardinality="0..n" />
 </application>
</descriptor>

A similar example for an imaginary Xlet, with different dependencies:

<?xml version="1.0" encoding="UTF-8"?>
<descriptor xmlns="http://www.osgi.org/xmlns/app/v1.1.0">
 <application class="com.acme.apps.SampleXlet">
 <reference name="log" interface="org.osgi.service.log"/>
 <reference name="bar"
 interface="com.acme.service.BarService"
 policy="static" cardinality="1..n" />
 </application>
</descriptor>

120.5 Component Description Schema
This XML Schema defines the component description grammar.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:app="http://www.osgi.org/xmlns/app/v1.1.0"
 targetNamespace="http://www.osgi.org/xmlns/app/v1.1.0"
 version="1.1.1">

 <element name="descriptor" type="app:Tdescriptor">
 <annotation>
 <documentation xml:lang="en">
 descriptor element encloses the application descriptors
 provided in a document
 </documentation>
 </annotation>
 </element>

 <complexType name="Tdescriptor">
 <sequence>
 <element name="application" type="app:Tapplication"
 minOccurs="1" maxOccurs="unbounded" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tapplication">
 <annotation>
 <documentation xml:lang="en">
 describes the service dependencies of an application
 </documentation>

Component Description Schema Foreign Application Access Specification Version 1.0

Page 634 OSGi Compendium Release 6

 </annotation>
 <sequence>
 <element name="reference" minOccurs="0"
 maxOccurs="unbounded" type="app:Treference" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="class" type="string" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Treference">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="NMTOKEN" use="required" />
 <attribute name="interface" type="string" use="required" />
 <attribute name="cardinality" default="1..1" use="optional"
 type="app:Tcardinality" />
 <attribute name="policy" use="optional" default="static"
 type="app:Tpolicy" />
 <attribute name="target" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="Tcardinality">
 <restriction base="string">
 <enumeration value="0..1" />
 <enumeration value="0..n" />
 <enumeration value="1..1" />
 <enumeration value="1..n" />
 </restriction>
 </simpleType>

 <simpleType name="Tpolicy">
 <restriction base="string">
 <enumeration value="static" />
 <enumeration value="dynamic" />
 </restriction>
 </simpleType>

 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

Foreign Application Access Specification Version 1.0 Security

OSGi Compendium Release 6 Page 635

120.6 Security

120.6.1 Application Context Access
The getAppl icat ionContext method provides access to the Application Context of a given applica-
tion activator. The application activator is therefore a capability; any party that has access to this ob-
ject can potentially get its related Application Context and use it in intended ways.

A common pattern in small applications is to (ab)use the application activator class for all tasks,
among them as service object. However, registering the application activator as a service will allow
any party that can use that service to use it as the parameter to the getAppl icat ionContext method.

The Application Context must therefore be protected to not allow the registration of the application
activator.

120.6.2 Signing
Application models can include the definition of a security model. For example, MIDP 2 defines a se-
curity model different from the standard Java 2 security model. If the foreign application model de-
fines a security model different from Java 2 security, then it is the responsibility of the application
container to implement this model and enforce it.

OSGi services are protected by Java 2 permissions. Applications wishing to use such services must
have the appropriate permissions for those services.

Java 2 permissions are assigned during class loading based on the location of the code, the JAR signa-
tures, and possibly based on other conditions, when using the Conditional Permission framework.

Signing is a very common technique to handle the granting of permissions. It requires that the JAR
be signed according to the JAR Signing model. Therefore, OSGi-aware application packages should
be signed by JAR signing. However, some foreign application models have alternative signing mod-
els in place. However, it is unlikely that this conflicts because JAR signing uses well defined separate
files and manifest headers. If the foreign application model changes the JAR file outside the META-
INF directory, then the signing according to the foreign application model must be performed be-
fore the standard JAR signing.

For example, in the case of MIDP signing and both models are used, the JAR signature should be put
to the file first as it modifies the content of the file, and MIDP signing should be applied afterwards.

120.6.3 Permission Management
Applications that use OSGi services must have the corresponding Java 2 permissions granted. In or-
der to simplify the policy management, and ensure that the overall device policy is consistent, ap-
plication containers should not define separate policy management for each application model;
rather they should use the existing OSGi policy management and express the complete security pol-
icy by the means of Java 2 permissions with the Conditional Permission Admin service. This way,
policy administrator can define the boundaries of the sandbox available for a particular application
based on its location, signer or other condition. The application container is responsible for enforc-
ing both the foreign application specific security mechanisms as well as the OSGi granted permis-
sions.

Applications can package permissions as described in the Conditional Permission Admin. These per-
missions will restrict the foreign application's permissions to maximally the permissions in this file
scoped by the signer's permissions.

120.7 org.osgi.application

org.osgi.application Foreign Application Access Specification Version 1.0

Page 636 OSGi Compendium Release 6

Foreign Application Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .appl icat ion; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .appl icat ion; vers ion="[1.0,1.1)"

120.7.1 Summary

• Appl icat ionContext - Appl icat ionContext is the access point for an OSGi-aware application to
the features of the OSGi Service Platform.

• Appl icat ionServiceEvent - An event from the Framework describing a service lifecycle change.
• Appl icat ionServiceListener - An Appl icat ionServiceEvent listener.
• Framework - Using this class, OSGi-aware applications can obtain their ApplicationContext.

120.7.2 public interface ApplicationContext
Appl icat ionContext is the access point for an OSGi-aware application to the features of the OSGi
Service Platform. Each application instance will have its own Appl icat ionContext instance, which
will not be reused after destroying the corresponding application instance.

Application instances can obtain their Appl icat ionContext using the
Framework.getApplicationContext(Object) method.

The lifecycle of an Appl icat ionContext instance is bound to the lifecycle of the corresponding appli-
cation instance. The Appl icat ionContext becomes available when the application is started and it is
invalidated when the application instance is stopped (i.e. the "stop" method of the application acti-
vator object returned). All method calls (except getApplicationId() and getInstanceId()) to an invali-
dated context object result an I l legalStateException .

See Also org.osgi.application.Framework

120.7.2.1 public void addServiceListener(ApplicationServiceListener listener,String referenceName) throws
IllegalArgumentException

listener The org.osgi.application.ApplicationServiceListener to be added. It must not be nul l

referenceName the reference name of a service from the descriptor of the corresponding application. It must not be
nul l .

□ Adds the specified ApplicationServiceListener object to this context application instance's list of
listeners. The specified referenceName is a reference name specified in the descriptor of the corre-
sponding application. The registered l istener will only receive the ApplicationServiceEvents related
to the referred service.

If the l istener was already added, calling this method will overwrite the previous registration.

Throws I l legalStateException– If this context application instance has stopped.

NullPointerException– If l istener or referenceName is nul l

I l legalArgumentException– If there is no service in the application descriptor with the specified ref-
erenceName .

Foreign Application Access Specification Version 1.0 org.osgi.application

OSGi Compendium Release 6 Page 637

120.7.2.2 public void addServiceListener(ApplicationServiceListener listener,String[] referenceNames) throws
IllegalArgumentException

listener The org.osgi.application.ApplicationServiceListener to be added. It must not be nul l

referenceNames and array of service reference names from the descriptor of the corresponding application. It must
not be nul l and it must not be empty.

□ Adds the specified ApplicationServiceListener object to this context application instance's list of
listeners. The referenceNames parameter is an array of reference name specified in the descrip-
tor of the corresponding application. The registered l istener will only receive the ApplicationSer-
viceEvents related to the referred services.

If the l istener was already added, calling this method will overwrite the previous registration.

Throws I l legalStateException– If this context application instance has stopped.

NullPointerException– If l istener or referenceNames is nul l

I l legalArgumentException– If referenceNames array is empty or it contains unknown references

120.7.2.3 public String getApplicationId()

□ This method return the identifier of the corresponding application type. This identifier is the same
for the different instances of the same application but it is different for different application type.

Note: this method can safely be called on an invalid Appl icat ionContext as well.

Returns the identifier of the application type.

See Also org.osgi.service.application.ApplicationDescriptor.getApplicationId()

120.7.2.4 public String getInstanceId()

□ This method returns the identifier of the corresponding application instance. This identifier is guar-
anteed to be unique within the scope of the device. Note: this method can safely be called on an in-
valid Appl icat ionContext as well.

Returns the unique identifier of the corresponding application instance

See Also org.osgi.service.application.ApplicationHandle.getInstanceId()

120.7.2.5 public Map getServiceProperties(Object serviceObject)

serviceObject A service object the application is bound to. It must not be null.

□ Application can query the service properties of a service object it is bound to. Application gets
bound to a service object when it first obtains a reference to the service by calling locateService or
locateServices methods.

Returns The service properties associated with the specified service object.

Throws NullPointerException– if the specified serviceObject is nul l

I l legalArgumentException– if the application is not bound to the specified service object or it is not
a service object at all.

I l legalStateException– If this context application instance has stopped.

120.7.2.6 public Map getStartupParameters()

□ Returns the startup parameters specified when calling the
org.osgi .service.appl icat ion.Appl icat ionDescr iptor#launch(Map) method.

Startup arguments can be specified as name, value pairs. The name must be of type java.lang.String,
which must not be nul l or empty java.lang.String (""), the value can be any object including nul l .

Returns a java.util.Map containing the startup arguments. It can be nul l .

org.osgi.application Foreign Application Access Specification Version 1.0

Page 638 OSGi Compendium Release 6

Throws I l legalStateException– If this context application instance has stopped.

120.7.2.7 public Object locateService(String referenceName)

referenceName The name of a reference as specified in a reference element in this context application's description.
It must not be nul l

□ This method returns the service object for the specified referenceName . If the cardinality of the
reference is 0..n or 1..n and multiple services are bound to the reference, the service with the
highest ranking (as specified in its org.osgi.framework.Constants.SERVICE_RANKING proper-
ty) is returned. If there is a tie in ranking, the service with the lowest service ID (as specified in its
org.osgi.framework.Constants.SERVICE_ID property); that is, the service that was registered first is
returned.

Returns A service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n and no
bound service is available.

Throws NullPointerException– If referenceName is nul l .

I l legalArgumentException– If there is no service in the application descriptor with the specified ref-
erenceName .

I l legalStateException– If this context application instance has stopped.

120.7.2.8 public Object[] locateServices(String referenceName)

referenceName The name of a reference as specified in a reference element in this context application's description.
It must not be nul l .

□ This method returns the service objects for the specified referenceName .

Returns An array of service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n
and no bound service is available.

Throws NullPointerException– If referenceName is nul l .

I l legalArgumentException– If there is no service in the application descriptor with the specified ref-
erenceName .

I l legalStateException– If this context application instance has stopped.

120.7.2.9 public ServiceRegistration registerService(String[] clazzes,Object service,Dictionary properties)

clazzes The class names under which the service can be located. The class names in this array will be stored
in the service's properties under the key org.osgi.framework.Constants.OBJECTCLASS. This parame-
ter must not be nul l .

service The service object or a ServiceFactory object.

properties The properties for this service. The keys in the properties object must all be Str ing objects.
See org.osgi.framework.Constants for a list of standard service property keys. Changes should
not be made to this object after calling this method. To update the service's properties the
org.osgi.framework.ServiceRegistration.setProperties(Dictionary) method must be called. The set of
properties may be nul l if the service has no properties.

□ Registers the specified service object with the specified properties under the specified class
names into the Framework. A org.osgi.framework.ServiceRegistration object is returned.
The org.osgi.framework.ServiceRegistration object is for the private use of the application
registering the service and should not be shared with other applications. The registering
application is defined to be the context application. Bundles can locate the service by us-
ing either the org.osgi.framework.BundleContext.getServiceReferences(String, String) or
org.osgi.framework.BundleContext.getServiceReference(String) method. Other applications can lo-
cate this service by using locateService(String) or locateServices(String) method, if they declared
their dependence on the registered service.

Foreign Application Access Specification Version 1.0 org.osgi.application

OSGi Compendium Release 6 Page 639

An application can register a service object that implements the org.osgi.framework.ServiceFactory
interface to have more flexibility in providing service objects to other applications or bundles.

The following steps are required to register a service:

1. If service is not a ServiceFactory , an I l legalArgumentException is thrown if service is not an in-
stanceof all the classes named.

2. The Framework adds these service properties to the specified Dictionary (which may be nul l): a
property named org.osgi.framework.Constants.SERVICE_ID identifying the registration num-
ber of the service and a property named org.osgi.framework.Constants.OBJECTCLASS contain-
ing all the specified classes. If any of these properties have already been specified by the register-
ing bundle, their values will be overwritten by the Framework.

3. The service is added to the Framework service registry and may now be used by others.
4. A service event of type org.osgi.framework.ServiceEvent.REGISTERED is fired. This event trig-

gers the corresponding ApplicationServiceEvent to be delivered to the applications that regis-
tered the appropriate listener.

5. A ServiceRegistrat ion object for this registration is returned.

Returns A org.osgi.framework.ServiceRegistration object for use by the application registering the service to
update the service's properties or to unregister the service.

Throws I l legalArgumentException– If one of the following is true:

• service is nul l .
• service is not a ServiceFactory object and is not an instance of all the named classes in clazzes .
• propert ies contains case variants of the same key name.

NullPointerException– if clazzes is nul l

SecurityException– If the caller does not have the ServicePermission to register the service for all
the named classes and the Java Runtime Environment supports permissions.

I l legalStateException– If this ApplicationContext is no longer valid.

See Also org.osgi.framework.BundleContext.registerService(java.lang.String[], java.lang.Object,
java.util.Dictionary), org.osgi.framework.ServiceRegistration, org.osgi.framework.ServiceFactory

120.7.2.10 public ServiceRegistration registerService(String clazz,Object service,Dictionary properties)

clazz The class name under which the service can be located. It must not be nul l

service The service object or a ServiceFactory object.

properties The properties for this service.

□ Registers the specified service object with the specified properties under the specified class name
with the Framework.

This method is otherwise identical to registerService(java.lang.String[], java.lang.Object,
java.util.Dictionary) and is provided as a convenience when service will only be registered under
a single class name. Note that even in this case the value of the service's Constants.OBJECTCLASS
property will be an array of strings, rather than just a single string.

Returns A ServiceRegistrat ion object for use by the application registering the service to update the service's
properties or to unregister the service.

Throws I l legalArgumentException– If one of the following is true:

• service is nul l .
• service is not a ServiceFactory object and is not an instance of the named class in clazz .
• propert ies contains case variants of the same key name.

org.osgi.application Foreign Application Access Specification Version 1.0

Page 640 OSGi Compendium Release 6

NullPointerException– if clazz is nul l

SecurityException– If the caller does not have the ServicePermission to register the service the
named class and the Java Runtime Environment supports permissions.

I l legalStateException– If this ApplicationContext is no longer valid.

See Also registerService(java.lang.String[], java.lang.Object, java.util.Dictionary)

120.7.2.11 public void removeServiceListener(ApplicationServiceListener listener)

listener The org.osgi.application.ApplicationServiceListener object to be removed.

□ Removes the specified org.osgi.application.ApplicationServiceListener object from this context ap-
plication instance's list of listeners.

If l istener is not contained in this context application instance's list of listeners, this method does
nothing.

Throws I l legalStateException– If this context application instance has stopped.

120.7.3 public class ApplicationServiceEvent
extends ServiceEvent
An event from the Framework describing a service lifecycle change.

Appl icat ionServiceEvent objects are delivered to a Appl icat ionServiceListener objects when a
change occurs in this service's lifecycle. The delivery of an Appl icat ionServiceEvent is always
triggered by a org.osgi.framework.ServiceEvent. Appl icat ionServiceEvent extends the content
of ServiceEvent with the service object the event is referring to as applications has no means to
find the corresponding service object for a org.osgi.framework.ServiceReference. A type code is
used to identify the event type for future extendability. The available type codes are defined in
org.osgi.framework.ServiceEvent.

OSGi Alliance reserves the right to extend the set of types.

See Also org.osgi.framework.ServiceEvent, ApplicationServiceListener

120.7.3.1 public ApplicationServiceEvent(int type,ServiceReference reference,Object serviceObject)

type The event type. Available type codes are defines in org.osgi.framework.ServiceEvent

reference A ServiceReference object to the service that had a lifecycle change. This reference will be used as
the source in the java.util.EventObject base class, therefore, it must not be null.

serviceObject The service object bound to this application instance. It can be nul l if this application is not bound
to this service yet.

□ Creates a new application service event object.

Throws I l legalArgumentException– if the specified reference is null.

120.7.3.2 public Object getServiceObject()

□ This method returns the service object of this service bound to the listener application instance. A
service object becomes bound to the application when it first obtains a service object reference to
that service by calling the Appl icat ionContext. locateService or locateServices methods. If the ap-
plication is not bound to the service yet, this method returns nul l .

Returns the service object bound to the listener application or nul l if it isn't bound to this service yet.

120.7.4 public interface ApplicationServiceListener
extends EventListener
An Appl icat ionServiceEvent listener. When a ServiceEvent is fired, it is converted to an Appl ic-
t ionServiceEvent and it is synchronously delivered to an Appl icat ionServiceListener .

Foreign Application Access Specification Version 1.0 References

OSGi Compendium Release 6 Page 641

Appl icat ionServiceListener is a listener interface that may be implemented by an application devel-
oper.

An Appl icat ionServiceListener object is registered with the Framework using the
Appl icat ionContext.addServiceListener method. Appl icat ionServiceListener objects are called with
an Appl icat ionServiceEvent object when a service is registered, modified, or is in the process of un-
registering.

Appl icat ionServiceEvent object delivery to Appl icat ionServiceListener objects is filtered by the fil-
ter specified when the listener was registered. If the Java Runtime Environment supports permis-
sions, then additional filtering is done. Appl icat ionServiceEvent objects are only delivered to the lis-
tener if the application which defines the listener object's class has the appropriate ServicePermis-
sion to get the service using at least one of the named classes the service was registered under, and
the application specified its dependence on the corresponding service in the application metadata.

Appl icat ionServiceEvent object delivery to Appl icat ionServiceListener objects is further filtered ac-
cording to package sources as defined in ServiceReference.isAssignableTo(Bundle, String).

See Also ApplicationServiceEvent, ServicePermission

120.7.4.1 public void serviceChanged(ApplicationServiceEvent event)

event The Appl icat ionServiceEvent object.

□ Receives notification that a service has had a lifecycle change.

120.7.5 public final class Framework
Using this class, OSGi-aware applications can obtain their ApplicationContext.

120.7.5.1 public static ApplicationContext getApplicationContext(Object applicationInstance)

applicationIn-
stance

is the activator object of an application instance

□ This method needs an argument, an object that represents the application instance. An application
consists of a set of object, however there is a single object, which is used by the corresponding ap-
plication container to manage the lifecycle on the application instance. The lifetime of this object
equals the lifetime of the application instance; therefore, it is suitable to represent the instance.

The returned ApplicationContext object is singleton for the specified application instance. Subse-
quent calls to this method with the same application instance must return the same context object

Returns the ApplicationContext of the specified application instance.

Throws NullPointerException– If appl icat ionInstance is nul l

I l legalArgumentException– if called with an object that is not the activator object of an application.

120.8 References

[1] OSGi Core Release 6
http://www.osgi.org/Specifications/HomePage

References Foreign Application Access Specification Version 1.0

Page 642 OSGi Compendium Release 6

Blueprint Container Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 643

121 Blueprint Container Specification

Version 1.0

121.1 Introduction
One of the great promises of object oriented languages was the greater reuse it should enable. How-
ever, over time it turned out that reuse was still hard. One of the key reasons was coupling. Trying to
reuse a few classes usually ended up in dragging in many more classes, that in their turn dragged in
even more classes, ad nauseum.

One of the key innovations in the Java language to address this coupling issue were interfaces. Inter-
faces significantly could minimize coupling because they were void of any implementation details.
Any class can use an interface, where that interface can be implemented by any other class. Howev-
er, coupling was still necessary because objects need to be created, and for creating an object its con-
crete class is necessary.

One of the most successful insights in the software industry of late has been inversion of control, or
more specific dependency injection. With dependency injection, an object is given the collaborators
that it needs to work with. By not creating these dependencies itself, the object is not coupled to the
concrete type of these implementations and their transitive implementation dependencies. Howev-
er, these objects are not useful on their own, they can only function when an external party provides
these objects with their collaborating objects.

An injection framework creates these objects, and also their concrete dependencies, and wires them
together. Injection frameworks can significantly increase reuse and provide increased flexibility. For
example, during testing it is possible to inject mocked up objects instead of the actual objects.

There exists a number of these injection frameworks in the market, for example [1] Spring Frame-
work, [3] Guice, and [4] Picocontainer. These containers are configured with XML, Java annotations, or
provide automatic configuration based on types.

Decoupling is one of the primary drivers for the OSGi specifications. The module layer provides
many mechanisms to hide implementation details and explicitly defines any dependencies. The ser-
vice layer provides a mechanism to collaborate with other bundles without caring about who that
other bundle is. However, using the OSGi APIs to construct an application out of services and ob-
jects also implies coupling to these OSGi APIs.

This specification therefore defines a dependency injection framework, specifically for OSGi bun-
dles, that understands the unique dynamic nature of services. It provides an OSGi bundle program-
ming model with minimal implementation dependencies and virtually no accidental complexity
in the Java code. Bundles in this programming model contain a number of XML definition resources
which are used by the Blueprint Container to wire the application together and start it when the
bundle is active.

This Blueprint Container specification is derived from the [2] Spring Dynamic Modules project.

121.1.1 Essentials

• Dependency Injection Framework - Provide an advanced dependency injection framework for bun-
dles that can create and wire objects and services together into an application.

• Inversion of Control - (IOC) A pattern in which a framework/library provides the control over the
component instances instead of the other way around. Dependency injection is a form of IOC.

Introduction Blueprint Container Specification Version 1.0

Page 644 OSGi Compendium Release 6

• Extender Model - Enable the configuration of components inside a bundle based on configuration
data provided by the bundle developer. The life cycle of these components is controlled by the
extender based on the extended bundle's state.

• Unencumbered - Do not require any special bundle activator or other code to be written inside the
bundle in order to have components instantiated and configured.

• Services - Enable the usage of OSGi services as injected dependencies.
• Dependencies - Allow components to depend on other components like services and beans as well

as register as services, with the full breadth of the OSGi capabilities.
• Dynamicity - Minimize the complexity of using the dynamicity of services
• Business Logic - A focus on writing business logic in regular Java classes that are not required to

implement certain framework APIs or contracts in order to integrate with a container.
• Declarative - This facilitates independent testing of components and reduces environment depen-

dencies.
• Familiarity - Familiar to enterprise Java developers.

121.1.2 Entities

• Blueprint Extender - The bundle that creates and injects component instances for a Blueprint bun-
dle as configured in that Blueprint bundle's XML definition resources.

• Blueprint Container - Represents the activities of the Blueprint Extender for a specific Blueprint
Bundle.

• Blueprint Bundle - A bundle that is being constructed by the Blueprint Container because it has a
Bundle-Blueprint header or it contains XML resources in the OSGI-INF/blueprint directory.

• Manager - A manager is responsible for the life cycle of all component instances for one component
definition. There are the following types of managers. A manager is a bean manager, a service refer-
ence manager, or a service manager. A manager can have explicit and implicit dependencies on other
manager. During instantiation and runtime, a manager can provide a component instance to be
injected or used in other ways.

• Component - A loosely defined term for the application building blocks and their infrastructure.
Components are instantiated into component instances by a manager that is configured with a Com-
ponent Metadata subclass that is derived from a Component Definition.

• Component Instance - An object that is part of the application. Component Instances are created
and managed by their component manager.

• Component Definition - Configuration data used by a manager to construct and manage compo-
nent instances. This configuration data is represented in Metadata, an interface hierarchy start-
ing with the Metadata interface.

• Bean Manager - A manager that has metadata for creating Java objects and injecting them with
objects and component instances that come from other managers it implicitly depends on.

• Service Manager - A manager that handles the registration of a service object that is provided by a
component instance.

• Service Reference Manager - The general name for the reference and reference-list managers.
• Reference Manager - A manager that handles the dependency on a single OSGi service.
• Reference-list Manager - A manager that handles the dependency on a list of OSGi services.
• Environment Manager - A manager that can provide information from the Bundle's environment.

For example, the BlueprintContainer object is made available through an environment manager.
• Target - A manager type useful in a callback context. These are the ref (which is an indirection

to), a reference, and a bean manager.
• Property - A conceptual instance variable of a component instance provided by a bean manager

that is set on the component instance with a corresponding set<Name> method.
• Argument - Metadata for an argument in a constructor or method.

Blueprint Container Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 645

• Type Converter - A component instance defined, or referenced, in the type-converters section im-
plementing the Converter interface.

Figure 121.1 Blueprint Class and Service Overview

blueprint
xml

Blueprint
Container Impl

component
instances ...

Blueprint
Container

inject
*

*

**

11

*

1*

1*

11

1Blueprint
Listener Impl

Blueprint
Container
Listener

Blueprint
Bundle

Blueprint
Extender

service reference

service

0,1

**

ex
te

nd

cr
ea

te
 &

 w
ire

Ev
en

t
Ad

m
in

121.1.3 Synopsis
The Blueprint Extender bundle waits for Blueprint bundles. These are bundles that contain Blue-
print XML resources called the definitions. These XML resources can be found in a fixed location or
pointed to from a manifest header. When a Blueprint extender bundle detects that a Blueprint bun-
dle is ready, it creates a Blueprint Container to manage that Blueprint bundle.

The Blueprint Container then parses the definitions into metadata objects. All top-level elements
in the definitions are ComponentMetadata objects and are registered in the Blueprint Container by
their id.

For each of the ComponentMetadata objects, the Blueprint Container has a corresponding compo-
nent manager. For example, a BeanMetadata object relates to a Bean Manager instance. There are the
following types of managers:

• Bean Managers - Can provide general objects that are properly constructed and configured
• Service Managers - Can register services
• Service Reference Managers - Provide proxies to one or more services. There are two sub-types: ref-

erence-list and reference.
• Environment Managers - Holding environment values like the Blueprint Bundle object

After creation, all managers are not yet activated. A manager is activated on demand when it has to
provide a component instance for the first time.

All service reference managers track services in the service registry in order to determine if they are
satisfied or not. If not, the Blueprint Container can optionally start a grace period. During the grace
period, the Blueprint Container waits for all mandatory service reference managers to become satis-
fied. If this does not happen during the grace period, the Blueprint Container must abort the initial-
ization.

From now on, the Blueprint Container is ready to provide component instances. Whenever a man-
ager is asked to provide a component instance for the first time, the manager is activated. This acti-

Managers Blueprint Container Specification Version 1.0

Page 646 OSGi Compendium Release 6

vation will first request all its dependencies to provide a component instance, activating these man-
agers if not already activated, recursively.

However, the activation needs a trigger to start. There are two triggers.

• Service Request - All service managers must have a Service Factory registered with the OSGi ser-
vice registry whenever that service manager is enabled, see Enabled on page 676.

• Eager Managers - To kick start the application in the bundle, the Blueprint Container must ask all
eager managers to provide a component instance, thereby activating these managers, see Eager
Instantiation on page 658.

Service references must actuate their reference listeners when they are activated.

Bean managers have a scope. This scope can be singleton , where the manager always provides the
same object, or prototype , where the manager creates a new object for each request.

Service reference managers provide proxies to the actual service objects and fetch the service object
lazily. They provide a constant reference that dampen the dynamics of the underlying service ob-
jects.

If the Blueprint Container has successfully activated the eager managers, it will register a Blueprint
Container service.

When the Blueprint Container must be destroyed because: the Blueprint bundle has stopped, there
is a failure, or the Blueprint extender is stopped, then the Blueprint Container service is unregis-
tered and all managers are deactivated. This will unregister any services and disable listeners, which
release the component instances. Then all component instances are destroyed in reverse dependen-
cy order. That is, a component instance is destroyed when no other component instances depend on
it.

121.2 Managers
The key feature of the Blueprint Container specification is to let the application in the bundle be
constructed in the proper order from objects that are not required to be aware of Blueprint, OSGi, or
even each other. These objects are called component instances. The active entity that orchestrates the
life cycle of the bundle application is the Blueprint Container. It is configured by XML resources in
the Blueprint bundle. The Blueprint Container is responsible for construction and configuration of
the component instances as well as the interaction with the service registry.

Inside the Blueprint Container, component instances are managed by a manager. A manager is con-
figured with one Component Definition, for example a bean definition, and can then provide one or
more component instances. Such a configured manager instance is also loosely called a component.

A manager can have additional behavior associated with it. This behavior is controlled by the
manager's type. This specification defines a number of manager types: bean, service, environment,
reference, and reference-list. These types are further defined in the next section.

These managers are conceptual, they are not visible in the API of this specification. That is, an im-
plementation is free to implement the specification without these objects as long as the externally
observable behavior is the same.

As an example, a trivial echo service:

<blueprint>
 <service id="echoService"
 interface="com.acme.Echo" ref="echo"/>
 <bean id="echo" class="com.acme.EchoImpl">
 <property name="message" value="Echo: "/>
 </bean>

Blueprint Container Specification Version 1.0 Managers

OSGi Compendium Release 6 Page 647

</blueprint>

public interface Echo {
 public String echo(String m);
}
public class EchoImpl implements Echo {
 String message;
 public void setMessage(String m) {
 this.message= m;
 }
 public void echo(String s) { return message + s; }
}

The example defines two top-level managers: echoService and echo . The echoService manager is of
type service, and the echo manager is of type bean. The service manager is responsible for registering
an OSGi service, where the service object will be the component instance provided by the echo man-
ager. The echo component instance gets a message injected.

As seen from the example, managers can use component instances from other managers to con-
struct their component instances. The use of other managers creates an implicit dependency. Man-
agers can also declare explicit dependencies. Dependencies are transitive, see Manager Dependencies on
page 649 for more information. In the previous example, the echoService service manager de-
pends on the echo manager, this is an implicit dependency.

Managers have their own life cycle. They are conceptually created after the Blueprint Container has
decided to run the application, see Blueprint Life-Cycle on page 653. However, the intention of this
specification is to allow the bundle application to lazily activate. That is, no application code is used
until there is a trigger like a service request or a service manager has an explicit dependency. A man-
ager must always be atomically activated before it provides its first component instance. During
activation, listeners are actuated and notified, service objects are requested, etc. The details are de-
scribed in the appropriate manager's type description.

Each manager type has an associated component metadata type. Component Metadata is used to con-
figure a manager. XML definition resources in the bundle define the source for this Metadata. In the
previous example, the service and bean XML element are translated to a ServiceMetadata and Bean-
Metadata object respectively.

The Blueprint Container maintains a registry of managers by their id. These are the managers that
are called the top-level managers. Top level managers are managers defined as child elements of the
top XML blueprint element or bean managers in the type-converters element. Their Metadata is reg-
istered under their id (or calculated id) in the Blueprint Container. All top level managers share a
single namespace. That is, it is an error if the same id is used multiple times or attempts to override
the built-in environment managers.

Top level managers can depend on other top level managers but there are many places where a man-
ager can depend on an inlined manager. In these places, a complete manager can be defined inside
another manager. Such inlined managers are always anonymous: they must not have an id and must
not be registered as a top-level manager. Inlined beans are further constrained to always have proto-
type scope. That is, every time they are asked to provide a component instance, they must return a
different object.

When the Blueprint Container must be destroyed, all singleton component instances that have been
created must be destroyed. This must first deactivate all activated managers. All these managers must
release their dependencies on any component instances they hold. Then the Blueprint Container
must destroy all singleton component instances. The order of this destruction must be such that a
component instance is only destroyed if there are no other component instances depending on it.
See Reverse Dependency Order on page 650.

Managers Blueprint Container Specification Version 1.0

Page 648 OSGi Compendium Release 6

The relations between manager types, component instances, metadata and the Blueprint Container
is schematically depicted in Figure 121.2 on page 648.

Figure 121.2 Managers and Metadata

Component
Metadata

Manager
Impl

Blueprint
Container

Bean Impl
Service Impl

 Reference Impl

component
instance

Metadata

Reference-list
ImplEnvironment

Impl

blueprint
xml

1

0,1

1

*

*

1

manages

*1

1 *

id

121.2.1 Manager Types
Blueprint only supports a fixed set of the following manager types:

• Bean - A bean manager provides regular Java objects as component instances. It has the following
features:
• Construction via class name, static factory method, or a factory method on a target. A target is

a reference to a top level manager of type bean or service reference, or a referral to a top level
manager of those types.

• Can have arguments for a constructor or factory method.
• Can have properties that are injected.
• Manages a singleton or creates objects on demand depending on its scope.
• Life cycle callbacks for end of initialization and destruction.

See Bean Manager on page 664 for more details.
• Reference - Reference managers track a service in the OSGi service registry. When activated, they

provide a proxy to a service object. See Service Reference Managers on page 676 for more details.
A reference is satisfied when its selection matches a service in the registry.

• Reference-list - Reference-list managers track multiple services. A reference-list is satisfied when
its selection matches one or more services in the registry. See Service Reference Managers on page
676 for more details.

• Service - Service managers maintain the registration of an OSGi service object. Service managers
provide a proxied ServiceRegistrat ion object so that the application code has a constant refer-
ence, even if the service is unregistered and then registered again. A service manager is enabled

Blueprint Container Specification Version 1.0 Managers

OSGi Compendium Release 6 Page 649

if all the mandatory service references in its dependencies are satisfied. See Service Manager on
page 670.

• Environment - Environment managers provide access to the environment of the Blueprint bundle,
for example its Bundle Context. See Blueprint Container on page 698 for more details.

121.2.2 Metadata Objects
Metadata objects hold the configuration information (from the Component Definition) for the
managers. These metadata objects represent the element structure found in the XML definitions in
canonical form. Each element in the XML has a corresponding Metadata sub-type that has a name
that maps directly to the element. For example, the bean element represents the bean manager that
has its configuration data defined in the BeanMetadata interface.

There are Metadata interfaces for all the manager types, except the environment type. Some depen-
dency injections require the construction of arrays, maps, properties, simple objects, etc. For these
type of objects, additional Metadata sub-interfaces are defined; these interfaces provide the informa-
tion to construct the basic programming types. For example, the Collect ionMetadata interface con-
tains the information to construct an Array or Collection of a given type, where its member values
are defined by other Metadata objects.

The set of Metadata types is fixed in this specification, just like the set of manager types. It is impos-
sible to extend this set with user defined Metadata types. For more information about Metadata, see
Metadata on page 703.

121.2.3 Activation and Deactivation
Managers are created after all the definitions are parsed. Some managers can already show some ac-
tivity, for example service managers always activate explicit dependencies and register a Service Fac-
tory with the OSGi service registry. However, in this state a manager should attempt to not use any
resources from the Blueprint bundle until it is activated itself.

A manager must be atomically activated when it has to provide its first component instance. Dur-
ing activation it can perform a manager specific initialization that will actually consume resources
from the Blueprint bundle. This activation must be atomic. That is, if a manager is being activated
then other threads must block until the activation is completed.

Deactivation only happens during the destruction of the Blueprint Container. During deactivation,
a manager must release any dependencies on resources of the Blueprint bundle. No components in-
stances are destroyed during deactivation because the singleton component instance destruction
must happen after all managers are deactivated.

Each manager type has a dedicated section that describes what must happen during its activation
and deactivation.

121.2.4 Manager Dependencies
Managers that refer to other managers depend on these managers transitively. For example, a service
manager depends directly on the manager that provides the service object. In its turn, that service
object could depend on any provided objects that were used to construct and inject this service ob-
ject, and so on. This transitive set of dependencies are called implicit dependencies because these de-
pendencies are implicitly created by the use of other managers in the Component Definitions.

Managers can also be configured with explicit dependencies. The XML definitions for all managers
have a depends-on attribute with a whitespace delimited list of manager ids. Each of these de-
pends-on managers must provide an object, that will be ignored. The timing of activation of depen-
dencies depends on the specific managers but in general should happen before any observable be-
havior.

There is no ordering guarantee between independent sets of dependencies. The dependency graph is
based on the managers, not the component instances. For example, the following definition:

Managers Blueprint Container Specification Version 1.0

Page 650 OSGi Compendium Release 6

<blueprint default-activation='eager'>
 <bean id='A'...> <argument ref='B'> </bean>
 <bean id='B' depends-on='C E'...>
 <argument ref='C'>
 </bean>
 <bean id='C' scope='prototype' ...>
 <argument ref='D'>
 </bean>
 <bean id='D' .../>
 <bean id='E' ...> <argument ref='C'/> </bean>
 <bean id='F' depends-on='B' activation="lazy"/>
</blueprint>

After initialization, there will be the following component instances: a , b , d , e , and three c 's. Lower
case names are used for instances, the corresponding upper case is its manager. The ordering guaran-
tee is that manager D is activated before manager C , manager C is activated before manager E and B ,
manager E is activated before manager B , and manager B is activated before manager A . There will be
no component instance f created because F is a lazy manager. There are three c 's because manager E
and B have an implicit dependency on C and manager B has an additional explicit dependency, total-
ing 3 dependencies. One of these c 's is an orphan and will be garbage collected over time because it
is not referred to by any component instance.

The example is depicted in Figure 121.3 on page 650.

Figure 121.3 Dependency Graph after initialization

A B

C

D

Explicit Dependency
Implicit Dependency

Prototype Manager

Component Instance

E
Singleton Manager

a b

d

e c

c’

F

Lazy Singleton Man.

c’’

121.2.5 Reverse Dependency Order
The destruction of component instances must be done in reverse dependency order. This concept is de-
fined as only destroying a singleton component instance (in a manager specific way) when no other
activated singleton component instance has an implicit or explicit dependency on it. That is, a com-
ponent instance has no more field references to other component instances. A component that nev-
er was activated does not have any dependencies.

This strategy will ensure that a component instance cannot have an instance field that refers to an
component instance that has been destroyed.

Deactivating the manager will release its dependencies, which then frees up other component in-
stances until all component instances are destroyed, or there are cyclic references. In the case of
cyclic dependencies, the order of destruction is undefined.

In the example depicted in Figure 121.3 on page 650, the previous rules imply that component
instance a can be immediately destroyed first because it has no clients. After component instance
a is destroyed, component instance b becomes free because no other component instances refer to
it. The explicit dependency from manager F to manager B was never activated, so it is not taken in-

Blueprint Container Specification Version 1.0 Managers

OSGi Compendium Release 6 Page 651

to account. The destruction of component instance b frees up component instance e and c because
now the explicit dependency from manager B to manager E and manager B to manager C have been
released. Manager C is deactivated but no component instances are destructed because it has proto-
type scope; these managers do not destroy their component instances. Then component instance d
can be destructed.

121.2.6 Cyclic Dependencies
The implicit and explicit dependencies of a component form a dependency graph. In the ideal case,
this graph should be free from cycles. A cycle occurs when a set of one or more managers find them-
selves in their own implicit or explicit dependencies. For example:

public class A { public A(B b); }
public class B { public void setA(A a); }

<bean id="a" class="A"> <argument ref="b"/> </bean>
<bean id="b" class="B"> <property name="a" ref="a"/> </bean>

In this example, the cycle is the set {a,b} . Managers can be part of multiple cycles.

When a member of a cycle is requested to provide a component instance, the Blueprint Contain-
er must break the cycle by finding one breaking member in the cycle's members. A breaking mem-
ber must be a singleton bean and use property injection for the dependency that causes the cycle.
The Blueprint Container can pick any suitable member of the cycle for breaking member, if no such
member can be found, then initialization fails or the getComponentInstance method must throw a
Component Definition Exception.

In the previous example, manager b can be a breaking member because it uses the property injec-
tion for the cyclic dependency on manager a . Manager a cannot be a breaking member because the
cyclic dependency is caused by a constructor argument, a breaking member must use property in-
jection for the cyclic dependency to be broken.

A breaking member must return a partially initialized component instance when it is asked to pro-
vide an object. A partially initialized object has done all possible initialization but has not yet been
called with the in itMethod (if specified) nor has it been injected any of the properties that causes
a cycle. The finalization of the partially initialized component instance must be delayed until the
breaking member has been injected in all referring members of the cycles. Finalization means in-
jecting any remaining unset properties and calling of the in itMethod , if specified.

The consequence of partially initialized component instances is that they can be used before they
have all properties set, applications must be aware of this.

All partially initialized component instances must be finalized before the Blueprint Container en-
ters the Runtime phase and before a call to the getComponentInstance method returns a compo-
nent instance.

All detected cycles should be logged.

Consider the following example:

public class A {
 public A(B b) {}
}
public class B {
 public B(A a) {}
}

And the configuration:

<bean id="a" class="A"> <argument ref="b"/> </bean>

Managers Blueprint Container Specification Version 1.0

Page 652 OSGi Compendium Release 6

<bean id="b" class="B"> <argument ref="a"/> </bean>

In this case, the cycle cannot be broken because neither manager qualifies as breaking manager be-
cause they have a constructor/factory argument dependency. That is, it is impossible to construct an
object without using the dependency. However, consider the following example:

public class A {
 public A(B b) {}
}
public class B {
 public B(C c) {}
}
public class C {
 public void setA(A a) {}
}

And the configuration:

<bean id="a" class="A"> <argument ref="b"/> </bean>
<bean id="b" class="B"> <argument ref="c"/> </bean>
<bean id="c" class="C" init-method="done">
 <property name="a" ref="a"/>
</bean>

This configuration is depicted in Figure 121.4 on page 652. This cycle {a,b,c} can be broken by
selecting manager c as the breaking member. If manager a is requested to provide a component in-
stance for the first time, then the following sequence takes place:

activate a
 activate b
 activate c
 c = new C()
 b = new B(c)
 a = new A(b)
 c.seta(a)
 c.done()
return a

Figure 121.4 Cyclic Dependency

a b c

Implicit Dependency
Managerbreaking

manager

Cycles must be broken, if possible, both for singleton managers as well as prototype beans, although
a breaking manager must always be a singleton bean because a prototype bean must always return
a new object, making it impossible to break the cycle by returning a partially initialized component
instance. That is, the following definition is not allowed to attempt to create an infinite loop:

<bean id="a" scope="singleton" class="A">
 <property name="a" ref="a">
</bean>

The previous definition must create an A object that refers to itself. However, if the example had
used a prototype scope, it would be an unbreakable cycle.

Blueprint Container Specification Version 1.0 Blueprint Life-Cycle

OSGi Compendium Release 6 Page 653

121.2.7 Eager Managers
The Blueprint Container can force the activation of the application in the Blueprint bundle with ea-
ger managers. An eager manager is a manager that has the activat ion set to eager . A bean manager
can only be eager if it has singleton scope.

Eager managers are explicitly activated by asking them to provide a component instance after all
other initialization is done. A bundle that wants to be lazily initialized should not define any eager
managers.

121.3 Blueprint Life-Cycle
A bundle is a Blueprint bundle if it contains one or more blueprint XML definition resources in the
OSGI-INF/blueprint directory or it contains the Bundle-Blueprint manifest header referring to exist-
ing resources.

A Blueprint extender is an implementation of this specification and must track blueprint bundles that
are type compatible for the Blueprint packages and initialize them appropriately. The timing and or-
dering of the initialization process is detailed in the following section.

There should be only one Blueprint extender present in an OSGi framework because this specifica-
tion does not specify a way to resolve the conflicts that arise when two Blueprint extenders extend
the same Blueprint bundle.

121.3.1 Class Space Compatibility
A Blueprint extender must not manage a Blueprint bundle if there is a class space incompatibility
for the org.osgi .service.blueprint packages. For example, if the Blueprint bundle uses the Blueprint-
Container class, then it must import the org.osgi .service.blueprint .container package. The Blue-
print extender and the Blueprint bundle must then share the same class space for this package. Type
compatibility can be verified by loading a class from the blueprint packages via the Blueprint exten-
der bundle and the Blueprint bundle's loadClass methods. If the Blueprint bundle cannot load the
class or the class is identical to the class loaded from the extender, then the two bundles are compat-
ible for the given package. If the Blueprint extender is not class space compatible with the Blueprint
bundle, then Blueprint extender must not start to manage the Blueprint bundle.

121.3.2 Initialization of a Blueprint Container
A Blueprint extender manages the application life cycle of Blueprint bundles based on:

• The Blueprint bundle state,
• The Blueprint definitions,
• The Blueprint extender's bundle state
• The class space compatibility

All activities on behalf of the Blueprint bundle must use the Bundle Context of the Blueprint bun-
dle. All dynamic class loads must use the Blueprint bundle's Bundle loadClass method.

The following sections describe a linear process that handles one Blueprint bundle as if it was man-
aged by a special thread, that is, waits are specified if the thread waits. Implementations are likely to
use a state machine instead for each managed Blueprint bundle, the linear description is only used
for simplicity.

In the following description of the initialization steps, the Blueprint Container will update its state.
State changes are broadcast as events, see Events on page 699.

Blueprint Life-Cycle Blueprint Container Specification Version 1.0

Page 654 OSGi Compendium Release 6

If any failure occurs during initialization, or the Blueprint bundle or Blueprint extender bundle is
stopped, the Blueprint Container must be destroyed, see Failure on page 654. These checks are not
indicated in the normal flow for clarity.

121.3.2.1 Initialization Steps

The initialization process of a Blueprint Container is defined in the following steps:

1. Wait until a blueprint bundle is ready. A blueprint bundle is ready when it is in the ACTIVE state,
and for blueprint bundles that have a lazy activation policy, also in the STARTING state.

2. Prepare, verify if this Blueprint bundle must be managed, see Preparing on page 656.
3. State = CREATING
4. Parse the XML definition resources.
5. Service reference managers must start tracking their satisfiability without actually activating.

See Tracking References on page 657.
6. If all mandatory service references are satisfied, or the blueprint .graceperiod is fa lse , then go to

step 9.
7. State = GRACE_PERIOD
8. Perform the grace period. This period waits until all mandatory service references are satisfied.

See Grace Period on page 657. This step fails if the mandatory dependencies are not satisfied at
the end of the grace period.

9. The Blueprint Container is now ready to provide component instances.
10. Service managers must initialize their explicit dependencies and have a Service Factory regis-

tered during the periods that they are enabled. See Service Registration on page 657.
11. Ask all eager managers to provide a component instance. See Eager Instantiation on page 658.
12. State = CREATED
13. Register the Blueprint Container
14. The components are now active and perform their function until the Blueprint bundle or the

Blueprint extender bundle are stopped.
15. State = DESTROYING
16. Perform the Destroy phase, see Destroy the Blueprint Container on page 658.
17. State = DESTROYED

121.3.2.2 Failure

If at any time there is a failure, the Blueprint Container must:

1. State = FAILURE
2. Unregister the Blueprint Container service.
3. Destroy the Blueprint Container.
4. Wait for the Blueprint bundle to be stopped.

121.3.2.3 Diagram

This initialization process is depicted in Figure 121.5 on page 655.

Blueprint Container Specification Version 1.0 Blueprint Life-Cycle

OSGi Compendium Release 6 Page 655

Figure 121.5 Blueprint Bundle Initialization

Parsing

Grace Period

Register
Services

wait for bundle or
extender to stopDestroy

satisfied

Destroy

CREATING

wait bundle
state=ACTIVE

wait bundle state=
ACTIVE|STARTING

lazy
bundle

wait for bundle or
extender to stop

wait &&
not satisfied

no wait ||
satisfied

CREATED

DESTROYING

DESTROYED

FAILURE

not
satisfied

yesno

GRACE_PERIOD

failed

Event
Wait

Process

Entry/Exit

Decision

Track
References

Instantiate

Preparing

121.3.3 Extensions
A compliant implementation of this specification must follow the rules as outlined. However, im-
plementations can provide functional extensions by including attributes or elements of other name-
spaces. For example, a Blueprint extender implementation that supports proxying of certain class-
es and a number of additional type converters could include a http://www.acme.com/extensions
namespace that adds an extensions attribute on the blueprint element:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint
 xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://www.acme.com/extensions"

 ext:extensions="proxyClasses"
>
 ...
</blueprint>

Blueprint Life-Cycle Blueprint Container Specification Version 1.0

Page 656 OSGi Compendium Release 6

Blueprint extenders that detect the use of an unrecognized namespace must fail to signal a portabili-
ty problem.

121.3.4 Preparing
Blueprint definitions are stored as resources in the Blueprint bundle. If a Bundle-Blueprint manifest
header is defined, then this header contains a list of paths. The Bundle-Blueprint header has the fol-
lowing syntax:

Bundle-Blueprint ::= header
 // See Common Header Syntax in Core

This specification does not define any attributes or directives for this header. Implementations can
provide proprietary parameters that should be registered with the OSGi Alliance to prevent name
collisions. The non-localized version of the header must be used.

The last component of each path in the Bundle-Blueprint header may use wildcards so that
Bundle.f indEntr ies can be used to locate the XML document within the bundle and its fragments.
The f indEndtr ies method must always be used in the non-recursive mode. Valid paths in the header
have one of the following forms:

• absolute path - The path to a resource in the fragment or directory, this resource must exist. For ex-
ample cnf/start .xml .

• directory - The path to directory in a fragment or main bundle, the path must end in a solidus
(' / ' \u002F). The pattern used in the f indEntr ies method must then be *.xml . The directory is al-
lowed to be empty.

• pattern - The last component of the path specifies a filename with optional wildcards. The part
before is the path of directory in the bundle or one of its fragments. These two parts specify the
parameter to f indEntr ies . It is allowed to have no matching resources. An example of a pattern is:
cnf/*.xml .

If no resources can be found, then the Blueprint bundle will not be managed and the initialization
exits.

For example, the following header will read the resources / l ib/account.xml , /security.bp , and all re-
sources which path ends in .xml in the /cnf directory:

Bundle-Blueprint: lib/account.xml, security.bp,cnf/*.xml

If the Bundle-Blueprint header is not defined, then its default value is:

OSGI-INF/blueprint/*.xml

A Bundle-Blueprint manifest header specified in a fragment is ignored by the Blueprint Container.
However, XML documents referenced by a bundle's Bundle-Blueprint manifest header, or its default,
may be contained in attached fragments, as defined by the f indEntr ies method.

If the Bundle-Blueprint header is specified but empty, then the Blueprint bundle must not be man-
aged. This can be used to temporarily disable a Blueprint bundle.

121.3.5 Parsing
The Blueprint Container must parse the XML definitions into the Blueprint Container's metadata
registry. Parsing fails if:

• A path from the Bundle-Blueprint header cannot be found in the bundle or any of its fragments.
• An XML definition does not validate against its schema.
• The XML elements do not meet one or more of their constraints
• Any errors occur

Blueprint Container Specification Version 1.0 Blueprint Life-Cycle

OSGi Compendium Release 6 Page 657

For failure, see Failure on page 659.

121.3.6 Tracking References
Service reference managers must track the service registry to see if they are satisfied or not. These
managers must not be activated to register these service listeners nor must they activate any depen-
dencies until they are activated. That is, no component instances for the reference listeners are ob-
tained until the service reference manager is activated.

121.3.7 Grace Period
A Blueprint Container by default will wait for its dependencies in the grace period. However, this can
be overridden with a directive on the Bundle-SymbolicName header of the Blueprint bundle:

• blueprint .graceperiod (true |fa lse) - If set to true , then the Blueprint Container must enter the
grace period and wait for dependencies, this is the default. Otherwise, it must skip the grace peri-
od and progress to the next phase regardless if there are any unsatisfied service references.

The purpose of the grace period is to handle the initialization of multiple bundles gracefully. The
grace period will first wait a configurable time for all mandatory service references to become sat-
isfied, or for the bundle to stop. If these mandatory services are satisfied, then the grace period suc-
ceeds, otherwise it will fail. If the bundle is stopped during the grace period, then the Blueprint Con-
tainer must be destroyed.

During the waiting period services can come and go. Each time such a service event takes place that
involves any of the mandatory service references, the Blueprint Container must send out another
GRACE_PERIOD event if that event does not result in ending the grace period. The event contains the
complete filters of the unsatisfied service references, see Blueprint Event on page 700.

The wait time for the grace period is defined in a directive on the Bundle-SymbolicName header of
the Blueprint bundle:

• blueprint .t imeout (Integer >= 0) - The time to wait in the grace period for dependencies to be-
come satisfied in milliseconds. The default is 300000, which is 5 minutes. If the t imeout is 0, an
indefinite wait will take place.

OSGi services are dynamic, therefore the grace period does not guarantee that all mandatory service
references are still available. It only guarantees that at one moment in time they were available. A
mandatory reference can become unsatisfied at any moment in time when a service is not available.
See the Service Dynamics on page 696 for a description of how this is handled.

For example, the following header will make the bundle wait a maximum of 10 seconds for its
mandatory service references to be satisfied. These dependencies must be satisfied, or a failure oc-
curs.

Bundle-SymbolicName: com.acme.foo;
 blueprint.graceperiod:=true;
 blueprint.timeout:= 10000

121.3.8 Service Registration
A service manager must first activate all its explicit dependencies but it must not activate. It must
then ensure that a Service Factory object is registered as a service when that service is enabled. En-
abled means that all of the mandatory service references in its dependencies are satisfied.

Once the Service Factory is registered, any bundle can get the corresponding service object. Such a
request must activate the service manager, if it is not already activated. Activation of a service man-
ager must obtain a component instance from the Blueprint Container for the service object and any
registration listeners. The registration listeners are then actuated and notified of the initial state.

Blueprint Life-Cycle Blueprint Container Specification Version 1.0

Page 658 OSGi Compendium Release 6

121.3.9 Eager Instantiation
After all initialization is done, the Blueprint Container is ready. It is now possible to request com-
ponent instances. If a bundle needs immediate startup because they cannot wait until they are trig-
gered, then it should set the activat ion of its bean managers to eager . The Blueprint Container must
request all eager managers to provide a component instance in this instantiation phase, see also
Lazy and Eager on page 663.

121.3.10 Runtime Phase
The Blueprint Container must be registered as a service with the following service properties:

• osgi .blueprint .container.symbol icname - The bundle symbolic name of the Blueprint bundle
• osgi .blueprint .container.vers ion - The version of the Blueprint bundle

The Blueprint Container service must only be available during the runtime phase when initializa-
tion has succeeded.

As long as the Blueprint extender and the Blueprint bundle are active, the application is in the run-
time phase. The component instances perform their requested functionality in collaboration. The
Blueprint Container can be used to provide objects from the defined managers, get information
about the configuration, and general state information, see Blueprint Container on page 698.

121.3.11 Destroy the Blueprint Container
The Blueprint Container must be destroyed when any of the following conditions becomes true:

• The Blueprint bundle is stopped, that is, it is no longer ready.
• The Blueprint extender is stopped
• One of the initialization phases failed.

Destroying the Blueprint Container must occur synchronously with the Bundle STOPPING event if
that caused any of the previous conditions. For example, if the Blueprint extender is stopped, it must
synchronously destroy all Blueprint Containers it has created.

Destroying the Blueprint Container means:

1. Unregistering the Blueprint Container service
2. Deactivating all managers.
3. Destroying all component instances in reverse dependency order, see Reverse Dependency Order

on page 650.

A Blueprint Container must continue to follow the destruction even when component instances
throw exceptions or other problems occur. These errors should be logged.

If the Blueprint extender is stopped, then all its active Blueprint Containers must be destroyed in an
orderly fashion, synchronously with the stopping of the Blueprint extender bundle. Blueprint Con-
tainers must use the following algorithm to destroy multiple Blueprint Containers:

1. Destroy Blueprint Containers that do not have any services registered that are in use by other
bundles. More recently installed bundles must be destroyed before later installed bundles, that
is, reverse bundle id order.

2. The previous step can have released services, therefore, repeat step 1 until no more Blueprint
Containers can be destroyed.

3. If there are still Blueprint Containers that are not destroyed, then destroy the Blueprint Contain-
er with:
• The registered service that is in use with the lowest ranking number, or if a tie
• The highest registered service id

Blueprint Container Specification Version 1.0 Blueprint Definitions

OSGi Compendium Release 6 Page 659

If there are still Bundle Containers to be destroyed, retry step 1

During the shutting down of an OSGi framework, it is likely that many bundles are stopped near si-
multaneously. The Blueprint extender should be able to handle this case, without deadlock, when
the stop of a Blueprint bundle overlaps with the stop of the Blueprint extender bundle.

121.3.12 Failure
If a failure occurs during the initialization of the Blueprint bundle, then first a FAILURE event must
be posted, see Events on page 699. Then the Blueprint Container should be destroyed, ensuring
that no uninitialized or half initialized objects are destroyed. Failures should be logged if a Log Ser-
vice is present.

121.3.13 Lazy
The Blueprint Container specification specifically allows lazy initialization of the application in the
Blueprint bundle. No component instances are created until an eager manager is activated, or a ser-
vice request comes in.

If no eager managers are defined and no service has explicit dependencies, then no component in-
stances are provided until an external trigger occurs. This trigger can be a service request or a call to
the getComponentInstance method of the Blueprint Container, which is registered as a service. This
allows a Blueprint bundle to not create component instances, and thereby load classes, until they
are really needed. This can significantly reduce startup time.

Some features of the component definitions can only be verified by inspecting a class. This class
loading can break the lazy initialization of a Blueprint bundle. It is therefore allowed to delay this
kind of verification until the activation of a manager.

This lazy behavior is independent of the bundle's lazy activation policy. Though the Blueprint ex-
tender recognizes this policy to detect when the bundle is ready (for a lazy activated bundle the
STARTING state is like the ACTIVE state), it is further ignored. That is, the relation between a Bundle
Activator that is lazily activated and the Blueprint Container is not defined.

121.4 Blueprint Definitions
The Blueprint XML resources in a bundle are the definitions. Each definition can include multiple
namespaces. Implementations of the Blueprint core namespace must strictly follow this specifica-
tion, if they add additional behavior they must add additional namespaces that are actually used in
the definitions to signal the deviation from this specification.

The namespace for the core Blueprint definition resources is:

http://www.osgi.org/xmlns/blueprint/v1.0.0

Blueprint resources that use this core specification must have as top the blueprint element. The fol-
lowing example shows the body of a Blueprint definition:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint
 xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 ...
</blueprint>

The recommended prefix for the Blueprint core namespace is bp .

All elements in the Blueprint namespace are prepared for future extensions and provide a descr ip-
t ion child element in most positions.

Blueprint Definitions Blueprint Container Specification Version 1.0

Page 660 OSGi Compendium Release 6

121.4.1 XML
In the following sections, the XML is explained using the normal syntax notation used for headers.
There is, however, one addition to the normal usage specific to XML, and that is the use of the an-
gled brackets (<>). A term enclosed in angled brackets, indicates the use of a real element. Without
the angled brackets it is the definition of a term that is expanded later to a one or more other terms
or elements. For example:

people ::= <person> *
person ::= <child>* address
address ::= <fr> | <us> | <nl>

Describes for example the following XML:

<people>
 <person id="mieke">
 <child name="mischa"/>
 <child name="thomas"/>
 <fr zip="34160"/>
 </person>
</people>

Attributes are described in tables that define how they map to their corresponding Metadata. As a
rule, the XML elements and attributes are expressed directly in the Metadata.

The text in the following sections is a normative description of the semantics of the schema. Howev-
er, the structure information is illustrative. For example, all descr ipt ion elements have been ignored
for brevity. The exact structure is described by the XML schema, see Blueprint XML Schema on page
704.

There are a number of convenient XML types used in the following sections. There schema types are
defined here:

• qname - A fully qualified Java class name in dotted form, for example java. lang.Str ing .
• method - A valid Java method name, for example setFoo .
• NCName - A string syntax for names defined in [8] XML Schema.
• ID - A string syntax for ids defined in [8] XML Schema.
• type - A name of a Java type including arrays, see the next section Syntax for Java types on page

660.
• target - An inline bean, reference, or ref, see Target on page 663.
• object - An object value, see Object Values on page 683

In several cases, the actual syntax depends on the type conversion. This type of syntax is indicated
with <<type>> indicates that the syntax of the string depends on the type conversion, where ten type
is usually given as a parameter on the same Metadata.

121.4.2 Syntax for Java types
A number of elements can refer to a Java type, for example the value element has a type attribute
and a map element has a key-type attribute. The syntax for these types is as follows:

type ::= qname array
array ::= '[]' *

Where qname is the fully qualified name of a Java class or interface, or the name of a primitive type.

For example:

<value type="java.lang.String[]"/>

Blueprint Container Specification Version 1.0 Blueprint Definitions

OSGi Compendium Release 6 Page 661

It is not possible to specify generic information in this syntax.

121.4.3 XML and Metadata
The Blueprint Container parses the XML into Metadata objects, see Metadata on page 703. Dur-
ing parsing, the XML parser validates against the detailed Blueprint schema and will therefore catch
many errors. However, the XML schema and the Metadata type are not equivalent. The XML con-
tains many conveniences that the Blueprint Container must convert to the canonical type in the
Metadata. A number of general rules apply for this conversion:

• An absent attribute will result in nul l , unless the schema element provides a default value. In
that case, the default must be returned from the Metadata object. That is, a default is indistin-
guishable from a specifically set value.

• Defaults from the blueprint element are filled in the Metadata objects, they are not available in
any other way.

• Strings are trimmed from extraneous whitespace, as described in XML normalization.
• Child elements are represented by List objects, in the order of their definition. If no child ele-

ments are specified, the list will be empty.

For example, the activat ion feature reflects the total of default-act ivat ion and activat ion attributes
but does not reflect that a prototype scope always makes a bean lazy. That is, even if activat ion is ea-
ger , the bean must still have lazy act ivat ion when it has prototype scope.

121.4.4 <blueprint>
The blueprint element is the top element. The definitions consist of two sections: the type-convert-
er section and the managers section.

blueprint ::= <type-converters>manager*
manager ::= <bean> | <service>
 | service-reference
service-reference ::= <reference> | <reference-list>
type-converters ::= <bean> | <ref>

In this specification, the reference and reference-list managers are referred to as service references
when their differences are irrelevant. The blueprint element structure is visualized in Figure 121.6.

Figure 121.6 Managers (bold = element name, plain=base type)

blueprint

type-
converters

bean ref

*
0..1

*

= choice

manager
(top level)

121.4.5 Metadata
The blueprint element has no corresponding Metadata class.

Blueprint Definitions Blueprint Container Specification Version 1.0

Page 662 OSGi Compendium Release 6

121.4.6 Defaults
The blueprint element supports the setting of the diverse defaults for the current definition resource
with the following attributes:

• default-act ivat ion - Controls the default for the activat ion attribute on a manager. See Lazy and
Eager on page 663. The default for this attribute is eager .

• default-avai labi l i ty - The default availability of the service reference elements, see Service Refer-
ence Managers on page 676. The default for this attribute is mandatory .

• default-t imeout - The default for the reference element t imeout attribute, see Service Reference
Managers on page 676. The default for this attribute is 30000, or 5 minutes.

These defaults are specific for one definition resource, they apply only to elements enclosed to any
depth in the blueprint element. These defaults are not visible in the Metadata.

121.4.7 <type-converters>
The Blueprint definitions are text based but the component instances require actual classes for their
construction and dependency injection. Component instances are injected with general objects the
target type is not always compatible with the source type. This specification therefore allows for
type conversion. Type conversion rules are specified in Type Conversion on page 691. This section
provides beans, or referrals to beans, that can be used in this type conversion process. They are listed
in a separate section so they can be registered as a type converter, pre-instantiated, and preventing
dependencies that easily become cyclic. Beans defined in the type-converters element must be reg-
istered as top-level managers.

The structure of the type-converters element is:

type-converters ::= (<bean> | <ref>)*

Type converters defined with the ref element can refer to bean managers or reference managers.
Type converters must have ids distinct from any other manager and are available through the Blue-
print Container's getComponentInstance method.

121.4.8 manager
The component XML schema type is the base type of the bean , service , reference-l ist , and reference
elements. All manager sub-types share the following attributes:

• id - The manager and its Metadata are identified by its id as defined in its Component Definition.
In general this id is therefore referred to as the component id. This is an optional attribute. If it is
not defined, a default calculated unique id will be assigned to it for top-level managers. For in-
lined managers, the id attribute cannot be set, their Metadata must return nul l . All top level man-
ager ids must be unique in a Blueprint Container.

The id attribute must be of type ID as defined in XML Schema, see [8] XML Schema. The syntax for
an id is therefore:

id ::= ID // See ID in [8] XML Schema

Ids generally use camel case, like myComponent , and they are case sensitive. That is, component
id madHatter and madhatter are distinct ids. Applications should not use ids starting with the
prefix blueprint .

Ids are not required, if no component id is specified, the Blueprint Container must assign a
unique id when it is a configured in a top level element. This calculated id must start with a full
stop ('.' \u002E).

• activat ion - Defines the activation mode to be lazy or eager. See Eager Instantiation on page 658.

Blueprint Container Specification Version 1.0 Blueprint Definitions

OSGi Compendium Release 6 Page 663

• dependsOn - The list of explicit dependencies that must be activated. See Explicit Dependencies on
page 663.

The Metadata interface of top level managers will be a sub-interface of ComponentMetadata and is
available from the Blueprint Container by its component id.

Figure 121.7 Inheritance hierarchy for managers

service-referencebean service

manager

reference reference-list

extends

121.4.9 Explicit Dependencies
The dependsOn list contains the ids of the top-level managers the bean explicitly depends on. Un-
less stated otherwise in the specific manager description, explicit dependencies must be activated
before their manager is activated.

For example:

<bean id="alice" class="com.acme.MadHatter"
 depends-on="cheshire rabbit queen"/>

This example will ask the top level managers cheshire , rabbit , and queen to provide an object before
al ice is activated. For a discussion about dependencies see Manager Dependencies on page 649.

121.4.10 Lazy and Eager
During initialization, all eager top level managers are requested to provide a component instance.
Applications can use this request as an indication to start providing their intended functionality.

Managers that are lazy, that is, not singleton scope, activat ion is lazy , or inlined, are activated when
they are first asked to provide a component instance. Therefore, even lazy managers can activate
during initialization when they happen to be a dependency of another manager that activates its de-
pendencies.

Services and service references can also have lazy or eager activation. The eager activation will en-
sure that all listeners are properly actuated during the corresponding activation. For services, the
service object is then also requested at startup.

The following example defines an eager bean by making it a singleton and setting the activat ion to
eager :

<bean id="eager" scope="singleton"
 class="com.acme.FooImpl" activat ion="eager"/>

121.4.11 Target
In several places in the Blueprint schema it is necessary to refer to a target. A target is a:

Bean Manager Blueprint Container Specification Version 1.0

Page 664 OSGi Compendium Release 6

• ref - Must reference one of the following managers
• reference - An inlined reference manager
• bean - An inlined bean manager

The target type is normally used for listeners, service objects, and other places where a general appli-
cation component instance is required.

121.5 Bean Manager
A bean manager provides an arbitrary Java object. It constructs this object from a given class or fac-
tory and then configures the object by injecting its properties with other component instances or
more general object values.

The provided component instance can be a singleton or a new object can be returned on every invo-
cation (prototype), this behavior is defined with the scope attribute, see Scope on page 667.

The provided object can optionally be notified when all of its properties have been injected, and
when the providing bean manager will be deactivated, see Life Cycle Callbacks on page 669.

121.5.1 Bean Component XML
The structure of a bean element is:

bean ::= (<argument> | <property>)*

Figure 121.8 Bean Structure

bean

argument property

*

121.5.2 <bean>
The Metadata for a bean manager is represented in the BeanMetadata interface, which extends
ComponentMetadata . Table 121.1 provides an overview of the related XML definitions and the
BeanMetadata interface. The table only provides a summary, the sometimes subtle interactions be-
tween the different features are discussed in later sections.

Table 121.1 Bean Manager Features

Attribute or Element Syntax Bean Metadata Description
id ID id

: Str ing

The id of a top level manager,
must be unique in the Blueprint
Container. All inlined managers
must return nul l for their id.

Blueprint Container Specification Version 1.0 Bean Manager

OSGi Compendium Release 6 Page 665

Attribute or Element Syntax Bean Metadata Description
activat ion lazy

| eager

act ivat ion

: int

Defines if this bean is lazily or
eagerly activated. If not explic-
itly set, the blueprint element's
value for the default-act ivat ion
attributes is used. If this is also
not set, the value is eager . See
Lazy and Eager on page 663.

depends-on NCName* dependsOn

: L ist<Str ing>

Explicit list of ids that are the
dependencies. These referred
managers must be activated be-
fore this bean can provide an
object. See Explicit Dependencies
on page 663. This is a white-
space separated list.

class qname className

: Str ing

Class name of the object to be
provided or the class name for
a static factory. See Construction
on page 668.

scope s ingleton

| prototype

scope

: Str ing

The scope defines the construc-
tion strategy for the compo-
nent instance. The default is
singleton except for inlined
bean managers, where it is pro-
totype . There is no schema de-
fault, so if it is not explicitly set,
the Metadata will be nul l . See
Scope on page 667.

in it-method method initMethod

: Str ing

The name of a method to in-
voke when a provided object
has been injected with all its
properties. If this is not set, it is
nul l . See Life Cycle Callbacks on
page 669.

destroy-method method destroyMethod

: Str ing

A name of a method to invoke
on the provided objects with
singleton scope when the Blue-
print Container is destroyed. If
this is not set, it is nul l . See Life
Cycle Callbacks on page 669.

factory-method method factoryMethod

: Str ing

The name of the method on a
static or component instance
factory. See Construction on page
668.

factory-ref NCName factoryComponent

: Str ing

A reference to a manager that
acts as the factory. See Construc-
tion on page 668.

Bean Manager Blueprint Container Specification Version 1.0

Page 666 OSGi Compendium Release 6

Attribute or Element Syntax Bean Metadata Description
<argument> Table arguments

: L ist<BeanArgument>

Defined as sub-elements of the
bean element. A BeanArgument
object contains the value of an
argument in the factory method
or constructor. The order of the
arguments is declaration order.
See Construction on page 668.

<property> Table propert ies

: L ist<BeanPropert ies>

Defined as sub-elements of the
bean element. A BeanProper-
ty object provides the property
name and injection value. See
Properties on page 668.

The bean element has the following constraints that are not enforced by the schema but must be en-
forced by the Blueprint Container:

• The destroyMethod must not be set when the scope is prototype .
• The activat ion must not be set to eager if the bean also has prototype scope.
• The following combinations of arguments are valid, all other combinations are invalid:

• className
• className , factory-method
• factory-ref , factory-method

121.5.3 <argument>
The argument element holds a value for a constructor or factory method's parameters.

Table 121.2 Bean Argument Features

Attribute or Element Syntax Bean Argument Description
index int >= 0 index

: int

The index of the argument
in the constructor or facto-
ry-method signature. If this is
not set, the Blueprint Container
must use the type information
to calculate it to match the dis-
ambiguation algorithm. The in-
dex will be -1 when not explicit-
ly set.

type qname valueType

: Str ing

The fully qualified class name
of a Java type to match the argu-
ment to the signature against.

ref NCName value

: RefMetadata

A reference to a top level man-
ager that provides the value for
the argument .

value <<type>> value

: ValueMetadata

The Value Metadata based on
the value property.

<. . .> object value

: Metadata

An inlined value.

The argument element has the following additional constraints:

Blueprint Container Specification Version 1.0 Bean Manager

OSGi Compendium Release 6 Page 667

• Either all arguments have a specified index or none have a specified index.
• If indexes are specified, they must be unique and run from 0..(n-1) , where n is the number of ar-

guments.
• The following attributes and elements are mutually exclusive:

• ref
• value
• An inlined object value

121.5.4 <property>
The property element holds the information to inject a bean property with an object value.

Table 121.3 Bean Property Features

Attribute or Element Syntax Bean Property Description
name method

('.' method

)*

name

: Str ing

The property name, for exam-
ple foo . The method name can
consist of full stop separated
method names, indicating nest-
ed property access.

ref NCName value

: RefMetadata

A reference to a top level man-
ager.

value <<type>> value

: ValueMetadata

A Value Metadata where the
type is nul l .

<. . .> object value

: Metadata

An inlined object value.

The argument element has the following additional constraints:

• The following attributes/elements are mutually exclusive
• ref
• value
• An inlined object value

121.5.5 Scope
A bean manager has a recipe for the construction and injection of an object value. However, there
can be different strategies in constructing its component instance, this strategy is reflected in the
scope . The following scopes are architected for this specification:

• singleton - The bean manager only holds a single component instance. This object is created and
set when the bean is activated. Subsequent requests must provide the same instance. Singleton is
the default scope. It is usually used for core component instances as well as stateless services.

• prototype - The object is created and configured anew each time the bean is requested to provide
a component instance, that is, every call to getComponentInstance must result in a new compo-
nent instance. This is usually the only possible scope for stateful objects. All inlined beans are al-
ways prototype scope.

Implementations can provide additional scope types. However, these types must only be allowed
when a defining namespace is included in the definitions and is actually used in the definitions to
specify the dependency on this feature.

Bean Manager Blueprint Container Specification Version 1.0

Page 668 OSGi Compendium Release 6

121.5.6 Construction
The Blueprint specification supports a number of ways for a bean manager to construct an object.
Each possibility is a combination of the following Metadata properties:

• className - Defines the fully qualified name of a class to construct, or the name of a class with a
static factory method. The class must be loadable from the Blueprint bundle loadClass method.

• factoryMethod - A static or instance factory method name that corresponds to a publicly accessi-
ble method on the given class or factory manager.

• factoryComponent - The id of a top-level target manager in the Blueprint Container that is an in-
stance factory.

The Bean manager can have a number of BeanArgument objects that specify arguments for the con-
structor or for the factory class/object method. The matching constructor or method must be pub-
licly accessible. The argument's valueType can be used to disambiguate between multiple signa-
tures of constructors or methods. See Signature Disambiguation on page 689.

The value of the argument is always a Metadata object. Such an object can be converted into a gener-
al object value, see Object Values on page 683.

The construction properties can be used in a rather large number of combinations, however, not all
combinations are valid. Table 121.4 shows the different valid combinations. If none of the combina-
tions matches, then the Bean Metadata is erroneous.

In Table 121.4, a variation of the following bean definition is assumed:

<bean class="C" factory-method="f" factory-ref="fc">
 <argument value="1"/>
 <argument value="2"/>
</bean>

This definition is invalid because it specifies an invalid combination of metadata properties. The on-
ly valid combinations are subsets, they are all specified in the following table.

Table 121.4 Component Attributes and Construction

className factory-method factory-ref argument Corresponding Java Code
C new C
C f C.f()
C 1,2 new C(1,2)
C f 1,2 C.f(1,2)
 f $fc $fc.f()
 f $fc 1,2 $fc.f(1 ,2)
* * * * fai lure

The object created this way will be the provided object of the bean after any properties are injected.
If the factoryMethod returns a primitive type, then this primitive must be converted to the corre-
sponding wrapper type before any usage.

121.5.7 Properties
Dependency injection configures a constructed object with the help of the propert ies , which is a
List of BeanProperty objects. A Bean Property has the following features:

• name - The name of the bean property. This name refers to the set method on the constructed ob-
ject as specified in the design pattern for beans getters and setters, see [5] Java Beans Specification.
For example, if the property name is foo , then the public method setFoo(arg) will be used to set
the value. There should only be one set method with a single argument for a specific property. If
overloaded properties are encountered, the chosen set method is unspecified.

Blueprint Container Specification Version 1.0 Bean Manager

OSGi Compendium Release 6 Page 669

Nested property names are allowed when setting bean properties, as long as all parts of the path,
except the property that is set, result in a non-nul l value. The parts of the path are separated with
a full stop ('.' \u002E). For example:

<property name="foo.bar.baz" value="42"/>

This example gets the foo property, from the constructed object, it then gets the bar property and
then sets the baz property on that object with the given value.

• value - The value of the property is always a Metadata object. This Metadata object can be con-
verted to a value object, see Object Values on page 683.

After the Metadata object is converted to an object value, it must be injected into the property. If the
value object is not directly assignable to the property type (as defined by its only set method and the
rules in Type Compatibility on page 690), then the Blueprint Container must use the type conver-
sion mechanism to create a new object that matches the desired type, or fail. See Dependency Injection
on page 689 for more information about dependency injection.

For example, the following bean creates an instance and then injects a three into a the foo property
that it gets from the bar property. The string that holds the three is converted to a double :

<bean id="foo" class="com.acme.Foo">
 <property name="bar.foo" value="3"/>
</bean>

// Classes
package com.acme;
public class Bar {
 double v;
 public void setFoo(double v) { this.v = v; }
}
public class Foo {
 Bar bar = new Bar();
 public void getBar() { return bar; }
}

// Corresponding Java code
Foo foo = new Foo();
foo.getBar().setFoo(3.0);

121.5.8 Life Cycle Callbacks
The bean element provides two attributes that define the callback method names for initialization
and destruction. A callback must be implemented as a publicly accessible method without any argu-
ments. The callback method names must exist as void() methods.

The in itMethod specifies the name of an initialization method that is called after all properties have
been injected. The destroyMethod specifies the name of a destroy method that is called when the
Blueprint Container has destroyed a component instance. Only bean managers with singleton scope
support the destroyMethod . The destroy callback cannot be used for beans that have prototype
scope, the responsibility for destroying those instances lies with the application.

121.5.9 Activation and Deactivation
A singleton bean manager must construct its single object during activation and then callback its
in itMethod method. Prototype scoped beans are created after activation and also have their in it-
Method invoked. The destroy method is called during the destruction of all the beans in singleton
scope, this happens after deactivation.

Service Manager Blueprint Container Specification Version 1.0

Page 670 OSGi Compendium Release 6

A prototype bean manager has no special activities for deactivation.

121.6 Service Manager
The service manager defined by a service element is responsible for registering a service object with
the service registry. It must ensure that this service is only registered when it is enabled. Where en-
abled means that all its mandatory service reference managers in its dependencies are satisfied.

121.6.1 <service>
The XML structure of the <service> manager is:

service ::= <interfaces>
 <service-properties>
 <registration-listener>*
 target
interfaces ::= <value>+
service-properties ::= <entry>+
registration-listener ::= target

The service manager has the features outlined in Table 121.5 on page 670. The following addi-
tional constraints apply:

• The interface attribute and interfaces element are mutually exclusive.
• If the auto-export attribute is set to anything else but disabled , neither the interface attribute

nor the interfaces element must be used.
• The ref attribute and in l ined element are mutually exclusive

Table 121.5 Service Manager Features

Attribute or Element Type Service Metadata Description
id ID id

: Str ing

Optional component id of the
manager, if it is a top level man-
ager.

activat ion lazy

| eager

act ivat ion

: int

Defines if this service is lazily or
eagerly initialized. If not explic-
itly set, the blueprint element's
value for the default-act iva-
t ion attributes is used. If this is
also not set, the value is eager .
See also Lazy and Eager on page
663.

depends-on NCName* dependsOn

: L ist<Str ing>

Explicit list of ids that are the
dependencies. These managers
must be activated at the start
of the registration phase. See
Explicit Dependencies on page
663. This is a whitespace sep-
arated list.

interface qname interfaces

: L ist<Str ing>

Name of the interface under
which this service should be
registered. See Service Interfaces
on page 672.

Blueprint Container Specification Version 1.0 Service Manager

OSGi Compendium Release 6 Page 671

Attribute or Element Type Service Metadata Description
auto-export disabled

| interfaces

| c lass-

 hierarchy

| a l l-c lasses

autoExport

: int

Defines the way the class must
be analyzed to find the inter-
faces under which the service
must be registered. The schema
default is disabled . See Service
Interfaces on page 672

ranking int ranking

: int

The service.ranking value. The
schema default is 0, which im-
plies no service property. See
Ranking on page 674.

ref NCName value

: RefMetadata

Reference to the manager that
provides the service object. See
Service Object on page 674.

<service-propert ies> See <map> on
page 686.

servicePropert ies

: L ist<MapEntry>

The service properties for this
service. See Service Properties on
page 673.

<registrat ion-l istener> See Table 121.6. registrat ionListeners

: L ist<Registrat ion

 L istener>

The registration listeners. See
Registration Listener on page
674.

<interfaces> <value>* interfaces

: L ist<Str ing>

Names of interfaces under
which this service should be
registered. Each interface name
must be listed as a child value
element. This value element has
no attributes. For example:

<interfaces>
 <value>com.a.Foo</value>
 <value>com.a.Bar</value>
</interfaces>

The value element must only
hold a string value. See Service
Interfaces on page 672

<. . .> target value

: Target

An inlined target manager that
is used for the service object.
See Service Object on page 674

121.6.2 <registration-listener>
The service element can contain zero or more registrat ion-l istener elements, that define registra-
tion listeners to be notified of service registration and unregistration events. This element has the
following structure:

registration-listener ::= target*

The registrat ion-l istener element defines the callback methods for registration and unregistration.

Table 121.6 Registration Listener Features

Attribute or Element Type Registration Listener Description
ref NCName registrat ionListener

: Target

A reference to a top level man-
ager.

Service Manager Blueprint Container Specification Version 1.0

Page 672 OSGi Compendium Release 6

Attribute or Element Type Registration Listener Description
registrat ion-method method registrat ionMethod

: Str ing

The name of the method to call
after the service has been regis-
tered. See Registration Listener on
page 674.

unregistrat ion-method method unregistrat ionMethod

: Str ing

The name of the method to call
before the service will be unreg-
istered. See Registration Listener
on page 674.

<. . .> target registrat ionListener

: Target

An inlined target manager

The additional constraint is:

• The ref attribute and the inlined manager are mutually exclusive.
• Either or both of the registrat ionMethod and unregistrat ionMethod must be set.
• For each method name set, there must be at least one method matching the possible prototypes

in the registration listener object, see Registration Listener on page 674.

121.6.3 Explicit Dependencies
A service manager must initialize any explicit dependencies in the start of its registration phase,
even before it tracks its enabled state. The presence of explicit dependencies will not activate the
service manager.

121.6.4 Provided Object
A service manager provides a proxy to a ServiceRegistrat ion object. If this proxy is used when the
dependencies are not met, and the service is therefore unregistered, an Illegal State Exception must
be thrown. In all other cases, the proxy acts as if it was the ServiceRegistrat ion object associated
with the registration of its service object.

The unregister method on the returned object must not be used. If the application code calls unreg-
ister then this must result in an Unsupported Operation Exception.

121.6.5 Service Interfaces
Each service object is registered under one or more interface names. The list of interface names is
provided by interfaces or autoExport .

The autoExport tells the Blueprint Container to calculate the interface(s) from the type of the ser-
vice object. The autoExport can have the following values:

• disabled - No auto-detection of service interface names is undertaken, the interface names must
be found in interfaces . This is the default mode.

• interfaces - The service object will be registered using all of its implemented public Java interface
types, including any interfaces implemented by super classes.

• class-hierarchy - The service object will be registered using its actual type and any public su-
per-types up to the Object class (not included).

• al l-c lasses - The service object will be registered using its actual type, all public super-types up
to the Object class (not including), as well as all public interfaces implemented by the service ob-
ject and any of its super classes.

The autoExport requires the actual class object for introspection for all its modes except
disabled ,which can cause a bundle with a lazy activation policy to activate because a class will be
loaded from the Blueprint bundle.

Blueprint Container Specification Version 1.0 Service Manager

OSGi Compendium Release 6 Page 673

As an example:

<bean id="fooImpl" class="FooImpl"/>

public class FooImpl implements Foo { ... }

Then the following service definitions are equivalent:

<service id="foo">
 <interfaces>
 <value>com.acme.Foo</value>
 </interface>
</service>
<service id="foo" interface="com.acme.Foo" ref="fooImpl"/>
<service id="foo" auto-export="interfaces" ref="fooImpl"/>

121.6.6 Service Properties
Each service can optionally be registered with service properties. The servicePropert ies is a list of
MapEntry , see <entry> on page 687. This metadata must be used to create the service properties.
Service properties creation can have side effects because they can use component instances. The ser-
vice properties must therefore be created once before the first time the first time the service is regis-
tered.

The service manager adds the following automatic service properties that cannot be overridden.
When these properties are explicitly set, they must be ignored.

• osgi .service.blueprint .compname - This will reflect the id of the manager that provides the ser-
vice object, unless it is inlined. Inlined beans are always anonymous and must not have this
property set.

• service.ranking - If the ranking attribute is not zero, this property will be set and hold an Integer
object with the given value, see Ranking on page 674.

For example, the following definition is followed by equivalent Java code needed to register the ser-
vice:

<service ref="fooImpl" interface="com.acme.Foo">
 <service-properties>
 <entry key="size" value="42"/>
 </service-properties>
</service>

Dictionary d = new Hashtable();
d.put("size", "42");
d.put("osgi.service.blueprint.compname", "fooImpl");
ServiceRegistration sr =
 bundleContext.registerService("com.acme.Foo",
 blueprintContainer.getComponentInstance("fooImpl"),
 d);

Service properties should specify the valueType of the entry unless the value to be registered needs
to be a Str ing object. The service property types should be one of:

• Primitives Number - int , long, f loat , double, byte, short , char, boolean
• Scalar - Str ing, Integer, Long, F loat, Double, Byte, Short , Character, Boolean .
• Array - An array of either the allowable primitive or scalar types.
• Collection - An object implementing the Collect ion interface that contains scalar types.

Service Manager Blueprint Container Specification Version 1.0

Page 674 OSGi Compendium Release 6

See <entry> on page 687 types for information how to create these types.

121.6.7 Service Object
The service manager must not request the Blueprint Container for the service object until it is ac-
tually needed because a bundle requests it. The service object is represented in the value . This is a
Metadata object that can be used to construct an object value, see Object Values on page 683.

For example:

<service id="fooService" ref="fooImpl".../>

<service id="fooService" ... >
 <bean class="com.acme.fooImpl"/>
</service>

The scope of the beans is ignored for the manager that provides the service object. Its value will only
be created once the first time it is needed for the service.

121.6.8 Scope
A service manager must always register a Service Factory as service object and then dispatch the ser-
vice requests to the service object. A service manager must obtain a single component instance as
service object. This component instance is shared between all bundles. That is, even if the service
object comes from a prototype scoped manager, only one instance is ever created per service manag-
er.

If this component instance implements Service Factory, then all incoming service requests are for-
warded to this single component instance.

121.6.9 Ranking
When registering a service with the service registry, an optional service ranking can be specified that
orders service references. The service ranking is registered as the SERVICE_RANKING property de-
fined in the OSGi service layer. When a bundle looks up a service in the service registry, given two
or more matching services, then the one with the highest number will be returned. The default
ranking value for the OSGi service registry is zero, therefore, this property must not be registered
when ranking is zero, which is also the default value.

For example:

<service ref="fooImpl" interface="com.acme.FooImpl"
 ranking="900" />

This will result in the following service property:

service.ranking=new Integer(900)

121.6.10 Registration Listener
The registrat ionListeners represent the objects that need to be called back after the service has been
registered and just before it will be unregistered.

The l istenerComponent must be a Target object; it is the target for the following callbacks:

• registrat ionMethod - The name of the notification method that is called after this service has
been registered.

• unregistrat ionMethod - This method is called when this service will be unregistered.

The signatures for the callback methods depend on the scope and if the service object implements
the ServiceFactory interface. The different possibilities are outlined in the following table.

Blueprint Container Specification Version 1.0 Service Manager

OSGi Compendium Release 6 Page 675

Table 121.7 Interaction scopes and types for callback signature.

Scope Type Signature Comment
singleton ServiceFactory void(ServiceFactory,Map) All service requests are handled

by the component instance.
singleton T void(super T,Map) T is assignable from the service

object's type.
prototype ServiceFactory void(ServiceFactory,Map) All service requests are han-

dled by the first component in-
stance.

prototype T void(,Map) The first argument must be
nul l because for prototype ser-
vice objects, the component in-
stance is created when a bundle
requests the service. Therefore,
at registration time there is no
service object available.

If multiple signatures match, then all methods must be called in indeterminate order. At least one
method must match.

The service manager must provide the registration listener with the current registration state when
the listener is registered. This initial notification must take place before any other callback methods
are called on this listener on other threads. That is, if the service is registered at that time, it must
call the registration method and otherwise the unregistration method.

The following example shows two registration listeners, one with a referred bean and another one
with an inlined bean.

<service ref="fooImpl" interface="com.acme.Foo">
 <registration-listener registration-method="reg"
 unregistration-method="unreg">
 <bean class="com.acme.FooListener"/>
 </registration-listener>
</service>

<service ref="fooImpl" interface="com.acme.Foo">
 <registration-listener registration-method="reg"
 unregistration-method="unreg" ref="fooListener"/>
</service>
<bean id="fooListener" class="com.acme.FooListener"/>

package com.acme;
public class FooListener {
 public void reg(Foo foo, Map properties) { ... }
 public void unreg(Foo foo, Map properties) { ... }
}

The manager that provides the registration listener object is an implicit dependency of the enclos-
ing service manager. However, the registration listener component instance is specifically allowed
to use to the service manager though this is technically a cyclic dependency. Therefore, a bean is al-
lowed to be both be injected with a ServiceRegistrat ion object from the service manager as well as
being a registered listener to the same service manager.

In the following example, the foo service manager uses manager main , both as a registration listener
as well as top-level bean main being injected with reference foo .

Service Reference Managers Blueprint Container Specification Version 1.0

Page 676 OSGi Compendium Release 6

<service id="foo" interface="com.acme.Foo"ref="main">
 <registration-listener
 registration-method="register" ref="main"/>
</service>

<bean id="main" class="com.acme.Main" init-method="done">
 <property name="foo" ref="foo"/>
</bean>

121.6.11 Enabled
A service manager needs a service object that is referred to by the valueMetadata property. This val-
ue can in its turn depend on other managers transitively. If any of these managers are service refer-
ence managers, then they can be satisfied or not. If these service reference managers are marked to
be mandatory, then they influence the enabled state of the first service manager. Only if all of these
mandatory service reference managers in the dependency graph are satisfied, then the first service
manager is enabled.

A service manager must have a Service Factory registered with the OSGi service registry after the
primary initialization of the Blueprint Container has been done until the Blueprint Container is de-
stroyed while it is enabled. See see Service Registration on page 657.

121.6.12 Activation and Deactivation
When a service manager is activated, it must actuate its registration listeners. Each registration
listener must be called back during its actuation with the current service registration state as de-
scribed in the Registration Listener on page 674. Normally, this will also request the container for
a service object but this can be further delayed in certain circumstances. See Service Object on page
674 for more details.

During deactivation, a service manager must disable any registration listeners and release any de-
pendencies it has on these component instances.

121.7 Service Reference Managers
The reference , and reference-l ist elements are all service references. They select a number of services
in the service registry. The structure of these elements is as follows:

reference ::= <reference-listener>*
reference-list ::= <reference-listener>*

The inheritance hierarchy for service references is depicted in Figure 121.9 on page 676.

Figure 121.9 Inheritance hierarchy for service references

service-reference

reference reference-list

Blueprint Container Specification Version 1.0 Service Reference Managers

OSGi Compendium Release 6 Page 677

121.7.1 Service Reference
The service reference managers have almost identical Metadata and share most behavior. The only
schema differences between a reference manager and a reference-list manager are:

• t imeout - A reference manager supports a t imeout .
• memberType - The reference-list can define its member-type

The features of the service references are explained in the following table.

Table 121.8 Service Reference Manager Features

Attribute or Element Type ServiceReference-Meta-
data

Description

id ID id

: Str ing

The component id of a top level
manager

activat ion lazy

| eager

act ivat ion

: int

Defines if this service reference
is lazily of eagerly initialized.
If not explicitly set, the blue-
print element's value for the de-
fault-act ivat ion attributes is
used. If this is also not set, the
value is eager . See also Lazy and
Eager on page 663.

depends-on NCName* dependsOn

: L ist<Str ing>

Explicit list of component
ids that are the dependen-
cies. These managers must
be activated before this ser-
vice reference's activation. See
Explicit Dependencies on page
663. This is a whitespace sep-
arated List.

avai labi l i ty mandatory

| optional

avai labi l i ty

: int

Defines if a service reference
is mandatory or optional. The
default for the avai labi l i ty at-
tribute is defined by the de-
fault-avai labi l i ty attribute in
the blueprint element. If the de-
fault-avai labi l i ty attribute is
not defined, the value is manda-
tory .

interface qname interface

: Str ing

A single name of an interface
class. It is allowed to not specify
an interface name.

component-name NCName componentName

: Str ing

Points to another manager in
another Blueprint Container
registered in the service registry.
If set, the component name
must be part of the effective fil-
ter.

f i l ter f i l ter f i l ter

: Str ing

The given filter string, can be
nul l .

Service Reference Managers Blueprint Container Specification Version 1.0

Page 678 OSGi Compendium Release 6

Attribute or Element Type ServiceReference-Meta-
data

Description

<reference-l istener> See <refer-
ence-listener> on
page 678.

referenceListeners

: L ist<Listener>

The Metadata of the reference
listeners

The additional constraints for service references are:

• The interface , if set, must refer to a public interface.

121.7.2 <reference>
A reference manager, selecting a single service, has the additional feature explained in the following
table.

Table 121.9 Reference Features

Attribute or Element Type Reference Metadata Description
t imeout long >= 0 timeout

: long

The t imeout in ms. Zero is in-
definite.

An additional constraint on the reference is:

• The t imeout must be equal or larger than zero.

121.7.3 <reference-list>
A reference-list manager, selecting multiple services, has the additional feature explained in the fol-
lowing table.

Table 121.10 Reference-list Features

Attribute or Element Type Reference List Metadata Description
member-type service-

 object

| service-

 reference

memberType

: int

Defines if the members of the
list are ServiceReference ob-
jects or the proxies to the actual
service objects.

121.7.4 <reference-listener>
The reference element can notify reference listeners of the service selection changes with the refer-
enceListeners . The reference-l istener element has the following structure:

reference-listener ::= target*

The reference-l istener element defines the callback methods for binding and unbinding a service.

Table 121.11 Reference Listener Features

Attribute or Element Type Reference Listener Description
ref NCName listenerComponent

: Target

A reference to a top level target
manager.

bind-method method bindMethod

: Str ing

The name of the method to
call after the service has been
bound. See Reference Listeners on
page 681.

Blueprint Container Specification Version 1.0 Service Reference Managers

OSGi Compendium Release 6 Page 679

Attribute or Element Type Reference Listener Description
unbind-method method unbindMethod

: Str ing

The name of the method to call
before the service will be un-
bound. See Reference Listeners on
page 681.

<. . .> target l istenerComponent

: Target

An inlined target manager

The additional constraints are:

• The ref attribute and the inlined manager are mutually exclusive.
• Either or both bindMethod and unbindMethod must be specified.
• At least one specified method must exist with each given method name, see Reference Listeners on

page 681.

121.7.5 Provided Object For a Reference
The provided object for a service reference manager is a proxy backed by a service object from the
service registry. Therefore, even though the injected object will remain constant, it can change its
reference to a backing service at any time, implying it can only be used with stateful services if refer-
ence listeners are used. If use when no suitable backing service is available, it will wait until it times
out. See Service Dynamics on page 696 for more details. The model is depicted in Figure 121.10.

Figure 121.10 Constant references with dynamic selection

injected beans

backing
service

proxy

service providers

services service
instance

lazily
fetched

The following example shows how a property can be set to the service object.

public class C {
 public void setProxy(T ref) { ... }
}
<reference id="p" interface="T"/>
<bean id="c" class="C">
 <property name="proxy" ref="p"/>
</bean>

121.7.6 Provided Object For a Reference-list
The reference-list provided object implements the List interface; this List contains proxies to the
backing services. These proxies do not have a t imeout . That is, when a proxy from a reference-list
is used, it must not wait when the backing service is no longer available but it must immediately
throw a Service Unavailable Exception.

Changes to the list are dynamic. When a backing service is unregistered, the corresponding proxy
is removed from the list synchronously with the service event. When a new service enters the selec-
tion, it is added synchronously with the service event. Proxies to newly discovered services must be
added at the end of the list. The structure is depicted in Figure 121.11.

Service Reference Managers Blueprint Container Specification Version 1.0

Page 680 OSGi Compendium Release 6

Figure 121.11 Constant reference to list with dynamic selection

injected beans

backing
service

proxies service providers

services

list

The member type of the list depends on the memberType . If this is set to:

• service-object - Inject a List of service objects, this is the default.
• service-reference - Inject a list of ServiceReference objects

If generics information is available, then it is an error if the generic member type of the target list
is not assignable with the memberType . If the member target type is in itself specified with gener-
ic arguments, like List<T<U>> , then the assignment must fail because this would require conversion
and no conversion can take place for this assignment. For information about generics, see Generics
on page 695.

121.7.7 Read Only Lists
The list is a read-only view on the actual set of proxies to the service objects. This List object must
only support the following methods:

contains(Object)
containsAll(Collection)
equals(Object)
get(int)
hashCode()
indexOf(Object)
isEmpty()
iterator() // no remove method
lastIndexOf(Object)
listIterator() // not supported
listIterator(int) // not supported
size()
subList(int, int) // same list type as parent
toArray()
toArray(T[])

All other methods must throw an Unsupported Operation Exception. The List Iterator is not sup-
ported for these lists.

121.7.8 Selection
A service reference must provide a selection of services from the service registry. The Blueprint Con-
tainer must logically use a filter for the selection that is the and (&) of the following assertions:

• The interface , if specified
• If componentName is not null, a filter that asserts osgi .blueprint .compname=$componentName

This is a convenience function to easily refer to managers in other Blueprint Containers. Regis-
tered Blueprint services will automatically get this property set to their blueprint name.

• If f i l ter is not nul l , the f i l ter

Blueprint Container Specification Version 1.0 Service Reference Managers

OSGi Compendium Release 6 Page 681

The selection is defined as the set of Service References selected by the given filter.

121.7.9 Availability
A service reference is satisfied when one or more services match the selection. The avai labi l i ty is used
to specify whether a service reference needs to be satisfied before initialization, see Grace Period on
page 657, or if it controls the registration state of any service managers that depend on this ser-
vice reference manager (explicit and implicit), see Mandatory Dependencies on page 698. The avai l-
abi l i ty can have the following values:

• mandatory - Mandatory indicates that the service reference needs to be satisfied.
• optional - Optional indicates that the satisfaction of this reference is not relevant for any regis-

tered services, or for the grace period.

It is an error to declare a mandatory reference to a service that is registered by the same bundle. Such
a definition could cause either deadlock or a timeout.

The fact that Blueprint specification has mandatory service references gives no guarantee that a
valid service object is available when the service reference is used, in the dynamic world of OSGi,
services can get unregistered at any time.

The following example declares a mandatory service reference for a single service. The usage of the
reference can stall a maximum of 5 seconds if no service matches the selection.

<reference
 id ="log"
 interface ="org.osgi.service.log.LogService"
 availability="mandatory"
 timeout ="5000" />

121.7.10 Reference Listeners
The referenceListeners are represented as ReferenceListener objects. They define the following call-
backs:

• bindMethod - Called after a service is selected by the service reference manager. For a reference
manager, this method can be called repeatedly without an intermediate unbind callback. This
happens when a service is unregistered but a replacement can be found immediately.

• unbindMethod - Called when the service is no longer used by the service reference manager but
before it has been returned to the service registry with the unget method. For a reference manag-
er, no unbind method is called when the service can immediately be replaced with an alternative
service when the service goes away.

A reference listener callback can have any of the following signatures:

• publ ic void(ServiceReference) - Provide the ServiceReference object associated with this service
reference. This callback type provides access to the service's properties without actually getting
the service.

• publ ic void(super T) - Provide the proxy to the service object, where T is on of the types imple-
mented by the service object proxy.

• publ ic void (super T,Map) - Provide the proxy to the service object. T is a type that is assignable
from the service object. The Map object provides the service properties of the corresponding Ser-
viceReference object.

All signatures must be supported regardless of the value of memberType that was specified in the
reference-list. The service object given to the reference listeners must be the proxy to the service ob-
ject.

Service Reference Managers Blueprint Container Specification Version 1.0

Page 682 OSGi Compendium Release 6

The callbacks must be made synchronously with the corresponding OSGi service event. For refer-
ence-list callbacks, the service proxy is guaranteed to be available in the collection before a bind call-
back is invoked, and to remain in the collection until after an unbind callback has completed.

If a service listener defines multiple overloaded methods for a callback, then every method with a
matching signature is invoked in an undefined order.

For example, the following definition will result in calling all the setLog methods on a FooImpl ob-
ject:

<reference id="log"
 interface="org.osgi.service.log.LogService">
 <reference-listener
 bind-method="setLog">
 <bean class="com.acme.FooImpl"/>
 </reference-listener>
</reference>

public class FooImpl {
 public void setLog(Object o, Map m) { ... }
 public void setLog(LogService l, Map m) { ... }
 public void setLog(ServiceReference ref) { ... }
}

The manager that provides the reference listener object is treated as an implicit dependency of the
enclosing service reference. This manager is specifically allowed to use to the service reference in a
property injection or constructor argument, though this is technically a cyclic dependency. There-
fore, a bean must be allowed to both be injected with a reference as well as listening to the bind and
unbind callbacks of that same reference.

In the following example, the foo reference manager uses manager main , both as a reference listener
as well as manager main being injected with reference foo .

<reference id="foo" interface="com.acme.Foo">
 <reference-listener bind-method="setL" ref="main"/>
</reference>
<bean id="main" class="com.acme.Main">
 <property name="r" ref="foo"/>
</bean>

121.7.11 Service Proxies
The Blueprint extender must generate proxies for the service reference managers. Reference man-
agers provide proxies that dynamically select a backing service, which can change over time. A refer-
ence-list provides a list of proxies that have a fixed backing service, these proxies are added and re-
moved from the list. Based on the selection, they do not have a time-out.

The backing service for a reference proxy must not be gotten from the OSGi service registry until
an actual service object is needed, that is, when an actual method is called on the proxy. If the back-
ing service becomes unregistered, then the proxy must unget the reference to the backing service (if
it had gotten it) and get another service object the next time a method on the proxy is called. If a re-
placement can be found immediately, the reference listener's bind method must be called without
calling the unbind method. Other threads that need the same service object must block until the ser-
vice object has become available or times out.

The proxies must implement all the methods that are defined in the interface . The interface must
refer to an interface, not a class. The proxy must only support the methods in the given interface.
That is, it must not proxy methods available on the service object that are not available in the given

Blueprint Container Specification Version 1.0 Object Values

OSGi Compendium Release 6 Page 683

interface. If no interface is defined, the proxy must be implemented as if the interface had no meth-
ods defined.

Blueprint bundles must ensure that the proper semantics are maintained for hashCode and equals
methods. If these methods are not defined in the interface, then the proxy must use the default se-
mantics of the Object class for equals and hashCode methods.

121.7.12 Activation and Deactivation
Service reference managers are active before activation because they must handle the enable status
of service managers.

During activation, a service reference must actuate its listeners and provide these listeners with
the initial state of the reference. For a reference, if there is a selected object, the bind method must
be called with the proxy object, otherwise the unbind method must be called with a nul l as proxy
object. For a reference-list, the bind method must be called for each member of the list. If the list is
empty, the unbind method must be called with a nul l as proxy object.

During deactivation, the listeners must be disabled.

121.8 Object Values
Top-level managers can use object values in different places. These object values are defined with
XML elements and attributes. After parsing, they are all converted to sub-interfaces of the Metadata
interface, transitively reachable from top-level managers. For example, the following definition cre-
ates a bean that is injected with the byte array: byte[] {7,42} :

<bean class="com.acme.FooImpl">
 <property name="array">
 <array value-type="byte">
 <value>7</value>
 <value>42</value>
 </array>
 </property>
</bean>

This definition provides the configuration data for an array value, which is represented by the Col-
lect ionMetadata interface. A Metadata object can be used to construct its object value during run-
time whenever a new object must be constructed.

In most places where an object value can be used, it can be anything, including objects provided by a
managers and even nul l . However, maps require non-null keys. The object values are therefore split
in value and nonNul lValue types.

The syntax for object values has the following structure:

nonNullValue ::= <ref>
 | <idref>
 | <value>
 | <map>
 | <props>
 | collection
 | manager // see manager on page 662
value ::= nonNullValue | <null>
collection ::= <list> | <set> | <array>

Object values also include inlined managers. The use of an inlined manager for an object value
means that manager will provide a value every time the object value is constructed. Each of the ob-

Object Values Blueprint Container Specification Version 1.0

Page 684 OSGi Compendium Release 6

ject values is created anew and the types are mutable, except for the service references. The use of
managers in object values must create an implicit dependency between the top level managers and
any transitively reachable manager from their Metadata.

121.8.1 <ref>
The ref element is a reference to a top-level manager in the same Blueprint Container. The ref ele-
ment has a single attribute component-id .

Table 121.12 Ref Features

Attribute Type Ref Metadata Description
component-id NCName componentId

: Str ing

A reference to a top level man-
ager.

For example, the following definition uses the foo manager to instantiate the service object.

<service id="fooService" interface="com.acme.Foo">
 <ref component-id="fooImpl"/>
</service>
<bean id="fooImpl" class="com.acme.FooImpl"/>

public class FooImpl implements Foo { }

121.8.2 <idref>
The idref element provides the component id of another manager in the same Blueprint Container.
This reference can then be used by the application to look up a manager in the Blueprint Contain-
er during runtime. The idref element is a safe way to provide a component id because the Blueprint
Container will verify that the component id exists, thereby showing errors early. The idref does not
create an implicit dependency on the given manager.

Table 121.13 IdRef Features

Attribute Type Id Ref Metadata Description
component-id NCName componentId

: Str ing

A reference to a top level man-
ager.

The following example provides the foo object with the reference to the database.

<bean id="foo" class="com.acme.FooImpl">
 <property name="db">
 <idref component-id="jdbc"/>
 </property>
</bean>

<bean id="jdbc" ... />

The following definition is equivalent to except that a non existent component id will not be detect-
ed until the foo object access the Blueprint Container. In the previous example this was detected di-
rectly after the definitions were parsed.

<bean id="foo" class="com.acme.FooImpl">
 <property name="db" value="jdbc"/>
</bean>

Blueprint Container Specification Version 1.0 Object Values

OSGi Compendium Release 6 Page 685

<bean id="jdbc" ... />

121.8.3 <value>
A value element represents an object that can directly be constructed from a string formed by its
text contents.

Table 121.14 Value Features

Attribute, Element Type Value Metadata Description
type type type

: Str ing

The optional type name to be
used in type converting the giv-
en string to a target type. This
type can commit the conver-
sion to a specific choice. If this
type is not set, then it must re-
turn null. For the type syntax,
see Syntax for Java types on page
660.

. . . <<type>> str ingValue

: Str ing

The string value that must be
converted to the target type, if
set.

If a value element is used as a member in a l ist , map , array , or set then the enclosing collection can
define a default value for the type attribute of its value elements.

The following example creates a list of two OSGi version objects.

<list value-type="org.osgi.framework.Version">
 <value>1.3.4</value>
 <value>5.6.2.v200911121020</value>
</list>

The corresponding Java code is:

Arrays.asList(new Version("1.3.4"),
 new Version("5.6.2.v200911121020"))

121.8.4 <null>
A null element results in a Java nul l . It has no attributes and no elements. It corresponds to Null
Metadata.

121.8.5 <list>, <set>, <array>
Lists, sets, and arrays are referred to as collections. List and array are ordered sequences of objects,
where equal objects can occur multiple times. A set discards equal objects.

The structure of a collection element is:

collection ::= value *

Table 121.15 Collection Features

Attribute or Element Type Collection Metadata Description
value-type type valueType

: Str ing

Optionally set the type for Val-
ueMetadata children.

Object Values Blueprint Container Specification Version 1.0

Page 686 OSGi Compendium Release 6

Attribute or Element Type Collection Metadata Description
col lect ionClass

: Class<

 L ist | Set | Object[] >

The actual collection class to be
used, derived from the appropri-
ate definition.

<. . .> object* values

: L ist<Metadata>

The Metadata for the children
of the collection

The valueType sets the default for any contained ValueMetadata objects. The result of a collection
element is an object that implements the given collection interface or is an Object[] . That is, the re-
sulting object is mutable and can be used by the application. However, type conversion can create a
copy of this list.

The following example creates a List of Lists of 2x2 of int values:

<list>
 <list value-type="int">
 <value>2</value>
 <value>7</value>
 </list>
 <list value-type="int">
 <value>9</value>
 <value>5</value>
 </list>
</list>

The corresponding Java code is:

Arrays.asList(
 new int[] {2,7},
 new int[]{9,5},
)

121.8.6 <map>
A map is a sequence of associations between a key and some object., this association is called an en-
try. The structure of a map element is therefore:

map ::= <entry> *

Table 121.16 Map Features

Attribute or Element Type Map Metadata Description
key-type type keyType

: Str ing

Optional default type for keys.
For the syntax see Syntax for Ja-
va types on page 660.

value-type type valueType

: Str ing

Optional default type for values.
For the syntax see Syntax for Ja-
va types on page 660.

<entry> See <entry> on
page 687.

values

: L ist<MapEntry>

The MapEntry object for the
children of the map or proper-
ties.

There are no additional constraints.

Blueprint Container Specification Version 1.0 Object Values

OSGi Compendium Release 6 Page 687

121.8.7 <entry>
The entry element provides an association between a key and a value. The structure of the element
is:

entry ::= <key> object
key ::= nonNullValue

Table 121.17 Entry Features

Attribute Type Map Entry Description
key <<type>> key

: NonNul lMetadata

Specify the key of the entry.

key-ref NCName key

: NonNul lMetadata

Reference to a top-level manag-
er

<key> nonNul l-Value key

: NonNul lMetadata

Contains an inlined value that
is never null.

value <<type>> value

: Metadata

Specify the value directly, this
will be a string type.

value-ref NCName value

: RefMetadata

A reference to a top-level man-
ager

<. . .> object value

: Metadata

An inlined manager

Additional constraints:

• key , key-ref attributes and key element are mutually exclusive.
• value , value-ref attributes and value element are mutually exclusive.
• The resulting object of a key must not be a primitive type.

The following example shows the different way an entry can get its key. In this case the value is al-
ways a string.

<map>
 <entry key="bar" value="..."/> // 1
 <entry key-ref="bar" value="..."/> // 2
 <entry value="..."> // 3
 <key>
 <value type="org.osgi.framework.Version">
 2.71
 </value>
 </key>
 </entry>
</map>

The previous example is equivalent to the following Java code:

Map m = new HashMap();
m.put("bar", "...");
m.put(container.getComponentInstance("bar"), "...");
m.put(new Version("2.71"), "...");

The following examples shows the different ways a value of an entry can be defined.

Object Values Blueprint Container Specification Version 1.0

Page 688 OSGi Compendium Release 6

<map>
 <entry key="1" value="1"/>
 <entry key="2" value-ref="foo"/>
 <entry key="3">
 <value type="org.osgi.framework.Version">3.14</value>
 </entry>
</map>

The previous code is equivalent to the following Java code.

Map m = new HashMap()
m.put("1", "1");
m.put("2", container.getComponentInstance("foo"))
m.put("3", new Version("3.14"));

121.8.8 <props>
The props element specifies a Propert ies object. The structure of a props element is as follows:

 props ::= prop *

Each prop element is an association between two strings. It defines the following attributes:

• key - A string specifying the property key. This attribute is required.
• value - A string specifying the property value.

The following example initializes the same Propert ies object in two s ways.

<props>
 <prop key="1">one</prop>
 <prop key="2">two</prop>
</props>

<props>
 <prop key="1" value="one"/>
 <prop key="2" value="two"/>
</props>

This is equivalent to the following Java code:

Properties p = new Properties();
p.setProperty("1", "one");
p.setProperty("2", "two");

121.8.9 Manager as Value
Each manager can be the provider of component instances that act as object values. When a manag-
er is used in an object value, then that is the manager asked to provide a component instance. The
managers are specified in manager on page 662. The simple example is a bean. Any inlined bean
can act as an object value. For example:

<list>
 <bean class="com.acme.FooImpl"/>
</list>

Some managers have side effects when they are instantiated. For example, a service manager will re-
sult in a ServiceRegistrat ion object but it will also register a service.

Blueprint Container Specification Version 1.0 Dependency Injection

OSGi Compendium Release 6 Page 689

<map>
 <entry key="foo">
 <service interface="com.acme.Foo">
 <bean class="com.acme.FooImpl"/>
 </service>
 </entry>
</map>

121.9 Dependency Injection
A bean has a recipe for constructing a component instance with a constructor or factory and then
providing it with its properties. These properties are then injected with object values, see Object Values
on page 683.

The following types of dependencies can be injected:

• Constructor arguments - The arguments specify the parameters for a constructor.
• Static Factory arguments - The arguments specify the parameters for a static method.
• Instance Factory arguments - The arguments specify the parameters for a method on an object pro-

vided by another manager.
• Properties - The value of the Bean Property specifies the single parameter for the property's set

method.

In all the previous cases, the Blueprint Container must find an appropriate method or constructor to
inject the dependent objects into the bean. The process of selecting the correct method or construc-
tor is described in the following section, which assumes a Bean Argument as context, where a Bean
Property acts as a Bean Argument without an index or type set.

121.9.1 Signature Disambiguation
Constructors, factory methods, and property set methods are described with Metadata. The Blue-
print Container must map these descriptions to an actual method or constructor. In practice, there
can be multiple methods/constructors that could potentially map to the same description. It is
therefore necessary to disambiguate this selection. Both factory methods and constructors have the
same concept of signatures. A signature consists of an ordered sequence of zero or more types. For
methods, only publicly accessible methods with the appropriate name are considered. For construc-
tors, all publicly accessible constructors are considered. The disambiguation process described here
is valid for all constructors and methods because the signature concept applies to both of them.

1. Discard any signatures that have the wrong cardinality
2. Find the list of signatures that have assignable types for each argument in their corresponding

positions. Assignable is defined in Type Compatibility on page 690. If a type was specified for
an argument, then this type must match the name of the corresponding reified type in the signa-
ture exactly.

3. If this result list has one element, then this element is the answer. If this list has more than one
element, then the disambiguation fails.

4. Otherwise, find the list of signatures that have compatible types for each argument in their corre-
sponding positions. Compatibility is defined in Type Compatibility on page 690.

5. If this result list has one element, then this element is the answer. If the list has more than one
element, then the disambiguation fails.

6. If the arguments cannot be reordered (the index of the argument is used and is thus not -1, or
there are less than two arguments) then the disambiguation fails.

7. Find all signatures that match a re-ordered combination of the arguments. Reordering must be-
gin with the first argument and match this argument against the first assignable types in a sig-

Dependency Injection Blueprint Container Specification Version 1.0

Page 690 OSGi Compendium Release 6

nature, going from position 0 to n . If the type is assignable from the argument, then it is locked
in that position. If the argument has a type , then it must exactly match the name of the selected
signature type. The same is done for the subsequent arguments. If all arguments can find an ex-
clusive position in the signature this way, than the signature is added to the result.

8. If the result list contains one signature, then this is the resulting signature. If the list has more
than one element, then the disambiguation fails.

9. Repeat step 6, but now look for compatible types instead of assignable types.
10. If the result list contains one signature, then this is the resulting signature.
11. Otherwise, the disambiguation fails

An example elucidates how the disambiguation works. Assuming the following definition and
classes:

<bean ...>
 <argument>
 <bean class="Bar"/>
 </argument>
 <argument>
 <bean class="Foo"/>
 </argument>
<bean>

public class Bar extends Foo {}
public class Foo {}

The following bullets provide examples how signatures are matched against the previous defini-
tion.

• (Bar,Foo) - The arguments will be in the given order and the ordered match will succeed. This is
the normal case.

• (Foo,Bar) - This will not match because in the re-ordered match, the Bar argument (which is a Foo
sub-type) is matched against the first argument. The second Foo argument can then no longer
find a compatible type because that slot is taken by the Bar instance.

• (Object,Object) - This will be called with (aBar,aFoo) .

Multiple constructors on a class can require disambiguation with the arguments type . In the follow-
ing example, the Multiple class has two constructors that would both match the constructor argu-
ments because a Str ing object can be converted to both a Fi le object and a URL object.

public class Multiple {
 public Multiple(URL a);
 public Multiple(File a);
}

An attempt to configure a Multiple object without the type will fail, because it is not possible to de-
termine the correct constructor. Therefore, the type should be set to disambiguate this:

<bean class="Multiple">
 <argument type="java.net.URL" value="http://www.acme.us"/>
</bean>

121.9.2 Type Compatibility
During injection, it is necessary to decide about type assignability or type compatibility in several
places. If generics are present, a type must be reified in its class, see Generics on page 695. In this
specification, the canonical representation for a type is T<P1. .Pn> , where n is zero for a non-parame-

Blueprint Container Specification Version 1.0 Dependency Injection

OSGi Compendium Release 6 Page 691

terized type, which is always true in a VM less than Java 5. The ReifiedType class models this kind of
type.

If type T or S is primitive, then they are treated as their corresponding wrapper class for deciding
assignability and compatibility. Therefore, a type T<P1. .Pn> (target) is assignable from an object s of
type S (source) when the following is true:

• n == 0, and
• T. isAssignableFrom(S)

T<P1. .Pn>is compatible with an object s of type S when it is assignable or it can be convert-
ed using the Blueprint built-in type converter. The convertability must be verified with the
canConvert(s ,T<P1. .Pn>) method. That is, type compatibility is defined as:

• assignable(T<P1. .Pn>,S) , and
• cs.canConvert(s ,T<P1. .Pn>) returns true

Where cs is the Blueprint built in type converter that also uses the custom type converters.

121.9.3 Type Conversion
Strings in Blueprint definitions, object values, and component instances must be made compati-
ble with the type expected by an injection target (method or constructor argument, or property) be-
fore being injected, which can require type conversion. The Blueprint Container supports a number
of built-in type conversions, and provides an extension mechanism for configuring additional type
converters. Custom type converters have priority over built-in converters.

The goal of the type conversion is to convert a source object s with type S to a target type T<P1. .Pn> .
The conversion of the Blueprint built-in type converter must take place in the following order:

1. If T<P1. .Pn> is assignable from S , which implies n=0, then no conversion is necessary, except that
primitives must be converted to their wrapper types.

2. Try all type converters in declaration order with the canConvert(s ,T<P1. .Pn>) method, excep-
tions are ignored and logged. The first converter that returns true is considered the converter, its
result is obtained by calling convert(s ,T<P1. .Pn>) . Exceptions in this method must be treated as
an error.

3. If T is an array, then S must be an array or it must implement Collect ion , otherwise the conver-
sion fails. Each member of array s must be type converted to the component type of T using the
generics information if available, see the getComponentType method on Class . This is a recur-
sive process. The result must be stored in an array of type T .

4. If T implements Collect ion , then S must be an array or implement Collect ion , otherwise the con-
version fails. If the platform supports generics, the members of object s must be converted to the
member type of the collection if this is available from the generics information, or to Object oth-
erwise. The Blueprint Container must create a target collection and add all members of s to this
new object in the iteration order of s . The target collection depends on type T :
• If T is one of the interfaces listed in Concrete Types for Interfaces on page 694, then the target

collection must be the corresponding concrete class.
• T must represent a public concrete class with an empty publicly accessible constructor, the

target collection is then a new instance of T .
• Otherwise T represents an interface and the conversion must fail.

5. If T implements Map or extends Dictionary , then S must implement Map or extend Dictionary
as well, otherwise the conversion fails. If the platform supports generics, the members of map s
must be converted to the key and value type of the target map. This is a recursive process. With-
out generics, the members are not converted and put as is.

The target map depends on T:

Dependency Injection Blueprint Container Specification Version 1.0

Page 692 OSGi Compendium Release 6

• If T is a public concrete class (not interface) with an empty publicly accessible constructor
then the target map must be a new instance of T .

• If T is one of the Map interfaces or Dictionary listed in Concrete Types for Interfaces on page
694, then the target map must be the corresponding concrete class.

• Otherwise, the conversion fails.
6. If T is one of the primitive types (byte, char, short , int , long, f loat , double, boolean) then treat

T as the corresponding wrapper class.
7. If T extends class Number and S extends also class Number then convert the source to a number

of type T . If the target type cannot hold the value then the conversion fails. However, precision
may be lost if a double or f loat is converted to one of the integer types.

8. If source type S is not class Str ing , then the conversion fails.
9. The conversion is attempted based on the target type T from the string s . The following target

types are supported:
• boolean or Boolean - Construct the appropriate boolean type while accepting the following

additional values for true and fa lse respectively:
• yes , no
• on , off

• Character - The string s must have a length of 1, this single character is then converted to a
Character object.

• Locale - The string s is converted to a Locale using the following syntax (no spaces are al-
lowed between terms).

locale ::= <java language-code> ('_' country)+
country ::= <java country-code> ('_' <java variant-code>)+

• Pattern - Create the Pattern object with Pattern.compile(Str ing) .
• Propert ies - Create a new Propert ies object and load the properties from the string. The string

must follow the format described with the Propert ies. load method .
• Enum subclass - Convert the string s to the appropriate member of the given enum with the

Enum.valueOf method. If the string is not one of the enum values, then the conversion must
fail.

• Class - The string s must conform to the syntax in Syntax for Java types on page 660. This
type must be loaded through the Bundle's loadClass method. The resulting class must match
any generic constraints on T . If this fails, the conversion fails.

10. If target type T has a constructor (Str ing) , then use this constructor to create an instance with
the source string s . This convention caters for many of the built-in Java types such as BigDeci-
mal , BigInteger , Fi le , URL , and so on, as well as for custom types.

If none of the above steps has found a proper conversion than the conversion fails. Failing a conver-
sion must end with throwing an Illegal Argument Exception.

121.9.4 Type Converters
A type converter converts a source type to a target type. The source type for a type converter is not
constrained. A type converter must support the following methods:

• canConvert(Object,Reif iedType) - A light weight method that inspects the object and returns
true if it can convert it to the given Reified Type, fa lse otherwise. Converters normally can con-
vert a type S to a type T<. . .> . However, converters can convert to multiple types and the value of
the source object can influence the returned type. For example, a converter could convert a string
to a type based on its content.

• convert(Object,Reif iedType) - The actual conversion method. This method should not fail if the
canConvert method has returned true .

Blueprint Container Specification Version 1.0 Dependency Injection

OSGi Compendium Release 6 Page 693

The ReifiedType class provides access to the target class. In a Java 1.4 environment, the ReifiedType
object will provide a Class object for conversion and no type arguments. In a Java 5 environment,
the ReifiedType object provides access to the reified class as well as the type arguments. Generics
and reified types are described in Generics on page 695.

Type converters are normal managers with some limitations due to the dependency handling. If
they depend on general managers or services then there is a change that cyclic dependencies are cre-
ated.

Converters must be defined in the type-converters element, see <type-converters> on page 662, to
be registered as a converter. Component instances of managers in this section must implement the
Converter interface. Converters must also only transitively depend on built-in converters. It must be
possible to initialize all converters before any of them are used. Type converters should not use the
type conversion before all type converters are fully configured.

Converters are ordered within one definition resource but there is no resource ordering, so the over-
all ordering is not defined, making it a good practice to concentrate all converters in a single XML
definition. The definition ordering is used during type conversion. That is, converters are not or-
dered by their specialization, a converter that is earlier can convert a more general type will override
a converter that is later in the list but could have converted to a more specific type.

Converters must always use the type arguments of the given Reified Type, even if they are running
on Java 1.4. The default behavior of the Reified Type will automatically work.

The following example demonstrates how a converter can use generics to use an
AtomicReference<T> whenever type T is supported. Such a type could be for a property like:

public void setInteger(AtomicReference<Integer>atomic);

The Atomic Converter uses the generic argument to convert a source object to an Integer and then
creates an AtomicReference with this converted object. The definition of the type converter looks
like:

<type-converters>
 <bean class="AtomicConverter">
 <argument ref="blueprintConverter"/>
 </bean>
</type-converters>

The Blueprint converter is injected in the constructor of the AtomicInteger class, in order to allow
the conversion of the generic arguments. The Blueprint built-in type converter must not be used be-
fore all type converters are registered because a needed type converter might not have been regis-
tered yet. This is the reason type converters should not require type conversion in their initializa-
tion because the state of this converter is not well defined at this time.

The conversion class looks like:

public class AtomicConverter {
 Converter bpc;
 public AtomicConverter(Converter bpc) { this.bpc=bpc; }

 public boolean canConvert(Object s,ReifiedType T) {
 return T.getRawClass() == AtomicReference.class
 && bpc.canConvert(s, T.getActualTypeArgument(0));
 }

 public Object convert(Object s, ReifiedType T)
 throws Exception {
 Object obj = bpc.convert(

Dependency Injection Blueprint Container Specification Version 1.0

Page 694 OSGi Compendium Release 6

 s,T.getActualTypeArgument(0));

 return new AtomicReference<Object>(obj);
 }
}

Any injection that now targets an AtomicReference<T> value will automatically be converted into
an AtomicReference of the appropriate type because of the example converter. The following defini-
tions test this behavior:

public class Foo<T extends Integer> {
 public Foo(AtomicReference<T> v) {}
}

<bean id="foo" class="Foo"> <argument value="6"/> </bean>

This definition will create an foo object with the Foo(AtomicReference<T>) constructor. The source
type is a string and there is no assignability for an Atomic Reference, so the registered type convert-
ers are consulted. The Atomic Converter recognizes that the target T is an AtomicReference class and
indicates it can convert. The convert method then uses the generic argument information, which is
an Integer object in the example, to convert the string "6" to an Integer object and return the appro-
priate AtomicReference object.

121.9.5 Built-in Converter
A Blueprint Container must contain an environment manager called blueprintConverter . The relat-
ed component instance must implement the Converter interface.

The built-in Converter provides access to the provided type converters as well as the built in types.
This service provides the type conversion as defined in Type Conversion on page 691.

Injecting a reference to the blueprintConverter environment manager into a bean provides access
to all the type conversions that the Blueprint Container and registered type converters are able to
perform. However, if this converter is injected in a type converter, then by definition, not all custom
type converters are yet registered with the built-in converter. Type converters should therefore in
general not rely on type conversion during their construction.

121.9.6 Concrete Types for Interfaces
The Blueprint extender can choose an implementation class when it provides an instance during
conversion to an interface as well as when it natively provides an object. The actual implementa-
tion class can make a noticeable difference in disambiguation, type conversion, and general behav-
ior. Therefore this sections describe the concrete types an implementation must use for specific in-
terfaces if the platform allows this.

Table 121.18 Implementation types for interfaces

Interface/Abstract class Implementation class
Collect ion ArrayList
List ArrayList

Java 5 Queue LinkedList
Set LinkedHashSet
SortedSet TreeSet
Map LinkedHashMap
SortedMap TreeMap

Java 5 ConcurrentMap ConcurrentHashMap

Blueprint Container Specification Version 1.0 Dependency Injection

OSGi Compendium Release 6 Page 695

Interface/Abstract class Implementation class
Dictionary Hashtable

If possible, the instances of these types must preserve the definition ordering.

121.9.7 Generics
Java 5 introduced the concept of generics. Before Java 5, a type, was simply a class or interface, both
represented by the Class object. Generics augment these classes and interfaces with additional type
constraints. These type constraints are not available on an instance because an instance always refer-
ences a raw Class . For an instance all generic type constraints are erased. That is, a List< Integer> ob-
ject is indistinguishable from a List<Str ing> object, which are indistinguishable from a List object.
Objects always refer to a raw Class object, this is the one returned from the getClass method. This
Class object is shared between all instances and can therefore not have the actual type constraints
(like Str ing , Integer in the list examples).

When a class is used the compiler captures the type constraints and associates them with the specif-
ic use and encodes them in a Type object. For example, a field declaration captures the full generic
type information:

List<String> strings;

A field has a getGenericType method that provides access to a Type object, which is a super inter-
face for all type information in the Java 5 and later runtime. In the previous example, this would be
a Parameterized Type that has a raw class of List and a type argument that is the Str ing class. These
constraints are reflectively available for:

• A superclass
• Implemented interfaces
• Fields
• For each method or constructor:

• Return type
• Exception types
• Parameter types

Generics influence the type conversion rules because most of the time the Blueprint extender
knows the actual Type object for an injection. Therefore, conversion must take place to a type like
T<P1. .Pn> , where T is a raw Class object and P1. .Pn form the available type parameters. For a non-pa-
rametrized class and for other VMs than 1.4, n is always zero, that is no type arguments are available.
The P arguments are in itself instances of Type . The form T<P1. .Pn> is called the reified form. It can be
constructed by traversing the Type graph and calculating a class that matches the constraints. For
example < extends L ist<T>> defines a wild card constraint, that has a List<T> as reified type, where T
is a Type Variable defined elsewhere that can have additional constraints. The resulting type must
be an instance of List<T> . A reified type will use an object implementing List for such an example be-
cause that is the only class that is guaranteed to be compatible. The rules to reify the different Type
interfaces are:

• Class - A Class represents unparameterized raw type and is reified into T<>. For example:

String string;

• ParameterizedType - A Parameterized Type defines a raw type and 1..n typed parameters. The
raw type of the Parameterized Type is also reified and represents T . The arguments map directly
to the arguments of the reified form. An example of a Parameterized Type is:

Map<String,Object> map;

Service Dynamics Blueprint Container Specification Version 1.0

Page 696 OSGi Compendium Release 6

• TypeVariable - Represents a Type Variable. A type variable is listed in a generics type decla-
ration, for example in Map<K,V> , the K and V are the type variables. A type variable is bound-
ed by a number of types because it is possible to declare a bounded type like: <A extends
Readable&Closeable> . A Type Variable is reified by taking its first bound in reified form, this is
the same as in Java 5 where the first bounds is the erasure type. However, this can fail if multiple
bounds are present. An example of a Type Variable is:

public <T extends ServiceTracker> void setMap(T st) {}

In this example, the parameter st will have a reified type of ServiceTracker .
• WildcardType - A Wildcard Type constrains a type to a set of lower bounds and a set of upper

bounds, at least in the reflective API. In the Java 5 and later syntax a Wildcard Type can only
specify 0 or one lower and one upper bound, for example <T extends Number> constraints the
Type Variable T to at least extend the Number class. A Wildcard Type is reified into its reified up-
per bound when no lower bound is set, and otherwise it is reified into its reified lower bound. An
example of a Wildcard Type is seen in the example of a Type Variable.

• GenericArrayType - A Generic Array Type represents an array. Its component type is reified and
then converted to an array. The Reified Type will have the array class as reified class and the type
arguments reflect the type arguments of the component type. For example:

public void setLists(List<String>[] lists) {}

This example will have a Reified Type of List[]<Str ing> .

This specification is written to allow Java 1.4 implementations and clients, the API therefore has
no generics. Therefore, the Type class in Java 5 and later cannot be used in the API. However, even
if it could use the Type class, using the type classes to create the reified form is non-trivial and error
prone. The API therefore provides a concrete class that gives convenient access to the reified form
without requiring the usage of the Type class.

The ReifiedType class provides access to the reified form of Class , which is itself and has no type ar-
guments. However, Blueprint extender implementations that recognize Java 5 generics should sub-
class the ReifiedType class and use this in the conversion process. The subclass can calculate the rei-
fied form of any Type subclasses.

121.10 Service Dynamics
The Blueprint Container specification handles the complexities of the dynamic nature of OSGi by
hiding the dynamic behavior of the OSGi service registry, at least temporarily. This dynamic behav-
ior is caused by service references that select one or more services that can come and go at runtime.

The Blueprint Container must handle the dynamics in the following way:

• Proxied references - Service reference managers must provide a proxy implementing the specified
interfaces, instead of the actual service object it refers to. The proxy must fetch the real service
lazily. For reference managers, when a proxy is used, and no candidate is available, a candidate
must be found within a limited time. If no candidate service is available during this time, a Ser-
vice Unavailable Exception must be thrown. The reference-list manager also maintains proxies
but these proxies must throw a Service Unavailable Exception immediately when the proxy is
used and the backing service is no longer available.

When proxied references are used with stateful services, then the application code must register
a reference listener to perform the necessary initialization and cleanup when a new backing ser-
vice is bound.

• Conditional Service Registrations - The service manager is responsible for registering a service with
the OSGi service registry. A service manager is statically dependent on the transitive set of man-

Blueprint Container Specification Version 1.0 Service Dynamics

OSGi Compendium Release 6 Page 697

agers that it depends on. If these static dependencies contain mandatory service references, then
the manager's service must not be registered when any of these mandatory service references is
unsatisfied, see Enabled on page 676.

121.10.1 Damping
When an operation is invoked on an unsatisfied proxy from a reference manager (either optional
or mandatory), the invocation must block until either the reference becomes satisfied or a time-out
expires (whichever comes first). During this wait, a WAITING event must be broadcast, see Events on
page 699.

The default t imeout for service invocations is 5 minutes. The optional t imeout of the reference el-
ement specifies an alternate t imeout (in milliseconds). If no matching service becomes available
within the t imeout , then a Service Unavailable Exception must be thrown. A t imeout of zero means
infinite and a negative t imeout is an error.

For example:

<reference id="logService"
 interface="org.osgi.service.log.LogService"
 timeout="100000" />

<bean id="bar" class="BarImpl">
 <property name="log" ref="logService"/>
</bean>

When this Blueprint Container is instantiated, the reference manager provides a proxy for the Log
Service, which gets injected in the log property. If no Log Service is available, then the proxy will
have no backing service. If the bar object attempts to log, it will block and if the t imeout expires the
proxy must throw a Service Unavailable Exception.

If at some later point in time, a Log Service is registered then it becomes satisfied again. If bar now
logs a message, the proxy will get the service object again and forward the method invocation to the
actual Log Service implementation.

The damping ensures that a mandatory service reference that becomes unsatisfied does not cause
the Blueprint Container to be destroyed. Temporary absences of mandatory services are tolerated to
allow for administrative operations and continuous operation of as much of the system as possible.

A reference-list manager does not provide damping. It only removes the service proxy from the col-
lection if its service goes away. Using a collection reference manager will never block, it will just
have no members if its selection is empty. A t imeout attribute is therefore not supported by the ref-
erence-l ist elements. However, the elements are proxied and it is possible that they throw a Service
Unavailable Exception when used and the backing service has disappeared. The exceptions for a ref-
erence-list proxy will be thrown immediately when the proxy is used.

121.10.2 Iteration
The provided object of a reference-list manager implements the List interface. Depending on the
memberType or the optional generics information, it provides a collection that contains the mem-
ber objects, that is, either proxies to the service object, or ServiceReference objects. These collec-
tions are read-only for the receiver, however, their contents can dynamically change due to changes
in the selection. The access to these collections with iterators must give a number of guarantees:

• Safe - All iterators of reference-list managers must be safe to traverse according to the I terator
interface contract, even while the underlying collection is being modified locally or in another
thread. If the hasNext method returns true , the iterator must return a member object on the sub-
sequent next method invocation. If there is no longer a service object available when requested,
then a dummy proxy must be returned that throws a Service Unavailable Exception whenever it
is used.

Blueprint Container Blueprint Container Specification Version 1.0

Page 698 OSGi Compendium Release 6

• Visibility - All the changes made to the collection that affect member objects not yet returned by
the iterator must be visible in the iteration. Proxies for new services must be added at the end of
the List. Proxies already returned can be affected by changes in the service registry after the itera-
tor has returned them.

After the iterator has returned fa lse for the hasNext method, no more objects can be obtained from
it. A List Iterator must not be supported.

121.10.3 Mandatory Dependencies
A service manager can have mandatory service reference managers in its transitive dependencies.
Such a service manager must ensure that the service object is registered with the OSGi service reg-
istry during the runtime phase when all its mandatory service references that it depends on are sat-
isfied. This called tracking the dependency. A service manager is enabled when all its mandatory ref-
erences in its dependencies are satisfied.

This tracking only works for dependencies declared directly in the definitions; dependencies estab-
lished during runtime by calling the getComponentInstance method are not tracked.

In the following example, service manager S has a transitive dependency on the mandatory refer-
ence manager M , which means the Blueprint Container must ensure that the service object provided
by bean A is registered when reference manager M is satisfied.

<service id="S" ref="A" interface="com.acme.Foo"/>
<bean id="A" class="com.acme.FooImpl">
 <property name="bar" ref="m"/>
</bean>
<reference id="M" interface="com.acme.Bar"
 availability="mandatory"/>

However, if the dependency from manager A on manager M is not declared but created through code
that manipulates the Blueprint Container then the dependency is not tracked.

121.11 Blueprint Container
The Blueprint Container has a registry where all top-level managers, as well as environment man-
agers, are registered by their component id. The Blueprint Container can be injected in application
code with the environment blueprintContainer manager. For example:

<bean class="com.acme.FooImpl">
 <property name="container" ref="blueprintContainer"/>
</bean>

The Blueprint Container allows application code to get objects that are provided by the top-level
managers through the getComponentInstance method. However, the Blueprint Container should
not be required to get a component instance; the proper way to use Blueprint is to inject them. This
declarative approach makes the Blueprint Container aware of any dependencies; one of the prima-
ry goals of a dependency injection framework. The Blueprint Container's introspective features are
commonly used for management and other non-application purposes.

The Blueprint Container is registered as a service during the runtime phase so that other bundles
can use it for these, and other, purposes.

121.11.1 Environment Managers
The Blueprint Container provides a number of environment managers. These managers have defined
names and provide convenient access to information about the environment. Environment man-

Blueprint Container Specification Version 1.0 Events

OSGi Compendium Release 6 Page 699

agers cannot be overridden by explicitly defined managers because it is invalid to define a manager
with an existing component id. All component ids starting with blueprint are reserved for this speci-
fication and future incarnations.

There is no XML definition for environment managers but their Metadata must be provided as Com-
ponentMetadata objects.

The following ids are used for the environment managers:

• blueprintContainer - The Blueprint Container.
• blueprintBundle - A manager that provides the Blueprint bundle's Bundle object.
• blueprintBundleContext - A manager that provides the Blueprint bundle's BundleContext object.
• blueprintConverter - A manager that provides an object implementing the Converter interface.

This represents the built-in conversion facility that the Blueprint Container uses to convert ob-
jects. See Built-in Converter on page 694.

121.11.2 Component Instances
The Blueprint Container provides access to the component instances that the top level managers
can provide, as well as their Metadata. The Blueprint Container has the following methods for re-
questing a component instance and to find out what managers are available:

• getComponentInstance(Str ing) - This method will provide a component instance from the com-
ponent id. If the manager has not been activated yet, it must atomically activate and ensure its
explicit and implicit dependencies are activated transitively.

• getComponentIds() - Returns a set of component ids in this Blueprint Container. These ids must
consist of all top level managers (including calculated ids) and environment managers.

121.11.3 Access to Component Metadata
Each of the manager types has specific Component Metadata subtypes associated with it, except En-
vironment managers that use Component Metadata. The Blueprint Container provides access by
component id to the Component Metadata of the top level managers. However, managers can also
be defined inline, in which case they do not have a component id. Therefore, the Blueprint Contain-
er can also enumerate all the managers that are represented by a Metadata sub-interface.

• getComponentMetadata(Str ing) - Answer the Component Metadata sub-type for the given com-
ponent id. Environment managers will return a ComponentMetadata object, the other managers
each have their own specific Metadata type.

• getMetadata(Class) - Answer a collection with the Metadata of the given type, regardless if it is
defined as/in a top-level or inlined manager. For example, getMetadata(ServiceMetadata.c lass)
returns all Service Metadata in the Blueprint container. This includes all top level managers as
well as any inlined managers. For Environment Managers, this method returns a Component-
Metadata object.

121.11.4 Concurrency
A Blueprint Container must be thread safe. Each method must handle the case when multiple
threads access the underlying registry of managers. Activation of managers must be atomic. That is,
other threads must be blocked until a manager is completely activated.

The Blueprint Container must handle reentrant calls.

121.12 Events
The Blueprint Container must track all Blueprint Listener services and keep these listeners updat-
ed of the progress or failure of all its managed bundles. The Blueprint Listener is kept informed by

Events Blueprint Container Specification Version 1.0

Page 700 OSGi Compendium Release 6

sending it events synchronously. These events are therefore normally delivered in order but in ex-
ceptional cases this can be seen out of order for a listener when new events are initiated synchro-
nously from within a callback. Therefore, Blueprint Listener services should see the event as a notifi-
cation, where actual work should be processed on another thread.

Blueprint Events must be sent to each registered Blueprint Listener service. This service has the fol-
lowing method:

• blueprintEvent(BlueprintEvent) - Notify the listener of a new Blueprint Event. These events are
send synchronously with their cause. That is, all listeners must be notified before the Blueprint
Container continues to the next step.

The events must be delivered as BlueprintEvent objects. The event types that they represent, and the
data that these objects carry, is further described in Blueprint Event on page 700.

A Blueprint Listener services must be given the initial state of all managed bundles before normal
processing starts, see Replay on page 700.

Blueprint Listener services that throw Exceptions or do not return in a reasonable time as judged by
the Blueprint extender implementation, should be logged, if possible, and further ignored.

121.12.1 Blueprint Event
The Blueprint Event supports the following event types:

• CREATING - The Blueprint extender has started creating a Blueprint Container for the bundle.
• GRACE_PERIOD - The Blueprint Container enters the grace period. This event can be repeated

multiple times when the list of dependencies changes due to changes in the service registry.
• CREATED - The Blueprint Container is ready. The application is now running.
• WAITING - A service reference is blocking because of unsatisfied mandatory dependencies. This

event can happen multiple times in a row.
• DESTROYING - The Blueprint Container is being destroyed because the Blueprint bundle or Blue-

print extender has stopped.
• DESTROYED - The Blueprint Container is completely destroyed.
• FAILURE - An error occurred during the creation of the Blueprint Container.

The Blueprint Event provides the following methods:

• getBundle() - The Blueprint bundle
• getCause() - Any occurred exception or nul l
• getDependencies() - A list of filters that specify the unsatisfied mandatory references.
• getExtenderBundle() - The Blueprint extender bundle.
• getTimestamp() - The time the event occurred
• getType() - The type of the event.
• isReplay() - Indicates if the event is a replay (true) or if it is a new event (fa lse), see Replay on page

700.

121.12.2 Replay
The Blueprint Extender must remember the last Blueprint Event for each ready bundle that it man-
ages, see Initialization Steps on page 654. During the (synchronous) service registration event of a
Blueprint Listener service, the Blueprint extender must inform the Blueprint Listener service about
all its managed bundles by sending it the last known event for each bundle the Blueprint extender
manages. This initial event is called the replay event, and is marked as such.

The replay event must be delivered to the Blueprint Listener service as the first event, before any
other event is delivered, during the registration of the Blueprint Listener service. That is, the blue-

Blueprint Container Specification Version 1.0 Class Loading

OSGi Compendium Release 6 Page 701

printEvent method must have returned before the first non-replay event can be delivered and no
events must be lost. The replay events must be sent every time a Blueprint Listener service is regis-
tered.

The set of managed bundles is defined by bundles that are active and are managed by the Blueprint
extender, even if their initialization ended in failure.

The BlueprintEvent object for a replay event must return true for the isReplay() method in this situa-
tion, and fa lse in all other situations.

121.12.3 Event Admin Mapping
When the Event Admin service is present, the Blueprint extender must create an Event Admin event
for each defined Blueprint Event. This Event Admin event must be asynchronously given to the
Event Admin service with the postEvent method.

The topic of the Event Admin event is derived from the Blueprint event type with a fixed prefix. All
topics must have the prefix of:

TOPIC_BLUEPRINT_EVENTS

After this prefix, the name of the Blueprint Event type must be used as the suffix. That is, CREATING ,
GRACE_PERIOD , etc. For example, org/osgi/service/blueprint/container/GRACE_PERIOD .

For each Blueprint event the following properties must be included:

• TYPE - The type of the Event, see Blueprint Event on page 700.
• BUNDLE - (Bundle) The Bundle object of the Blueprint bundle
• BUNDLE_ID - (Long) The id of the Blueprint bundle.
• BUNDLE_SYMBOLICNAME - (Str ing) The Bundle Symbolic Name of the Blueprint bundle.
• BUNDLE_VERSION - (Version) The version of the Blueprint bundle.
• EXTENDER_BUNDLE - (Bundle) the Bundle object of the Blueprint extender bundle.
• EXTENDER_BUNDLE_ID - (Long) The id of the Blueprint extender bundle
• EXTENDER_BUNDLE_SYMBOLICNAME - (Str ing) The Bundle Symbolic Name of the Blueprint ex-

tender bundle.
• EXTENDER_BUNDLE_VERSION - (Version) The version of the Blueprint extender bundle
• TIMESTAMP - (Long) The time when the event occurred
• CAUSE - (Throwable) The failure cause, only included for a FAILURE event.
• DEPENDENCIES - (Str ing[]) The filter of an unsatisfied service reference. Can only appear in a

GRACE_PERIOD , WAITING or FAILURE event caused by a time-out.
• EVENT - (BlueprintEvent) The BlueprintEvent object that caused this event.

The property names for Blueprint Listener events may be conveniently referenced using the con-
stants defined in the org.osgi .service.event.EventConstants and EventConstants interfaces.

The Event Admin events do not follow the replay model in use for Blueprint Listener services. That
is, the Event Admin must only be kept informed about events as they occur.

121.13 Class Loading
The module layer in OSGi provides advanced class loading rules that potentially can cause bundles
to live in different class spaces. This means that not all bundles can collaborate because the class-
es involved in the collaboration can come from different class loaders, which results in confusing
Class Cast Exceptions on classes with the same name. It is therefore crucial that the Blueprint Con-
tainer uses the Bundle Context and the bundle class loader of the Blueprint bundle for all actions
that are made on behalf of the Blueprint bundle. Especially, access to the OSGi service registry must

Class Loading Blueprint Container Specification Version 1.0

Page 702 OSGi Compendium Release 6

use the Bundle Context of the Blueprint bundle. Any dynamic class loading must use the Blueprint
bundle's loadClass method. The normal OSGi mechanics will then ensure class space consistency
for resolved bundles.

121.13.1 Blueprint Extender and Bundle Compatibility
For many Blueprint bundles, there is no class space compatibility issue. These bundles do not use
any Blueprint classes and are therefore by definition compatible with any extender. However, if the
Blueprint bundle uses some of the Blueprint packages, it must import these packages. Blueprint
Containers must verify that they are type compatible with the Blueprint bundle before they attempt
to manage it. See Type Compatibility on page 702.

121.13.2 XML and Class Loading
The Blueprint definition resources contain textual references to classes. These textual references
will be loaded with the class loader of the Blueprint bundle. This implies that all the classes of pro-
vided component instances must be either imported or available from the bundle.

The Blueprint specification has the following attributes and elements that can cause imports:

• class
• value-type
• interface
• interfaces
• type
• key-type

All these attributes and elements are defined with the Tclass and Ttype XML Schema type for the
Blueprint namespace. The Tclass defines simple class names, and Ttype defines types defined in Syn-
tax for Java types on page 660.

121.13.3 Foreign Bundle Context
When using the Blueprint Container in its Blueprint bundle, the types that the managers provide
are guaranteed to be compatible with the caller.

When using a Blueprint Container service in another bundle (for example, getting it as a service)
then there is no guarantee of type compatibility or even visibility between the versions of the types
of the returned managers, and the versions of the types visible to the caller. Care must therefore be
taken when casting the return value of the getComponentInstance method to a more specific type.

121.13.4 Converters and Class Loading
A converter is closely coupled to its target class. If the converter comes from another bundle, then
the converter bundle must ensure class space consistency between the converter implementation
and the target class. This can be achieved by specifying the target class in the uses directive.

For example:

Export-Package:
 com.converters.ac;uses:="com.converters.dc"

A bundle that references a type converter defined in the Blueprint bundle does not need to export
that type. When creating a Blueprint Container, the extender bundle uses the class loader of the
Blueprint bundle.

121.13.5 Type Compatibility
Two bundles are type compatible for a given class if they both load the same class object, or if either
bundle cannot load the given class.

Blueprint Container Specification Version 1.0 Metadata

OSGi Compendium Release 6 Page 703

To mitigate type incompatibility problems, a Blueprint extender must export the
org.osgi .service.blueprint package. In the uses: directive, it should list any packages of classes that
can be shared between the Blueprint extender and the Blueprint bundle. Blueprint bundles should
import this package.

121.13.6 Visibility and Accessibility
The Blueprint Container must load any classes it needs through the Blueprint bundle's loadClass
method. If a class can not be loaded, then the initialization fails. Class loading issues are further dis-
cussed in Class Loading on page 701.

The Blueprint Container must respect the accessibility of the class and any of its members. That is,
the Blueprint Container must not use the setAccessibi l i ty method. All classes and reflected mem-
bers must therefore be declared publ ic or be implicitly publ ic like the default constructor.

121.14 Metadata
An important aspect of the Blueprint specification is the so called metadata interfaces. These inter-
faces are used in the Blueprint Container to enable programmatic access to the XML definitions.
During the parsing phase the Blueprint Container reads the XML and converts it to an object imple-
menting the appropriate interface.

The XML elements and XML Schema types map to the Metadata interfaces. For example, <bean>
maps to BeanMetadata . However, in several cases, the attributes and/or sub-elements in the Meta-
data interfaces are merged when possible. For example, the interface attribute and interfaces ele-
ment in the service element are merged in the ServiceMetadata class' getInterfaces() method.

The interfaces are arranged in a comprehensive hierarchy that reflects their usage and constraints.
This hierarchy is depicted in Figure 121.12 on page 704.

The hierarchy can roughly be divided in two parts. The first part is the sub-interfaces of the Compo-
nentMetadata interface. These interfaces are defining the configuration data of the top-level and in-
lined managers. The manager's component instance(s) are injected with values during runtime. The
configuration of how to create a specific value is also described with Metadata interfaces. For exam-
ple, a Map object is described with configuration information in the MapMetadata interface. The hi-
erarchy makes it clear that Component Metadata is also a value that can be injected. Keys in maps or
properties can not be nul l . This is the reason the hierarchy is split at the top into a nul l value branch
and a branch that can only generates non-nul l values.

The Target interface describes managers that can be used as the target for the reference listener or
the registration listener, or a ref.

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 704 OSGi Compendium Release 6

Figure 121.12 Metadata Interfaces Hierarchy

Metadata

NonNull
Metadata

Null
Metadata

Component
Metadata

Collection
Metadata

Map
Metadata

Value
Metadata

IdRef
Metadata

Map
Entry

Props
Metadata

Bean
Metadata

Ref
Metadata

Service
Metadata

Service Ref.
Metadata

Ref List
Metadata

Reference
Metadata

Target

Bean
Property

Bean
Argument

Registration
Listener

Reference
Listener

121.15 Blueprint XML Schema
The Blueprint schema included in this specification can be found in digital form at [9] OSGi XML
Schemas.

<xsd:schema xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 version="1.0.1">

 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 This is the XML Schema for the OSGi Blueprint service 1.0.0
 development descriptor. Blueprint configuration files
 using this schema must indicate the schema using the
 blueprint/v1.0.0 namespace. For example,

 <blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 if used as a qualified namespace, "bp" is the recommended
 namespace prefix.
]]>
 </xsd:documentation>
 </xsd:annotation>

 <!-- Schema elements for core component declarations -->

 <xsd:complexType name="Tcomponent" abstract="true">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Tcomponent type is the base type for top-level
 Blueprint components. The <bean> <reference>, <service>,
 and <reference-list> elements are all derived from
 the Tcomponent type. This type defines an id attribute
 that is used create references between different components.
 Component elements can also be inlined within other component
 definitions. The id attribute is not valid when inlined.

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 705

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:attribute name="id" type="xsd:ID" />

 <xsd:attribute name="activation" type="Tactivation">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The activation attribute for this component. This can either
 be "eager" or "lazy". If not specified, it
 defaults to default-activation attribute of the enclosing
 <blueprint> element.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>

 <xsd:attribute name="depends-on" type="TdependsOn">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 depends-on identifies (by id) other components that this component
 depends on. The component only be activated after the
 depends-on components are successfully activated. Also, if there
 are <reference> or <reference-list> elements with unstatisfied
 manadatory references, then the depends-on relationship will also
 be used to determine whether this service is enabled or not.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 </xsd:complexType>

 <xsd:element name="blueprint" type="Tblueprint">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The <blueprint> element is the root element for a blueprint
 configuration file. A blueprint configuration has two sections.
 The first section (contained within the <type-converters> element)
 identifies components that are used for converting values into
 different target types. The type converters are optional, so
 the file does not need to specify a type converter section.

 Following the type converters are the component definitions.
 Components are <bean>, <service>, <reference>, and
 <reference-list> elements that identify the bundle components that will
 be managed by the blueprint service.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:complexType name="Tblueprint">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription"
 minOccurs="0" />
 <xsd:element name="type-converters" type="Ttype-converters"
 minOccurs="0" maxOccurs="1" />
 <!-- top-level components -->
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="service" type="Tservice" />
 <xsd:element name="reference-list" type="Treference-list" />
 <xsd:element name="bean" type="Tbean" />
 <xsd:element name="reference" type="Treference" />
 <xsd:any namespace="##other" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>

 <!-- Defaults-->
 <xsd:attribute name="default-activation" default="eager"
 type="Tactivation">
 <xsd:annotation>

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 706 OSGi Compendium Release 6

 <xsd:documentation>
 <![CDATA[
 Specifies the default activation setting that will be defined
 for components. If not specified, the global default is "eager".
 Individual components may override the default value.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="default-timeout" type="Ttimeout"
 default="300000">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Specifies the default timeout value to be used when operations
 are invoked on unstatisfied service references. If the
 reference does not change to a satisfied state within the timeout
 window, an error is raised on the method invocation. The
 default timeout value is 300000 milliseconds and individual
 <reference> element can override the specified configuration
 default.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="default-availability" type="Tavailability"
 default="mandatory">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Specifies the default availability value to be used for
 <reference>, and <reference-list> components. The
 normal default is "mandatory", and can be changed by individual
 service reference components.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:complexType>

 <xsd:complexType name="Ttype-converters">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The type used for the <type-converters> element. The
 <type-converters> section is a set of <bean>, <ref>, or
 <reference> elements that identify the type converter components.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bean" type="Tbean" />
 <xsd:element name="reference" type="Treference" />
 <xsd:element name="ref" type="Tref" />
 <xsd:any namespace="##other" processContents="lax" />
 </xsd:choice>
 </xsd:complexType>

 <!--
 Components that provide a reasonable target for injection used for
 listeners, etc.
 -->

 <xsd:group name="GtargetComponent">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A target component is one that can be a target for a
 listener, registration-listener or service elements.
 This is used in contexts where the requirement is a single
 provided object that will implement a particular interface.
 The provided object is obtained either from a <ref> element
 or an inlined <bean> or <reference>.

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 707

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="bean" type="Tinlined-bean" />
 <xsd:element name="reference" type="Tinlined-reference" />
 <xsd:element name="ref" type="Tref" />
 <xsd:any namespace="##other" processContents="lax" />
 </xsd:choice>
 </xsd:group>

 <xsd:group name="GallComponents">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 An all components is used in contexts where all component element
 types are values. The set of component elements contains
 <bean>, <service>, <reference>, <reference-list> and <ref>.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:element name="service" type="Tinlined-service" />
 <xsd:element name="reference-list" type="Tinlined-reference-list" />
 <xsd:group ref="GtargetComponent" />
 </xsd:choice>
 </xsd:group>

 <xsd:group name="GbeanElements">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A bean elements is a reusable definition of the elements allowed on
 a <bean> element.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription"
 minOccurs="0" />
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="argument" type="Targument" />
 <xsd:element name="property" type="Tproperty" />
 <xsd:any namespace="##other" processContents="lax" />
 </xsd:choice>
 </xsd:sequence>
 </xsd:group>

 <xsd:complexType name="Tbean">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The type definition for a <bean> component. The <bean>
 attributes provide the characteristics for how to create a
 bean instance. Constructor arguments and injected properties
 are specified via child <argument> and <property> elements.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="Tcomponent">
 <xsd:group ref="GbeanElements" />
 <xsd:attribute name="class" type="Tclass" />
 <xsd:attribute name="init-method" type="Tmethod" />
 <xsd:attribute name="destroy-method" type="Tmethod" />
 <xsd:attribute name="factory-method" type="Tmethod" />
 <xsd:attribute name="factory-ref" type="Tidref" />
 <xsd:attribute name="scope" type="Tscope" />
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Tinlined-bean">

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 708 OSGi Compendium Release 6

 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Tinlined-bean type is used for inlined (i.e. non top level)
 <bean> elements. Those elements have some restrictions on
 the attributes that can be used to define them.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:restriction base="Tbean">
 <xsd:group ref="GbeanElements" />
 <xsd:attribute name="id" use="prohibited" />
 <xsd:attribute name="depends-on" type="TdependsOn" />
 <xsd:attribute name="activation" use="prohibited"
 fixed="lazy" />
 <xsd:attribute name="class" type="Tclass" />
 <xsd:attribute name="init-method" type="Tmethod" />
 <xsd:attribute name="destroy-method" use="prohibited" />
 <xsd:attribute name="factory-method" type="Tmethod" />
 <xsd:attribute name="factory-ref" type="Tidref" />
 <xsd:attribute name="scope" use="prohibited" />
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Targument">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 An argument used to create an object defined by a <bean>
 component. The <argument> elements are the arguments for the
 bean class constructor or passed to the bean factory method.

 The type, if specified, is used to disambiguate the constructor
 or method signature. Arguments may also be matched up with
 arguments by explicitly specifying the index position. If the
 index is used, then all <argument> elements for the bean must
 also specify the index.

 The value and ref attributes are convenience shortcuts to make
 the <argument> tag easier to code. A fuller set of injected
 values and types can be specified using one of the "value"
 type elements.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription"
 minOccurs="0" />
 <xsd:group ref="Gvalue" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="index" type="xsd:nonNegativeInteger" />
 <xsd:attribute name="type" type="Ttype" />
 <xsd:attribute name="ref" type="Tidref" />
 <xsd:attribute name="value" type="TstringValue" />
 </xsd:complexType>

 <xsd:complexType name="Tproperty">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A property that will be injected into a created <bean>
 component. The <property> elements correspond to named
 JavaBean setting methods for a created bean object.

 The value and ref attributes are convenience shortcuts to make
 the <argument> tag easier to code. A fuller set of injected
 values and types can be specified using one of the "value"
 type elements.
]]>
 </xsd:documentation>
 </xsd:annotation>

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 709

 <xsd:sequence>
 <xsd:element name="description" type="Tdescription"
 minOccurs="0" />
 <xsd:group ref="Gvalue" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="name" type="Tmethod" use="required" />
 <xsd:attribute name="ref" type="Tidref" />
 <xsd:attribute name="value" type="TstringValue" />
 </xsd:complexType>

 <xsd:complexType name="Tkey">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Tkey type defines the element types that are permitted
 for Map key situations. These can be any of the "value"
 types other than the <null> element.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:group ref="GnonNullValue" />
 </xsd:complexType>

 <!-- reference -->
 <xsd:complexType name="Treference">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Treference type defines the <reference> element. These
 are instances of the TserviceReference type, with the addition
 of a timeout attribute. If the timeout is not specified,
 the default-timeout value is inherited from the encapsulating
 <blueprint> definition.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="TserviceReference">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="timeout" type="Ttimeout" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Tinlined-reference">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Tinlined-reference type is used for inlined (i.e. non top level)
 <reference> elements.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:restriction base="Treference">
 <xsd:sequence>
 <xsd:group ref="GserviceReferenceElements" />
 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" use="prohibited" />
 <xsd:attribute name="depends-on" type="TdependsOn" />
 <xsd:attribute name="activation" use="prohibited"
 fixed="lazy" />
 <xsd:attribute name="interface" type="Tclass" />
 <xsd:attribute name="filter" type="xsd:normalizedString" />
 <xsd:attribute name="component-name" type="Tidref" />
 <xsd:attribute name="availability" type="Tavailability" />
 <xsd:attribute name="timeout" type="Ttimeout" />
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:restriction>

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 710 OSGi Compendium Release 6

 </xsd:complexContent>
 </xsd:complexType>

 <!-- reference-list -->
 <xsd:complexType name="Treference-list">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Treference-list builds in the characteristics of the
 TserviceReference type to define characteristics of the
 <reference-list>. This adds in the characteristics that
 only apply to collections of references (e.g., member-type).
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="TserviceReference">
 <xsd:sequence>
 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="member-type" type="Tservice-use"
 default="service-object">
 </xsd:attribute>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Tinlined-reference-list">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Tinlined-reference-list type is used for inlined (i.e. non top level)
 <reference-list> elements.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:restriction base="Treference-list">
 <xsd:sequence>
 <xsd:group ref="GserviceReferenceElements" />
 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </xsd:sequence>
 <xsd:attribute name="id" use="prohibited" />
 <xsd:attribute name="depends-on" type="TdependsOn" />
 <xsd:attribute name="activation" use="prohibited"
 fixed="lazy" />
 <xsd:attribute name="interface" type="Tclass" />
 <xsd:attribute name="filter" type="xsd:normalizedString" />
 <xsd:attribute name="component-name" type="Tidref" />
 <xsd:attribute name="availability" type="Tavailability" />
 <xsd:attribute name="member-type" type="Tservice-use"
 default="service-object" />
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- Reference base class -->
 <xsd:complexType name="TserviceReference">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TserviceReference is the base element type used for <reference>
 and <reference-list> elements. This type defines all of the
 characteristics common to both sorts of references.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="Tcomponent">
 <xsd:sequence>
 <xsd:group ref="GserviceReferenceElements" />

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 711

 </xsd:sequence>

 <xsd:attribute name="interface" type="Tclass">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The interface that the OSGi service must implement and that will be
 implemented by the proxy object.
 This attribute is optional.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="filter" type="xsd:normalizedString">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A filter string used to narrow the search for a matching service
 reference.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="component-name" type="Tidref">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 An optional specifier that can be used to match a service definition
 to one created by a specific blueprint component.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="availability" type="Tavailability">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Use to control the initial processing of service references at
 blueprint context startup. "mandatory" indicates the context
 should not start unless the service is available within the
 specified context startup period. "optional" indicates availability
 of this service is not a requirement at bundle startup.

 NOTE: No default is specified because this can be overridden
 by the default-availability attribute of the <blueprint> element.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:group name="GserviceReferenceElements">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription"
 minOccurs="0" />
 <!-- listener -->
 <xsd:element name="reference-listener" type="TreferenceListener"
 minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A definition of a listener that will watch for bind/unbind events
 associated with the service reference. The targetted listener can
 be a <ref> to a <bean> or <reference> element, or an inline
 <bean> or <reference>.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:group>

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 712 OSGi Compendium Release 6

 <xsd:complexType name="TreferenceListener">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TReferenceListener defines a reference listener that is attached
 to a <reference> or <reference-list> element. The listener
 object can be specified as a <ref> or as an inline <bean> or
 <reference> component. Listener events are mapped to the indicated
 bind or unbind methods.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="GtargetComponent" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="ref" type="Tidref" />
 <xsd:attribute name="bind-method" type="Tmethod" />
 <xsd:attribute name="unbind-method" type="Tmethod" />
 </xsd:complexType>

 <xsd:simpleType name="Tactivation">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tactivation defines the activation type for components. This is used in this
 schema by the <blueprint> default-activation attribute and the
 activation attribute.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="eager" />
 <xsd:enumeration value="lazy" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="Tavailability">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tavailability defines an availability attribute type. This is used in this
 schema by the <blueprint> default-availability attribute and the
 <reference> and <reference-list> availability attribute.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="mandatory" />
 <xsd:enumeration value="optional" />
 </xsd:restriction>
 </xsd:simpleType>

 <!-- service -->

 <xsd:complexType name="Tservice">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tservice is the type for services exported by this blueprint bundle.
 Services are sourced by either a <ref> to a <bean> component or an
 <inline> bean component.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="Tcomponent">
 <xsd:sequence>
 <xsd:group ref="GserviceElements" />
 </xsd:sequence>
 <xsd:attribute name="interface" type="Tclass">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The interface that this OSGi service will provide.

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 713

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="ref" type="Tidref">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The ref attribute can be used to specify the component that provides
 the object exported as an OSGi service.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="auto-export" type="TautoExportModes"
 default="disabled">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 If set to a value different from "disabled", the Blueprint Container
 will introspect the target to discover the set of interfaces or classes
 that the service will be registered under.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="ranking" type="xsd:int" default="0">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A service ranking value that is added to the service properties
 the service will be published with.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Tinlined-service">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The Tinlined-service type is used for inlined (i.e. non top level)
 <service> elements.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:restriction base="Tservice">
 <xsd:sequence>
 <xsd:group ref="GserviceElements" />
 </xsd:sequence>
 <xsd:attribute name="id" use="prohibited" />
 <xsd:attribute name="depends-on" type="TdependsOn" />
 <xsd:attribute name="activation" use="prohibited"
 fixed="lazy" />
 <xsd:attribute name="interface" type="Tclass" />
 <xsd:attribute name="ref" type="Tidref" />
 <xsd:attribute name="auto-export" type="TautoExportModes"
 default="disabled" />
 <xsd:attribute name="ranking" type="xsd:int" default="0" />
 <xsd:anyAttribute namespace="##other"
 processContents="lax" />
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:group name="GbaseServiceElements">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription"
 minOccurs="0" />

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 714 OSGi Compendium Release 6

 <xsd:element name="interfaces" type="Tinterfaces"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A collection of one or more interface class names this service
 will be registered under. The <service> element also has
 a shortcut interface attribute for the usual case of just
 a single interface being used. This also cannot be used if
 the auto-export attribute is used.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

 <xsd:element name="service-properties" type="TserviceProperties"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The service provided when the service is registered. The service
 properties are similar to map elements, but the keys must always
 be strings, and the values are required to be in a narrower range.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="registration-listener" type="TregistrationListener"
 minOccurs="0" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A set of 0 or more registration listeners attached to this service
 component. The registration listeners will be notified whenever the
 service is registered or unregistered from the framework service
 registry.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:group>

 <xsd:group name="GserviceElements">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A set of service elements.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="GbaseServiceElements" />
 <xsd:group ref="GtargetComponent" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A service definition can use any of the target types as an inline element
 as well.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:group>
 </xsd:sequence>
 </xsd:group>

 <xsd:complexType name="TregistrationListener">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A registration listener definition. The target registration listener
 can be either a <ref> to a <bean> or <service> component, or an inline
 <bean> or <service> component definition. The registration-method and
 unregistration-method attributes define the methods that will be called
 for the respective events.

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 715

 For the very common case of using a <ref> to a listener component, the
 ref attribute may also be used as a shortcut.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="GtargetComponent" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="ref" type="Tidref" />
 <xsd:attribute name="registration-method" type="Tmethod" />
 <xsd:attribute name="unregistration-method" type="Tmethod" />
 </xsd:complexType>

 <!-- Values -->

 <xsd:group name="Gvalue">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The set of "value" types that can be used in any place a value
 can be specified. This set includes the <ref> and <idref> elements, any of the
 component types (<bean>, <service>, etc.) as inline components, the
 generic <value> element for types sourced from string values, any of the
 collection types (<set>, <list>, <array>, <map>, <props>), and the
 <null> type to inject a null value.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:group ref="GnonNullValue" />
 <xsd:element name="null" type="Tnull" />
 </xsd:choice>
 </xsd:group>

 <xsd:complexType name="Tnull">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The definition for a <null> value type.
]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:complexType>

 <xsd:group name="GnonNullValue">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The set of "value" types that can be used in any place a non-null value
 can be specified. This set includes the <ref> and <idref> elements, any of the
 component types (<bean>, <service>, etc.) as inline components, the
 generic <value> element for types sourced from string values, and any of the
 collection types (<set>, <list>, <array>, <map>, <props>).

 The <null> type is NOT a member of this group.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice>
 <xsd:group ref="GallComponents" />
 <xsd:element name="idref" type="Tref" />
 <xsd:element name="value" type="Tvalue" />
 <xsd:element name="list" type="Tcollection" />
 <xsd:element name="set" type="Tcollection" />
 <xsd:element name="map" type="Tmap" />
 <xsd:element name="array" type="Tcollection" />
 <xsd:element name="props" type="Tprops" />
 </xsd:choice>
 </xsd:group>

 <xsd:complexType name="Tref">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 716 OSGi Compendium Release 6

 Tref is the type used for <ref> elements. This specifies a required
 component id for the reference component.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="component-id" type="Tidref" use="required" />
 </xsd:complexType>

 <xsd:complexType name="Tvalue" mixed="true">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tvalue is the type used for <value> elements. The <value> element
 is used for types that can be created from a single string value.
 The string value is the data value for the element. The optional
 type attribute allows a target conversion value to be explicitly
 specified.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="type" type="Ttype" />
 </xsd:complexType>

 <!-- Collection Values -->

 <xsd:complexType name="TtypedCollection">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TtypeCollection defines comment attributes shared among different
 collection types that allow a default value type to be specified.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="value-type" type="Ttype" />
 </xsd:complexType>

 <xsd:complexType name="Tcollection">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tcollection is the base schema type for different ordered collection
 types. This is shared between the <array>, <list>, and <set> elements.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="TtypedCollection">
 <xsd:group ref="Gvalue" minOccurs="0" maxOccurs="unbounded" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="Tprops">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tprops is the type used by the <props> value element. The prop elements
 are pairs of string-valued keys and values.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="prop" type="Tprop" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="Tprop" mixed="true">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tprop is a single property element for a <props> value type. The property
 value can be specified using either the attribute, or as value data for
 the property element.

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 717

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="key" type="TstringValue" use="required" />
 <xsd:attribute name="value" type="TstringValue" />
 </xsd:complexType>

 <!-- 'map' element type -->
 <xsd:complexType name="Tmap">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tmap is the base type used for <map> elements. A map may have a
 default value type specified, so it inherits from the TtypeCollection
 type. A key type can also be specified, and the map members are
 created from the entry elements, which require a key/value pair.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="TtypedCollection">
 <xsd:sequence>
 <xsd:element name="entry" type="TmapEntry" minOccurs="0"
 maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="key-type" type="Ttype" />
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!-- 'entry' element type -->
 <xsd:complexType name="TmapEntry">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TmapEntry is used for <entry> elements nested inside of a <map> element.
 Each <entry> instance defines a key/value pair that will be added to the
 Map. Both the keys and values may be arbitrary types. Keys must not
 be <null> but <null> is permitted for entry values. A default type
 can be specified for both the keys and the values, but individual keys
 or values can override the default.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="key" type="Tkey" minOccurs="0" />
 <xsd:group ref="Gvalue" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="key" type="TstringValue" />
 <xsd:attribute name="key-ref" type="Tidref" />
 <xsd:attribute name="value" type="TstringValue" />
 <xsd:attribute name="value-ref" type="Tidref" />
 </xsd:complexType>

 <!-- 'service property' element type -->
 <xsd:complexType name="TserviceProperties">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TserviceProperty is used for <service-properties> elements.
 The syntax is similar to what is defined for <map>, but keys must be
 string values and there are no type defaults that can be specified.
 created from the entry elements, which require a key/value pair.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="entry" type="TservicePropertyEntry"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>

 <!-- 'entry' element type -->

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 718 OSGi Compendium Release 6

 <xsd:complexType name="TservicePropertyEntry">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TservicePropertyEntry is an entry value used for the <service-properties>
 element. This does not allow a child <key> element and there are no
 key-ref or value-ref attributes.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:group ref="Gvalue" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="key" type="TstringValue" use="required" />
 <xsd:attribute name="value" type="TstringValue" />
 </xsd:complexType>

 <!-- General types -->

 <xsd:complexType name="Tdescription" mixed="true">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 A generic <description> element type to allow documentation to added to the
 blueprint configuration.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="0" maxOccurs="unbounded" />
 </xsd:complexType>

 <xsd:complexType name="Tinterfaces">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The type definition for the <interfaces> element used for <service>
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element name="value" type="TinterfaceValue" />
 </xsd:choice>
 </xsd:complexType>

 <xsd:simpleType name="TinterfaceValue">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TinterfaceValue is used for subelements of the <interfaces> element.
 This is just a <value>xxxxx</value> element where the contained
 value is the name of an interface class.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="Tclass" />
 </xsd:simpleType>

 <xsd:simpleType name="Tclass">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tclass is a base type that should be used for all attributes that
 refer to java class names.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:NCName" />
 </xsd:simpleType>

 <xsd:simpleType name="Ttype">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Ttype is a base type that refer to java types such as classes or
 arrays.

Blueprint Container Specification Version 1.0 Blueprint XML Schema

OSGi Compendium Release 6 Page 719

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="[\i-[:]][\c-[:]]*(\[\])*" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="Tmethod">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tmethod is a base type that should be used for all attributes that
 refer to java method names.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:NCName" />
 </xsd:simpleType>

 <!--
 Should be used for all attributes and elements that refer to method
 names
 -->
 <xsd:simpleType name="Tidref">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Tidref is a base type that should be used for all attributes that
 refer to component ids.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:NCName" />
 </xsd:simpleType>

 <xsd:simpleType name="TstringValue">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TstringValue is a base type that should be used for all attributes that
 refer to raw string values
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:normalizedString" />
 </xsd:simpleType>

 <xsd:simpleType name="TautoExportModes">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TautoExportModes is a base type that should be used for export-mode
 attributes.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="disabled" />
 <xsd:enumeration value="interfaces" />
 <xsd:enumeration value="class-hierarchy" />
 <xsd:enumeration value="all-classes" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="Ttimeout">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Ttimeout is a base type that should be used for all attributes that
 specify timeout values
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedLong" />

Blueprint XML Schema Blueprint Container Specification Version 1.0

Page 720 OSGi Compendium Release 6

 </xsd:simpleType>

 <xsd:simpleType name="TdependsOn">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 TdependsOn is a base type that should be used for all attributes that
 specify depends-on relationships
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list itemType="Tidref" />
 </xsd:simpleType>
 <xsd:minLength value="1" />
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="Tscope">
 <xsd:union>
 <xsd:simpleType>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="singleton" />
 <xsd:enumeration value="prototype" />
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType>
 <xsd:restriction base="xsd:QName">
 <xsd:pattern value=".+:.+" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:union>
 </xsd:simpleType>

 <xsd:simpleType name="Tservice-use">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Indicates the type of object that will be placed within the
 reference collection. "service-object" indicates the
 collection contains blueprint proxies for imported services.
 "service-reference" indicates the collection contains
 ServiceReference objects matching the target service type.
]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="service-object" />
 <xsd:enumeration value="service-reference" />
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

Blueprint Container Specification Version 1.0 Security

OSGi Compendium Release 6 Page 721

121.16 Security

121.16.1 Blueprint Extender
A Blueprint Extender must use the Bundle Context of the Blueprint bundle. This will ensure that
much of the resources allocated will be used on behalf of the Blueprint bundle. However, most Ja-
va 2 permissions will also verify the stack and this will inevitably include the Blueprint extender's
code. Therefore, the Blueprint extender will require the combined set of permissions needed by all
Blueprint bundles. It is therefore likely that in practical situations the Blueprint extender requires
All Permission.

The Blueprint bundle requires permission for all actions that are done by the Blueprint Container
on behalf of this bundle. That is, the Blueprint Container must not give any extra permissions to the
Blueprint bundle because it is being extended.

A Blueprint Container must therefore use a doPriv i l iged block around all actions that execute code
on behalf of the Blueprint bundle. This doPriv i leged block must use an Access Control Context that
represents the permissions of the Blueprint bundle.

For example, if a Blueprint bundle defines the following bean:

<bean class="java.lang.System" factory-method="exit">
 <argument value="1"/>
</bean>

Then the Blueprint bundle must have the proper permission to exit the system or the Blueprint
bundle must fail when the bean is constructed. At the same time, a Blueprint bundle must not be re-
quired to have any permission needed by the Blueprint Container to performs its tasks.

A Blueprint Container must never use the setAccessibi l i ty method on a returned member. Only
publicly accessible members must be used. Using a non-publicly accessible member must initiate
failure, resulting in the destruction of the container.

121.16.2 Blueprint Bundle
A Blueprint Bundle must have all the permissions required by its code. There is one additional per-
mission required for the Blueprint Bundle. The Blueprint extender will register a Blueprint Contain-
er service on behalf of the Blueprint bundle, and the Blueprint bundle must therefore have:

ServicePermission(...BlueprintContainer,[REGISTER])

121.17 org.osgi.service.blueprint.container

Blueprint Container Package Version 1.0.

This package defines the primary interface to a Blueprint Container, BlueprintContainer . An in-
stance of this type is available inside a Blueprint Container as an implicitly defined component with
the name "blueprintContainer".

This package also declares the supporting exception types, listener, and constants for working with
a Blueprint Container.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0

Page 722 OSGi Compendium Release 6

Import-Package: org.osgi .service.blueprint .container; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.blueprint .container; vers ion="[1.0,1.1)"

121.17.1 Summary

• BlueprintContainer - A Blueprint Container represents the managed state of a Blueprint bundle.
• BlueprintEvent - A Blueprint Event.
• BlueprintListener - A BlueprintEvent Listener.
• ComponentDefinit ionException - A Blueprint exception indicating that a component definition

is in error.
• Converter - Type converter to convert an object to a target type.
• EventConstants - Event property names used in Event Admin events published by a Blueprint

Container.
• NoSuchComponentException - A Blueprint exception indicating that a component does not ex-

ist in a Blueprint Container.
• ReifiedType - Provides access to a concrete type and its optional generic type parameters.
• ServiceUnavai lableException - A Blueprint exception indicating that a service is unavailable.

121.17.2 public interface BlueprintContainer
A Blueprint Container represents the managed state of a Blueprint bundle. A Blueprint Container
provides access to all managed components. These are the beans, services, and service references.
Only bundles in the ACTIVE state (and also the STARTING state for bundles awaiting lazy activation)
can have an associated Blueprint Container. A given Bundle Context has at most one associated
Blueprint Container. A Blueprint Container can be obtained by injecting the predefined "blueprint-
Container" component id. The Blueprint Container is also registered as a service and its managed
components can be queried.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

121.17.2.1 public Set<String> getComponentIds()

□ Returns the set of component ids managed by this Blueprint Container.

Returns An immutable Set of Strings, containing the ids of all of the components managed within this Blue-
print Container.

121.17.2.2 public Object getComponentInstance(String id)

id The component id for the requested component instance.

□ Return the component instance for the specified component id. If the component's manager has not
yet been activated, calling this operation will atomically activate it. If the component has singleton
scope, the activation will cause the component instance to be created and initialized. If the compo-
nent has prototype scope, then each call to this method will return a new component instance.

Returns A component instance for the component with the specified component id.

Throws NoSuchComponentException– If no component with the specified component id is managed by
this Blueprint Container.

121.17.2.3 public ComponentMetadata getComponentMetadata(String id)

id The component id for the requested Component Metadata.

□ Return the Component Metadata object for the component with the specified component id.

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container

OSGi Compendium Release 6 Page 723

Returns The Component Metadata object for the component with the specified component id.

Throws NoSuchComponentException– If no component with the specified component id is managed by
this Blueprint Container.

121.17.2.4 public Collection<T> getMetadata(Class<T> type)

Type Arguments <T extends ComponentMetadata>

<T> Type of Component Metadata.

type The super type or type of the requested Component Metadata objects.

□ Return all ComponentMetadata objects of the specified Component Metadata type. The supported
Component Metadata types are ComponentMetadata (which returns the Component Metadata for
all defined manager types), BeanMetadata , ServiceReferenceMetadata (which returns both Refer-
enceMetadata and ReferenceListMetadata objects), and ServiceMetadata. The collection will include
all Component Metadata objects of the requested type, including components that are declared in-
line.

Returns An immutable collection of Component Metadata objects of the specified type.

121.17.3 public class BlueprintEvent
A Blueprint Event.

BlueprintEvent objects are delivered to all registered BlueprintListener services. Blueprint Events
must be asynchronously delivered in chronological order with respect to each listener.

In addition, after a Blueprint Listener is registered, the Blueprint extender will synchronously send
to this Blueprint Listener the last Blueprint Event for each ready Blueprint bundle managed by this
extender. This replay of Blueprint Events is designed so that the new Blueprint Listener can be in-
formed of the state of each Blueprint bundle. Blueprint Events sent during this replay will have the
isReplay() flag set. The Blueprint extender must ensure that this replay phase does not interfere with
new Blueprint Events so that the chronological order of all Blueprint Events received by the Blue-
print Listener is preserved. If the last Blueprint Event for a given Blueprint bundle is DESTROYED,
the extender must not send it during this replay phase.

A type code is used to identify the type of event. The following event types are defined:

• CREATING
• CREATED
• DESTROYING
• DESTROYED
• FAILURE
• GRACE_PERIOD
• WAITING

In addition to calling the registered BlueprintListener services, the Blueprint extender must also
send those events to the Event Admin service, if it is available.

See Also BlueprintListener, EventConstants

Concurrency Immutable

121.17.3.1 public static final int CREATED = 2

The Blueprint extender has created a Blueprint Container for the bundle. This event is sent after the
Blueprint Container has been registered as a service.

121.17.3.2 public static final int CREATING = 1

The Blueprint extender has started creating a Blueprint Container for the bundle.

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0

Page 724 OSGi Compendium Release 6

121.17.3.3 public static final int DESTROYED = 4

The Blueprint Container for the bundle has been completely destroyed. This event is sent after the
Blueprint Container has been unregistered as a service.

121.17.3.4 public static final int DESTROYING = 3

The Blueprint extender has started destroying the Blueprint Container for the bundle.

121.17.3.5 public static final int FAILURE = 5

The Blueprint Container creation for the bundle has failed. If this event is sent after a timeout in
the Grace Period, the getDependencies() method must return an array of missing mandatory depen-
dencies. The event must also contain the cause of the failure as a Throwable through the getCause()
method.

121.17.3.6 public static final int GRACE_PERIOD = 6

The Blueprint Container has entered the grace period. The list of missing dependencies must be
made available through the getDependencies() method. During the grace period, a GRACE_PERIOD
event is sent each time the set of unsatisfied dependencies changes.

121.17.3.7 public static final int WAITING = 7

The Blueprint Container is waiting on the availability of a service to satisfy an invocation on a ref-
erenced service. The missing dependency must be made available through the getDependencies()
method which will return an array containing one filter object as a String.

121.17.3.8 public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle)

type The type of this event.

bundle The Blueprint bundle associated with this event. This parameter must not be nul l .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be nul l .

□ Create a simple BlueprintEvent object.

121.17.3.9 public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle,String[] dependencies)

type The type of this event.

bundle The Blueprint bundle associated with this event. This parameter must not be nul l .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be nul l .

dependencies An array of Str ing filters for each dependency associated with this event. Must be a non-empty array
for event types GRACE_PERIOD and WAITING. It is optional for event type FAILURE. Must be nul l
for other event types.

□ Create a BlueprintEvent object associated with a set of dependencies.

121.17.3.10 public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle,Throwable cause)

type The type of this event.

bundle The Blueprint bundle associated with this event. This parameter must not be nul l .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be nul l .

cause A Throwable object describing the root cause of the event. May be nul l .

□ Create a BlueprintEvent object associated with a failure cause.

121.17.3.11 public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle,String[] dependencies,Throwable
cause)

type The type of this event.

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container

OSGi Compendium Release 6 Page 725

bundle The Blueprint bundle associated with this event. This parameter must not be nul l .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be nul l .

dependencies An array of Str ing filters for each dependency associated with this event. Must be a non-empty array
for event types GRACE_PERIOD and WAITING. It is optional for event type FAILURE. Must be nul l
for other event types.

cause A Throwable object describing the root cause of this event. May be nul l .

□ Create a BlueprintEvent object associated with a failure cause and a set of dependencies.

121.17.3.12 public BlueprintEvent(BlueprintEvent event,boolean replay)

event The original BlueprintEvent to copy. Must not be nul l .

replay true if this event should be used as a replay event.

□ Create a new BlueprintEvent from the specified BlueprintEvent . The t imestamp property will be
copied from the original event and only the replay property will be overridden with the given value.

121.17.3.13 public Bundle getBundle()

□ Return the Blueprint bundle associated with this event.

Returns The Blueprint bundle associated with this event.

121.17.3.14 public Throwable getCause()

□ Return the cause for this FAILURE event.

Returns The cause of the failure for this event. May be nul l .

121.17.3.15 public String[] getDependencies()

□ Return the filters identifying the missing dependencies that caused this event.

Returns The filters identifying the missing dependencies that caused this event if the event type is one of
WAITING, GRACE_PERIOD or FAILURE or nul l for the other event types.

121.17.3.16 public Bundle getExtenderBundle()

□ Return the Blueprint extender bundle that is generating this event.

Returns The Blueprint extender bundle that is generating this event.

121.17.3.17 public long getTimestamp()

□ Return the time at which this event was created.

Returns The time at which this event was created.

121.17.3.18 public int getType()

□ Return the type of this event.

The type values are:

• CREATING
• CREATED
• DESTROYING
• DESTROYED
• FAILURE
• GRACE_PERIOD
• WAITING

Returns The type of this event.

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0

Page 726 OSGi Compendium Release 6

121.17.3.19 public boolean isReplay()

□ Return whether this event is a replay event.

Returns true if this event is a replay event and fa lse otherwise.

121.17.4 public interface BlueprintListener
A BlueprintEvent Listener.

To receive Blueprint Events, a bundle must register a Blueprint Listener service. After a Blueprint
Listener is registered, the Blueprint extender must synchronously send to this Blueprint Listener the
last Blueprint Event for each ready Blueprint bundle managed by this extender. This replay of Blue-
print Events is designed so that the new Blueprint Listener can be informed of the state of each Blue-
print bundle. Blueprint Events sent during this replay will have the isReplay() flag set. The Blueprint
extender must ensure that this replay phase does not interfere with new Blueprint Events so that
the chronological order of all Blueprint Events received by the Blueprint Listener is preserved. If the
last Blueprint Event for a given Blueprint bundle is DESTROYED, the extender must not send it dur-
ing this replay phase.

See Also BlueprintEvent

Concurrency Thread-safe

121.17.4.1 public void blueprintEvent(BlueprintEvent event)

event The BlueprintEvent.

□ Receives notifications of a Blueprint Event. Implementers should quickly process the event and re-
turn.

121.17.5 public class ComponentDefinitionException
extends RuntimeException
A Blueprint exception indicating that a component definition is in error. This exception is thrown
when a configuration-related error occurs during creation of a Blueprint Container.

121.17.5.1 public ComponentDefinitionException()

□ Creates a Component Definition Exception with no message or exception cause.

121.17.5.2 public ComponentDefinitionException(String explanation)

explanation The associated message.

□ Creates a Component Definition Exception with the specified message

121.17.5.3 public ComponentDefinitionException(String explanation,Throwable cause)

explanation The associated message.

cause The cause of this exception.

□ Creates a Component Definition Exception with the specified message and exception cause.

121.17.5.4 public ComponentDefinitionException(Throwable cause)

cause The cause of this exception.

□ Creates a Component Definition Exception with the exception cause.

121.17.6 public interface Converter
Type converter to convert an object to a target type.

Concurrency Thread-safe

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container

OSGi Compendium Release 6 Page 727

121.17.6.1 public boolean canConvert(Object sourceObject,ReifiedType targetType)

sourceObject The source object s to convert.

targetType The target type T .

□ Return if this converter is able to convert the specified object to the specified type.

Returns true if the conversion is possible, fa lse otherwise.

121.17.6.2 public Object convert(Object sourceObject,ReifiedType targetType) throws Exception

sourceObject The source object s to convert.

targetType The target type T .

□ Convert the specified object to an instance of the specified type.

Returns An instance with a type that is assignable from targetType's raw class

Throws Exception– If the conversion cannot succeed. This exception should not be thrown when the can-
Convert method has returned true .

121.17.7 public class EventConstants
Event property names used in Event Admin events published by a Blueprint Container.

Each type of event is sent to a different topic:

org/osgi/service/blueprint/container/ <event-type>

where <event-type> can have the values CREATING, CREATED, DESTROYING, DESTROYED,
FAILURE, GRACE_PERIOD, or WAITING.

Such events have the following properties:

• type
• event
• timestamp
• bundle
• bundle.symbolicName
• bundle.id
• bundle.version
• extender.bundle.symbolicName
• extender.bundle.id
• extender.bundle.version
• dependencies
• cause

Concurrency Immutable

121.17.7.1 public static final String BUNDLE = "bundle"

The Blueprint bundle associated with this event. This property is of type Bundle .

121.17.7.2 public static final String BUNDLE_ID = "bundle.id"

The bundle id of the Blueprint bundle associated with this event. This property is of type Long .

121.17.7.3 public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"

The bundle symbolic name of the Blueprint bundle associated with this event. This property is of
type Str ing .

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0

Page 728 OSGi Compendium Release 6

121.17.7.4 public static final String BUNDLE_VERSION = "bundle.version"

The bundle version of the Blueprint bundle associated with this event. This property is of type Ver-
sion .

121.17.7.5 public static final String CAUSE = "cause"

The cause for a FAILURE event. This property is of type Throwable .

121.17.7.6 public static final String DEPENDENCIES = "dependencies"

The filters identifying the missing dependencies that caused this event for a FAILURE,
GRACE_PERIOD, or WAITING event. This property type is an array of Str ing .

121.17.7.7 public static final String EVENT = "event"

The BlueprintEvent object that caused this event. This property is of type BlueprintEvent.

121.17.7.8 public static final String EXTENDER_BUNDLE = "extender.bundle"

The Blueprint extender bundle that is generating this event. This property is of type Bundle .

121.17.7.9 public static final String EXTENDER_BUNDLE_ID = "extender.bundle.id"

The bundle id of the Blueprint extender bundle that is generating this event. This property is of type
Long .

121.17.7.10 public static final String EXTENDER_BUNDLE_SYMBOLICNAME = "extender.bundle.symbolicName"

The bundle symbolic of the Blueprint extender bundle that is generating this event. This property is
of type Str ing .

121.17.7.11 public static final String EXTENDER_BUNDLE_VERSION = "extender.bundle.version"

The bundle version of the Blueprint extender bundle that is generating this event. This property is
of type Version .

121.17.7.12 public static final String TIMESTAMP = "timestamp"

The time the event was created. This property is of type Long .

121.17.7.13 public static final String TOPIC_BLUEPRINT_EVENTS = "org/osgi/service/blueprint/container"

Topic prefix for all events issued by the Blueprint Container

121.17.7.14 public static final String TOPIC_CREATED = "org/osgi/service/blueprint/container/CREATED"

Topic for Blueprint Container CREATED events

121.17.7.15 public static final String TOPIC_CREATING = "org/osgi/service/blueprint/container/CREATING"

Topic for Blueprint Container CREATING events

121.17.7.16 public static final String TOPIC_DESTROYED = "org/osgi/service/blueprint/container/DESTROYED"

Topic for Blueprint Container DESTROYED events

121.17.7.17 public static final String TOPIC_DESTROYING = "org/osgi/service/blueprint/container/DESTROYING"

Topic for Blueprint Container DESTROYING events

121.17.7.18 public static final String TOPIC_FAILURE = "org/osgi/service/blueprint/container/FAILURE"

Topic for Blueprint Container FAILURE events

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container

OSGi Compendium Release 6 Page 729

121.17.7.19 public static final String TOPIC_GRACE_PERIOD = "org/osgi/service/blueprint/container/GRACE_PERIOD"

Topic for Blueprint Container GRACE_PERIOD events

121.17.7.20 public static final String TOPIC_WAITING = "org/osgi/service/blueprint/container/WAITING"

Topic for Blueprint Container WAITING events

121.17.7.21 public static final String TYPE = "type"

The type of the event that has been issued. This property is of type Integer and can take one of the
values defined in BlueprintEvent.

121.17.8 public class NoSuchComponentException
extends RuntimeException
A Blueprint exception indicating that a component does not exist in a Blueprint Container. This ex-
ception is thrown when an attempt is made to create a component instance or lookup Component
Metadata using a component id that does not exist in the Blueprint Container.

121.17.8.1 public NoSuchComponentException(String msg,String id)

msg The associated message.

id The id of the non-existent component.

□ Create a No Such Component Exception for a non-existent component.

121.17.8.2 public NoSuchComponentException(String id)

id The id of the non-existent component.

□ Create a No Such Component Exception for a non-existent component.

121.17.8.3 public String getComponentId()

□ Returns the id of the non-existent component.

Returns The id of the non-existent component.

121.17.9 public class ReifiedType
Provides access to a concrete type and its optional generic type parameters.

Java 5 and later support generic types. These types consist of a raw class with type parameters. This
class models such a Type class but ensures that the type is reified. Reification means that the Type
graph associated with a Java 5 Type instance is traversed until the type becomes a concrete class.
This class is available with the getRawClass() method. The optional type parameters are recursively
represented as Reified Types.

In Java 1.4, a class has by definition no type parameters. This class implementation provides the Rei-
fied Type for Java 1.4 by making the raw class the Java 1.4 class and using a Reified Type based on the
Object class for any requested type parameter.

A Blueprint extender implementations can subclass this class and provide access to the generic type
parameter graph for conversion. Such a subclass must reify the different Java 5 Type instances into
the reified form. That is, a form where the raw Class is available with its optional type parameters as
Reified Types.

Concurrency Immutable

121.17.9.1 public ReifiedType(Class<?> clazz)

clazz The raw class of the Reified Type.

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0

Page 730 OSGi Compendium Release 6

□ Create a Reified Type for a raw Java class without any generic type parameters. Subclasses can pro-
vide the optional generic type parameter information. Without subclassing, this instance has no
type parameters.

121.17.9.2 public ReifiedType getActualTypeArgument(int i)

i The zero-based index of the requested type parameter.

□ Return a type parameter for this type. The type parameter refers to a parameter in a generic type dec-
laration given by the zero-based index i . For example, in the following example:

 Map<String, ? extends Metadata>

type parameter 0 is Str ing , and type parameter 1 is Metadata .

This implementation returns a Reified Type that has Object as class. Any object is assignable to Ob-
ject and therefore no conversion is then necessary. This is compatible with versions of Java language
prior to Java 5. This method should be overridden by a subclass that provides access to the generic
type parameter information for Java 5 and later.

Returns The ReifiedType for the generic type parameter at the specified index.

121.17.9.3 public Class<?> getRawClass()

□ Return the raw class represented by this type. The raw class represents the concrete class that is asso-
ciated with a type declaration. This class could have been deduced from the generics type parameter
graph of the declaration. For example, in the following example:

 Map<String, ? extends Metadata>

The raw class is the Map class.

Returns The raw class represented by this type.

121.17.9.4 public int size()

□ Return the number of type parameters for this type.

This implementation returns 0 . This method should be overridden by a subclass that provides ac-
cess to the generic type parameter information for Java 5 and later.

Returns The number of type parameters for this type.

121.17.10 public class ServiceUnavailableException
extends ServiceException
A Blueprint exception indicating that a service is unavailable. This exception is thrown when an in-
vocation is made on a service reference and a backing service is not available.

121.17.10.1 public ServiceUnavailableException(String message,String filter)

message The associated message.

filter The filter used for the service lookup.

□ Creates a Service Unavailable Exception with the specified message.

121.17.10.2 public ServiceUnavailableException(String message,String filter,Throwable cause)

message The associated message.

filter The filter used for the service lookup.

cause The cause of this exception.

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect

OSGi Compendium Release 6 Page 731

□ Creates a Service Unavailable Exception with the specified message and exception cause.

121.17.10.3 public String getFilter()

□ Returns the filter expression that a service would have needed to satisfy in order for the invocation
to proceed.

Returns The failing filter.

121.18 org.osgi.service.blueprint.reflect

Blueprint Reflection Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.blueprint .reflect ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.blueprint .reflect ; vers ion="[1.0,1.1)"

121.18.1 Summary

• BeanArgument - Metadata for a factory method or constructor argument of a bean.
• BeanMetadata - Metadata for a Bean component.
• BeanProperty - Metadata for a property to be injected into a bean.
• Collect ionMetadata - Metadata for a collection based value.
• ComponentMetadata - Metadata for managed components.
• IdRefMetadata - Metadata for the verified id of another component managed by the Blueprint

Container.
• MapEntry - Metadata for a map entry.
• MapMetadata - Metadata for a Map based value.
• Metadata - Top level Metadata type.
• NonNullMetadata - Metadata for a value that cannot nul l .
• NullMetadata - Metadata for a value specified to be nul l via the <null> element.
• PropsMetadata - Metadata for a java.ut i l .Propert ies based value.
• ReferenceListener - Metadata for a reference listener interested in the reference bind and un-

bind events for a service reference.
• ReferenceListMetadata - Metadata for a list of service references.
• ReferenceMetadata - Metadata for a reference that will bind to a single matching service in the

service registry.
• RefMetadata - Metadata for a reference to another component managed by the Blueprint Con-

tainer.
• Registrat ionListener - Metadata for a registration listener interested in service registration and

unregistration events for a service.
• ServiceMetadata - Metadata for a service to be registered by the Blueprint Container when en-

abled.
• ServiceReferenceMetadata - Metadata for a reference to an OSGi service.
• Target - A common interface for managed components that can be used as a direct target for

method calls.

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0

Page 732 OSGi Compendium Release 6

• ValueMetadata - Metadata for a simple Str ing value that will be type-converted if necessary be-
fore injecting.

121.18.2 public interface BeanArgument
Metadata for a factory method or constructor argument of a bean. The arguments of a bean are ob-
tained from BeanMetadata.getArguments(). This is specified by the argument elements of a bean.

Concurrency Thread-safe

121.18.2.1 public int getIndex()

□ Return the zero-based index into the parameter list of the factory method or constructor to be
invoked for this argument. This is determined by specifying the index attribute for the bean.
If not explicitly set, this will return -1 and the initial ordering is defined by its position in the
BeanMetadata.getArguments() list. This is specified by the index attribute.

Returns The zero-based index of the parameter, or -1 if no index is specified.

121.18.2.2 public Metadata getValue()

□ Return the Metadata for the argument value. This is specified by the value attribute.

Returns The Metadata for the argument value.

121.18.2.3 public String getValueType()

□ Return the name of the value type to match the argument and convert the value into when invok-
ing the constructor or factory method. This is specified by the type attribute.

Returns The name of the value type to convert the value into, or nul l if no type is specified.

121.18.3 public interface BeanMetadata
extends Target, ComponentMetadata
Metadata for a Bean component.

This is specified by the bean element.

Concurrency Thread-safe

121.18.3.1 public static final String SCOPE_PROTOTYPE = "prototype"

The bean has prototype scope.

See Also getScope()

121.18.3.2 public static final String SCOPE_SINGLETON = "singleton"

The bean has singleton scope.

See Also getScope()

121.18.3.3 public List<BeanArgument> getArguments()

□ Return the arguments for the factory method or constructor of the bean. This is specified by the
child argument elements.

Returns An immutable List of BeanArgument objects for the factory method or constructor of the bean. The
List is empty if no arguments are specified for the bean.

121.18.3.4 public String getClassName()

□ Return the name of the class specified for the bean. This is specified by the class attribute of the bean
definition.

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect

OSGi Compendium Release 6 Page 733

Returns The name of the class specified for the bean. If no class is specified in the bean definition, because
the a factory component is used instead, then this method will return nul l .

121.18.3.5 public String getDestroyMethod()

□ Return the name of the destroy method specified for the bean. This is specified by the de-
stroy-method attribute of the bean definition.

Returns The name of the destroy method specified for the bean, or nul l if no destroy method is specified.

121.18.3.6 public Target getFactoryComponent()

□ Return the Metadata for the factory component on which to invoke the factory method for the bean.
This is specified by the factory-ref attribute of the bean.

When a factory method and factory component have been specified for the bean, this method re-
turns the factory component on which to invoke the factory method for the bean. When no factory
component has been specified this method will return nul l . When a factory method has been spec-
ified for the bean but a factory component has not been specified, the factory method must be in-
voked as a static method on the bean's class.

Returns The Metadata for the factory component on which to invoke the factory method for the bean or nul l
if no factory component is specified.

121.18.3.7 public String getFactoryMethod()

□ Return the name of the factory method for the bean. This is specified by the factory-method at-
tribute of the bean.

Returns The name of the factory method of the bean or nul l if no factory method is specified for the bean.

121.18.3.8 public String getInitMethod()

□ Return the name of the init method specified for the bean. This is specified by the in it-method at-
tribute of the bean definition.

Returns The name of the init method specified for the bean, or nul l if no init method is specified.

121.18.3.9 public List<BeanProperty> getProperties()

□ Return the properties for the bean. This is specified by the child property elements.

Returns An immutable List of BeanProperty objects, with one entry for each property to be injected in the
bean. The List is empty if no property injection is specified for the bean.

121.18.3.10 public String getScope()

□ Return the scope for the bean.

Returns The scope for the bean. Returns nul l if the scope has not been explicitly specified in the bean defini-
tion.

See Also SCOPE_SINGLETON, SCOPE_PROTOTYPE

121.18.4 public interface BeanProperty
Metadata for a property to be injected into a bean. The properties of a bean are obtained from
BeanMetadata.getProperties(). This is specified by the property elements of a bean. Properties are de-
fined according to the Java Beans conventions.

Concurrency Thread-safe

121.18.4.1 public String getName()

□ Return the name of the property to be injected. The name follows Java Beans conventions. This is
specified by the name attribute.

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0

Page 734 OSGi Compendium Release 6

Returns The name of the property to be injected.

121.18.4.2 public Metadata getValue()

□ Return the Metadata for the value to be injected into a bean. This is specified by the value attribute
or in inlined text.

Returns The Metadata for the value to be injected into a bean.

121.18.5 public interface CollectionMetadata
extends NonNullMetadata
Metadata for a collection based value. Values of the collection are defined by Metadata objects. This
Collection Metadata can constrain the values of the collection to a specific type.

Concurrency Thread-safe

121.18.5.1 public Class<?> getCollectionClass()

□ Return the type of the collection. The possible types are: array (Object[]), Set , and List . This infor-
mation is specified in the element name.

Returns The type of the collection. Object[] is returned to indicate an array.

121.18.5.2 public List<Metadata> getValues()

□ Return Metadata for the values of the collection.

Returns A List of Metadata for the values of the collection.

121.18.5.3 public String getValueType()

□ Return the type specified for the values of the collection. The value-type attribute specified this in-
formation.

Returns The type specified for the values of the collection.

121.18.6 public interface ComponentMetadata
extends NonNullMetadata
Metadata for managed components. This is the base type for BeanMetadata, ServiceMetadata and
ServiceReferenceMetadata.

Concurrency Thread-safe

121.18.6.1 public static final int ACTIVATION_EAGER = 1

The component's manager must eagerly activate the component.

See Also getActivation()

121.18.6.2 public static final int ACTIVATION_LAZY = 2

The component's manager must lazily activate the component.

See Also getActivation()

121.18.6.3 public int getActivation()

□ Return the activation strategy for the component. This is specified by the activat ion attribute of a
component definition. If this is not set, then the default-act ivat ion in the blueprint element is used.
If that is also not set, then the activation strategy is ACTIVATION_EAGER.

Returns The activation strategy for the component.

See Also ACTIVATION_EAGER, ACTIVATION_LAZY

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect

OSGi Compendium Release 6 Page 735

121.18.6.4 public List<String> getDependsOn()

□ Return the ids of any components listed in a depends-on attribute for the component.

Returns An immutable List of component ids that are explicitly declared as a dependency, or an empty List if
none.

121.18.6.5 public String getId()

□ Return the id of the component.

Returns The id of the component. The component id can be nul l if this is an anonymously defined and/or in-
lined component.

121.18.7 public interface IdRefMetadata
extends NonNullMetadata
Metadata for the verified id of another component managed by the Blueprint Container. The id itself
will be injected, not the component to which the id refers. No implicit dependency is created.

Concurrency Thread-safe

121.18.7.1 public String getComponentId()

□ Return the id of the referenced component. This is specified by the component-id attribute of a com-
ponent.

Returns The id of the referenced component.

121.18.8 public interface MapEntry
Metadata for a map entry. This type is used by MapMetadata, PropsMetadata and ServiceMetadata.

Concurrency Thread-safe

121.18.8.1 public NonNullMetadata getKey()

□ Return the Metadata for the key of the map entry. This is specified by the key attribute or element.

Returns The Metadata for the key of the map entry. This must not be nul l .

121.18.8.2 public Metadata getValue()

□ Return the Metadata for the value of the map entry. This is specified by the value attribute or ele-
ment.

Returns The Metadata for the value of the map entry. This must not be nul l .

121.18.9 public interface MapMetadata
extends NonNullMetadata
Metadata for a Map based value.

This is specified by the map element.

Concurrency Thread-safe

121.18.9.1 public List<MapEntry> getEntries()

□ Return the entries for the map.

Returns An immutable List of MapEntry objects for each entry in the map. The List is empty if no entries are
specified for the map.

121.18.9.2 public String getKeyType()

□ Return the name of the type of the map keys. This is specified by the key-type attribute of the map.

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0

Page 736 OSGi Compendium Release 6

Returns The name of the type of the map keys, or nul l if none is specified.

121.18.9.3 public String getValueType()

□ Return the name of the type of the map values. This is specified by the value-type attribute of the
map.

Returns The name of the type of the map values, or nul l if none is specified.

121.18.10 public interface Metadata
Top level Metadata type. All Metadata types extends this base type.

Concurrency Thread-safe

121.18.11 public interface NonNullMetadata
extends Metadata
Metadata for a value that cannot nul l . All Metadata subtypes extend this type except for NullMetada-
ta.

This Metadata type is used for keys in Maps because they cannot be nul l .

Concurrency Thread-safe

121.18.12 public interface NullMetadata
extends Metadata
Metadata for a value specified to be nul l via the <null> element.

Concurrency Thread-safe

121.18.12.1 public static final NullMetadata NULL

Singleton instance of NullMetadata .

121.18.13 public interface PropsMetadata
extends NonNullMetadata
Metadata for a java.ut i l .Propert ies based value.

The MapEntry objects of properties are defined with keys and values of type Str ing .

This is specified by the props element.

Concurrency Thread-safe

121.18.13.1 public List<MapEntry> getEntries()

□ Return the entries for the properties.

Returns An immutable List of MapEntry objects for each entry in the properties. The List is empty if no en-
tries are specified for the properties.

121.18.14 public interface ReferenceListener
Metadata for a reference listener interested in the reference bind and unbind events for a service ref-
erence.

Concurrency Thread-safe

121.18.14.1 public String getBindMethod()

□ Return the name of the bind method. The bind method will be invoked when a matching service is
bound to the reference. This is specified by the bind-method attribute of the reference listener.

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect

OSGi Compendium Release 6 Page 737

Returns The name of the bind method.

121.18.14.2 public Target getListenerComponent()

□ Return the Metadata for the component that will receive bind and unbind events. This is specified
by the ref attribute or via an inlined component.

Returns The Metadata for the component that will receive bind and unbind events.

121.18.14.3 public String getUnbindMethod()

□ Return the name of the unbind method. The unbind method will be invoked when a matching ser-
vice is unbound from the reference. This is specified by the unbind-method attribute of the refer-
ence listener.

Returns The name of the unbind method.

121.18.15 public interface ReferenceListMetadata
extends ServiceReferenceMetadata
Metadata for a list of service references.

This is specified by the reference-l ist element.

Concurrency Thread-safe

121.18.15.1 public static final int USE_SERVICE_OBJECT = 1

Reference list values must be proxies to the actual service objects.

See Also getMemberType()

121.18.15.2 public static final int USE_SERVICE_REFERENCE = 2

Reference list values must be ServiceReference objects.

See Also getMemberType()

121.18.15.3 public int getMemberType()

□ Return whether the List will contain service object proxies or ServiceReference objects. This is spec-
ified by the member-type attribute of the reference list.

Returns Whether the List will contain service object proxies or ServiceReference objects.

See Also USE_SERVICE_OBJECT, USE_SERVICE_REFERENCE

121.18.16 public interface ReferenceMetadata
extends Target, ServiceReferenceMetadata
Metadata for a reference that will bind to a single matching service in the service registry.

This is specified by the reference element.

Concurrency Thread-safe

121.18.16.1 public long getTimeout()

□ Return the timeout for service invocations when a backing service is unavailable. This is specified
by the t imeout attribute of the reference.

Returns The timeout, in milliseconds, for service invocations when a backing service is unavailable.

121.18.17 public interface RefMetadata
extends Target, NonNullMetadata
Metadata for a reference to another component managed by the Blueprint Container.

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0

Page 738 OSGi Compendium Release 6

Concurrency Thread-safe

121.18.17.1 public String getComponentId()

□ Return the id of the referenced component. This is specified by the component-id attribute of a com-
ponent.

Returns The id of the referenced component.

121.18.18 public interface RegistrationListener
Metadata for a registration listener interested in service registration and unregistration events for a
service.

The registration listener is called with the initial state of the service when the registration listener is
actuated.

Concurrency Thread-safe

121.18.18.1 public Target getListenerComponent()

□ Return the Metadata for the component that will receive registration and unregistration events.
This is specified by the ref attribute or via an inlined component.

Returns The Metadata for the component that will receive registration and unregistration events.

121.18.18.2 public String getRegistrationMethod()

□ Return the name of the registration method. The registration method will be invoked when the as-
sociated service is registered with the service registry. This is specified by the registrat ion-method
attribute of the registration listener.

Returns The name of the registration method.

121.18.18.3 public String getUnregistrationMethod()

□ Return the name of the unregistration method. The unregistration method will be invoked when
the associated service is unregistered from the service registry. This is specified by the unregistra-
t ion-method attribute of the registration listener.

Returns The name of the unregistration method.

121.18.19 public interface ServiceMetadata
extends ComponentMetadata
Metadata for a service to be registered by the Blueprint Container when enabled.

This is specified by the service element.

Concurrency Thread-safe

121.18.19.1 public static final int AUTO_EXPORT_ALL_CLASSES = 4

Advertise all Java classes and interfaces in the component instance type as service interfaces.

See Also getAutoExport()

121.18.19.2 public static final int AUTO_EXPORT_CLASS_HIERARCHY = 3

Advertise all Java classes in the hierarchy of the component instance type as service interfaces.

See Also getAutoExport()

121.18.19.3 public static final int AUTO_EXPORT_DISABLED = 1

Do not auto-detect types for advertised service interfaces

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect

OSGi Compendium Release 6 Page 739

See Also getAutoExport()

121.18.19.4 public static final int AUTO_EXPORT_INTERFACES = 2

Advertise all Java interfaces implemented by the component instance type as service interfaces.

See Also getAutoExport()

121.18.19.5 public int getAutoExport()

□ Return the auto-export mode for the service. This is specified by the auto-export attribute of the ser-
vice.

Returns The auto-export mode for the service.

See Also AUTO_EXPORT_DISABLED, AUTO_EXPORT_INTERFACES, AUTO_EXPORT_CLASS_HIERARCHY,
AUTO_EXPORT_ALL_CLASSES

121.18.19.6 public List<String> getInterfaces()

□ Return the type names of the interfaces that the service should be advertised as supporting. This is
specified in the interface attribute or child interfaces element of the service.

Returns An immutable List of Str ing for the type names of the interfaces that the service should be adver-
tised as supporting. The List is empty if using auto-export or no interface names are specified for
the service.

121.18.19.7 public int getRanking()

□ Return the ranking value to use when advertising the service. If the ranking value is zero, the ser-
vice must be registered without a service.ranking service property. This is specified by the ranking
attribute of the service.

Returns The ranking value to use when advertising the service.

121.18.19.8 public Collection<RegistrationListener> getRegistrationListeners()

□ Return the registration listeners to be notified when the service is registered and unregistered with
the framework. This is specified by the registrat ion-l istener elements of the service.

Returns An immutable Collection of RegistrationListener objects to be notified when the service is regis-
tered and unregistered with the framework. The Collection is empty if no registration listeners are
specified for the service.

121.18.19.9 public Target getServiceComponent()

□ Return the Metadata for the component to be exported as a service. This is specified inline or via the
ref attribute of the service.

Returns The Metadata for the component to be exported as a service.

121.18.19.10 public List<MapEntry> getServiceProperties()

□ Return the user declared properties to be advertised with the service. This is specified by the ser-
vice-propert ies element of the service.

Returns An immutable List of MapEntry objects for the user declared properties to be advertised with the
service. The List is empty if no service properties are specified for the service.

121.18.20 public interface ServiceReferenceMetadata
extends ComponentMetadata
Metadata for a reference to an OSGi service. This is the base type for ReferenceListMetadata and Ref-
erenceMetadata.

Concurrency Thread-safe

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0

Page 740 OSGi Compendium Release 6

121.18.20.1 public static final int AVAILABILITY_MANDATORY = 1

A matching service is required at all times.

See Also getAvailability()

121.18.20.2 public static final int AVAILABILITY_OPTIONAL = 2

A matching service is not required to be present.

See Also getAvailability()

121.18.20.3 public int getAvailability()

□ Return whether or not a matching service is required at all times. This is specified in the avai labi l i ty
attribute of the service reference.

Returns Whether or not a matching service is required at all times.

See Also AVAILABILITY_MANDATORY, AVAILABILITY_OPTIONAL

121.18.20.4 public String getComponentName()

□ Return the value of the component-name attribute of the service reference. This specifies the id of
a component that is registered in the service registry. This will create an automatic filter, appended
with the filter if set, to select this component based on its automatic id attribute.

Returns The value of the component-name attribute of the service reference or nul l if the attribute is not
specified.

121.18.20.5 public String getFilter()

□ Return the filter expression that a matching service must match. This is specified by the f i l ter at-
tribute of the service reference.

Returns The filter expression that a matching service must match or nul l if a filter is not specified.

121.18.20.6 public String getInterface()

□ Return the name of the interface type that a matching service must support. This is specified in the
interface attribute of the service reference.

Returns The name of the interface type that a matching service must support or nul l when no interface name
is specified.

121.18.20.7 public Collection<ReferenceListener> getReferenceListeners()

□ Return the reference listeners to receive bind and unbind events. This is specified by the refer-
ence-l istener elements of the service reference.

Returns An immutable Collection of ReferenceListener objects to receive bind and unbind events. The Col-
lection is empty if no reference listeners are specified for the service reference.

121.18.21 public interface Target
extends NonNullMetadata
A common interface for managed components that can be used as a direct target for method calls.
These are bean , reference , and ref , where the ref must refer to a bean or reference component.

See Also BeanMetadata, ReferenceMetadata, RefMetadata

Concurrency Thread-safe

121.18.22 public interface ValueMetadata
extends NonNullMetadata
Metadata for a simple Str ing value that will be type-converted if necessary before injecting.

Blueprint Container Specification Version 1.0 References

OSGi Compendium Release 6 Page 741

Concurrency Thread-safe

121.18.22.1 public String getStringValue()

□ Return the unconverted string representation of the value. This is specified by the value attribute or
text part of the value element.

Returns The unconverted string representation of the value.

121.18.22.2 public String getType()

□ Return the name of the type to which the value should be converted. This is specified by the type at-
tribute.

Returns The name of the type to which the value should be converted or nul l if no type is specified.

121.19 References

[1] Spring Framework
http://www.springsource.org/

[2] Spring Dynamic Modules
http://www.springsource.org/osgi

[3] Guice
http://code.google.com/p/google-guice/

[4] Picocontainer
http://www.picocontainer.org/

[5] Java Beans Specification
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html

[6] XML Namespaces
http://www.w3.org/TR/REC-xml-names

[7] Properties format
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/Properties.html#load%28java.io.InputStream
%29

[8] XML Schema
http://www.w3.org/XML/Schema

[9] OSGi XML Schemas
http://www.osgi.org/Specifications/HomePage

References Blueprint Container Specification Version 1.0

Page 742 OSGi Compendium Release 6

Remote Service Admin Service Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 743

122 Remote Service Admin Service
Specification

Version 1.1

122.1 Introduction
The OSGi Core Release 6 framework specifies a model where bundles can use distributed services.
The basic model for OSGi remote services is that a bundle can register services that are exported to a
communication Endpoint and use services that are imported from a communication Endpoint. How-
ever, chapter Remote Services on page 21 does not explain what services are exported and/or import-
ed; it leaves such decisions to the distribution provider. The distribution provider therefore per-
forms multiple roles and cannot be leveraged by other bundles in scenarios that the distribution
provider had not foreseen.

The primary role of the distribution provider is purely mechanical; it creates Endpoints and regis-
ters service proxies and enables their communication. The second role is about the policies around
the desired topology. The third role is discovery. To establish a specific topology it is necessary to
find out about exported services in other frameworks.

This specification therefore defines an API for the distribution provider and discovery of services in
a network. A management agent can use this API to provide an actual distribution policy. This man-
agement agent, called the Topology Manager, can control the export and import of services delegat-
ing the intrinsic knowledge of the low level details of communication protocols, proxying of ser-
vices, and discovering services in the network to services defined in this specification.

This specification is an extension of the Remote Service chapter. Though some aspects are repeated
in this specification, a full understanding of the Remote Services chapter is required for full under-
standing of this document.

122.1.1 Essentials

• Simple - Make it as simple as possible for a Topology Manager to implement distribution policies.
• Dynamic - Discover available Endpoints dynamically, for example through a discovery protocol

like [3] Service Location Protocol (SLP) or [4] JGroups.
• Inform - Provide a mechanism to inform other parties about created and removed Endpoints.
• Configuration - Allow bundles to describe Endpoints as a bundle resource that are provided to the

Distribution Provider.
• Selective - Not all parties are interested in all services. Endpoint registries must be able to express

the scope of services they are interested in.
• Multiple - Allow the collaboration of multiple Topology Managers, Remote Service Admin ser-

vices, and Discovery Providers.
• Dynamic - Allow the dynamic discovery of Endpoints.
• Federated - Enable a global view of all available services in a distributed environment.

Introduction Remote Service Admin Service Specification Version 1.1

Page 744 OSGi Compendium Release 6

122.1.2 Entities

• Remote Service Admin - An implementation of this specification provides the mechanisms to im-
port and export services through a set of configuration types. The Remote Service Admin service
is a passive Distribution Provider, not taking any action to export or import itself.

• Topology Manager - The Topology Manager provides the policy for importing and exporting ser-
vices through the Remote Service Admin service.

• Endpoint - An Endpoint is a communications access mechanism to a service in another frame-
work, a (web) service, another process, or a queue or topic destination, etc., requiring some proto-
col for communications.

• Endpoint Description - A properties based description of an Endpoint. Endpoint Descriptions can
be exchanged between different frameworks to create connections to each other's services. End-
point Descriptions can also be created to Endpoints not originating in an OSGi Framework.

• Endpoint Description Provider - A party that can inform others about the existence of Endpoints.
• Endpoint Event Listener – A listener service that receives events relating to Endpoints that match

its scope. This Endpoint Event Listener is used symmetrically to implement a federated registry.
The Topology Manager can use it to notify interested parties about created and removed End-
points, as well as to receive notifications from other parties, potentially remote, about their avail-
able Endpoints.

• Endpoint Listener – An older version of the Endpoint Event Listener defined by version 1.0 of this
specification. The Endpoint Event Listener supersedes the Endpoint Listener, and should be used
in preference where possible.

• Remote Service Admin Listener - A listener service that is informed of all the primitive actions that
the Remote Service Admin performs like importing and exporting as well as errors.

• Endpoint Configuration Extender - A bundle that can detect configuration data describing an End-
point Description in a bundle resource, using the extender pattern.

• Discovery – An Endpoint Event Listener that detects the Endpoint Descriptions through some dis-
covery protocol.

• Cluster - A group of computing systems that closely work together, usually in a fast network.

Figure 122.1 Remote Service Admin Entities

Topology
Manager Impl

configured
Endpoint

XML

Remote Service
Admin Impl

Client impl Discovery Impl

Endpoint
Event Listener

 Endpoint
Event
Listener

Remote
Service
Admin

Remote
Service
Admin
Listener

Imported &
Exported
Services

to an
Endpoint

1

0..n

0..n

discovered by

network/
cluster

discovers/
announces

discovers

announces

1

122.1.3 Synopsis
Topology Managers are responsible for the distribution policies of a OSGi framework. To implement
a policy, a Topology Manager must be aware of the environment, for this reason, it can register:

Remote Service Admin Service Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 745

• Service listeners to detect services that can be exported according to the Remote Services chapter.
• Listener and Find Hook services to detect bundles that have an interest in specific services that

potentially could be imported.
• A Remote Service Admin Listener service to detect the activity of other Topology Managers.
• Endpoint Event Listener and Endpoint Listener services to detect Endpoints that are made avail-

able through discovery protocols, configuration data, or other means.

Using this information, the manager implements a topology using the Remote Service Admin ser-
vice. A Topology Manager that wants to export a service can create an Export Registration by provid-
ing one or more Remote Service Admin services a Service Reference plus a Map with the required
properties. A Remote Service Admin service then creates a number of Endpoints based on the avail-
able configuration types and returns a collection of ExportRegistrat ion objects. A collection is re-
turned because a single service can be exported to multiple Endpoints depending on the available
configuration type properties.

Each Export Registration is specific for the caller and represents an existing or newly created End-
point. The Export Registration associates the exported Service Reference with an Endpoint Descrip-
tion. If there are problems with the export operation, the Remote Service Admin service reports
these on the Export Registration objects. That is, not all the returned Export Registrations have to be
valid.

An Endpoint Description is a property based description of an Endpoint. Some of these properties
are defined in this specification, other properties are defined by configuration types. These config-
uration types must follow the same rules as the configuration types defined in the Remote Services
chapter. Remote Service Admin services that support the configuration types in the Endpoint De-
scription can import a service from that Endpoint solely based on that Endpoint Description.

In similar vein, the Topology Manager can import a service from a remote system by creating an Im-
port Registration out of an Endpoint Description. The Remote Service Admin service then registers a
service that is a proxy for the remote Endpoint and returns an ImportRegistrat ion object. If there are
problems with the import, the Remote Service Admin service that cannot be detected early, then the
Remote Service Admin service reports these on the returned ImportRegistrat ion object.

For introspection, the Remote Service Admin can list its current set of Import and Export References
so that a Topology Manager can get the current state. The Remote Service Admin service also in-
forms all Topology Managers and observers of the creation, deletion, and errors of Import and Ex-
port Registrations through the Remote Service Admin Listener service. Interested parties like the
Topology Manager can register such a service and will be called back with the initial state as well as
any subsequent changes.

An important aspect of the Topology Manager is the distributed nature of the scenarios it plays an
orchestrating role in. A Topology Manager needs to be aware of Endpoints in the network, not just
the ones provided by Remote Service Admin services in its local framework. The Endpoint Event Lis-
tener service is specified for this purpose. This service is provided for both directions, symmetrically.
That is, it is used by the Topology Manager to inform any observers about the existence of Endpoints
that are locally available, as well as for parties that represent a discovery mechanism. For example
Endpoints available on other systems, Endpoint Descriptions embedded in resources in bundles, or
Endpoint Descriptions that are available in some other form.

Endpoint Event Listener services are not always interested in the complete set of available End-
points because this set can potentially be very large. For example, if a remote registry like [5] UDDI
is used then the number of Endpoints can run into the thousands or more. An Endpoint Event Lis-
tener service can therefore scope the set of Endpoints with an OSGi LDAP style filter. Parties that can
provide information about Endpoints must only notify Endpoint Event Listener services when the
Endpoint Description falls within the scope of the Endpoint Listener service. Parties that use some
discovery mechanism can use the scope to trigger directed searches across the network.

Actors Remote Service Admin Service Specification Version 1.1

Page 746 OSGi Compendium Release 6

122.1.3.1 Endpoint Listener Services

The 1.0 version of this specification defined an Endpoint Listener service, which has an identical
purpose and similar behaviors to an Endpoint Event Listener service. Unfortunately the design of
the Endpoint Listener limited its extensibility, meaning that it had to be replaced in version 1.1 of
this specification.

In order to maintain backward compatible interoperability with Remote Service Admin 1.0 actors,
Remote Service Admin 1.1 actors must continue to register Endpoint Listener services as well as
Endpoint Event Listener services. They must also continue to call Endpoint Listener services as well
as EndpointEventListener services.

122.2 Actors
The OSGi Remote Services specification is about the distribution of services. This specification does
not outline the details of how the distribution provider knows the desired topology, this policy as-
pect is left up to implementations. In many situations, this is a desirable architecture because it pro-
vides freedom of implementation to the distribution provider. However, such an architecture does
not enable a separation of the mechanisms and policy. Therefore, this Remote Service Admin specifi-
cation provides an architecture that enables a separate bundle from the distribution provider to de-
fine the topology. It splits the responsibility of the Remote Service specification in a number of roles.
These roles can all have different implementations but they can collaborate through the services de-
fined in this specification. These roles are:

• Topology Managers - Topology Managers are the (anonymous) players that implement the poli-
cies for distributing services; they are closely aligned with the concept of an OSGi management
agent. It is expected that Topology Managers will be developed for scenarios like import/export
all applicable services, configuration based imports- and exports, and scenarios like fail-over,
load-balancing, as well as standards like domain managers for the [6] Service Component Architec-
ture (SCA).

• Remote Service Admin - The Remote Service Admin service provides the basic mechanism to im-
port and export services. This service is policy free; it will not distribute services without explic-
itly being told so. A OSGi framework can host multiple Remote Service Admin services that, for
example, support different configuration types.

• Discovery - To implement a distribution policy, a Topology Manager must be aware of what End-
points are available. This specification provides an abstraction of a federated Endpoint registry.
This registry can be used to both publish as well as consume Endpoints from many different
sources. The federated registry is defined for local services but is intended to be used with stan-
dard and proprietary service discovery protocols. The federated registry is implemented with the
Endpoint Event Listener service.

These roles are depicted in Figure 122.2 on page 746.

Figure 122.2 Roles

Topology
Manager

Remote Service
Admin

Discovery

instructs

informs
and learns from

Remote Service Admin Service Specification Version 1.1 Topology Managers

OSGi Compendium Release 6 Page 747

122.3 Topology Managers
Distributed processing has become mainstream because of the massive scale required for Internet
applications. Only with distributed architectures is it possible to scale systems to Internet size with
hundreds of millions of users. To allow a system to scale, servers are grouped in clusters where they
can work in unison or geographically dispersed in even larger configurations. The distribution of
the work-load is crucial for the amount of scalability provided by an architecture and often has do-
main specific dispatching techniques. For example, the hash of a user id can be used to select the
correct profile database server. In this fast moving world it is very unlikely that a single architecture
or distribution policy would be sufficient to satisfy many users. It is therefore that this specification
separates the how from the what. The complex mechanics of importing and exporting services are
managed by a Remote Service Admin service (the how) while the different policies are implemented
by Topology Managers (the what). This separation of concerns enables the development of Topology
Managers that can run on many different systems, providing high user functionality. For example,
a Topology Manager could implement a fail-over policy where some strategic services are redirect-
ed when their connections fail. Other Topology Managers could use a discovery protocol like SLP to
find out about other systems in a cluster and automatically configure the cluster.

The key value of this architecture is demonstrated by the example of an SCA domain controller. An
SCA domain controller receives a description of a domain (a set of systems and modules) and must
ensure that the proper connections are made between the participating SCA modules. By splitting
the roles, an SCA domain manager can be developed that can run on any compatible Remote Service
Admin service implementation.

122.3.1 Multiple Topology Managers
There is no restriction on the number of Topology Managers, nor is there a restriction on the num-
ber of Remote Service Admin service implementations. It is up to the deployer of the OSGi frame-
work to select the appropriate set of these service implementations. It is the responsibility of the
Topology Managers to listen to the Remote Service Admin Listener and track Endpoints created and
deleted by other Topology Managers and act appropriately.

122.3.2 Example Use Cases

122.3.2.1 Promiscuous Policy

A cluster is a set of machines that are connected in a network. The simplest policy for a Topology
Manager is to share exported services in such a cluster. Such a policy is very easy to implement with
the Remote Services Admin service. In the most basic form, this Topology Manager would use some
multicast protocol to communicate with its peers. These peers would exchange EndpointDescr ip-
t ion objects of exported services. Each Topology Manager would then import any exported service.

This scenario can be improved by separating the promiscuous policy from the discovery. Instead of
embedding the multicast protocol, a Topology manager could use the Endpoint Event Listener ser-
vice. This service allows the discovery of remote services. At the same time, the Topology Manager
could tell all other Endpoint Event Listener services about the services it has created, allowing them
to be used by others in the network.

Splitting the Topology Manager and discovery in two bundles allows different implementations of
the discovery bundle, for example, to use different protocols. See PROMISCUOUS_POLICY .

122.3.2.2 Fail Over

A more elaborate scheme is a fail-over policy. In such a policy a service can be replaced by a service
from another machine. There are many ways to implement such a policy, an simple example strate-
gy is provided here for illustration.

Endpoint Description Remote Service Admin Service Specification Version 1.1

Page 748 OSGi Compendium Release 6

A Fail-Over Topology Manager is given a list of stateless services that require fail-over, for example
through the Configuration Admin Service Specification on page 87. The Fail-Over Manager tracks the
systems in the its cluster that provide such services. This tracking can use an embedded protocol or
it can be based on the Endpoint Event Listener service model.

In the Fail-Over policy, the fail-over manager only imports a single service and then tracks the error
status of the imported service through the Remote Service Admin Listener service. If it detects the
service is becoming unavailable, it closes the corresponding Import Registration and imports a ser-
vice from an alternative system instead. In Figure 122.3, there are 4 systems in a cluster. The topolo-
gy/fail-over manager ensures that there is always one of the services in system A , B , or C available in
D .

Figure 122.3 Fail Over Scenario in a cluster

System

A

Topology
Manager

CB

D

There are many possible variations on this scenario. The managers could exchange load informa-
tion, allowing the service switch to be influenced by the load of the target systems. The important
aspect is that the Topology Manager can ignore the complex details of discovery protocols, commu-
nication protocols, and service proxying and instead focus on the topology. See FAIL_OVER_POLICY .

122.4 Endpoint Description
An Endpoint is a point of rendezvous of distribution providers. It is created by an exporting distrib-
ution provider or some other party, and is used by importing distribution providers to create a con-
nection. An Endpoint Description describes an Endpoint in such a way that an importing Remote Ser-
vice Admin service can create this connection if it recognizes the configuration type that is used for
that Endpoint. The configuration type consists of a name and a set of properties associated with that
name.

The core concept of the Endpoint Description is a Map of properties. The structure of this map is the
same as service properties, and the defined properties are closely aligned with the properties of an
imported service. An EndpointDescr ipt ion object must only consist of the data types that are sup-
ported for service properties. This makes the property map serializable with many different mecha-
nisms. The EndpointDescr ipt ion class provides a convenient way to access the properties in a type
safe way.

An Endpoint Description has case insensitive keys, just like the Service Reference's properties.

The properties map must contain all the prescribed service properties of the exported service af-
ter intents have been processed, as if the service was registered as an imported service. That is, the
map must not contain any properties that start with service.exported.* but it must contain the
service. imported .* variation of these properties. The Endpoint Description must reflect the import-
ed service properties because this simplifies the use of filters from the service hooks. Filters applied
to the Endpoint Description can then be the same filters as applied by a bundle to select an import-
ed service from the service registry.

Remote Service Admin Service Specification Version 1.1 Endpoint Description

OSGi Compendium Release 6 Page 749

The properties that can be used in an Endpoint Description are listed in Table 122.1. The Remote-
Constants class contains the constants for all of these property names.

Table 122.1 Endpoint Properties

Endpoint Property Name Type Description
service.exported.* Must not be set
service. imported * Must always be set to some value. See

SERVICE_IMPORTED .
objectClass Str ing[] Must be set to the value of

service.exported. interfaces , of the exported service
after expanding any wildcards. Though this proper-
ty will be overridden by the framework for the cor-
responding service registration, it must be set in the
Endpoint Description to simplify the filter matching.
These interface names are available with the getInter-
faces() method.

service. intents Str ing+ Intents implemented by the exporting distribution
provider and, if applicable, the exported service itself.
Any qualified intents must have their expanded form
present. These expanded intents are available with the
getIntents() method. See SERVICE_INTENTS .

endpoint.service. id Long The service id of the exported service. Can be absent
or 0 if the corresponding Endpoint is not for an OSGi
service. The remote service id is available as getSer-
viceId() . See also ENDPOINT_SERVICE_ID .

endpoint.framework.uuid Str ing A universally unique id identifying the instance of the
exporting framework. Can be absent if the correspond-
ing Endpoint is not for an OSGi service. See Framework
UUID on page 751. The remote framework UUID is
available with the getFrameworkUUID() method. See
also ENDPOINT_FRAMEWORK_UUID .

endpoint. id Str ing The Id for this Endpoint, can never be nul l . This infor-
mation is available with the getId() . See Endpoint Id on
page 751 and also ENDPOINT_ID .

endpoint.package.

 vers ion.<package-name>

Str ing The Java package version for the embed-
ded <package>. For example, the property
endpoint.package.version.com.acme=1.3 de-
scribes the version for the com.acme package. The
version for a package can be obtained with the
getPackageVersion(Str ing) .

The version does not have to be set, if not set, the value
must be assumed to be 0.

service. imported.configs Str ing+ The configuration types that can be used to implement
the corresponding Endpoint. This property maps to the
corresponding property in the Remote Services chap-
ter. This property can be obtained with the getConfig-
urat ionTypes() method.

The Export Registration has all the possible con-
figuration types, where the Import Registration
reports the configuration type actually used.
SERVICE_IMPORTED_CONFIGS .

Endpoint Description Remote Service Admin Service Specification Version 1.1

Page 750 OSGi Compendium Release 6

Endpoint Property Name Type Description
<config>.* * Where <config> is one of the configuration type names

listed in service. imported.configs . The content of
these properties must be valid for creating a connec-
tion to the Endpoint in another framework. That is,
any locally readable URLs from bundles must be con-
verted in such a form that they can be read by the im-
porting framework. How this is done is configuration
type specific.

* * All remaining public service properties must be
present (that is, not starting with full stop ('.' \u002E)).
If the values can not be marshaled by the Distribution
Provider then they must be ignored.

The EndpointDescr ipt ion class has a number of constructors that make it convenient to instantiate
it for different purposes:

• EndpointDescr ipt ion(Map) - Instantiate the Endpoint Description from a Map object.
• EndpointDescr ipt ion(ServiceReference,Map) - Instantiate an Endpoint Description based on a

Service Reference and a Map. The base properties of this Endpoint Description are the Service
Reference properties but the properties in the given Map must override any of their case variants
in the Service Reference. This allows the construction of an Endpoint Description from an ex-
portable service while still allowing overrides of specific properties by the Topology Manager.

The Endpoint Description must use the allowed properties as given in Table 122.1 on page 749.
The Endpoint Description must automatically skip any service.exported.* properties.

The Endpoint Description provides the following methods to access the properties in a more conve-
nient way:

• getInterfaces() - Answers a list of Java interface names. These are the interfaces under which the
services must be registered. These interface names can also be found at the objectClass property.
A service can only be imported when there is at least one Java interface name available.

• getConfigurat ionTypes() - Answer the configuration types that are used for exporting this End-
point. The configuration types are associated with a number of properties.

• getId() - Returns an Id uniquely identifying an Endpoint. The syntax of this Id should be defined
in the specification for the associated configuration type. Two Endpoint Descriptions with the
same Id describe the same Endpoint.

• getFrameworkUUID() - Get a Universally Unique Identifier (UUID) for the framework instance
that has created the Endpoint, Framework UUID on page 751.

• getServiceId() - Get the service id for the framework instance that has created the Endpoint. If
there is no service on the remote side the value must be 0.

• getPackageVersion(Str ing) - Get the version for the given package.
• getIntents() - Get the list of specified intents.
• getPropert ies() - Get all the properties.

Two Endpoint Descriptions are deemed equal when their Endpoint Id is equal. The Endpoint Id is a
mandatory property of an Endpoint Description, it is further described at Endpoint Id on page 751.
The hash code is therefore also based on the Endpoint Id.

122.4.1 Validity
A valid Endpoint Description must at least satisfy the following assertions:

• It must have a non-nul l Id that uniquely identifies the Endpoint

Remote Service Admin Service Specification Version 1.1 Endpoint Description

OSGi Compendium Release 6 Page 751

• It must at least have one Java interface name
• It must at least have one configuration type set
• Any version for the packages must have a valid version syntax.

122.4.2 Mutability
An EndpointDescr ipt ion object is immutable and with all final fields. It can be freely used between
different threads.

122.4.3 Endpoint Id
An Endpoint Id is an opaque unique identifier for an Endpoint. This uniqueness must at least hold
for the entire network in which the Endpoint is used. There is no syntax defined for this string ex-
cept that white space at the beginning and ending must be ignored. The actual syntax for this End-
point Id must be defined by the actual configuration type.

Two Endpoint Descriptions are deemed identical when their Endpoint Id is equal. The Endpoint Ids
must be compared as string compares with leading and trailing spaces removed. The Endpoint De-
scription class must use the Str ing class' hash Code from the Endpoint Id as its own hashCode .

The simplest way to ensure that a growth in the number of EndpointDescriptions and/or the size
of the connected group does not violate the required uniqueness of Endpoint Ids is for implementa-
tions to make their Endpoint Ids globally unique. This protects against clashes regardless of changes
to the connected group.

Whilst globally unique identifiers (GUIDs) are a simple solution to the Endpoint Id uniqueness
problem, they are not easy to implement in all environments. In some systems they can be prohib-
itively expensive to create, or of insufficient entropy to be genuinely unique. Some distribution
providers may therefore choose not to use random GUIDs.

In the case where no globally unique value is used the following actions are recommended (al-
though not required).

• Distribution Providers protect against intra-framework clashes using some known value unique
to the service, for example the service id.

• Distribution Providers protect against inter-provider collisions within a single framework by us-
ing some unique value, such as the distribution provider's bundle id. The distribution provider
bundle's symbolic name is insufficient, as there may be multiple versions of the same distribu-
tion provider installed within a single framework.

• Distribution Providers protect against inter-framework collisions using some value unique to
the framework, such as the framework UUID.

122.4.4 Framework UUID
Each framework registers its services with a service id that is only unique for that specific frame-
work. The OSGi framework is not a singleton, making it possible that a single VM process holds
multiple OSGi frameworks. Therefore, to identify an OSGi service uniquely it is necessary to identi-
fy the framework that has registered it. This identifier is a Universally Unique IDentifier (UUID) that is
set for each framework. This UUID is contained in the following framework property:

org.osgi.framework.uuid

If an Endpoint Description has no associated OSGi service then the UUID of that Endpoint Descrip-
tion must not be set and its service id must be 0.

A local Endpoint Description will have its framework UUID set to the local framework. This makes
it straightforward to filter for Endpoint Descriptions that are describing local Endpoints or that de-
scribe remote Endpoints. For example, a manager can take the filter from a listener and ensure that
it is only getting remote Endpoint Descriptions:

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 752 OSGi Compendium Release 6

(&
 (!
 (service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)
)
 (objectClass=org.osgi.service.log.LogService)
)

Where 72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72 is the UUID of the local framework. A discovery
bundle can register the following filter in its scope to receive all locally generated Endpoints:

(service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

122.4.5 Resource Containment
Configuration types can use URLs to point to local resources describing in detail the Endpoint pa-
rameters for specific protocols. However, the purpose of an Endpoint Description is to describe an
Endpoint to a remote system. This implies that there is some marshaling process that will transfer
the Endpoint Description to another process. This other process is unlikely to be able to access re-
source URLs. Local bundle resource URLs are only usable in the framework that originates them but
even HTTP based URLs can easily run into problems due to firewalls or lack of routing.

Therefore, the properties for a configuration type should be stored in such a way that the receiving
process can access them. One way to achieve this is to contain the configuration properties com-
pletely in the Endpoint Description and ensure they only use the basic data types that the remote
services chapter in the core requires every Distribution Provider to support.

The Endpoint Description XML format provides an xml element that is specifically added to make it
easy to embed XML based configuration documents. The XML Schema is defined in Endpoint Descrip-
tion Extender Format on page 763.

122.5 Remote Service Admin
The Remote Service Admin service abstracts the core functionality of a distribution provider: ex-
porting a service to an Endpoint and importing services from an Endpoint. However, in contrast
with the distribution provider of the Remote Services specification, the Remote Service Admin ser-
vice must be told explicitly what services to import and export.

122.5.1 Exporting
An exportable service can be exported with the exportService(ServiceReference,Map) method. This
method creates a number of Endpoints by inspecting the merged properties from the Service Refer-
ence and the given Map. Any property in the Map overrides the Service Reference properties, regard-
less of case. That is, if the map contains a key then it will override any case variant of this key in the
Service Reference. However, if the Map contains the objectClass or service. id property key in any
case variant, then these properties must not override the Service Reference's value.

The Remote Service Admin service must interpret the merged properties according to the Remote
Services chapter. This means that it must look at the following properties (as defined in chapter Re-
mote Services on page 21):

• service.exported.configs - (Str ing+) A list of configuration types that should be used to export
this service. Each configuration type represents the configuration parameters for an Endpoint.
A Remote Service Admin service should create an Endpoint for each configuration type that it
supports and ignore the types it does not recognize. If this property is not set, then the Remote
Service Admin implementation must choose a convenient configuration type that then must be

Remote Service Admin Service Specification Version 1.1 Remote Service Admin

OSGi Compendium Release 6 Page 753

reported on the Endpoint Description with the service. imported.configs associated with the re-
turned Export Registration.

• service.exported. intents - (Str ing+) A list of intents that the Remote Service Admin service must
implement to distribute the given service.

• service.exported. intents.extra - (Str ing+) This property is merged with the
service.exported. intents property.

• service.exported. interfaces - (Str ing+) This property must be set; it marks this service for ex-
port and defines the interfaces. The list members must all be contained in the types listed in
the objectClass service property from the Service Reference. The single value of an asterisk ('* '
\u002A) indicates all interfaces in the registration's objectClass property and ignore the classes.
Being able to set this property outside the Service Reference implies that the Topology Manager
can export any registered service, also services not specifically marked to be exported.

• service. intents - (Str ing+) A list of intents that this service has implemented.

A Topology Manager cannot remove properties, nul l is invalid as a property value.

The Remote Service Admin returns a collection of ExportRegistrat ion objects. This collection must
contain an entry for each configuration type the Remote Service Admin has recognized. Unrecog-
nized configuration types must be ignored. However, it is possible that this list contains invalid regis-
trations, see Invalid Registrations on page 756.

If a Service was already exported then the Remote Service Admin must still return a new ExportReg-
istrat ion object that is linked with the earlier registrations. That is, an Endpoint can be shared be-
tween multiple Export Registrations. The Remote Service Admin service must ensure that the cor-
responding Endpoint remains available as long as there is at least one open Export Registration for
that Endpoint.

For each successful creation of an export registration, the Remote Service Admin service must pub-
lish an EXPORT_REGISTRATION event, see Events on page 761. This event must be emitted, even if
the Endpoint already existed and is thus shared with another Export Registration. If the creation of
an Endpoint runs into an error, an EXPORT_ERROR event must be emitted.

Each valid Export Registration corresponds to an Endpoint for the given service. This Endpoint
must remain active until all of the Export Registrations are closed that share this Endpoint.

The Endpoint can now be published so that other processes or systems can import this Endpoint. To
aid with this import, the Export Registration has a getExportReference() method that returns an Ex-
portReference object. This reference provides the following information:

• getExportedEndpoint() - This is the associated Endpoint Description. This Endpoint Description
is a properties based description of an Endpoint. The property keys and their semantics are out-
lined in Endpoint Description on page 748. It can be used to inform other systems of the avail-
ability of an Endpoint.

• getExportedService() - The Service Reference to the exported service.

Both methods must return nul l when the associated Export Registration is closed.

A Distribution Provider that recognizes the configuration type in an Endpoint can create a connec-
tion to an Endpoint on other systems as long as firewalls and networks permit. The Endpoint De-
scription can therefore be communicated to other systems to announce the availability of an End-
point. The Topology Manager can optionally announce the availability of an Endpoint to the End-
point Event Listener services, see Discovery on page 757. The decision to announce the availability
of an Endpoint is one of the policies that is provided by a specific Topology Manager.

The Export Registrations remain open until:

• Explicitly closed by the Topology Manager, or
• The Remote Service Admin service is no longer used by the Topology Manager that created the

Export Registration.

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 754 OSGi Compendium Release 6

If the Remote Service Admin service can no longer maintain the corresponding Endpoint due to fail-
ures than these should be reported through the events. However, the registrations should remain
open until explicitly closed by the Topology Manager.

See Registration Life Cycle on page 756 for more information.

The Export Registrations are not permanent; persistence is in the realm of the Topology Manager.

122.5.2 Importing
To import a service, a Topology Manager must have an Endpoint Description that describes the End-
point the imported service should connect to. With this Endpoint Description, a Remote Service
Admin service can then import the corresponding Endpoint. A Topology Manager can obtain these
Endpoint Descriptions through internal configuration; it can use the discovery model enabled by
the Endpoint Event Listener service, see Discovery on page 757, or some alternate means.

A service can be imported with the Remote Service Admin importService(EndpointDescr ipt ion)
method. This method takes an Endpoint Description and picks one of the embedded configuration
types to establish a connection with the corresponding Endpoint to create a local service proxy. This
proxy can then be mapped to either a remote OSGi service or an alternative, for example a web ser-
vice. In certain cases the service proxy can be lazy, only verifying the reachability of the Endpoint
when it is actually invoked for the first time. This implies that a service proxy can block when in-
voked until the proper communication setup has taken place.

If the Remote Service Admin service does not recognize any of the configuration types then it must
return nul l . If there are multiple configuration types recognized then the Remote Service Admin is
free to select any one of the recognized types.

The Remote Service Admin service must ensure that service properties are according to the Remote
Services chapter for an imported service. This means that it must register the following properties:

• service. imported - (*) Must be set to any value.
• service. imported.configs - (Str ing+) The configuration information used to import this service.

Any associated properties for this configuration types must be properly mapped to the import-
ing system. For example, a URL in these properties must point to a valid resource when used in
the importing framework, see Resource Containment on page 752. Multiple configuration types
can be listed if they are synonyms for exactly the same Endpoint that is used to export this ser-
vice.

• service. intents - (Str ing+) The Remote Service Admin must set this property to convey the com-
bined intents of:
• The exporting service, and
• The intents that the exporting distribution provider adds, and
• The intents that the importing distribution provider adds.

• Any additional properties listed in the Endpoint Description that should not be excluded. See
Endpoint Description on page 748 for more details about the properties in the Endpoint Descrip-
tion.

A Remote Service Admin service must strictly follow the rules for importing a service as outlined in
the Remote Services chapter.

The Remote Service Admin must return an ImportRegistrat ion object or nul l . Even if an Import Reg-
istration is returned, it can still be an invalid registration, see Invalid Registrations on page 756 if the
setup of the connection failed asynchronously. The Import Registration must always be a new ob-
ject. Each valid Import Registration corresponds to a proxy service, potentially shared, that was cre-
ated for the given Endpoint. The issues around proxying are described in Proxying on page 756.

For each successful creation of an import registration, the Remote Service Admin service must pub-
lish an IMPORT_REGISTRATION event, if there is an error it must publish an IMPORT_ERROR , see
Events on page 761.

Remote Service Admin Service Specification Version 1.1 Remote Service Admin

OSGi Compendium Release 6 Page 755

For more information see Registration Life Cycle on page 756.

The Import Registration provides access to an ImportReference object with the getImportRefer-
ence() . This object has the following methods:

• getImportedEndpoint() - Provides the Endpoint Description for this imported service.
• getImportedService() - Provides the Service Reference for the service proxy.

The Import Registration will remain open as long as:

• The corresponding remote Endpoint remains available, and
• The Remote Service Admin service is still in use by the Topology Manager that created the Im-

port Registration.

That is, the Import Registrations are not permanent, any persistence is in the realm of the Topology
Manager. See Registration Life Cycle on page 756 for more details.

122.5.3 Updates
Services Registrations are dynamic and service properties may change during the lifetime of a ser-
vice. Remote services must mirror these dynamics without making it appear as though the service
has become unavailable. This requires that the exporting distribution provider and the importing
distribution provider support the changing of service properties.

There are two types of service properties:

• Properties that are intended to be consumed by the distribution provider, such as: the export-
ed interfaces and configuration types, exported intents and configuration type specific proper-
ties. These properties are typically prefixed with 'service.' or 'endpoint.' see Table 122.1 on page
749.

• Service properties not intended for the distribution provider. These are typically used to commu-
nicate information to the consumer of the service and are often specific to the domain of the ser-
vice.

The following methods to support the updating of service properties on Export Registrations and
the propagation of these updates to the remote proxies via Import Registrations.

• ExportRegistration.update(Map) - Allows the Topology Manager to update an existing export
registration it created after receiving a notification of changed properties on the remoted service.

• ImportRegistration.update(EndpointDescr ipt ion) - Allows the Topology Manager to update the
import registration representing a remote service after the remote service properties have been
updated. Typically the topology manager is notified of such change via the Discovery mecha-
nism.

The distribution provider must support the updates of service properties not intended for the dis-
tribution provider, where supported property values are as defined in the Filter Syntax of OSGi Core
Release 6. Distribution providers may support updates to a wider set of properties or data types, but
these may fail with other implementations.

122.5.4 Reflection
The Remote Service Admin service provides the following methods to get the list of the current ex-
ported and imported services:

• getExportedServices() - List the Export References for services that are exported by this Remote
Service Admin service as directed by any of the Topology Managers.

• getImportedEndpoints() - List the Import References for services that have been imported by this
Remote Service Admin service as directed by any of the Topology Managers.

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 756 OSGi Compendium Release 6

122.5.5 Registration Life Cycle
All registrations obtained through a Remote Service Admin service are life cycle bound to the Topol-
ogy Manager that created it. That is, if a Topology Manager ungets its Remote Service Admin service,
all registrations obtained through this service must automatically be closed. This model ensures
that all registrations are properly closed if either the Remote Service Admin or the Topology Manag-
er stops because in both cases the framework performs the unget automatically. Such behavior can
be achieved by implementing the Remote Service Admin service as a Service Factory.

122.5.6 Invalid Registrations
The Remote Service Admin service is explicitly allowed to return invalid Import and Export Registra-
tions. First, in a communications stack it can take time to discover that there are issues, allowing the
registration to return before it has completed can potentially save time. Second, it allows the Topol-
ogy Manager to discover problems with the configuration information. Without the invalid Export
Registrations, the Topology Manager would have to scan the log or associate the Remote Service Ad-
min Events with a specific import/export method call, something that can be difficult to do.

If the registration is invalid, the getException() method must return a Throwable object. If the regis-
tration has initialized correctly, this method will return nul l . The getExportReference() and getIm-
portReference() methods must throw an Illegal State Exception when the registration is invalid.
A Remote Service Admin service is allowed to block for a reasonable amount of time when any of
these methods is called, including the getException method, to finish initialization.

An invalid registration can be considered as never having been opened, it is therefore not necessary
to close it; however, closing an invalid or closed registration must be a dummy operation and never
throw an Exception. However, a failed registration must generate a corresponding error event.

122.5.7 Proxying
It is the responsibility of the Remote Service Admin service to properly proxy an imported service.
This specification does not mandate the technique used to proxy an Endpoint as a service in the OS-
Gi framework. The OSGi Remote Services specification allows a distribution provider to limit what
it can proxy.

One of the primary aspects of a proxy is to ensure class space consistency between the exporting
bundle and importing bundles. This can require the generation of a proxy-per-bundle to match the
proper class spaces. It is the responsibility of the Remote Service Admin to ensure that no Class Cast
Exceptions occur.

A common technique to achieve maximum class space compatibility is to use a Service Factory. A
Service Factory provides the calling bundle when it first gets the service, making it straightforward
to verify the package version of the interface that the calling bundle uses. Knowing the bundle that
requests the service allows the creation of specialized proxies for each bundle. The interface class(es)
for the proxy can then be loaded directly from the bundle, ensuring class compatibility. Interfaces
should be loadable by the bundle otherwise that bundle can not use the interface in its code. If an in-
terface cannot be loaded then it can be skipped. A dedicated class loader can then be created that has
visibility to all these interfaces and is used to define the proxy class. This design ensures proper vis-
ibility and consistency. Implementations can optimize this model by sharing compatible class load-
ers between bundles.

The proxy will have to call arbitrary methods on arbitrary services. This has a large number of secu-
rity implications, see Security on page 771.

Remote Service Admin Service Specification Version 1.1 Discovery

OSGi Compendium Release 6 Page 757

122.6 Discovery
The topology of the distributed system is decided by the Topology Manager. However, in a distrib-
uted environment, the Topology Manager needs to discover Endpoints in other frameworks. There
is a very large number of ways how a Topology Manager could learn about other Endpoints, rang-
ing from static configuration, a centralized administration, all the way to fully dynamic discovery
protocols like the Service Location Protocol (SLP) or JGroups. To support the required flexibility, this
specification defines an Endpoint Event Listener service that allows the dissemination of Endpoint in-
formation. This service provides a symmetric solution because the problem is symmetric: it is used
by a Topology Manager to announce changes in its local topology as well as find out about other
Endpoint Descriptions. Where those other Endpoint Descriptions come from can vary widely. This
design is depicted in Figure 122.4 on page 757.

Figure 122.4 Examples

Topology
Manager

Static
Configuration

 Endpoint
Event
Listener

discovers/
announces

discovers

announces Network
Discovery

Configuration
Extender

Managed
Service Factory

Topology
Map

networks

displays
display

extends

 Endpoint
Event
Listener

The design of the Endpoint Event Listener allows a federated registry of Endpoint Descriptions. Any
party that is interested in Endpoint Descriptions should register an Endpoint Event Listener service.
This will signal that it is interested in topology information to any Endpoint Description Providers.
Each Endpoint Event Listener service must be registered with a service property that holds a set of
filter strings to indicate the scope of its interest. These filters must match an Endpoint Description
before the corresponding Endpoint Event Listener service is notified of the availability of an End-
point Description. Scoping is intended to limit the delivery of unnecessary Endpoint Descriptions as
well as signal the need for specific Endpoints.

In addition to providing an Endpoint Event Listener actors must provide an Endpoint Listener. This
may, or may not, be the same service object as the Endpoint Event Listener. Registering an Endpoint
Listener in addition to an Endpoint Event Listener ensures that Endpoint announcements from ver-
sion 1.0 actors will continue to be visible. If a service object is advertised as both an Endpoint Listen-
er and an Endpoint Event Listener then version 1.1 actors must use the Endpoint Event Listener in-
terface of the service in preference, and not call it as an Endpoint Listener. For this reason the End-
point Listener interface is marked as Deprecated . The reason that the Endpoint Event Listener inter-
face should be preferred is that it supports more advanced notification types, such as modification
events.

A Topology Manager has knowledge of its local Endpoints and is likely to be only interested in re-
mote Endpoints. It can therefore set the scope to only match remote Endpoint Descriptions. See
Framework UUID on page 751 for how to limit the scope to local or remote Endpoints. At the

Discovery Remote Service Admin Service Specification Version 1.1

Page 758 OSGi Compendium Release 6

same time, a Topology manager should inform any locally registered Endpoint Event Listener and
Endpoint Listener services about Endpoints that it has created or deleted.

This architecture allows many different use cases. For example, a bundle could display a map of the
topology by registering an Endpoint Event Listener with a scope for local Endpoints. Another ex-
ample is the use of SLP to announce local Endpoints to a network and to discover remote Endpoints
from other parties on this network.

An instance of this design is shown in Figure 122.5 on page 758. In this figure, there are 3 frame-
works that collaborate through some discovery bundle. The Top framework has created an Endpoint
and decides to notify all Endpoint Event Listeners and Endpoint Listeners registered in this frame-
work that are scoped to this new Endpoint. Local bundle D has set its scope to all Endpoint Descrip-
tions that originate from its local framework, it therefore receives the Endpoint Description from T .
Bundle D then sends the Endpoint Description to all its peers on the network.

In the Quark framework, the manager bundle T has expressed an interest by setting its scope to
a filter that matches the Endpoint Description from the Top framework. When the bundle D on
the Quark framework receives the Endpoint Description from bundle D on the Top framework, it
matches it against all local Endpoint Event Listener's scope. In this case, the local manager bundle T
matches and is given the Endpoint Description. The manager then uses the Remote Service Admin
service to import the exported service described by the given Endpoint Description.

Figure 122.5 Endpoint Discovery Architecture. T=Topology Manager, D=Discovery

D

DD T

T

T

Framework

Bundle

EndpointEventListener Service

Endpoint

Endpoint connection

Service connection

Framework Quark Framework Charm

Imported/Exported-Service

Top
Framework

Network

The previous description is just one of the possible usages of the Endpoint Event Listener. For ex-
ample, the discovery bundles could communicate the scopes to their peers. These peers could then
register an Endpoint Event Listener per peer, minimizing the network traffic because Endpoint De-
scriptions do not have to be broadcast to all peers.

Another alternative usage is described in Endpoint Description Extender Format on page 763. In this
chapter the extender pattern is used to retrieve Endpoint Descriptions from resources in locally ac-
tive bundles.

122.6.1 Scope and Filters
An Endpoint Event Listener or Endpoint Listener service is registered with the
ENDPOINT_LISTENER_SCOPE service property. This property, which is Str ing+ , must be set and
must contain at least one filter. If there is not at least one filter, then that Endpoint Event Listener or
Endpoint Listener must not receive any Endpoint Descriptions.

Remote Service Admin Service Specification Version 1.1 Discovery

OSGi Compendium Release 6 Page 759

Each filter in the scope is applied against the properties of the Endpoint Description until one suc-
ceeds. Only if one succeeds is the Endpoint informed about the existence of an Endpoint.

The Endpoint Description is designed to reflect the properties of the imported service, there is there-
fore a correspondence with the filters that are used by bundles that are listening for service registra-
tions. The purpose of this design is to match the filter available through Listener Hook services, see
On Demand on page 761.

However, the purpose of the filters is more generic than just this use case. It can also be used to spec-
ify the interest in local Endpoints or remote Endpoints. For example, Topology Managers are only
interested in remote Endpoints while discoverers are only interested in local Endpoints. It is easy to
discriminate between local and remote by filtering on the endpoint.framework.uuid property. End-
point Descriptions contain the Universally Unique ID (UUID) of the originating framework. This
UUID must be available from the local framework as well. See Framework UUID on page 751.

122.6.2 Endpoint Event Listener Interface
The EndpointEventListener interface has the following method:

• endpointChanged(EndpointEvent,Str ing) – Notify the Endpoint Event Listener of changes to an
Endpoint. The change could entail the addition or removal of an Endpoint or the modification
of the properties of an existing Endpoint. Multiple identical events should be counted as a single
such event.

These methods must only be called if the Endpoint Event Listener service has a filter in its scope
that matches the Endpoint Description properties.

The Endpoint Event Listener interface is idempotent. Endpoint Description Providers must inform an
Endpoint Event Listener service (and its deprecated predecessor Endpoint Listener service) that is
registered of all their matching Endpoints. The only way to find out about all available Endpoints is
to register an Endpoint Event Listener (or Endpoint Listener) that is then informed by all available
Endpoint Description Providers of their known Endpoint Descriptions that match their scope.

122.6.3 Endpoint Listener Interface
The EndpointListener interface is marked as Deprecated because the EndpointEventListener inter-
face must be used in preference when both are implemented by the same object. The EndpointEvent
interface has the following methods:

• endpointAdded(EndpointDescr ipt ion,Str ing) – Notify the Endpoint Listener of a new Endpoint
Description. The second parameter is the filter that matched the Endpoint Description. Register-
ing the same Endpoint multiple times counts as a single registration.

• endpointRemoved(EndpointDescr ipt ion,Str ing) – Notify the Endpoint Listener that the provid-
ed Endpoint Description is no longer available.

These methods must only be called if the Endpoint Listener service has a filter in its scope that
matches the Endpoint Description properties. The reason for the filter string in the methods is to
simplify and speed up matching an Endpoint Description to the cause of interest. For example, if the
Listener Hook is used to do on demand import of services, then the filter can be associated with the
Listener Info of the hook, see On Demand on page 761. If multiple filters in the scope match the
Endpoint Description than the first filter in the scope must be passed.

The Endpoint Listener interface is idempotent. Endpoint Description Providers must inform an End-
point Listener service that is registered of all their matching Endpoints.

122.6.4 Endpoint Event Listener and Endpoint Listener Implementations
An Endpoint Event Listener service tracks the known Endpoints in its given scope. There are poten-
tially a large number of bundles involved in creating this federated registry of Endpoints. To ensure

Discovery Remote Service Admin Service Specification Version 1.1

Page 760 OSGi Compendium Release 6

that no Endpoint Descriptions are orphaned or unnecessarily missed, an Endpoint Event Listener
implementation must follow the following rules:

• Registration – The Endpoint Event Listener service is called with an event of type ADDED for all
known Endpoint Descriptions that the bundles in the local framework are aware of. Similar-
ly, Endpoint Listener services are called with an endpointAdded(EndpointDescr ipt ion,Str ing)
method for all these.

• Tracking providers – An Endpoint Event Listener or Endpoint Listener must track the bundles
that provide it with Endpoint Descriptions. If a bundle that provided Endpoint Descriptions is
stopped, all Endpoint Descriptions that were provided by that bundle must be removed. This can
be implemented straightforwardly with a Service Factory.

• Scope modification – An Endpoint Event Listener or Endpoint Listener is allowed to modify the set
of filters in its scope through a service property modification. This modification must result in
new and/or existing Endpoint Descriptions to be added, however, existing Endpoints that are no
longer in scope are not required to be explicitly removed by the their sources. It is the responsi-
bility for the Endpoint Listener to remove these orphaned Endpoint Description from its view.

• Endpoint mutability – An Endpoint Description can change its Properties. The way this is
handled is different for Endpoint Event Listeners and Endpoint Listeners. An Endpoint
Event Listener receives a change event of type MODIFIED when the Properties of an exist-
ing Endpoint are modified. If the modification means that the Endpoint no longer match-
es the listener scope an event of type MODIFIED_ENDMATCH is sent instead. Endpoint Lis-
tener services receive a sequence of endpointRemoved(EndpointDescr ipt ion,Str ing) and
endpointAdded(EndpointDescr ipt ion,Str ing) callbacks when the Properties of an Endpoint are
modified.

Endpoint Descriptions can be added from different sources and providers of Endpoint Descriptions
often use asynchronous and potentially unreliable communications. An implementation must
therefore handle the addition of multiple equal Endpoint Descriptions from different sources as
well as from the same source. Implementations must not count the number of registrations, a re-
move operation of an Endpoint Description is final for each source. That is, if source A added End-
point Description e , then it can only be removed by source A . However, if source A added e multiple
times, then it only needs to be removed once. Removals of Endpoint Descriptions that have not been
added (or were removed before) should be ignored.

The discovery of Endpoints is a fundamentally indeterministic process and implementations of
Endpoint Event Listener services should realize that there are no guarantees that an added Endpoint
Description is always describing a valid Endpoint.

122.6.5 Endpoint Description Providers
The Endpoint Event Listener and Endpoint Listener services are based on an asynchronous, unre-
liable, best effort model because there are few guarantees in a distributed world. It is the task of an
Endpoint Description Provider, for example a discovery bundle, to keep the Endpoint Event Listener
services up to date of any Endpoint Descriptions the provider is aware of and that match the tracked
service's scope.

If an Endpoint Event Listener or Endpoint Listener service is registered, a provider must add all
matching Endpoint Descriptions that it is aware of and match the tracked listener's scope. This can
be done during registration or asynchronously later. For example, it is possible to use the filters in
the scope to request remote systems for any Endpoint Descriptions that match those filters. For ex-
pediency reasons, the service registration event should not be delayed until those results return; it is
therefore applicable to add these Endpoint Descriptions later when the returns from the remote sys-
tems finally arrive.

If a tracked listener service object is advertised as both an Endpoint Event Listener and an Endpoint
Listener then the EndpointDescription Provider must ignore the EndpointListener interface, and
treat the listener only as an Endpoint Event Listener. Remote Service Admin 1.0 actors will be un-

Remote Service Admin Service Specification Version 1.1 Events

OSGi Compendium Release 6 Page 761

aware of the EndpointEventListener interface, and will treat the service object purely as an Endpoint
Listener. This restriction ensures that all actors will treat the service either as an Endpoint Event
Listener, or an Endpoint Listener, but never as both. As a result the listener service will not have to
disambiguate duplicate events from a single source. If an Endpoint Description Provider uses both
the Endpoint Listener and Endpoint Event Listener interfaces of a single service object then the re-
sulting behavior is undefined. The implementation may detect the misuse and throw an Exception,
process or ignore the events from one of the interfaces, or it may simply corrupt the internal registry
of Endpoints within the listener.

A tracked Endpoint Event Listener or Endpoint Listener is allowed to modify its scope by setting
new properties on its Service Registration. An Endpoint Description provider must process the new
scope and add any newly matching Endpoint Descriptions. It is not necessary to remove any End-
point Descriptions that were added before but no longer match the new scope. Removing those or-
phaned descriptions is the responsibility of the listener implementation.

It is not necessary to remove any registered Endpoint Descriptions when the Endpoint Event Lis-
tener or Endpoint Listener is unregistered; also here it is the responsibility of the listener to do the
proper cleanup.

122.6.6 On Demand
A common distribution policy is to import services that are being listened for by local bundles. For
example, when a bundle opens a Service Tracker on the Log Service, a Topology Manager could be
notified and attempt to find a Log Service in the local cluster and then import this service in the lo-
cal Service Registry.

The OSGi framework provides service hooks for exactly this purpose. A Topology Manager can reg-
ister a Listener Hook service and receive the information about bundles that have specified an inter-
ests in specific services.

For example, a bundle creates the following Service Tracker:

ServiceTracker st = new ServiceTracker(context,
 LogService.class.getName());
st.open();

This Service Tracker will register a Service Listener with the OSGi framework. This will cause the
framework to add a ListenerInfo to any Listener Hook services. The getFi l ter method on a Listen-
erInfo object provides a filter that is directly applicable for the Endpoint Event Listener's scope. In
the previous example, this would be the filter:

(objectClass=org.osgi.service.log.LogService)

A Topology Manager could verify if this listener is satisfied. That is, if it has at least one service. If no
such service could be found, it could then add this filter to its Endpoint Event Listener's scope to de-
tect remote implementations of this service. If such an Endpoint is detected, it could then request
the import of this service through the Remote Service Admin service.

122.7 Events
The Remote Service Admin service must synchronously inform any Remote Service Admin Listen-
er services of events as they happen. Client of the events should return quickly and not perform any
but trivial processing in the same thread.

The following event types are defined:

Events Remote Service Admin Service Specification Version 1.1

Page 762 OSGi Compendium Release 6

• EXPORT_ERROR - An exported service has run into an unrecoverable error, although the Export
Registration has not been closed yet. The event carries the Export Registration as well as the Ex-
ception that caused the problem, if present.

• EXPORT_REGISTRATION - The Remote Service Admin has registered a new Export Registration.
• EXPORT_UNREGISTRATION - An Export Registration has been closed, the service is no longer

exported and the Endpoint is no longer active when this was the last registration for that ser-
vice/Endpoint combination.

• EXPORT_UPDATE - An exported service is updated. The service properties have changed.
• EXPORT_WARNING - An exported service is experiencing problems but the Endpoint is still avail-

able.
• IMPORT_ERROR - An imported service has run into a fatal error and has been shut down. The Im-

port Registration should be closed by the Topology Manager that created them.
• IMPORT_REGISTRATION - A new Import Registration was created for a potentially existing ser-

vice/Endpoint combination.
• IMPORT_UNREGISTRATION - An Import Registration was closed, removing the proxy if this was

the last registration.
• IMPORT_UPDATE - An imported service is updated. The service properties have changed.
• IMPORT_WARNING - An imported service is experiencing problems but can continue to function.

The following properties are available on the event:

• getType() - The type of the event.
• getException() - Any exception, if present.
• getExportReference() - An export reference, if applicable.
• getImportReference() - An import reference, if applicable.
• getSource() - The source of the event, the Remote Service Admin service.

122.7.1 Event Admin Mapping
All Remote Service Admin events must be posted, which is asynchronously, to the Event Admin ser-
vice, if present, under the following topic:

org/osgi/service/remoteserviceadmin/<type>

Where <type> represents the type of the event, for example IMPORT_ERROR .

The Event Admin event must have the following properties:

• bundle - (Bundle) The Remote Service Admin bundle
• bundle. id - (Long) The id of the Remote Service Admin bundle.
• bundle.symbol icname - (Str ing) The Bundle Symbolic Name of the Remote Service Admin

bundle.version - (Version) The version of the Remote Service Admin bundle.
• bundle.s igner - (Str ing[]) Signer of the Remote Service Admin bundle
• exception - (Throwable) The Exception, if present. Also reported on the cause property for back-

ward compatibility.
• exception.class - (Str ing) The fully-qualified class name of the attached Exception.
• exception.message -(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• endpoint.service. id - (Long) Remote service id, if present
• endpoint.framework.uuid - (Str ing) Remote service's Framework UUID, if present
• endpoint. id - (Str ing) The id of the Endpoint, if present
• objectClass - (Str ing[]) The interface names, if present

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Compendium Release 6 Page 763

• service. imported.configs - (Str ing+) The configuration types of the imported services, if present
• t imestamp - (Long) The time when the event occurred
• event - (RemoteServiceAdminEvent) The RemoteServiceAdminEvent object that caused this

event.

122.8 Endpoint Description Extender Format
The Endpoint Description Extender format is a possibility to deliver Endpoint Descriptions in bun-
dles. This section defines an XML schema and how to locate XML definition resources that use this
schema to define Endpoint Descriptions. The definition resource is a simple property based model
that can define the same information as the properties on an imported service. If a bundle with the
description is ready (ACTIVE or lazy activation and in the STARTING state), then this static descrip-
tion can be disseminated through the Endpoint Event Listeners that have specified an interest in
this description. If the bundle is stopped, the corresponding Endpoints must be removed.

XML documents containing remote service descriptions must be specified by the Remote-Service
header in the manifest. The structure of the Remote Service header is:

Remote-Service ::= header // See Common Header Syntax in Core

The value of the header is a comma separated list of paths. A path is:

• A directory if it ends with a solidus (' / ' \u002F). A directory is scanned for *.xml files.
• A path with wildcards. Such a path can use the wildcards in its last component, as defined in the

f indEntr ies method.
• A complete path, not having wildcards not ending in a solidus (' / ' \u002F).

The Remote-Service header has no architected directives or attributes, unrecognized attributes and
directives must be ignored.

A Remote-Service manifest header specified in a fragment must be ignored. However, XML docu-
ments referenced by a bundle's Remote-Service manifest header can be contained in attached frag-
ments. The required behavior for this is implemented in the f indEntr ies method.

The extender must process each XML document specified in this header. If an XML document speci-
fied by the header cannot be located in the bundle and its attached fragments, the extender must log
an error message with the Log Service, if present, and continue.

For example:

Remote-Service: lib/, remote/osgi/*.dsc, cnf/google.xml

This matches all resources in the lib directory matching *.xml , all resources in the /remote/osgi di-
rectory that end with .dsc , as well as the google.xml resource in the cnf directory.

The namespace of these XML resources must be:

 http://www.osgi .org/xmlns/rsa/v1.0.0

This namespace describes a set of Endpoint Descriptions, where each Endpoint Description can pro-
vide a set of properties. The structure of this schema is:

endpoint-descriptions ::= <endpoint-description>*
endpoint-description ::= <property>*
property ::= (<array> | <list> | <set>| <xml>)?
array ::= <value> *

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.1

Page 764 OSGi Compendium Release 6

list ::= <value> *
set ::= <value> *
xml ::= <*> *

This structure is depicted in Figure 122.6 on page 764.

Figure 122.6 Endpoint Description XML Structure

endpoint-
descriptions

endpoint-
description

property

0..n

0..n

list setarray xml

0,1

<any>value

1

1

1

0..n

111 1

0..n

The property element has the attributes listed in table Table 122.2.

Table 122.2 Property Attributes

Attribute Type Description
name Str ing The required name of the property. The type maps to the

XML Schema xsd:str ing type.

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Compendium Release 6 Page 765

Attribute Type Description
value-type Str ing

| long

| Long

| double

| Double

| f loat

| F loat

| int

| Integer

| byte

| Byte

| char

| Character

| boolean

| Boolean

| short

| Short

The optional type name of the property, the default is
Str ing . Any value in the value attribute or the value ele-
ment when collections are used must be converted to the
corresponding Java types. If the primitive form, for exam-
ple byte , is specified for non-array types, then the value
must be silently converted to the corresponding wrapper
type.

value Str ing The value. Must be converted to the specified type if this
is not the Str ing type. The value attribute must not be used
when the property element has a child element.

A property can have an array , l ist , set , or xml child element. If a child element is present then it is an
error if the value attribute is defined. It is also an error of there is no child element and no value at-
tribute.

The array , l ist , or set are multi-valued. That is, they contain 0 or more value elements. A value el-
ement contains text (a string) that must be converted to the given value-type or if not specified,
left as is. Conversion must trim the leading and trailing white space characters as defined in the
Character. isWhitespace method. No trimming must be done for strings. An array of primitive inte-
gers like int[] {1,42,97} can be encoded as follows:

<property name="integers" value-type="int">
 <array>
 <value> 1</value>
 <value>42</value>
 <value>97</value>
 </array>
</property>

The xml element is used to convey XML from other namespaces, it is allowed to contain one foreign
XML root element, with any number of children, that will act as the root element of an XML doc-
ument. This root element will be included in the corresponding property as a string. The XML ele-
ment must be a valid XML document but not contain the XML processing instructions, the part be-
tween the <? and ?> . The value-type of the property must be Str ing or not set when an xml element
is used, using another type is invalid.

The xml element can be used to embed configuration information, making the Endpoint Descrip-
tion self contained.

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.1

Page 766 OSGi Compendium Release 6

The following is an example of an endpoint-descr ipt ions resource.

<?xml version="1.0" encoding="UTF-8"?>
<endpoint-descriptions xmlns="http://www.osgi.org/xmlns/rsa/v1.0.0">
 <endpoint-description>
 <property name="service.intents">
 <list>
 <value>SOAP</value>
 <value>HTTP</value>
 </list>
 </property>
 <property name="endpoint.id" value="http://ws.acme.com:9000/hello"/>
 <property name="endpoint.package.version.com.acme" value="4.2"/>
 <property name="objectClass">
 <array>
 <value>com.acme.Foo</value>
 </array>
 </property>
 <property name="service.imported.configs" value="com.acme"/>
 <property name="com.acme.ws.xml">
 <xml>
 <config xmlns="http://acme.com/defs">
 <port>1029</port>
 <host>www.acme.com</host>
 </config>
 </xml>
 </property>
 </endpoint-description>
</endpoint-descriptions>

Besides being in a separate resource, the static configuration as described here could also be part of
a larger XML file. In that case the parser must ignore elements not part of the http://www.osgi .org/
xmlns/rsa/v1.0.0 namespace schema.

122.8.1 XML Schema
This namespace of the schema is:

http://www.osgi.org/xmlns/rsa/v1.0.0

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:rsa="http://www.osgi.org/xmlns/rsa/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/rsa/v1.0.0"
 elementFormDefault="qualified" version="1.0.1">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for endpoint descriptions used by
 the Remote Service Admin Specification. Endpoint descriptions
 are used to describe remote services to a client in cases
 where a real live Discovery system isn't used. An extender,
 such as a local Discovery Service can look for service
 descriptions in installed bundles and inform the Topology
 Manager of these remote services. The Topology Manager can then
 instruct the Remote Service Admin to create client proxies for
 these services.
 </documentation>
 </annotation>

 <element name="endpoint-descriptions" type="rsa:Tendpoint-descriptions" />

 <complexType name="Tendpoint-descriptions">
 <sequence>

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Compendium Release 6 Page 767

 <element name="endpoint-description" type="rsa:Tendpoint-description"
 minOccurs="1" maxOccurs="unbounded" />
 <!--
 It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig to use
 namespace="##any" below.
 -->
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tendpoint-description">
 <annotation>
 <documentation xml:lang="en">
 A Distribution Provider can register a proxy with the properties
 provided. Whether or not it is instructed to do so, is up to the
 Topology Manager. If any 'intents' properties are specified then the
 Distribution Provider should only register a proxy if it can support
 those intents.
 </documentation>
 </annotation>
 <sequence>
 <element name="property" type="rsa:Tproperty" minOccurs="1"
 maxOccurs="unbounded" />
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tproperty" mixed="true">
 <sequence>
 <choice minOccurs="0" maxOccurs="1">
 <element name="array" type="rsa:Tmulti-value"/>
 <element name="list" type="rsa:Tmulti-value"/>
 <element name="set" type="rsa:Tmulti-value"/>
 <element name="xml" type="rsa:Txml"/>
 </choice>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="value-type" type="rsa:Tvalue-types" default="String" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tmulti-value">
 <sequence>
 <element name="value" minOccurs="0" maxOccurs="unbounded" type="rsa:Tvalue"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tvalue" mixed="true">
 <sequence>
 <element name="xml" minOccurs="0" maxOccurs="1" type="rsa:Txml"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <!-- Specifies the data type of a property or of the elements in a multi-value
 property. Numerical and boolean values are trimmed before they are processed.
 Simple types are automatically boxed if needed. Only the array data type
 allows for simple type values. When specifying a simple type on any other
 type of property it will automatically be boxed. -->
 <simpleType name="Tvalue-types">
 <restriction base="string">
 <enumeration value="String" />

Capability Namespaces Remote Service Admin Service Specification Version 1.1

Page 768 OSGi Compendium Release 6

 <enumeration value="long" />
 <enumeration value="Long" />
 <enumeration value="double" />
 <enumeration value="Double" />
 <enumeration value="float" />
 <enumeration value="Float" />
 <enumeration value="int" />
 <enumeration value="Integer" />
 <enumeration value="byte" />
 <enumeration value="Byte" />
 <enumeration value="char" />
 <enumeration value="Character" />
 <enumeration value="boolean" />
 <enumeration value="Boolean" />
 <enumeration value="short" />
 <enumeration value="Short" />
 </restriction>
 </simpleType>

 <!-- This complex type allows literal XML to be specified in an <xml/> tag (which
 is more convenient than putting it in a CDATA section).
 The embedded XML must be well-formed and not be in the rsa namespace. It will
 be put in a String value of a property or in an element of a multi-value
 property of base type String. The XML will be prefixed with the standard
 <?XML ?> header which is copied from the enclosing document. Hence it will
 carry the same version and encoding as the document in the rsa namespace. -->
 <complexType name="Txml">
 <sequence>
 <any namespace="##other" minOccurs="1" maxOccurs="1"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <attribute name="must-understand" type="boolean" default="false">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

122.9 Capability Namespaces

122.9.1 Local Discovery Extender
A bundle containing Endpoint Description Extender resources can indicate its dependency on the
Remote Service Admin extender by declaring a requirement on the osgi .extender namespace.

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.remoteserviceadmin.localdiscovery)
 (version>=1.0)(!(version>=2.0)))"

With this constraint declared a bundle that depends on the extender will fail to resolve if no exten-
der is present in the framework.

Implementations of this specification must provide this extender capability at version 1.0 as fol-
lows:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.remoteserviceadmin.localdiscovery";
 version:Version="1.0";
 uses:="org.osgi.service.remoteserviceadmin"

Remote Service Admin Service Specification Version 1.1 Capability Namespaces

OSGi Compendium Release 6 Page 769

The reason that the extender capability is declared at version 1.0 is because the extender is un-
changed from version 1.0 of this specification.

122.9.2 Discovery Provider Capability
Discovery Providers use the osgi . remoteserviceadmin.discovery namespace to declare themselves
as such. The version defined for this namespace indicates the version of this specification that the
discovery provider supports.

This namespace has a defined attribute, protocols of type List<Str ing> , which contains a list of the
discovery protocols supported by the discovery provider. Local discovery providers (using the End-
point Description Extender Format on page 763), should use the value local to indicate that they sup-
port this. Additionally, it defines a version attribute. Other values for the protocols attribute are im-
plementation specific.

Table 122.3 osgi.remoteserviceadmin.discovery Namespace

Name Kind M/O Type Syntax Description
protocols CA M List<Str ing> symbol ic-name The discovery protocols supported. A value of lo-

cal indicates support for the Endpoint Description
Extender Format on page 763.

version CA M Version version This version must correspond to the version of
the Remote Service Admin specification.

Example: A discovery provider that provides local and SLP discovery:

Provide-Capability: osgi.remoteserviceadmin.discovery;
 protocols:List<String>="SLP,local"; version:Version=1.1

122.9.3 Distribution Provider Capability
Distribution providers advertise their supported distribution mechanisms using configuration
types. These are selected at runtime using the service.exported.configs service property. Distribu-
tion providers can use the osgi . remoteserviceadmin.distr ibution namespace with attribute configs ,
of type List<Str ing> , to advertise the supported config types.

Table 122.4 osgi.remoteserviceadmin.distribution Namespace

Name Kind M/O Type Syntax Description
configs CA M List<Str ing> symbol ic-name Supported configuration types. See Endpoint De-

scription on page 748 .
version CA M Version version This version must correspond to the version of

the Remote Service Admin specification.

Example: A Distribution provider that supports the org.acme.jaxws and org.acme.jaxrs configura-
tion types:

Provide-Capability: osgi.remoteserviceadmin.distribution;
 configs:List<String>="org.acme.jaxws,org.acme.jaxrs"; version:Version=1.1

122.9.4 Topology Manager Capability
Remote Service Admin topology managers may use different policies when determin-
ing which services to export and/or import. Topology managers use the namespace
osgi . remoteserviceadmin.topology to declare this behavior. This namespace defines the pol icy at-

Advice to implementations Remote Service Admin Service Specification Version 1.1

Page 770 OSGi Compendium Release 6

tribute of type List<Str ing> . Values are implementation specific, but example definitions can be
found at Example Use Cases on page 747.

Table 122.5 osgi.remoteserviceadmin.topology Namespace

Name Kind M/O Type Syntax Description
pol icy CA M List<Str ing> symbol ic-name The policy used for importing and exporting ser-

vices. In general the policy is implementation
specific.

version CA M Version version This version must correspond to the version of
the Remote Service Admin specification.

Example: A Topology manager that supports a promiscuous policy:

Provide-Capability: osgi.remoteserviceadmin.topology;
 policy:List<String>=promiscuous; version:Version=1.1

122.9.5 Service Capability
The Distribution Provider provides the Remote Service Admin service. To inform tools about this ser-
vice it must provide the osgi .service namespace representing the RemoteServiceAdmin service. This
capability must also declare a uses constraint for the org.osgi .service.remoteserviceadmin package:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.remoteserviceadmin.RemoteServiceAdmin";
 uses:="org.osgi.service.remoteserviceadmin"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

122.10 Advice to implementations
This section is not intended to be normative, but offers advice to implementations as to how the
complexity of supporting both the new Endpoint Event Listener and Endpoint Listener services can
be managed and minimized. This advice applies to both Discovery Providers and Topology Man-
agers implementing Remote Service Admin 1.1 .

122.10.1 Notifying listeners
Endpoint Event Listeners and Endpoint Listeners have a very similar behavior and lifecycle. They
also use the same property names to define their scope filter. It is therefore relatively simple for an
Endpoint Description Provider to notify both Endpoint Listener and Endpoint Event Listeners using
a single code path.

One possible mechanism is to track both the listener types using the same Service Tracker. If the
tracked Service Reference advertises the EndpointEventListener interface then it must be treated as
an Endpoint Event Listener. If not then the Endpoint Listener service can be wrapped in an adapter
that converts Endpoint Event Listener events into the appropriate Endpoint Listener calls. The main
notification code path can then treat every listener as an Endpoint Event Listener.

122.10.2 Receiving Endpoint lifecycle notifications
The Remote Service Admin 1.1 specification is backward compatible with version 1.0 , meaning that
version 1.1 actors must register an Endpoint Listener service. There is no restriction requiring this
listener to be the same service as the Endpoint Event Listener, however there is a significant advan-
tage to combining the listeners into a single service registration.

Remote Service Admin Service Specification Version 1.1 Security

OSGi Compendium Release 6 Page 771

By making the two listeners a single service object a bundle can guarantee that it will not receive
multiple notifications for the same event. If the service registrations are separate then Endpoint De-
scription Providers will see two separate listeners, and notify them both. As a single service registra-
tion only one event will occur, and using the highest mutually supported version of the Remote Ser-
vice Admin Specification.

122.11 Security
From a security point of view distribution is a significant threat. A Distribution Provider requires
very significant capabilities to be able to proxy services. In many situations it will be required to
grant the distribution provider All Permission. It is therefore highly recommended that Distribution
Providers use trusted links and ensure that it is not possible to attack a system through the Remote
Services Admin service and used discovery protocols.

122.11.1 Import and Export Registrations
Import and Export Registrations are capabilities. That is, they can only be obtained when the caller
has the proper permissions but once obtained they are no longer checked. The caller should there-
fore be careful to share those objects with other bundles. Export and Import References are free to
share.

122.11.2 Endpoint Permission
The Remote Service Admin implementation requires a large set of permissions because it must be
able to distribute potentially any service. Giving these extensive capabilities to all Topology Man-
agers would make it harder to developer general Topology Managers that implements specific sce-
narios. For this reason, this specification provides an Endpoint Permission.

When an Endpoint Permission must be verified, it must be created with an Endpoint Description as
argument, like:

sm.checkPermission(new EndpointPermission(anEndpoint,localUUID,READ));

The standard name and action constructor is used to define a permission. The name argument is a
filter expression. The filter for an Endpoint Permission is applied to the properties of an Endpoint
Description. The localUUID must map to the UUID of the framework of the caller of this construc-
tor, see Framework UUID on page 751. This localUUID is used to allow a the permissions to use the
<<LOCAL>> magic name in the permission filter to refer to the local framework.

The filter expression can use the following magic value:

• <<LOCAL>> - This value represents the framework UUID of the framework that this bundle be-
longs to. The following example restricts the visibility to descriptions of local Endpoints:

 ALLOW {
 ...EndpointPermission
 "(endpoint.framework.uuid=<<LOCAL>>)"
 "READ" }

An Endpoint Permission that has the actions listed in the following table.

Table 122.6 Endpoint Permission Actions

Action Methods Description
IMPORT importService(EndpointDescr ipt ion) Import an Endpoint
EXPORT exportService(ServiceReference,Map) Export a service

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 772 OSGi Compendium Release 6

Action Methods Description
READ getExportedServices()

getImportedEndpoints()

remoteAdminEvent(RemoteServiceAdminEvent)

See the presence of distributed ser-
vices. The IMPORT and EXPORT action
imply READ . Distribution of events to
the Remote Service Admin Listener.
The Remote Service Admin must ver-
ify that the listener's bundle has the
proper permission. No events should
be delivered that are not implied.

122.12 org.osgi.service.remoteserviceadmin

Remote Service Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.remoteserviceadmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.remoteserviceadmin; vers ion="[1.1 ,1 .2)"

122.12.1 Summary

• EndpointDescr ipt ion - A description of an endpoint that provides sufficient information for a
compatible distribution provider to create a connection to this endpoint An Endpoint Descrip-
tion is easy to transfer between different systems because it is property based where the property
keys are strings and the values are simple types.

• EndpointEvent - An Endpoint Event.
• EndpointEventListener - A white board service that represents a listener for endpoints.
• EndpointListener - Deprecated white board service that represents a listener for endpoints.
• EndpointPermission - A bundle's authority to export, import or read an Endpoint.
• ExportReference - An Export Reference associates a service with a local endpoint.
• ExportRegistrat ion - An Export Registration associates a service to a local endpoint.
• ImportReference - An Import Reference associates an active proxy service to a remote endpoint.
• ImportRegistrat ion - An Import Registration associates an active proxy service to a remote end-

point.
• RemoteConstants - Provide the definition of the constants used in the Remote Service Admin

specification.
• RemoteServiceAdmin - A Remote Service Admin manages the import and export of services.
• RemoteServiceAdminEvent - Provides the event information for a Remote Service Admin event.
• RemoteServiceAdminListener - A RemoteServiceAdminEvent listener is notified synchronously

of any export or import registrations and unregistrations.

122.12.2 public class EndpointDescription
A description of an endpoint that provides sufficient information for a compatible distribution
provider to create a connection to this endpoint An Endpoint Description is easy to transfer be-
tween different systems because it is property based where the property keys are strings and the val-
ues are simple types. This allows it to be used as a communications device to convey available end-

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 773

point information to nodes in a network. An Endpoint Description reflects the perspective of an im-
porter. That is, the property keys have been chosen to match filters that are created by client bundles
that need a service. Therefore the map must not contain any service.exported.* property and must
contain the corresponding service. imported.* ones. The service. intents property must contain the
intents provided by the service itself combined with the intents added by the exporting distribution
provider. Qualified intents appear fully expanded on this property.

Concurrency Immutable

122.12.2.1 public EndpointDescription(Map<String,?> properties)

properties The map from which to create the Endpoint Description. The keys in the map must be type Str ing
and, since the keys are case insensitive, there must be no duplicates with case variation.

□ Create an Endpoint Description from a Map.

The endpoint.id, service.imported.configs and objectClass properties must be set.

Throws I l legalArgumentException– When the properties are not proper for an Endpoint Description.

122.12.2.2 public EndpointDescription(ServiceReference<?> reference,Map<String,?> properties)

reference A service reference that can be exported.

properties Map of properties. This argument can be nul l . The keys in the map must be type Str ing and, since
the keys are case insensitive, there must be no duplicates with case variation.

□ Create an Endpoint Description based on a Service Reference and a Map of properties. The proper-
ties in the map take precedence over the properties in the Service Reference.

This method will automatically set the endpoint.framework.uuid and endpoint.service.id properties
based on the specified Service Reference as well as the service.imported property if they are not spec-
ified as properties.

The endpoint.id, service.imported.configs and objectClass properties must be set.

Throws I l legalArgumentException– When the properties are not proper for an Endpoint Description

122.12.2.3 public boolean equals(Object other)

other The EndpointDescr ipt ion object to be compared.

□ Compares this EndpointDescr ipt ion object to another object.

An Endpoint Description is considered to be equal to another Endpoint Description if their ids are
equal.

Returns true if object is a EndpointDescr ipt ion and is equal to this object; fa lse otherwise.

122.12.2.4 public List<String> getConfigurationTypes()

□ Returns the configuration types. A distribution provider exports a service with an endpoint. This
endpoint uses some kind of communications protocol with a set of configuration parameters. There
are many different types but each endpoint is configured by only one configuration type. However,
a distribution provider can be aware of different configuration types and provide synonyms to in-
crease the change a receiving distribution provider can create a connection to this endpoint. This
value of the configuration types is stored in the RemoteConstants.SERVICE_IMPORTED_CONFIGS
service property.

Returns An unmodifiable list of the configuration types used for the associated endpoint and optionally syn-
onyms.

122.12.2.5 public String getFrameworkUUID()

□ Return the framework UUID for the remote service, if present. The value of the remote framework
UUID is stored in the RemoteConstants.ENDPOINT_FRAMEWORK_UUID endpoint property.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 774 OSGi Compendium Release 6

Returns Remote Framework UUID, or nul l if this endpoint is not associated with an OSGi framework having
a framework UUID.

122.12.2.6 public String getId()

□ Returns the endpoint's id. The id is an opaque id for an endpoint. No two different endpoints must
have the same id. Two Endpoint Descriptions with the same id must represent the same endpoint.
The value of the id is stored in the RemoteConstants.ENDPOINT_ID property.

Returns The id of the endpoint, never nul l . The returned value has leading and trailing whitespace removed.

122.12.2.7 public List<String> getIntents()

□ Return the list of intents implemented by this endpoint. The intents are based on the service.intents
on an imported service, except for any intents that are additionally provided by the importing distri-
bution provider. All qualified intents must have been expanded. This value of the intents is stored in
the RemoteConstants.SERVICE_INTENTS service property.

Returns An unmodifiable list of expanded intents that are provided by this endpoint.

122.12.2.8 public List<String> getInterfaces()

□ Provide the list of interfaces implemented by the exported service. The value of the interfaces is de-
rived from the objectClass property.

Returns An unmodifiable list of Java interface names implemented by this endpoint.

122.12.2.9 public Version getPackageVersion(String packageName)

packageName The name of the package for which a version is requested.

□ Provide the version of the given package name. The version is encoded by prefixing the given pack-
age name with endpoint.package.version., and then using this as an endpoint property key. For ex-
ample:

 endpoint.package.version.com.acme

The value of this property is in String format and will be converted to a Version object by this
method.

Returns The version of the specified package or Version.emptyVersion if the package has no version in this
Endpoint Description.

Throws I l legalArgumentException– If the version property value is not String.

122.12.2.10 public Map<String,Object> getProperties()

□ Returns all endpoint properties.

Returns An unmodifiable map referring to the properties of this Endpoint Description.

122.12.2.11 public long getServiceId()

□ Returns the service id for the service exported through this endpoint. This is the service id un-
der which the framework has registered the service. This field together with the Framework
UUID is a globally unique id for a service. The value of the remote service id is stored in the
RemoteConstants.ENDPOINT_SERVICE_ID endpoint property.

Returns Service id of a service or 0 if this Endpoint Description does not relate to an OSGi service.

122.12.2.12 public int hashCode()

□ Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 775

122.12.2.13 public boolean isSameService(EndpointDescription other)

other The Endpoint Description to look at

□ Answers if this Endpoint Description refers to the same service instance as the given Endpoint De-
scription. Two Endpoint Descriptions point to the same service if they have the same id or their
framework UUIDs and remote service ids are equal.

Returns True if this endpoint description points to the same service as the other

122.12.2.14 public boolean matches(String filter)

filter The filter to test.

□ Tests the properties of this EndpointDescr ipt ion against the given filter using a case insensitive
match.

Returns true If the properties of this EndpointDescr ipt ion match the filter, fa lse otherwise.

Throws I l legalArgumentException– If f i l ter contains an invalid filter string that cannot be parsed.

122.12.2.15 public String toString()

□ Returns the string representation of this EndpointDescription.

Returns String form of this EndpointDescription.

122.12.3 public class EndpointEvent
An Endpoint Event.

EndpointEvent objects are delivered to all registered EndpointEventListener services
where the EndpointDescription properties match one of the filters specified in the
EndpointEventListener.ENDPOINT_LISTENER_SCOPE registration properties of the Endpoint
Event Listener.

A type code is used to identify the type of event. The following event types are defined:

• ADDED
• REMOVED
• MODIFIED
• MODIFIED_ENDMATCH

Additional event types may be defined in the future.

See Also EndpointEventListener

Since 1.1

Concurrency Immutable

122.12.3.1 public static final int ADDED = 1

An endpoint has been added.

This EndpointEvent type indicates that a new endpoint has been added. The endpoint is represented
by the associated EndpointDescription object.

122.12.3.2 public static final int MODIFIED = 4

The properties of an endpoint have been modified.

This EndpointEvent type indicates that the properties of an existing endpoint have been modified.
The endpoint is represented by the associated EndpointDescription object and its properties can be

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 776 OSGi Compendium Release 6

obtained via EndpointDescription.getProperties(). The endpoint properties still match the filters as
specified in the EndpointEventListener.ENDPOINT_LISTENER_SCOPE filter.

122.12.3.3 public static final int MODIFIED_ENDMATCH = 8

The properties of an endpoint have been modified and the new properties no longer match the
listener's filter.

This EndpointEvent type indicates that the properties of an existing endpoint
have been modified and no longer match the filter. The endpoint is represented by
the associated EndpointDescription object and its properties can be obtained via
EndpointDescription.getProperties(). As a consequence of the modification the filters as specified in
the EndpointEventListener.ENDPOINT_LISTENER_SCOPE do not match any more.

122.12.3.4 public static final int REMOVED = 2

An endpoint has been removed.

This EndpointEvent type indicates that an endpoint has been removed. The endpoint is represented
by the associated EndpointDescription object.

122.12.3.5 public EndpointEvent(int type,EndpointDescription endpoint)

type The event type. See getType().

endpoint The endpoint associated with the event.

□ Constructs a EndpointEvent object from the given arguments.

122.12.3.6 public EndpointDescription getEndpoint()

□ Return the endpoint associated with this event.

Returns The endpoint associated with the event.

122.12.3.7 public int getType()

□ Return the type of this event.

The type values are:

• ADDED
• REMOVED
• MODIFIED
• MODIFIED_ENDMATCH

Returns The type of this event.

122.12.4 public interface EndpointEventListener
A white board service that represents a listener for endpoints. An Endpoint Event Listener repre-
sents a participant in the distributed model that is interested in Endpoint Descriptions. This white
board service can be used in many different scenarios. However, the primary use case is to allow a
remote manager to be informed of Endpoint Descriptions available in the network and inform the
network about available Endpoint Descriptions. Both the network bundle and the manager bundle
register an Endpoint Event Listener service. The manager informs the network bundle about End-
points that it creates. The network bundles then uses a protocol like SLP to announce these local
end-points to the network. If the network bundle discovers a new Endpoint through its discovery
protocol, then it sends an Endpoint Description to all the Endpoint Listener services that are regis-
tered (except its own) that have specified an interest in that endpoint. Endpoint Event Listener ser-
vices can express their scope with the service property ENDPOINT_LISTENER_SCOPE. This service
property is a list of filters. An Endpoint Description should only be given to a Endpoint Event Listen-

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 777

er when there is at least one filter that matches the Endpoint Description properties. This filter mod-
el is quite flexible. For example, a discovery bundle is only interested in locally originating Endpoint
Descriptions. The following filter ensures that it only sees local endpoints.

 (org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

In the same vein, a manager that is only interested in remote Endpoint Descriptions can use a filter
like:

 (!(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72))

Where in both cases, the given UUID is the UUID of the local framework that can be found in the
Framework properties. The Endpoint Event Listener's scope maps very well to the service hooks. A
manager can just register all filters found from the Listener Hook as its scope. This will automatical-
ly provide it with all known endpoints that match the given scope, without having to inspect the fil-
ter string. In general, when an Endpoint Description is discovered, it should be dispatched to all reg-
istered Endpoint Event Listener services. If a new Endpoint Event Listener is registered, it should be
informed about all currently known Endpoints that match its scope. If a getter of the Endpoint Lis-
tener service is unregistered, then all its registered Endpoint Description objects must be removed.
The Endpoint Event Listener models a best effort approach. Participating bundles should do their ut-
most to keep the listeners up to date, but implementers should realize that many endpoints come
through unreliable discovery processes. The Endpoint Event Listener supersedes the EndpointLis-
tener interface as it also supports notifications around modifications of endpoints.

Since 1.1

Concurrency Thread-safe

122.12.4.1 public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"

Specifies the interest of this listener with filters. This listener is only interested in Endpoint Descrip-
tions where its properties match the given filter. The type of this property must be Str ing+ .

122.12.4.2 public void endpointChanged(EndpointEvent event,String filter)

event The event containing the details about the change.

filter The filter from the ENDPOINT_LISTENER_SCOPE that matches (or for
EndpointEvent.MODIFIED_ENDMATCH and EndpointEvent.REMOVED used to match) the end-
point, must not be nul l .

□ Notification that an endpoint has changed. Details of the change is captured in the Endpoint Event
provided. This could be that an endpoint was added, removed or modified.

122.12.5 public interface EndpointListener
Deprecated white board service that represents a listener for endpoints. An Endpoint Listener rep-
resents a participant in the distributed model that is interested in Endpoint Descriptions. The End-
point Listener is called back when matching endpoints are added or removed. Consumers interest-
ed in the modification of endpoints, when associated service properties are changed, should use
an EndpointEventListener instead. This white board service can be used in many different scenar-
ios. However, the primary use case is to allow a remote manager to be informed of Endpoint De-
scriptions available in the network and inform the network about available Endpoint Descriptions.
Both the network bundle and the manager bundle register an Endpoint Listener service. The man-
ager informs the network bundle about Endpoints that it creates. The network bundles then uses
a protocol like SLP to announce these local end-points to the network. If the network bundle dis-
covers a new Endpoint through its discovery protocol, then it sends an Endpoint Description to
all the Endpoint Listener services that are registered (except its own) that have specified an inter-
est in that endpoint. Endpoint Listener services can express their scope with the service property
ENDPOINT_LISTENER_SCOPE. This service property is a list of filters. An Endpoint Description
should only be given to a Endpoint Listener when there is at least one filter that matches the End-

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 778 OSGi Compendium Release 6

point Description properties. This filter model is quite flexible. For example, a discovery bundle is
only interested in locally originating Endpoint Descriptions. The following filter ensure that it only
sees local endpoints.

 (org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

In the same vein, a manager that is only interested in remote Endpoint Descriptions can use a filter
like:

 (!(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72))

Where in both cases, the given UUID is the UUID of the local framework that can be found in the
Framework properties. The Endpoint Listener's scope maps very well to the service hooks. A man-
ager can just register all filters found from the Listener Hook as its scope. This will automatically
provide it with all known endpoints that match the given scope, without having to inspect the fil-
ter string. In general, when an Endpoint Description is discovered, it should be dispatched to all reg-
istered Endpoint Listener services. If a new Endpoint Listener is registered, it should be informed
about all currently known Endpoints that match its scope. If a getter of the Endpoint Listener ser-
vice is unregistered, then all its registered Endpoint Description objects must be removed. The End-
point Listener models a best effort approach. Participating bundles should do their utmost to keep
the listeners up to date, but implementers should realize that many endpoints come through unreli-
able discovery processes.

Deprecated As of 1.1. Replaced by EndpointEventListener.

Concurrency Thread-safe

122.12.5.1 public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"

Specifies the interest of this listener with filters. This listener is only interested in Endpoint Descrip-
tions where its properties match the given filter. The type of this property must be Str ing+ .

122.12.5.2 public void endpointAdded(EndpointDescription endpoint,String matchedFilter)

endpoint The Endpoint Description to be published

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

□ Register an endpoint with this listener. If the endpoint matches one of the filters registered with the
ENDPOINT_LISTENER_SCOPE service property then this filter should be given as the matchedFi l-
ter parameter. When this service is first registered or it is modified, it should receive all known end-
points matching the filter.

122.12.5.3 public void endpointRemoved(EndpointDescription endpoint,String matchedFilter)

endpoint The Endpoint Description that is no longer valid.

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

□ Remove the registration of an endpoint. If an endpoint that was registered with the
endpointAdded(EndpointDescription, String) method is no longer available then this method
should be called. This will remove the endpoint from the listener. It is not necessary to remove end-
points when the service is unregistered or modified in such a way that not all endpoints match the
interest filter anymore.

122.12.6 public final class EndpointPermission
extends Permission
A bundle's authority to export, import or read an Endpoint.

• The export action allows a bundle to export a service as an Endpoint.
• The import action allows a bundle to import a service from an Endpoint.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 779

• The read action allows a bundle to read references to an Endpoint.

Permission to read an Endpoint is required in order to detect events regarding an Endpoint. Untrust-
ed bundles should not be able to detect the presence of certain Endpoints unless they have the ap-
propriate EndpointPermission to read the specific service.

Concurrency Thread-safe

122.12.6.1 public static final String EXPORT = "export"

The action string export . The export action implies the read action.

122.12.6.2 public static final String IMPORT = "import"

The action string import . The import action implies the read action.

122.12.6.3 public static final String READ = "read"

The action string read .

122.12.6.4 public EndpointPermission(String filterString,String actions)

filterString The filter string or "*" to match all endpoints.

actions The actions read , import , or export .

□ Create a new EndpointPermission with the specified filter.

The filter will be evaluated against the endpoint properties of a requested EndpointPermission.

There are three possible actions: read , import and export . The read action allows the owner of this
permission to see the presence of distributed services. The import action allows the owner of this
permission to import an endpoint. The export action allows the owner of this permission to export
a service.

Throws I l legalArgumentException– If the filter has an invalid syntax or the actions are not valid.

122.12.6.5 public EndpointPermission(EndpointDescription endpoint,String localFrameworkUUID,String actions)

endpoint The requested endpoint.

localFrameworkU-
UID

The UUID of the local framework. This is used to support matching the endpoint.framework.uuid
endpoint property to the <<LOCAL>> value in the filter expression.

actions The actions read , import , or export .

□ Creates a new requested EndpointPermission object to be used by code that must perform checkPer-
mission . EndpointPermission objects created with this constructor cannot be added to an Endpoint-
Permission permission collection.

Throws I l legalArgumentException– If the endpoint is nul l or the actions are not valid.

122.12.6.6 public boolean equals(Object obj)

obj The object to test for equality.

□ Determines the equality of two EndpointPermission objects. Checks that specified object has the
same name, actions and endpoint as this EndpointPermission .

Returns true If obj is a EndpointPermission , and has the same name, actions and endpoint as this Endpoint-
Permission object; fa lse otherwise.

122.12.6.7 public String getActions()

□ Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing canonical order: read , import , export .

Returns The canonical string representation of the actions.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 780 OSGi Compendium Release 6

122.12.6.8 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

122.12.6.9 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a EndpointPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

122.12.6.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing EndpointPermission objects.

Returns A new PermissionCol lect ion object suitable for storing EndpointPermission objects.

122.12.7 public interface ExportReference
An Export Reference associates a service with a local endpoint. The Export Reference can be used to
reference an exported service. When the service is no longer exported, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.7.1 public EndpointDescription getExportedEndpoint()

□ Return the Endpoint Description for the local endpoint.

Returns The Endpoint Description for the local endpoint. Must be nul l when the service is no longer export-
ed.

122.12.7.2 public ServiceReference<?> getExportedService()

□ Return the service being exported.

Returns The service being exported. Must be nul l when the service is no longer exported.

122.12.8 public interface ExportRegistration
An Export Registration associates a service to a local endpoint. The Export Registration can
be used to delete the endpoint associated with an this registration. It is created with the
RemoteServiceAdmin.exportService(ServiceReference,Map) method. When this Export Registration
has been closed, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.8.1 public void close()

□ Delete the local endpoint and disconnect any remote distribution providers. After this method re-
turns, all methods must return nul l . This method has no effect when this registration has already
been closed or is being closed.

122.12.8.2 public Throwable getException()

□ Return the exception for any error during the export process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Export
Registration is returned. Asynchronously occurring errors must be reported to the log.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 781

Returns The exception that occurred during the initialization of this registration or nul l if no exception oc-
curred.

122.12.8.3 public ExportReference getExportReference()

□ Return the Export Reference for the exported service.

Returns The Export Reference for this registration, or nul l if this Import Registration is closed.

Throws I l legalStateException– When this registration was not properly initialized. See getException().

122.12.8.4 public EndpointDescription update(Map<String,?> properties)

properties properties to be merged with the current service properties for the ServiceReference rep-
resented by this ExportRegistration. If null is passed then the original properties passed to
RemoteServiceAdmin.exportService(ServiceReference, Map) will be used.

□ Update the endpoint represented by this ExportRegistration and return an updated EndpointDe-
scription. If this method returns an updated EndpointDescription, then the object returned via get-
ExportReference() must also have been updated to return this new object. If this method does not re-
turn an updated EndpointDescription then the object returned via getExportReference() should re-
main unchanged. When creating the updated EndpointDescription the ServiceReference original-
ly passed to RemoteServiceAdmin.exportService(ServiceReference, Map) must be queried to pick
up any changes to its service properties. If this argument is null then the original properties passed
when creating this ExportRegistration should be used when constructing the updated EndpointDe-
scription. Otherwise the new properties should be used, and replace the original properties for sub-
sequent calls to the update method.

Returns The updated EndpointDescription for this registration or null if there was a failure updating the
endpoint. If a failure occurs then it can be accessed using getException().

Throws I l legalStateException– If this registration is closed, or when this registration was not properly ini-
tialized. See getException().

Since 1.1

122.12.9 public interface ImportReference
An Import Reference associates an active proxy service to a remote endpoint. The Import Reference
can be used to reference an imported service. When the service is no longer imported, all methods
must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.9.1 public EndpointDescription getImportedEndpoint()

□ Return the Endpoint Description for the remote endpoint.

Returns The Endpoint Description for the remote endpoint. Must be nul l when the service is no longer im-
ported.

122.12.9.2 public ServiceReference<?> getImportedService()

□ Return the Service Reference for the proxy for the endpoint.

Returns The Service Reference to the proxy for the endpoint. Must be nul l when the service is no longer im-
ported.

122.12.10 public interface ImportRegistration
An Import Registration associates an active proxy service to a remote endpoint. The Import
Registration can be used to delete the proxy associated with an endpoint. It is created with the

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 782 OSGi Compendium Release 6

RemoteServiceAdmin.importService(EndpointDescription) method. When this Import Registration
has been closed, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.10.1 public void close()

□ Close this Import Registration. This must close the connection to the endpoint and unregister the
proxy. After this method returns, all other methods must return nul l . This method has no effect
when this registration has already been closed or is being closed.

122.12.10.2 public Throwable getException()

□ Return the exception for any error during the import process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Import
Registration is returned. Asynchronously occurring errors must be reported to the log.

Returns The exception that occurred during the initialization of this registration or nul l if no exception oc-
curred.

122.12.10.3 public ImportReference getImportReference()

□ Return the Import Reference for the imported service.

Returns The Import Reference for this registration, or nul l if this Import Registration is closed.

Throws I l legalStateException– When this registration was not properly initialized. See getException().

122.12.10.4 public boolean update(EndpointDescription endpoint)

endpoint The updated endpoint

□ Update the local service represented by this ImportRegistration. After this method returns the End-
pointDescription returned via getImportReference() must have been updated.

Returns true if the endpoint was successfully updated, fa lse otherwise. If the update fails then the failure can
be retrieved from getException().

Throws I l legalStateException– When this registration is closed, or if it was not properly initialized. See ge-
tException().

I l legalArgumentException– When the supplied EndpointDescription does not represent the same
endpoint as this ImportRegistration.

Since 1.1

122.12.11 public class RemoteConstants
Provide the definition of the constants used in the Remote Service Admin specification.

Concurrency Immutable

122.12.11.1 public static final String ENDPOINT_FRAMEWORK_UUID = "endpoint.framework.uuid"

Endpoint property identifying the universally unique id of the exporting framework. Can be absent
if the corresponding endpoint is not for an OSGi service.

The value of this property must be of type Str ing .

122.12.11.2 public static final String ENDPOINT_ID = "endpoint.id"

Endpoint property identifying the id for this endpoint. This service property must always be set.

The value of this property must be of type Str ing .

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 783

122.12.11.3 public static final String ENDPOINT_PACKAGE_VERSION_ = "endpoint.package.version."

Prefix for an endpoint property identifying the interface Java package version for an interface. For
example, the property endpoint.package.version.com.acme=1.3 describes the version of the pack-
age for the com.acme.Foo interface. This endpoint property for an interface package does not have
to be set. If not set, the value must be assumed to be 0.

Since endpoint properties are stored in a case insensitive map, case variants of a package name are
folded together.

The value of properties having this prefix must be of type Str ing .

122.12.11.4 public static final String ENDPOINT_SERVICE_ID = "endpoint.service.id"

Endpoint property identifying the service id of the exported service. Can be absent or 0 if the corre-
sponding endpoint is not for an OSGi service.

The value of this property must be of type Long .

122.12.11.5 public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"

Service property identifying the configuration types supported by a distribution provider. Regis-
tered by the distribution provider on one of its services to indicate the supported configuration
types.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.6 public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"

Service property identifying the intents supported by a distribution provider. Registered by the dis-
tribution provider on one of its services to indicate the vocabulary of implemented intents.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.7 public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"

Service property identifying the configuration types that should be used to export the service. Each
configuration type represents the configuration parameters for an endpoint. A distribution provider
should create an endpoint for each configuration type that it supports.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.8 public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"

Service property identifying the intents that the distribution provider must implement to distrib-
ute the service. Intents listed in this property are reserved for intents that are critical for the code to
function correctly, for example, ordering of messages. These intents should not be configurable.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.9 public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"

Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service. This property is merged with the service.exported. intents property before the

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 784 OSGi Compendium Release 6

distribution provider interprets the listed intents; it has therefore the same semantics but the prop-
erty should be configurable so the administrator can choose the intents based on the topology. Bun-
dles should therefore make this property configurable, for example through the Configuration Ad-
min service.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.10 public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"

Service property marking the service for export. It defines the interfaces under which this service
can be exported. This list must be a subset of the types under which the service was registered. The
single value of an asterisk ('* ' \u002A) indicates all the interface types under which the service was
registered excluding the non-interface types. It is strongly recommended to only export interface
types and not concrete classes due to the complexity of creating proxies for some type of concrete
classes.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.11 public static final String SERVICE_IMPORTED = "service.imported"

Service property identifying the service as imported. This service property must be set by a distribu-
tion provider to any value when it registers the endpoint proxy as an imported service. A bundle can
use this property to filter out imported services.

The value of this property may be of any type.

See Also Remote Services Specif icat ion

122.12.11.12 public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"

Service property identifying the configuration types used to import the service. Any associated
properties for this configuration types must be properly mapped to the importing system. For ex-
ample, a URL in these properties must point to a valid resource when used in the importing frame-
work. If multiple configuration types are listed in this property, then they must be synonyms for ex-
actly the same remote endpoint that is used to export this service.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion , SERVICE_EXPORTED_CONFIGS

122.12.11.13 public static final String SERVICE_INTENTS = "service.intents"

Service property identifying the intents that this service implement. This property has a dual pur-
pose:

• A bundle can use this service property to notify the distribution provider that these intents are
already implemented by the exported service object.

• A distribution provider must use this property to convey the combined intents of: The exporting
service, and the intents that the exporting distribution provider adds, and the intents that the im-
porting distribution provider adds.

To export a service, a distribution provider must expand any qualified intents. Both the exporting
and importing distribution providers must recognize all intents before a service can be distributed.
The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 785

122.12.12 public interface RemoteServiceAdmin
A Remote Service Admin manages the import and export of services. A Distribution Provider can ex-
pose a control interface. This interface allows a Topology Manager to control the export and import
of services. The API allows a Topology Manager to export a service, to import a service, and find out
about the current imports and exports.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.12.1 public Collection<ExportRegistration> exportService(ServiceReference<?> reference,Map<String,?>
properties)

reference The Service Reference to export.

properties The properties to create a local Endpoint that can be implemented by this Remote Service Admin.
If this is nul l , the Endpoint will be determined by the properties on the service. The properties are
the same as given for an exported service. They override any properties in the specified Service Ref-
erence (case insensitive). The properties objectClass and service. id , in any case variant, are ignored.
Those properties in the Service Reference cannot be overridden. This parameter can be nul l , this
should be treated as an empty map.

□ Export a service to a given Endpoint. The Remote Service Admin must create an Endpoint from the
given description that can be used by other Distribution Providers to connect to this Remote Ser-
vice Admin and use the exported service. The property keys of a Service Reference are case insensi-
tive while the property keys of the specified propert ies map are case sensitive. A property key in the
specified propert ies map must therefore override any case variant property key in the properties of
the specified Service Reference.

If the caller does not have the appropriate EndpointPermission[endpoint,EXPORT] for an Endpoint,
and the Java Runtime Environment supports permissions, then the getException method on the cor-
responding returned ExportRegistration will return a SecurityException .

Returns A Collect ion of ExportRegistrations for the specified Service Reference and properties. Multiple Ex-
port Registrations may be returned because a single service can be exported to multiple Endpoints
depending on the available configuration type properties and the intents that they support. The re-
sult is never nul l but may be empty if this Remove Service Admin does not recognize any of the con-
figuration types, or if they Remote Service Admin cannot support the relevant intents.

Throws I l legalArgumentException– If any of the properties for this configuration type has a value that is
not syntactically correct, or if the service properties and the overlaid properties do not contain a
RemoteConstants.SERVICE_EXPORTED_INTERFACES entry. This means that implementations
must not ignore invalid values for property names that they recognize.

122.12.12.2 public Collection<ExportReference> getExportedServices()

□ Return the currently active Export References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint,
and the Java Runtime Environment supports permissions, then returned collection will not contain
a reference to the exported Endpoint.

Returns A Collect ion of ExportReferences that are currently active.

122.12.12.3 public Collection<ImportReference> getImportedEndpoints()

□ Return the currently active Import References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint,
and the Java Runtime Environment supports permissions, then returned collection will not contain
a reference to the imported Endpoint.

Returns A Collect ion of ImportReferences that are currently active.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 786 OSGi Compendium Release 6

122.12.12.4 public ImportRegistration importService(EndpointDescription endpoint)

endpoint The Endpoint Description to be used for import.

□ Import a service from an Endpoint. The Remote Service Admin must use the given Endpoint to cre-
ate a proxy. This method can return nul l if the service could not be imported.

Returns An Import Registration that combines the Endpoint Description and the Service Reference or nul l if
the Endpoint could not be imported.

Throws SecurityException– If the caller does not have the appropriate
EndpointPermission[endpoint, IMPORT] for the Endpoint, and the Java Runtime Environment sup-
ports permissions.

122.12.13 public class RemoteServiceAdminEvent
Provides the event information for a Remote Service Admin event.

Concurrency Immutable

122.12.13.1 public static final int EXPORT_ERROR = 6

A fatal exporting error occurred. The Export Registration has been closed.

122.12.13.2 public static final int EXPORT_REGISTRATION = 2

Add an export registration. The Remote Service Admin will send this event when it exports a ser-
vice. When the RemoteServiceAdminListener service is registered, the Remote Service Admin must
notify the listener of all existing Export Registrations.

122.12.13.3 public static final int EXPORT_UNREGISTRATION = 3

Remove an export registration. The Remote Service Admin will send this event when it removes the
export of a service.

122.12.13.4 public static final int EXPORT_UPDATE = 10

Update an export registration. The Remote Service Admin will send this event when it exports a ser-
vice.

Since 1.1

122.12.13.5 public static final int EXPORT_WARNING = 7

A problematic situation occurred, the export is still active.

122.12.13.6 public static final int IMPORT_ERROR = 5

A fatal importing error occurred. The Import Registration has been closed.

122.12.13.7 public static final int IMPORT_REGISTRATION = 1

Add an import registration. The Remote Service Admin will send this event when it imports a ser-
vice. When the RemoteServiceAdminListener service is registered, the Remote Service Admin must
notify the listener of all existing Import Registrations.

122.12.13.8 public static final int IMPORT_UNREGISTRATION = 4

Remove an import registration. The Remote Service Admin will send this event when it removes the
import of a service.

122.12.13.9 public static final int IMPORT_UPDATE = 9

Update an import registration. The Remote Service Admin will send this event when it updates a
service.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 6 Page 787

Since 1.1

122.12.13.10 public static final int IMPORT_WARNING = 8

A problematic situation occurred, the import is still active.

122.12.13.11 public RemoteServiceAdminEvent(int type,Bundle source,ExportReference exportReference,Throwable
exception)

type The event type.

source The source bundle, must not be nul l .

exportReference The exportReference, can not be nul l .

exception Any exceptions encountered, can be nul l .

□ Create a Remote Service Admin Event for an export notification.

122.12.13.12 public RemoteServiceAdminEvent(int type,Bundle source,ImportReference importReference,Throwable
exception)

type The event type.

source The source bundle, must not be nul l .

importReference The importReference, can not be nul l .

exception Any exceptions encountered, can be nul l .

□ Create a Remote Service Admin Event for an import notification.

122.12.13.13 public Throwable getException()

□ Return the exception for this event.

Returns The exception or nul l .

122.12.13.14 public ExportReference getExportReference()

□ Return the Export Reference for this event.

Returns The Export Reference or nul l .

122.12.13.15 public ImportReference getImportReference()

□ Return the Import Reference for this event.

Returns The Import Reference or nul l .

122.12.13.16 public Bundle getSource()

□ Return the bundle source of this event.

Returns The bundle source of this event.

122.12.13.17 public int getType()

□ Return the type of this event.

Returns The type of this event.

122.12.14 public interface RemoteServiceAdminListener
A RemoteServiceAdminEvent listener is notified synchronously of any export or import registra-
tions and unregistrations.

If the Java Runtime Environment supports permissions, then filtering is done. RemoteServiceAd-
minEvent objects are only delivered to the listener if the bundle which defines the listener object's

org.osgi.service.remoteserviceadmin.namespace Remote Service Admin Service Specification Version 1.1

Page 788 OSGi Compendium Release 6

class has the appropriate EndpointPermission[endpoint,READ] for the endpoint referenced by the
event.

See Also RemoteServiceAdminEvent

Concurrency Thread-safe

122.12.14.1 public void remoteAdminEvent(RemoteServiceAdminEvent event)

event The RemoteServiceAdminEvent object.

□ Receive notification of any export or import registrations and unregistrations as well as errors and
warnings.

122.13 org.osgi.service.remoteserviceadmin.namespace

Remote Service Admin Namespaces Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

122.13.1 Summary

• DiscoveryNamespace - Remote Services Discovery Provider Capability and Requirement Name-
space.

• Distr ibutionNamespace - Remote Services Distribution Provider Capability and Requirement
Namespace.

• TopologyNamespace - Remote Services Topology Manager Capability and Requirement Name-
space.

122.13.2 public final class DiscoveryNamespace
extends Namespace
Remote Services Discovery Provider Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.2.1 public static final String CAPABILITY_PROTOCOLS_ATTRIBUTE = "protocols"

The capability attribute used to specify the discovery protocols supported by this discovery
provider. The value of this attribute must be of type Str ing or List<Str ing> .

122.13.2.2 public static final String DISCOVERY_NAMESPACE = "osgi.remoteserviceadmin.discovery"

Namespace name for Remote Services discovery provider capabilities and requirements.

122.13.3 public final class DistributionNamespace
extends Namespace
Remote Services Distribution Provider Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.3.1 public static final String CAPABILITY_CONFIGS_ATTRIBUTE = "configs"

The capability attribute used to specify the config types supported by this distribution provider. The
value of this attribute must be of type Str ing or List<Str ing> .

Remote Service Admin Service Specification Version 1.1 References

OSGi Compendium Release 6 Page 789

122.13.3.2 public static final String DISTRIBUTION_NAMESPACE = "osgi.remoteserviceadmin.distribution"

Namespace name for Remote Services distribution provider capabilities and requirements.

122.13.4 public final class TopologyNamespace
extends Namespace
Remote Services Topology Manager Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.4.1 public static final String CAPABILITY_POLICY_ATTRIBUTE = "policy"

The capability attribute used to specify the policy or policies supported by this topology manager.
The value of this attribute must be of type Str ing or List<Str ing> . Policy names are typically imple-
mentation specific, however the Remote Services Specification defines the promiscuous and fail-over
policies for common use cases.

122.13.4.2 public static final String FAIL_OVER_POLICY = "fail-over"

The attribute value for Topology managers with a fail-over policy

See Also TopologyNamespace.CAPABILITY_POLICY_ATTRIBUTE

122.13.4.3 public static final String PROMISCUOUS_POLICY = "promiscuous"

The attribute value for Topology managers with a promiscuous policy

See Also TopologyNamespace.CAPABILITY_POLICY_ATTRIBUTE

122.13.4.4 public static final String TOPOLOGY_NAMESPACE = "osgi.remoteserviceadmin.topology"

Namespace name for Remote Services topology manager capabilities and requirements.

122.14 References

[1] OSGi Service Property Namespace
http://www.osgi.org/Specifications/ServicePropertyNamespace

[2] UUIDs
http://en.wikipedia.org/wiki/Universally_Unique_Identifier

[3] Service Location Protocol (SLP)
http://en.wikipedia.org/wiki/Service_Location_Protocol

[4] JGroups
http://www.jgroups.org/

[5] UDDI
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

[6] Service Component Architecture (SCA)
http://www.osoa.org/display/Main/Home

122.15 Changes
• Introduced Endpoint Event Listener.
• Deprecated Endpoint Listener.

Changes Remote Service Admin Service Specification Version 1.1

Page 790 OSGi Compendium Release 6

• Added update to Import Registration and Export Registration.
• Added capability namespace definitions.
• Removed endpoint sharing.
• Removed text around setting of Framework UUID property (not needed for Core Frameworks

version 4.3 or newer).
• Clarified the rules concerning Remote Service Endpoint identifier uniqueness.

JTA Transaction Services Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 791

123 JTA Transaction Services
Specification

Version 1.0

123.1 Introduction
Transactions are the key abstraction to provide reliability with large scale distributed systems and
are a primary component of enterprise systems. This specification provides an OSGi service based
design for the Java Transaction Architecture (JTA) Specification, which describes the standard trans-
action model for Java applications. Providing the JTA specification as a service based model enables
the use of independent implementations. This JTA Transaction Services Specification provides a
managed model, where an Application Container (such as the Java EE EJB container) manages the
transaction and the enlistment of resources, and an unmanaged model, where each application is re-
sponsible for these tasks itself.

This specification provides a brief overview of JTA and then the use of it through 3 transaction ser-
vices: User Transaction, Transaction Manager, and Transaction Synchronization.

This specification is based on [1] Java Transaction API Specification 1.1.

123.1.1 Essentials

• Portability - It is important that applications are easy to port from other environments that sup-
port JTA.

• Pluggability - Allow different vendors to provide implementations of this specification.
• JTA Compatible - Support full JTA 1.1 Specification

123.1.2 Entities

• JTA Provider - Implementation of this specification. It is responsible, on request from a Transac-
tion Originator, for starting and ending transactions and coordinating the work of Resource Man-
agers that become involved in each Transaction. This entity provides the User Transaction ser-
vice, Transaction Manager service, and the Transaction Synchronization Registry service.

• Transaction - An atomic unit of work that is associated with a thread of execution.
• Transaction Originator - An Application or its Container, that directs the JTA Provider to begin and

end Transactions.
• User Transaction - A service used by a Transaction Originator for beginning and ending transac-

tions.
• Transaction Manager - A service used by a Transaction Originator for managing both transaction

demarcation and enlistment of Durable Resources or Volatile Resources.
• Transaction Synchronization Registry - A service for enlistment of Volatile Resources for getting no-

tifications before and after ending Transactions.
• Application Bundle - An entity that initiates work that executes under a Transaction.
• Container - An entity that is distinct from the Application and which provides a managed envi-

ronment for Applications. Unmanaged environments do not distinguish between the Applica-
tion and Container entities.

Introduction JTA Transaction Services Specification Version 1.0

Page 792 OSGi Compendium Release 6

• Resource Manager - Provides the transactional resources whose work is externally coordinat-
ed by a JTA Provider. Examples of Resource Managers include databases, Java Message Service
providers and enterprise information systems.

• Durable Resource - A resource whose work is made durable when the Transaction is successful-
ly committed. Durable Resources can be enlisted with a Transaction to ensure that work is per-
formed within the scope of the Transaction and to participate in the outcome of a Transaction.
Durable Resource enlistment is the responsibility of the Application Bundle or its Container.
Durable Resources implement the javax.transact ion.xa.XAResource interface

• Volatile Resource - Resources that are associated with a Transaction but are no longer needed after
the Transaction, for example transaction-scoped caches. Volatile Resources are registered with
the JTA Provider to receive notifications before and after the outcome of the Transaction. Volatile
Resources implement the javax.transact ion.Synchronizat ion interface

• Transaction Services - The triplet of the User Transaction, Transaction Manager, and Transaction
Synchronization Registry services registered by the JTA Provider.

Figure 123.1 Transaction Service Specification Entities

JTA Provider

Managed
Application Impl

Application
Container Impl

Resource
Manager Impl

User
Transaction

Transaction
Manager

XA Protocol

Transaction
Synchronization
Registry

* a resource specific service

<<interface>>
XAResource

XA Resource Impl

123.1.3 Dependencies
This specification is based on the following packages:

javax.transaction
javax.transaction.xa

These packages must be exported as version 1.1.

123.1.4 Synopsis
The JTA Provider register the Transaction Services:

• User Transaction - Offers transaction demarcation capabilities to an Application bundle.
• Transaction Manager - Offers transaction demarcation and further transaction management capa-

bilities to an Application Bundle or an Application Container.
• Transaction Synchronization Registry - Offers a callback registration service for volatile transaction-

al participants wishing to be notified of the completion of the transaction.

A JTA Provider must register these services when it is started. A JTA Provider may put restrictions
on which bundles can use these services. For example, in a Java EE environment, the JTA Provider
does not expose the TransactionManager interface to applications. An OSGi environment which

JTA Transaction Services Specification Version 1.0 JTA Overview

OSGi Compendium Release 6 Page 793

supports the Java EE specifications will typically provide access to the Transaction Manager service
only to Java EE Containers.

A typical example of the use of a transaction is for transferring money from one bank account to
another. Two Durable Resources are involved, one provided by the database from which the mon-
ey is to be withdrawn and another provided by the database to which the money will be deposited.
An Application Bundle acting as the Transaction Originator gets the User Transaction service and
uses it to begin a transaction. This transaction is associated with the current thread (implicitly) by
the JTA Provider. On the same thread of execution, the Application Bundle connects to the database
from which the money is to be withdrawn and updates the balance in the source account by the
amount to be debited.

The database is a resource manager whose connections have associated XA Resources; the first time
a connection is used within the scope of a new transaction the Application Bundle, or a Container,
obtains the XA Resource associated with the connection and enlists it with the JTA Provider through
the Transaction Manager service. On the same thread of execution, the Application Bundle connects
to the second database and updates the balance in the target account by the amount to be credited.
An XA Resource for the second connection is enlisted with the Transaction Manager service as well
by the Application Bundle or a Container.

Now that the money has been transferred the Transaction Originator requests a commit of the
Transaction (on the same thread of execution) via the User Transaction Service, causing the JTA
Provider to initiate the two-phase commit process with the two Resource Managers through the en-
listed XA Resources. The transaction is then atomically committed or rolled back.

123.2 JTA Overview
A transaction is a unit of work in which interactions with multiple participants can be coordinat-
ed by a third party such that the final outcome of these interactions has well-defined transactional
semantics. A variety of well-known transaction models exist with specific characteristics; the trans-
actions described in this specification provide Atomic Consistent Isolated and Durable (ACID) seman-
tics as defined in [2] XA+ Specification whereby all the participants in a transaction are coordinated to
an atomic outcome in which the work of all the participants is either completely committed or com-
pletely rolled back.

The [2] XA+ Specification defines a Distributed Transaction Processing (DTP) software architecture for
transactional work that is distributed across multiple Resource Managers and coordinated exter-
nally by a Transaction Manager using the two-phase commit XA protocol. The DTP architecture de-
fines the roles of the Transaction Manager and Resource Manager; this specification uses the term JTA
Provider rather than Transaction Manager to distinguish it from the Transaction Manager service. Note
that Distributed Transaction Processing does not imply distribution of transactions across multiple
frameworks or JVMs.

The [1] Java Transaction API Specification 1.1 defines the Java interfaces required for the management
of transactions on the enterprise Java platform.

123.2.1 Global and Local Transactions
A transaction may be a local transaction or a global transaction. A local transaction is a unit of work
that is local to a single Resource Manager and may succeed or fail independently of the work of oth-
er Resource Managers. A global transaction, sometimes referred to as a distributed transaction, is a
unit of work that may encompass multiple Resource Managers and is coordinated by a JTA Provider
external to the Resource Manager(s) as described in the DTP architecture. The term transaction in
this specification always refers to a global transaction.

The JTA Provider is responsible for servicing requests from a Transaction Originator to create and
complete transactions, it manages the state of each transaction it creates, the association of each

JTA Overview JTA Transaction Services Specification Version 1.0

Page 794 OSGi Compendium Release 6

transaction with the thread of execution, and the coordination of any Resource Managers that be-
come involved in the global transaction. The JTA Provider ensures that each transaction is associat-
ed with, at most, one application thread at a time and provides the means to move that association
from one thread to another as needed.

The model for resource commit coordination is the two phase commit XA protocol, with Resource
Managers being directed by the JTA Provider. The first time an Application accesses a Resource Man-
ager within the scope of a new global transaction, the Application, or its Container, obtains an XA
Resource from the Resource Manager and enlists this XA Resource with the JTA Provider.

At the end of a transaction, the Transaction Originator must decide whether to initiate a commit or
rollback request for all the changes made within the scope of the Transaction. The Transaction Orig-
inator requests that the JTA Provider completes the transaction. The JTA Provider then negotiates
with each enlisted Resource Manager to reach a coordinated outcome. A failure in the transaction at
any point before the second phase of two-phase commit results in the transaction being rolled back.

XA is a presumed abort protocol and implementations of XA-compliant JTA Providers and Resource
Managers can be highly optimized to perform no logging of transactional state until a commit de-
cision is required. A Resource Manager durably records its prepare decision, and a JTA Provider
durably records any commit decision it makes. Failures between a decision on the outcome of a
transaction and the enactment of that outcome are handled during transaction recovery to ensure the
atomic outcome of the transaction.

123.2.2 Durable Resource
Durable Resources are provided by Resource Managers and must implement the XAResource inter-
face described in the [1] Java Transaction API Specification 1.1. An XAResource object is enlisted with
a transaction to ensure that the work of the Resource Manager is associated with the correct transac-
tion and to participate in the two-phase commit process. The XAResource interface is driven by the
JTA Provider during the completion of the transaction and is used to direct the Resource Manager to
commit or rollback any changes made under the corresponding transaction.

123.2.3 Volatile Resource
Volatile resources are components that do not participate in the two phase commit but are called
immediately prior to and after the two phase commit. They implement the [1] Java Transaction API
Specification 1.1 Synchronizat ion interface. If a request is made to commit a transaction then the
volatile participants have the opportunity to perform some before completion processing such as
flushing cached updates to persistent storage. Failures during the before completion processing must
cause the transaction to rollback. In both the commit and rollback cases the volatile resources are
called after two phase commit to perform after completion processing. After completion procession can-
not affect the outcome of the transaction.

123.2.4 Threading
As noted above in Global and Local Transactions on page 793, a global transaction must not be asso-
ciated with more than one application thread at a time but can be moved over time from one appli-
cation thread to another. In some environments Applications run in containers which restrict the
ability of the Application component to explicitly manage the transaction-thread association by re-
stricting access to the Transaction Manager. For example, Java EE application servers provide web
and EJB Containers for application components and, while the Containers themselves can explicitly
manage transaction-thread associations, these containers do not allow the Applications to do so. Ap-
plications running in these containers are required to complete any transactions they start on that
same application thread. In general, Applications that run inside a Container must follow the rules
defined by that Container. For further details of the considerations specific to Java EE containers, see
the section Transactions and Threads in [4] Java Platform, Enterprise Edition (Java EE) Specification, v5.

JTA Transaction Services Specification Version 1.0 Application

OSGi Compendium Release 6 Page 795

123.3 Application
An Application is a bundle that may use transactions, either as a Transaction Originator or as a bun-
dle that is called as part of an existing transaction. A Transaction Originator Application bundle
starts a transaction and end it with a commit or rollback using the User Transaction or Transaction
Manager service.

A Transaction Originator Application bundle may not make use of Resource Managers itself but
may simply provide transaction demarcation and then call other bundles which do use Resource
Managers. In such a case the Transaction Originator Application bundle requires only the use of the
User Transaction service for transaction demarcation. The called bundles may use the Transaction
Manager service if they use Resource Managers.

Application Bundles that use Resource Managers have to know the enlistment strategy for the Re-
source Managers they use. There are two possibilities:

• Application Bundle Enlistment - The Application Bundle must enlist the Resource Managers itself.
For each Resource Manager it uses it must enlist that Resource Manager with the Transaction
Manager.

• Container-Managed Enlistment - An Application runs in a container, such as a Java EE Container,
which manages the Resource Manager enlistment on behalf of the Application.

These scenarios are explained in the following sections.

123.3.1 No Enlistment
A Transaction Originator Application bundle that uses no Resource Managers itself but starts a
Transaction before calling another bundle may use the User Transaction service to control the Trans-
action demarcation.

For example, an Application can use the User Transaction service to begin a global transaction:

UserTransaction ut = getUserTransaction();
ut.begin();

The User Transaction service associates a transaction with the current thread until that transaction
is completed via:

UserTransaction ut = getUserTransaction();
ut.commit();

Or the equivalent rol lback method. The getUserTransaction method implementation (not shown)
can get the User Transaction service directly from the service registry or from an injected field.

123.3.2 Application Bundle Enlistment
An Application Bundle is responsible for enlisting Resource Managers itself. That is, it must enlist
Resource Manager it uses with the Transaction Manager service. The Transaction Manager service is
an implementation of the JTA TransactionManager interface, registered by the JTA Provider.

For example, an Application Bundle can get an XADataSource object from a Data Source Factory ser-
vice. Such a Data Source object can provide an XAConnection object that then can provide an XARe-
source object. XAResource objects can then be enlisted with the Transaction Manager service.

For example:

TransactionManager tm;
XADataSource left;

Application JTA Transaction Services Specification Version 1.0

Page 796 OSGi Compendium Release 6

XADataSource right;

void acid() throws Exception {
 tm.begin();
 Transaction transaction = tm.getTransaction() ;
 try {
 XAConnection left = this.left.getXAConnection();
 XAConnection right = this.right.getXAConnection();
 transaction.enlistResource(left.getXAResource());
 transaction.enlistResource(r ight.getXAResource());
 doWork(left.getConnection(), right.getConnection());
 tm.commit();
 } catch(Throwable t) {
 tm.rollback();
 throw t; } }
// ...
void setTransactionManager(TransactionManager tm) { this.tm= tm; }
void setDataSourceFactory(DataSourceFactory dsf) {
 left = dsf.createXADataSource(getLeftProperties());
 right = dsf.createXADataSource(getRightProperties());
}

In the previous example, the Transaction Manager service could have been injected with a compo-
nent model like Declarative Services:

<reference interface="javax.transaction.TransactionManager"
 bind="setTransactionManager"/>
<reference name="dsf" interface="org.osgi.service.jdbc.DataSourceFactory"
 bind="setDataSourceFactory"/>

For example, it is possible to provide a Data Source service that provides automatic enlistment of
the Connection as an XA Resource when one of its getConnection methods is called inside a transac-
tion. The following code contains a Declarative Service component that implement this design. The
component references a Transaction Manager service and a Data Source Factory service and pro-
vides a Data Source service that proxies an XA Data Source. Applications depend on the Data Source
service, assuming that the Data Source service automatically enlists the connections it uses inside a
transaction. See for an overview Figure 123.2 on page 796.

Figure 123.2 Data Source Proxy

Data Source Proxy
Component

Data Source

Transaction
Manager

Data Source
Factory

Application Code

User Transaction

This general purpose Data Source Proxy component can be fully configured by the Configuration
Admin service to instantiate this component for each needed database connection. The Declarative
Services service properties can be used to select a Data Source Factory for the required database dri-
ver (using the target), as well as provide the configuration properties for the creation of an XA Data
Source. That is, such a component could be part of a support library.

The code for such an Application component could start like:

JTA Transaction Services Specification Version 1.0 Application

OSGi Compendium Release 6 Page 797

public class DataSourceProxy implements DataSource{
 Properties properties = new Properties();
 TransactionManager tm;
 XADataSource xads;

The activate method is called when the component's dependencies are met, that is, there is a Trans-
action Manager service as well as a matching Data Source Factory service. In this method, the prop-
erties of the component are copied to a Propert ies object to be compatible with the Data Source Fac-
tory factory methods.

void activate(ComponentContext c) {
 // copy the properties set by the Config Admin into properties
 ...
}

The relevant methods in the Data Source Proxy component are the getConnection methods. The
contract for this proxy component is that it enlists the XA Data Connection's XA Resource when it is
called inside a transaction. This enlistment is done in the private enl ist method.

public Connection getConnection() throws SQLException{
 XAConnection connection = xads.getXAConnection();
 return enlist(connection); }

public Connection getConnection(String username, String password)
 throws SQLException {
 XAConnection connection = xads.getXAConnection(username,password);
 return enlist(connection); }

The enl ist method checks if there currently is a transaction active. If not, it ignores the enlistment,
the connection will then not be connection to the transaction. If there is a current transaction, it en-
lists the corresponding XA Resource.

private Connection enlist(XAConnection connection)throws SQLException {
 try {
 Transaction transaction = tm.getTransaction();
 if (transaction != null)
 transaction.enlistResource(connection.getXAResource());
 } catch (Exception e) {
 SQLException sqle=
 new SQLException("Failed to enlist");
 sqle.initCause(e);
 throw sqle;
 }
 return connection.getConnection();
}

What remains are a number of boilerplate methods that forward to the XA Data Source or set the de-
pendencies.

void setTransactionManager(TransactionManagertm) { this.tm = tm;}
void setDataSourceFactory(DataSourceFactory dsf) throws Exception{
 xads = dsf.createXADataSource(properties);}
public PrintWriter getLogWriter()
 throws SQLException { return xads.getLogWriter(); }

public int getLoginTimeout()

Resource Managers JTA Transaction Services Specification Version 1.0

Page 798 OSGi Compendium Release 6

 throws SQLException { return xads.getLoginTimeout();}

public void setLogWriter(PrintWriter out)
 throws SQLException { xads.setLogWriter(out); }

public void setLoginTimeout(int seconds)
 throws SQLException { xads.setLoginTimeout(seconds);}

This is a fully coded example, it only lacks the configuration definitions for the Configuration Ad-
min service.

This example Data Source proxy component makes it possible for an Application to depend on a
Data Source service. The connections the Application uses from this Data Source are automatical-
ly transactional as long as there is a current transaction when the service is called. However, this ap-
proach only works when all bundles in the OSGi framework follow the same enlistment strategy be-
cause this specification does not provide a common enlistment strategy.

123.3.3 Container Managed Enlistment
The Application Container is responsible for enlisting Resource Managers used by the Application.
For example, the Java EE Web and EJB Containers have a well defined model for managing resources
within a transaction. If an Application runs inside a Java EE Container then it is the responsibility of
the Java EE Container to handle the resource enlistment, the actual rules are beyond this specifica-
tion.

A Transaction Originator Application bundle running inside a Container which manages any Re-
source Managers enlistment may use the User Transaction service for transaction demarcation, as-
suming this service is made available by the Container.

When a Java EE Container runs inside an OSGi framework then it must ensure that any services
seen by its contained Applications are the same Transaction services as other bundles on that OSGi
framework.

123.4 Resource Managers
Resource Managers perform work that needs to be committed or rolled back in a transaction. To par-
ticipate in a transaction, a Resource Manager must have an XA Resource enlisted with the current
transaction. This specification does not define how OSGi service implementations should be enlist-
ed. This can be done by a Java EE Container, the Applications themselves, or through some other un-
specified means.

123.5 The JTA Provider
The JTA Provider is the entity that provides the transaction services:

• User Transaction - A service that implements the JTA UserTransaction interface.
• Transaction Manager - A service that implements the JTA TransactionManager interface.
• Transaction Synchronization Registry - A service that implements the JTA TransactionSynchroniza-

t ionRegistry interface.

There can be at most one JTA Provider in an OSGi framework and this JTA Provider must ensure
that at most one transaction is associated with an application thread at any moment in time. All JTA
Provider's transaction services must map to the same underlying JTA implementation. All JTA ser-
vices should only be registered once.

JTA Transaction Services Specification Version 1.0 Life Cycle

OSGi Compendium Release 6 Page 799

123.5.1 User Transaction
The User Transaction service may be used by an Application bundle, acting as the Transaction Orig-
inator, to demarcate transaction boundaries when the bundle has no need to perform resource enlis-
tement.

123.5.2 Transaction Manager
The Transaction Manager service offers transaction demarcation and further transaction manage-
ment capabilities, such as Durable and Volatile resource enlistment, to an Application bundle or Ap-
plication Container.

123.5.3 Transaction Synchronization Service
The Transaction Synchronization Registry service may be used by an Application bundle or a Con-
tainer. The service provides for the registration of Volatile Resources that implement the JTA Syn-
chronizat ion interface.

For example:

private class MyVolatile implements Synchronization{...}
TransactionSynchronizationRegistry tsr = ...; // may be injected
tsr.registerInterposedSynchronization(new MyVolatile());

123.6 Life Cycle

123.6.1 JTA Provider
The life cycle of the transaction services and bundles that make up the JTA Provider must be dealt
with appropriately such that implementations always ensure the atomic nature of transactions.
When the JTA Provider is stopped and its services are unregistered, the JTA Provider must make
sure that all active transactions are dealt with appropriately. A JTA Provider can decide to rollback
all active transactions or it can decide to keep track of existing active transactions and allow them
to continue to their normal conclusion but not allow any new transactions to be created. Any fail-
ures caused by executing code outside their life cycle can be dealt with as general failures. From a
transactional consistency point of view, stopping the bundle(s) that implement the JTA Provider
while transactional work is in-flight, is no different from a failure of the framework hosting the JTA
Provider. In either case transaction recovery is initiated by the JTA Provider after it has re-started.

There are well-defined XA semantics between a JTA Provider and Resource Managers in the event
of a failure of either at any point in a transaction. If a Resource Manager bundle is stopped while
it is involved in-flight transactions then the JTA Provider should exhibit the same external behav-
ior it does in the event of a communication failure with the Resource Manager. For example a JTA
Provider will respond to an XAER_RMFAIL response resulting from calling the XAResource commit
method by retrying the commit . The mechanism used by the JTA Provider to determine when to
retry the commit is a detail of the implementation.

123.6.2 Application Bundles
Applications can act in the role of the Transaction Originator. There is no guarantee that an Appli-
cation that starts a transaction will always be available to complete the transaction since the client
can fail independently of the JTA Provider. A failure of the Application Bundle to complete, in a
timely fashion, a transaction it originated must finally result in the JTA Provider rolling back the
transaction.

Security JTA Transaction Services Specification Version 1.0

Page 800 OSGi Compendium Release 6

123.6.3 Error Handling
This specification does not define a specific error handling strategy. Exceptions and errors that occur
during transaction processing can result in the transaction being marked rollback-only by the con-
tainer or framework in which an Application runs or may be left for the Application to handle. An
Application which receives an error or an exception while running under a transaction can choose
to mark the transaction rollback-only.

123.7 Security
This specification relies on the security model of JTA.

123.8 References

[1] Java Transaction API Specification 1.1
http://www.oracle.com/technetwork/java/javaee/jta/index.html

[2] XA+ Specification
Version 2, The Open Group, ISBN: 1-85912-046-6

[3] Transaction Processing
J. Gray and A. Reuter. Morgan Kaufmann Publishers, ISBN 1.55860-190-2

[4] Java Platform, Enterprise Edition (Java EE) Specification, v5
http://jcp.org/en/jsr/detail?id=244

JDBC™ Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 801

125 JDBC™ Service Specification

Version 1.0

125.1 Introduction
The Java Database Connectivity (JDBC) standard provides an API for applications to interact with
relational database systems from different vendors. To abstract over concrete database systems and
vendor specific characteristics, the JDBC specification provides various classes and Service Provider
Interfaces (SPI) that can be used for database interaction. Implementations are database specific and
provided by the corresponding driver. This specification defines how OSGi-aware JDBC drivers can
provide access to their implementations. Applications can rely on this mechanism to transparent-
ly access drivers and to stay independent from driver specific classes. Additionally, this mechanism
helps to use common OSGi practices and to avoid class loading problems.

This specification uses a number of packages that are defined in Java SE 1.4 or later.

125.1.1 Essentials

• Registration - Provide a mechanism for JDBC driver announcements.
• Lookup - Inspect available database drivers and provide means for driver access.
• Services - Uses a service model for getting the driver objects.
• Compatible - Minimize the amount of work needed to support this specification for existing dri-

vers.

125.1.2 Entities

• Relational Database Management Systems - (RDBMS) An external database system.
• Database Driver - JDBC-compliant database driver that is delivered in a bundle.
• Data Source Factory - Provides one of the different Data Sources that gives access to a database dri-

ver.
• Application - The application that wants to access a relational database system.

Figure 125.1 JDBC Class/Service Overview

Driver Impl

Application Impl

Data Source
Factory

database

Database Driver JDBC™ Service Specification Version 1.0

Page 802 OSGi Compendium Release 6

125.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.sql
java.sql

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

125.1.4 Synopsis
A JDBC Database Driver is the software that maps the JDBC specification to a specific implementa-
tion of a relational database. For OSGi, JDBC drivers are delivered as driver bundles. A driver bun-
dle registers a Data Source Factory service when it is ACTIVE . Service properties are used to specify
the database driver name, version, etc. The Data Source Factory service provides methods to create
DataSource , ConnectionPoolDataSource , XADataSource , or Driver objects. These objects are then
used by an application to interact with the relational database system in the standard way.

The application can query the service registry for available Data Source Factory services. It can se-
lect particular drivers by filtering on the service properties. This service based model is easy to use
with dependency injection frameworks like Blueprint or Declarative Services.

125.2 Database Driver
A Database Driver provides the connection between an Application and a particular database. A sin-
gle OSGi Framework can contain several Database Drivers simultaneously. To make itself available
to Applications, a Database Driver must register a Data Source Factory service. Applications must be
able to find the appropriate Database Driver. The Database Driver must therefore register the Data
Source Factory service with the following service properties:

• OSGI_JDBC_DRIVER_CLASS - (Str ing) The required name of the driver implementation class.
This property is the primary key to find a driver's Data Source Factory. It is not required that
there is an actual class with this name.

• OSGI_JDBC_DRIVER_NAME - (Str ing) The optional driver name. This property is informational.
• OSGI_JDBC_DRIVER_VERSION - (Str ing) The driver version. The version is not required to be an

OSGi version, it should be treated as an opaque string. This version is likely not related to the
package of the implementation class or its bundle.

The previous properties are vendor-specific and are meant to further describe the Database Driver to
the Application.

Each Data Source Factory service must relate to a single Database Driver. The Database Driver im-
plementation bundle does not necessarily need to be the registrar of the Data Source Factory service.
Any bundle can provide the Data Source Factory service and delegate to the appropriate driver spe-
cific implementation classes. However, as JDBC driver implementations evolve to include built-in
support for OSGi they can provide the Data Source Factory service themselves. This implies that the
same driver can be registered multiple times.

125.2.1 Life Cycle
A Data Source Factory service should be registered while its Driver Bundle is in the ACTIVE state or
when it has a lazy activation policy and is in the STARTING state.

What happens to the objects created by the Data Source Factory service, and the objects they creat-
ed, is undefined in this specification. Database Drivers are not mandated to track the proper life cy-
cle of these objects.

JDBC™ Service Specification Version 1.0 Applications

OSGi Compendium Release 6 Page 803

125.2.2 Package Dependencies
A Database Driver must import the javax.sql package. The java.sql package that contains the Driver
and SQLException interface is automatically imported because it starts with java. . Both packages are
contained in the JRE since Java SE 1.4. These packages are not normally versioned with OSGi version
numbers. Bundles using the Data Source Factory must therefore ensure they get the proper imports,
which is usually from the JRE. Due to the lack of specified metadata, the deployer is responsible for
ensuring this.

125.3 Applications

125.3.1 Selecting the Data Source Factory Service
Applications can query the OSGi service registry for available Database Drivers by getting a list of
Data Source Factory services. Normally, the application needs access to specific drivers that match
their needed relational database type. The service properties can be used to find the desired Data-
base Driver. This model is well supported by dependency injection frameworks like Blueprint or De-
clarative Services. However, it can of course also be used with the basic service methods. The follow-
ing code shows how a Service Tracker can be used to get a Database Driver called ACME DB.

Filter filter = context.createFilter(
 "(&(objectClass=" +
 DataSourceFactory.class.getName() +
 ")(" +
 DataSourceFactory.OSGI_JDBC_DRIVER_CLASS + "=com.acme.db.Driver))");

ServiceTracker tracker = new ServiceTracker(context, filter, null);
tracker.open();

DataSourceFactory dsf = (DataSourceFactory) tracker.getService();

125.3.2 Using Database Drivers
The Data Source Factory service can be used to obtain instances for the following JDBC related
types:

• javax.sql .DataSource
• javax.sql .ConnectionPoolDataSource
• javax.sql .XADataSource
• java.sql .Driver

Which type of Connection provider that is actually required depends on the Application and the
use case. For each type, the Data Source Factory service provides a method that returns the corre-
sponding instance. Each method takes a Propert ies object as a parameter to pass a configuration to
the Database Driver implementation. The configuration is driver-specific and can be used to speci-
fy the URL for the database and user credentials. Common property names for these configuration
properties are also defined in the DataSourceFactory interface.

A Data Source Factory is not required to implement all of the factory methods. If an implementation
does not support a particular type then it must throw a SQL Exception. This specification does not
provide a mechanism to depend on a Data Source Factory service that implements a particular facto-
ry method.

The following code shows how a DataSource object could be created.

Properties props = new Properties();

Security JDBC™ Service Specification Version 1.0

Page 804 OSGi Compendium Release 6

props.put(DataSourceFactory.JDBC_URL, "jdbc:acme:ACMEDB");
props.put(DataSourceFactory.JDBC_USER, "foo");
props.put(DataSourceFactory.JDBC_PASSWORD, "secret");
DataSource dataSource = dsf.createDataSource(props);

The DataSourceFactory interface has several static fields that represent common property keys for
the Propert ies instance. General properties are:

• JDBC_DATABASE_NAME
• JDBC_DATASOURCE_NAME
• JDBC_DESCRIPTION
• JDBC_NETWORK_PROTOCOL
• JDBC_PASSWORD
• JDBC_PORT_NUMBER
• JDBC_ROLE_NAME
• JDBC_SERVER_NAME
• JDBC_USER
• JDBC_URL

The following additional property keys are provided for applications that want to create a Connec-
t ionPoolDataSource object or a XAPoolDataSource object:

• JDBC_INITIAL_POOL_SIZE
• JDBC_MAX_IDLE_TIME
• JDBC_MAX_POOL_SIZE
• JDBC_MAX_STATEMENTS
• JDBC_MIN_POOL_SIZE
• JDBC_PROPERTY_CYCLE

Which property keys and values are supported depends on the driver implementation. Drivers can
support additional custom configuration properties.

125.3.3 Using JDBC in OSGi and Containers
The JDBC service provides JDBC driver services, not container services. A typical client would on-
ly use the DataSourceFactory.createDataSource() method to procure a regular Data Source from
which they can obtain (usually non-pooled) connections.

Containers generally offer connection pools and support XA transactions. The container manages
the pools and does this by using Pooled Connection or XA Connection objects from a driver-imple-
mented respective Connection Pool Data Source or XA Data Source. To support containers, frame-
works, or any client that wants to manage a pool, these Data Source types are included in the Data
Source Factory service. Drivers are permitted to implement their own Data Source using an underly-
ing connection pooling scheme. This is driver-dependent and not related to the OSGi specifications.

The usual set of JDBC properties are defined in the services for use with the Data Source types. They
are the same as what is defined for JDBC and the caller should know which properties make sense
when passed to a given Data Source type. The same result should occur in OSGi as occurs outside
of OSGi. If the driver does not support a given property with a given Data Source type then it can ig-
nore it or it can throw an Exception.

125.4 Security
This specification depends on the JDBC specification for security.

JDBC™ Service Specification Version 1.0 org.osgi.service.jdbc

OSGi Compendium Release 6 Page 805

125.5 org.osgi.service.jdbc

JDBC Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jdbc; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jdbc; vers ion="[1.0,1.1)"

125.5.1 Summary

• DataSourceFactory - A factory for JDBC connection factories.

125.5.2 public interface DataSourceFactory
A factory for JDBC connection factories. There are 3 preferred connection factories for get-
ting JDBC connections: javax.sql .DataSource , javax.sql .ConnectionPoolDataSource , and
javax.sql .XADataSource . DataSource providers should implement this interface and register it as an
OSGi service with the JDBC driver class name in the OSGI_JDBC_DRIVER_CLASS property.

Concurrency Thread-safe

125.5.2.1 public static final String JDBC_DATABASE_NAME = "databaseName"

The "databaseName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.2 public static final String JDBC_DATASOURCE_NAME = "dataSourceName"

The "dataSourceName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.3 public static final String JDBC_DESCRIPTION = "description"

The "description" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.4 public static final String JDBC_INITIAL_POOL_SIZE = "initialPoolSize"

The "initialPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.5 public static final String JDBC_MAX_IDLE_TIME = "maxIdleTime"

The "maxIdleTime" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.6 public static final String JDBC_MAX_POOL_SIZE = "maxPoolSize"

The "maxPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

org.osgi.service.jdbc JDBC™ Service Specification Version 1.0

Page 806 OSGi Compendium Release 6

125.5.2.7 public static final String JDBC_MAX_STATEMENTS = "maxStatements"

The "maxStatements" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.8 public static final String JDBC_MIN_POOL_SIZE = "minPoolSize"

The "minPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.9 public static final String JDBC_NETWORK_PROTOCOL = "networkProtocol"

The "networkProtocol" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.10 public static final String JDBC_PASSWORD = "password"

The "password" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.11 public static final String JDBC_PORT_NUMBER = "portNumber"

The "portNumber" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.12 public static final String JDBC_PROPERTY_CYCLE = "propertyCycle"

The "propertyCycle" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.13 public static final String JDBC_ROLE_NAME = "roleName"

The "roleName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.14 public static final String JDBC_SERVER_NAME = "serverName"

The "serverName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.15 public static final String JDBC_URL = "url"

The "url" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.16 public static final String JDBC_USER = "user"

The "user" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.17 public static final String OSGI_JDBC_DRIVER_CLASS = "osgi.jdbc.driver.class"

Service property used by a JDBC driver to declare the driver class when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.18 public static final String OSGI_JDBC_DRIVER_NAME = "osgi.jdbc.driver.name"

Service property used by a JDBC driver to declare the driver name when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

JDBC™ Service Specification Version 1.0 References

OSGi Compendium Release 6 Page 807

125.5.2.19 public static final String OSGI_JDBC_DRIVER_VERSION = "osgi.jdbc.driver.version"

Service property used by a JDBC driver to declare the driver version when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.20 public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props) throws
SQLException

props The properties used to configure the ConnectionPoolDataSource . nul l indicates no properties. If the
property cannot be set on the ConnectionPoolDataSource being created then a SQLException must
be thrown.

□ Create a new ConnectionPoolDataSource using the given properties.

Returns A configured ConnectionPoolDataSource .

Throws SQLException– If the ConnectionPoolDataSource cannot be created.

125.5.2.21 public DataSource createDataSource(Properties props) throws SQLException

props The properties used to configure the DataSource . nul l indicates no properties. If the property can-
not be set on the DataSource being created then a SQLException must be thrown.

□ Create a new DataSource using the given properties.

Returns A configured DataSource .

Throws SQLException– If the DataSource cannot be created.

125.5.2.22 public Driver createDriver(Properties props) throws SQLException

props The properties used to configure the Driver . nul l indicates no properties. If the property cannot be
set on the Driver being created then a SQLException must be thrown.

□ Create a new Driver using the given properties.

Returns A configured Driver .

Throws SQLException– If the Driver cannot be created.

125.5.2.23 public XADataSource createXADataSource(Properties props) throws SQLException

props The properties used to configure the XADataSource . nul l indicates no properties. If the property can-
not be set on the XADataSource being created then a SQLException must be thrown.

□ Create a new XADataSource using the given properties.

Returns A configured XADataSource .

Throws SQLException– If the XADataSource cannot be created.

125.6 References

[1] Java SE 1.4
http://www.oracle.com/technetwork/java/archive-139210.html

References JDBC™ Service Specification Version 1.0

Page 808 OSGi Compendium Release 6

JNDI Services Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 809

126 JNDI Services Specification

Version 1.0

126.1 Introduction
Naming and directory services have long been useful tools in the building of software systems. The
ability to use a programming interface to publish and consume objects can provide many benefits
to any system. The Java Naming and Directory Interface (JNDI) is a registry technology in Java appli-
cations, both in the Java SE and Java EE space. JNDI provides a vendor-neutral set of APIs that allow
clients to interact with a naming service from different vendors.

The JNDI as used in the Java SE environment relies on the class loading model provided by the JDK
to find providers. By default, it attempts to load the JNDI provider class using the Thread Context
Class Loader. In an OSGi environment, this type of Context creation is not desirable since it relies
on the JNDI provider classes being visible to the JNDI client, or require it to set the Context Class
Loader; in both cases breaking modularity. For modularity reasons, it is important that clients are
not required to express a dependency on the implementation of services they use.

This specification will define how JNDI can be utilized from within an OSGi framework. The speci-
fication consists of three key parts:

• OSGi Service Model - How clients interact with JNDI when running inside an OSGi Framework.
• JNDI Provider Model - How JNDI providers can advertise their existence so they are available to

OSGi and traditional clients.
• Traditional Model - How traditional JNDI applications and providers can continue to work in an

OSGi Framework without needing to be rewritten when certain precautions are taken.

126.1.1 Essentials

• Naming Service - Provide an integration model for JNDI API clients and providers.
• Flexible - Provide a standard mechanism for publishing and locating JNDI providers.
• Compatibility - Support the traditional JNDI programming model used by Java SE and Java EE

clients.
• Service Based - Provide a service model that clients and providers can use to leverage JNDI facili-

ties.
• Migration - Provide a mechanism to access OSGi services from a JNDI context.

126.1.2 Entities

• JNDI Implementation - The Implementer of the JNDI Context Manager, JNDI Provider Admin, and
setter of the JNDI static singletons.

• JNDI Client - Any code running within an OSGi bundle that needs to use JNDI.
• JNDI Context Manager - A service that allows clients to obtain Contexts via a service.
• JNDI Provider Admin - A service that allows the conversion of objects for providers.
• JNDI Provider - Provides a Context implementation.
• Context - A Context abstracts a namespace. Implementations are provided by JNDI providers and

the Contexts are used by JNDI clients. The corresponding interface is javax.naming.Context .

Introduction JNDI Services Specification Version 1.0

Page 810 OSGi Compendium Release 6

• Dir Context - A sub-type of Context that provides mechanisms for examining and updating the at-
tributes of an object in a directory structure, and for performing searches in an hierarchical nam-
ing systems like LDAP. The corresponding interface is javax.naming.directory.DirContext .

• Initial Context Factory - A factory for creating instances of Context objects. This factory
is used to integrate new JNDI Providers. In general, a single Initial Context Factory con-
structs Context objects for a single provider implementation. The corresponding interface is
javax.naming.spi . In it ia lContextFactory .

• Initial Context Factory Builder - A factory for In it ia lContextFactory objects. A single Initial Context
Factory Builder can construct In it ia lContextFactory objects for different types of Contexts. The
interface is javax.naming.spi . In it ia lContextFactoryBui lder .

• Object Factory - Used in conversion of objects. The corresponding interface is
javax.naming.spi .ObjectFactory .

• Dir Object Factory - An Object Factory that takes attribute information for object conversion. The
corresponding interface is javax.naming.spi .DirObjectFactory .

• Object Factory Builder - A factory for ObjectFactory objects. A single Object Factory Builder can
construct ObjectFactory instances for different types of conversions. The corresponding inter-
face is javax.naming.spi .ObjectFactoryBui lder .

• Reference - A description of an object that can be turned into an object through an Object Factory.
The associated Referenceable interface implemented on an object indicates that it can provide a
Reference object.

Figure 126.1 JNDI Service Specification Service Entities

JNDI
Implementation

JNDI Context
Manager

JNDI ClientJNDI Client not
OSGi aware

Initial
Context

Static connection

Initial Context
Factory Provider
Impl

Object Factory
Provider Impl

Object
Factory

Object Factory
Builder Provider
Impl

Object
Factory
Builder

Initial Context
Builder Provider
Impl

Initial
Context
Factory

Initial
Context
Factory
Builder

JNDI
Provider
Admin

JNDI Provider not
OSGi aware

Naming
Manager

126.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.naming
javax.naming.spi
javax.naming.directory

JNDI Services Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 811

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

126.1.4 Synopsis
A client bundle wishing to make use of JNDI in order to access JNDI Providers such as LDAP or DNS
in OSGi should not use the Naming Manager but instead use the JNDI Context Manager service.
This service can be asked for a Context based on environment properties. The environment proper-
ties are based on an optional argument in the newInit ia lContext method, the Java System properties,
and an optional resource in the caller's bundle.

These environment properties can specify an implementation class name for a factory that can cre-
ate a Context object. If such a class name is specified, then it is searched for in the service registry. If
such a service is found, then that service is used to create a new Context, which is subsequently re-
turned. If no class name is specified, the service registry is searched for Initial Context Factory ser-
vices. These services are tried in ranking order to see if they can create an appropriate Context, the
first one that can create a Context is then used.

If no class name is specified, all Initial Context Factory Builder services are tried to see if they can
create a Context, the first non-nul l result is used. If no Context can be found, a No Initial Context Ex-
ception is thrown. Otherwise, the JNDI Context Manager service returns an initial Context that us-
es the just created Context from a provider as the backing service. This initial Context delegates all
operations to this backing Context, except operations that use a name that can be interpreted as a
URL, that is, the name contains a colon. URL operations are delegated a URL Context that is associ-
ated with the used scheme. URL Contexts are found through the general object conversion facility
provided by the JNDI Provider Admin service.

The JNDI Provider Admin service provides a general object conversion facility that can be extended
with Object Factory and Object Factory Builder services that are traditionally provided through the
Naming Manager getObject Instance method. A specific case for this conversion is the use of Ref-
erence objects. Reference objects can be used to store objects persistently in a Context implementa-
tion. Reference objects must be converted to their corresponding object when retrieved from a Con-
text.

During the client's use of a Context it is possible that its provider's service is unregistered. In this
case the JNDI Context Manager must release the backing Context. If the initial Context is used and
no backing Context is available, the JNDI Context Manager must re-create a new Context, if possi-
ble. Otherwise a Naming Exception is thrown. If subsequently a proper new backing Context can be
created, the initial Context must start operating again.

The JNDI Context Manager service must track the life cycle of a calling bundle and ensure that any
returned Context objects are closed and returned objects are properly cleaned up when the bundle is
closed or the JNDI Context Manager service is unget.

When the client bundle is stopped, any returned initial Context objects are closed and discarded. If
the Initial Context Factory, or Initial Context Factory Builder, service that created the initial Context
goes away then the JNDI Context Manager service releases the Context backing the initial Context
and attempts to create a replacement Context.

Clients and JNDI Context providers that are unaware of OSGi use static methods to connect to the
JRE JNDI implementation. The In it ia lContext class provides access to a Context from a provider
and providers use the static NamingManager methods to do object conversion and find URL Con-
texts. This traditional model is not aware of OSGi and can therefore only be used reliably if the con-
sequences of this lack of OSGi awareness are managed.

JNDI Overview JNDI Services Specification Version 1.0

Page 812 OSGi Compendium Release 6

126.2 JNDI Overview
The Java Naming and Directory Interface (JNDI) provides an abstraction for namespaces that is in-
cluded in Java SE. This section describes the basic concepts of JNDI as provided in Java SE. These
concepts are later used in the service model provided by this specification.

126.2.1 Context and Dir Context
The [1] Java Naming and Directory Interface (JNDI) defines an API for namespaces. These namespaces
are abstracted with the Context interface. Namespaces that support attributes, such as a namespace
as the Lightweight Directory Access Protocol (LDAP), are represented by the DirContext class, which
extends the Context class. If applicable, a Context object can be cast to a DirContext object. The dis-
tinction is not relevant for this specification, except in places where it is especially mentioned.

The Context interface models a set of name-to-object bindings within a namespace. These bindings
can be looked-up, created, and updated through the Context interface. The Context interface can be
used for federated, flat, or hierarchical namespaces.

126.2.2 Initial Context
Obtaining a Context for a specific namespace, for example DNS, is handled through the In it ia lCon-
text class. Creating an instance of this class will cause the JRE to find a backing Context. The Initial
Context is only a facade for the backing Context. The facade context provides URL based lookups.

The backing Context is created by a JNDI Provider. How this backing Context is created is an elab-
orate process using class loading techniques or a provisioning mechanism involving builders, see
Naming Manager Singletons on page 813 for more information about the builder provisioning
mechanism.

If there is no Initial Context Factory Builder set, the class name of a class implementing the In i-
t ia lContextFactory interface is specified as a property in the environment. The environment is a
Hashtable object that is constructed from different sources and then merged with System proper-
ties and a resource in the calling bundle, see Environment on page 813. In a standard Java SE JNDI,
the given class name is then used to construct an In it ia lContextFactory object and this object is then
used to create the backing Context. This process is depicted in Figure 126.2 on page 812.

Figure 126.2 Backing Context

Client Initial Context Context

Some Context
Impl

optionally specifies name of implementation in environment

new backing

126.2.3 URL Context Factory
The In it ia lContext class implements the Context interface. It can therefore delegate all the Context
interface methods to the backing Context object. However, it provides a special URL lookup behav-
ior for names that are formed like URLs, that is, names that contain a colon (' : ' \u003A) character.
This behavior is called a URL lookup.

URL lookups are not delegated to the backing Context but are instead first tried via a URL Context
based lookup on the given scheme, like:

JNDI Services Specification Version 1.0 JNDI Overview

OSGi Compendium Release 6 Page 813

myscheme:foo

For example a lookup using acme:foo/javax.sql .DataSource results in a URL Context being used,
rather than the backing Context.

JNDI uses class loading techniques to search for an ObjectFactory class that can be used to create
this URL Context. The Naming Manager provides a static method getURLContext for this purpose.
If such a URL Context is found, it is used with the requested operation and uses the full URL. If no
such URL Context can be found, the backing Context is asked to perform the operation with the giv-
en name.

The URL lookup behavior is only done when the backing Context was created by the JNDI imple-
mentation in the JRE. If the backing Context had been created through the singleton provisioning
mechanism, then no URL lookup is done for names that have a colon. The URL lookup responsibili-
ty is then left to the backing Context implementation.

126.2.4 Object and Reference Conversion
The NamingManager class provides a way to create objects from a description with the getObject In-
stance method. In general, it will iterate over a number of ObjectFactory objects and ask each one of
them to provide the requested object. The first non-nul l result indicates success. These ObjectFacto-
ry objects are created from an environment property.

A special case for the description argument in the getObject Instance method is the Reference. A Ref-
erence is a description of an object that can be stored persistently. It can be re-created into an actual
object through the static getObject Instance method of the NamingManager class. The Reference ob-
ject describes the actual ObjectFactory implementing class that must be used to create the object.

This default behavior is completely replaced with the Object Factory Builder singleton by getting
the to be used ObjectFactory object directly from the set singleton Object Factory Builder.

126.2.5 Environment
JNDI clients need a way to set the configuration properties to select the proper JNDI Provider. For
example, a JNDI Provider might require an identity and a password in order to access the service.
This type of configuration is referred to as the environment of a Context. The environment is a set of
properties. Common property names can be found in [3] JNDI Standard Property Names. The set of
properties is build from the following sources (in priority order, that is later entries are shadowed by
earlier entries):

1. Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2. Properties from the Java System Properties
3. Properties found in $JAVA_HOME/l ib/ jndi .propert ies

There are some special rules around the handling of specific properties.

126.2.6 Naming Manager Singletons
The default behavior of the JRE implementation of JNDI can be extended in a standardized way. The
NamingManager class has two static singletons that allow JNDI Providers outside the JRE to provide
In it ia lContextFactory and ObjectFactory objects. These singletons are set with the following static
methods on the NamingManager class:

• setObjectFactoryBui lder(ObjectFactoryBui lder) - A hook to provide ObjectFactory objects.
• setInit ia lContextFactoryBui lder(Init ia lContextFactoryBui lder) - A hook to provide In it ia lCon-

textFactory objects. This hook is consulted to create a Context object that will be associated with
an In it ia lContext object the client creates.

JNDI Context Manager Service JNDI Services Specification Version 1.0

Page 814 OSGi Compendium Release 6

These JNDI Provider hooks are singletons and must be set before any application code creates an In i-
t ia lContext object or any objects are converted. If these singletons are not set, the JNDI implementa-
tion in the JRE will provide a default behavior that is based on searching through classes defined in
an environment property.

Both singletons can only be set once. A second attempt to set these singletons results in an Illegal
State Exception being thrown.

126.2.7 Built-In JNDI Providers
The Java Runtime Environment (JRE) defines the following default providers:

• LDAP - Lightweight Directory Access Protocol (LDAP) service provider
• COS - Corba Object Service (COS) naming service provider
• RMI - Remote Method Invocation (RMI) Registry service provider
• DNS - Domain Name System (DNS) service provider

Although these are the default JNDI Service Providers, the JNDI architecture provides a number of
mechanisms to plug-in new types of providers.

126.3 JNDI Context Manager Service
The JNDI Context Manager service allows clients to obtain a Context using the OSGi service model.
By obtaining a JNDI Context Manager service, a client can get a Context object so that it can interact
with the available JNDI Providers. This service replaces the approach where the creation of a new
In it ia lContext object provided the client with access to an In it ia lContext object that was backed by a
JNDI Provider's Context.

The JNDIContextManager interface defines the following methods for obtaining Context objects:

• newInit ia lContext() - Obtain a Context object using the default environment properties.
• newInit ia lContext(Map) - Get a Context object using the default environment properties merged

with the given properties.
• newInit ia lDirContext() - Get a DirContext object using a default environment properties.
• newInit ia lDirContext(Map) -Get a DirContext object using the default environment properties

merged with the given properties.

The JNDI Context Manager service returns Context objects that implement the same behavior as the
In it ia lContext class; the returned Context object does not actually extend the In it ia lContext class, its
only guarantee is that it implements the Context interface.

This Context object is a facade for the context that is created by the JNDI Provider. This JNDI
Provider's Context is called the backing Context. This is similar to the behavior of the In it ia lContext
class. However, in this specification, the facade can change or loose the backing Context due to the
dynamics of the OSGi framework.

The returned facade must also provides URL lookups, just like an Initial Context. However, the URL
Context lookup must be based on Object Factory services with a service property that defines the
scheme.

The environment properties used to create the backing Context are constructed in a similar way as
the environment properties of the Java SE JNDI, see Environment and Bundles on page 815.

The following sections define in detail how a JNDI Provider Context must be created and managed.

JNDI Services Specification Version 1.0 JNDI Context Manager Service

OSGi Compendium Release 6 Page 815

126.3.1 Environment and Bundles
The Java SE JNDI looks for a file in $JAVAHOME/l ib/ jndi .propert ies , see Environment on page 813.
A JNDI Implementation must not use this information but it must use a resource in the bundle that
uses the JNDI Context Manager service. The order is therefore:

1. Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2. Properties from the Java System Properties
3. A properties resource from the bundle that uses the service called / jndi .propert ies .

The following four properties do not overwrite other properties but are merged:

• java.naming.factory.object
• java.naming.factory.state
• java.naming.factory.control
• java.naming.factory.ur l .pkgs

These property values are considered lists and the ultimate value used by the JNDI Providers is tak-
en by merging the values found in each stage into a single colon separated list. For more informa-
tion see [3] JNDI Standard Property Names.

The environment consists of the merged properties. This environment is then passed to the Initial
Context Factory Builder for the creation of an Initial Context Factory.

126.3.2 Context Creation
When a client calls one of the newInit ia lContext (or newInit ia lDirContext) methods, the JNDI Con-
text Manager service must construct an object that implements the Context interface based on the
environment properties. All factory methods in the In it ia lContextFactory and In it ia lContextFacto-
ryBui lder classes take a Hashtable object with the environment as an argument, see Environment and
Bundles on page 815.

The caller normally provides a specific property in the environment that specifies the class name of
a provider class. This property is named:

java.naming.factory.initial

The algorithm to find the provider of the requested Context can differ depending on the presence or
absence of the java.naming.factory. init ia l property in the environment.

In the following sections the cases for presence or absence of the java.naming.factory. init ia l prop-
erty are described. Several steps in these algorithm iterate over a set of available services. This iter-
ation must always take place in service ranking order. Service ranking order follows the ordering of
the service.ranking service property, which is the highest service.ranking value, or when equal, the
lowest service. id value.

Exception handling in the following steps is as follows:

• If an Exception is thrown by an Initial Context Factory Builder service, then this Exception must
be logged but further ignored.

• Exceptions thrown by the In it ia lContextFactory objects when creating a Context must be
thrown to the caller.

126.3.2.1 Implementation Class Present in Environment

If the implementation class is specified, a JNDI Provider is searched in the service registry with the
following steps, which stop when a backing Context can be created:

JNDI Context Manager Service JNDI Services Specification Version 1.0

Page 816 OSGi Compendium Release 6

1. Find a service in ranking order that has a name matching the given implementation class name
as well as the In it ia lContextFactory class name. The searching must take place through the Bun-
dle Context of the requesting bundle but must not require that the requesting bundle imports
the package of the implementation class. If such a matching Initial Context Factory service is
found, it must be used to construct the Context object that will act as the backing Context.

2. Get all the Initial Context Factory Builder services. For each such service, in ranking order:
• Ask the Initial Context Factory Builder service to create a new In it ia lContextFactory object. If

this is nul l then continue with the next service.
• Create the Context with the found Initial Context Factory and return it.

3. If no backing Context could be found using these steps, then the JNDI Context Manager service
must throw a No Initial Context Exception.

126.3.2.2 No Implementation Class Specified

If the environment does not contain a value for the java.naming.factory. init ia l property then the fol-
lowing steps must be used to find a backing Context object.

1. Get all the Initial Context Factory Builder services. For each such service, in ranking order, do:
• Ask the Initial Context Factory Builder service to create a new In it ia lContextFactory object. If

this is nul l , then continue with the next service.
• Create the backing Context object with the found Initial Context Factory service and return

it.
2. Get all the Initial Context Factory services. For each such service, in ranking order, do:

• Ask the Initial Context Factory service to create a new Context object. If this is nul l then con-
tinue with the next service otherwise create a new Context with the created Context as the
backing Context.

3. If no Context has been found, an initial Context is returned without any backing. This returned
initial Context can then only be used to perform URL based lookups.

126.3.3 Rebinding
A JNDI Provider can be added or removed to the service registry at any time because it is an OSGi
service; OSGi services are by their nature dynamic. When a JNDI Provider unregisters an Initial Con-
text Factory that was used to create a backing service then the JNDI Context Manager service must
remove the association between any returned Contexts and their now invalid backing Contexts.

The JNDI Context Manager service must try to find a replacement whenever it is accessed and no
backing Context is available. However, if no such replacement can be found the called function
must result in throwing a No Initial Context Exception.

126.3.4 Life Cycle and Dynamism
When a client has finished with a Context object, then the client must close this Context object
by calling the close method. When a Context object is closed, the resources held by the JNDI Im-
plementation on the client's behalf for that Context must all be released. Releasing these resources
must not affect other, independent, Context objects returned to the same client.

If a client ungets the JNDI Context Manager service, all the Context objects returned through that
service instance must automatically be closed by the JNDI Context Manager. When the JNDI Con-
text Manager service is unregistered, the JNDI Context Manager must automatically close all Con-
texts held.

For more information about life cycle issues, see also Life Cycle Mismatch on page 823.

JNDI Services Specification Version 1.0 JNDI Provider Admin service

OSGi Compendium Release 6 Page 817

126.4 JNDI Provider Admin service
JNDI provides a general object conversion service, see Object and Reference Conversion on page 813.
For this specification, the responsibility of the static method on the NamingManager getObject In-
stance is replaced with the JNDI Provider Admin service. The JNDIProviderAdmin interface provides
the following methods that can be used to convert a description object to an object:

• getObject Instance(Object,Name,Context,Map) - Used by Context implementations to convert a
description object to another object.

• getObject Instance(Object,Name,Context,Map,Attr ibutes) - Used by a Dir Context implementa-
tions to convert a description object to another object.

In either case, the first argument is an object, called the description. JNDI allows a number of dif-
ferent Java types here. When either method is called, the following algorithm is followed to find
a matching Object Factory to find/create the requested object. This algorithm is identical for both
methods, except that the call that takes the Attr ibutes argument consults Dir Object Factory services
first and then Object Factory services while the method without the Attributes parameter only con-
sults Object Factory services.

1. If the description object is an instance of Referenceable , then get the corresponding Reference
object and use this as the description object.

2. If the description object is not a Reference object then goto step 5.
3. If a factory class name is specified, the JNDI Provider Admin service uses its own Bundle Context

to search for a service registered under the Reference's factory class name. If a matching Object
Factory is found then it is used to create the object from the Reference object and the algorithm
stops here.

4. If no factory class name is specified, iterate over all the Reference object's Str ingRefAddrs objects
with the address type of URL . For each matching address type, use the value to find a matching
URL Context, see URL Context Provider on page 819, and use it to recreate the object. See the
Naming Manager for details. If an object is created then it is returned and the algorithm stops
here.

5. Iterate over the Object Factory Builder services in ranking order. Attempt to use each such ser-
vice to create an ObjectFactory or DirObjectFactory instance. If this succeeds (non nul l) then use
this ObjectFactory or DirObjectFactory instance to recreate the object. If successful, the algo-
rithm stops here.

6. If the description was a Reference and without a factory class name specified, or if the descrip-
tion was not of type Reference, then attempt to convert the object with each Object Factory ser-
vice (or Dir Object Factory service for directories) service in ranking order until a non-nul l value
is returned.

7. If no ObjectFactory implementations can be located to resolve the given description object, the
description object is returned.

If an Exception occurs during the use of an Object Factory Builder service then this exception
should be logged but must be ignored. If, however, an Exception occurs during the calling of a found
ObjectFactory or DirObjecFactory object then this Exception must be re-thrown to the caller of the
JNDI Provider Admin service.

126.5 JNDI Providers
JNDI Providers can be registered by registering an appropriate service. These services are consulted
by the JNDI Implementation for creating a Context as well as creating/finding/converting general
objects.

JNDI Providers JNDI Services Specification Version 1.0

Page 818 OSGi Compendium Release 6

126.5.1 Initial Context Factory Builder Provider
An Initial Context Factory Builder provider is asked to provide an Initial Context Factory when no
implementation class is specified or no such implementation can be found. An Initial Context Fac-
tory Builder service can be used by containers for other bundles to control the initial Context their
applications receive.

An Initial Context Factory Builder provider must register an Initial Context Factory Builder ser-
vice. The service.ranking property defines the iteration ordering of multiple Initial Context Factory
Builder services. Implementations must be careful to correctly provide defaults.

For example, a container could use a thread local variable to mark the stack for a specific applica-
tion. The implementation of the Initial Context Factory Builder can then detect specific calls from
this application. To make the next code example work, an instance must be registered as an Initial
Context Factory Builder service.

public class Container implements InitialContextFactoryBuilder {
 ThreadLocal<Application> apps;

 void startApp(final Application app) {
 Thread appThread = new Thread(app.getName()) {
 public void run() {
 apps.set(app);
 app.run();
 }}}

 public InitialContextFactory
 createInitialContextFactory(Hashtable<?,?> ht) {
 final Application app = apps.get();
 if (app == null)
 return null;

 return new InitialContextFactory() {
 public Context getInitialContext(Hashtable<?,?>env) {
 return app.getContext(env);
 }
 };
 } }

126.5.2 Initial Context Factory Provider
An Initial Context Factory provides Contexts of a specific type. For example, those contexts allow
communications with an LDAP server. An Initial Context Factory Provider must register the its Ini-
tial Context Factory service under the following names:

• Implementation Class - An Initial Context Factory provider must register a service under the name
of the implementation class. This allows the JNDI Context Manager to find implementations
specified in the environment properties.

• Initial Context Factory - As a general Initial Context Factory. If registered as such, it can be consult-
ed for a default Initial Context. Implementations must be careful to only return a Context when
the environment properties are appropriate. See No Implementation Class Specified on page 816

An Initial Context Factory service can create both DirContext as well as Context objects.

For example, SUN JREs for Java SE provide an implementation of a Context that can answer DNS
questions. The name of the implementation class is a well known constant. The following class can
be used with Declarative Services to provide a lazy implementation of a DNS Context:

JNDI Services Specification Version 1.0 JNDI Providers

OSGi Compendium Release 6 Page 819

public class DNSProvider implements InitialContextFactory{
 public Context createInitialContextFactory(Hashtable<?,?>env) throws
 NamingException {
 try {
 Class<InitialContextFactory> cf = (Class<InitialContextFactory>)
 l.loadClass("com.sun.jndi.dns.DnsContextFactory");
 InitialContextFactory icf = cf.newInstance();
 return icf.createInitialContextFactory(env);
 } catch(Throwable t) {
 return null;
 }
 }
}

126.5.3 Object Factory Builder Provider
An Object Factory Builder provider must register an Object Factory Builder service. Such a service
can be used to provide ObjectFactory and/or DirObjectFactory objects. An Object Factory Builder
service is requested for such an object when no specific converter can be found. This service can be
leveraged by bundles that act as a container for other bundles to control the object conversion for
their subjects.

126.5.4 Object Factory Provider
An Object Factory provider can participate in the conversion of objects. It must register a service un-
der the following names:

• Implementation Class - A service registered under its implementation class can be leveraged by a
description that is a Reference object. Such an object can contain the name of the factory class.
The implementation class can implement the DirObjectFactory interface or the ObjectFactory
interface.

• Object Factory - The ObjectFactory interface is necessary to ensure class space consistency.
• Dir Object Factory - If the Object Factory provider can accept the additional Attributes argument

in the getObject Instance method of the JNDI Provider Admin service than it must also register
as a Dir Object Factory service.

126.5.5 URL Context Provider
A URL Context Factory is a special type of an Object Factory service. A URL Context Factory must be
registered as an Object Factory service with the following service property:

• osgi . jndi .ur l .scheme - The URL scheme associated with this URL Context, for example acme . The
scheme must not contain the colon (' : ' \u003A).

A URL Context is used for URL based operations on an initial Context. For example, a lookup to
acme:foo/javax.sql .DataSource must not use the provider based lookup mechanism of the backing
Context but instead causes a lookup for the requested URL Context. A URL Context also provides a
secondary mechanism for restoring Reference objects.

When an initial Context returned by the JNDI Context Manager service is given a URL based opera-
tion, it searches in the service registry for an Object Factory service that is published with the URL
scheme property that matches the scheme used from the lookup request.

It then calls the getInstance method on the Object Factory service with the following parameters:

• Object - Should be either a Str ing , Str ing[] , or nul l .
• Name - must be nul l
• Context - must be nul l

OSGi URL Scheme JNDI Services Specification Version 1.0

Page 820 OSGi Compendium Release 6

• Hashtable - The environment properties.

Calling the getInstance method must return a Context object. This context is then used to perform
the lookup.

The life cycle of the Object Factory used to create the URL Context is tied to the JNDI context that
was used to perform the URL based JNDI operation. By the time JNDI context is closed any Object-
Factory objects held to process the URL lookups must be released (unget).

126.5.6 JRE Context Providers
The Java Runtime Environment (JRE) defines a number of default naming providers., see Built-In
JNDI Providers on page 814. These naming providers are not OSGi aware, but are commonly used
and are provided by the JRE. These naming providers rely on the NamingManager class for object
conversion and finding URL Contexts.

The JRE default providers are made available by the JNDI Implementation. This JNDI Implementa-
tion must register a built-in Initial Context Factory Builder service that is capable of loading any In i-
t ia lContextFactory classes of the JRE providers.

When this built-in Initial Context Factory Builder is called to create an In it ia lContextFactory ob-
ject it must look in the environment properties that were given as an argument and extract the
java.naming.factory. init ia l property; this property contains the name of the class of a provider. The
built-in Initial Context Factory Builder then must use the bootstrap class loader to load the given
In it ia lContextFactory class and creates a new instance with the no arguments constructor and re-
turn it. If this fails, it must return nul l . This mechanism will allow loading of any built-in providers.

This built-in Initial Context Factory Builder service must be registered with no service.ranking prop-
erty. This will give it the default ranking and allows other providers to override the default.

126.6 OSGi URL Scheme
A URL scheme is available that allows JNDI based applications to access services in the service reg-
istry, see Services and State on page 822 about restrictions on these services. The URL scheme is
specified as follows:

service ::= 'osgi:service/' query
query ::= jndi-name | qname ('/' filter)?
jndi-name ::= <any string>

No spaces are allowed between the terms.

This OSGi URL scheme can be used to perform a lookup of a single matching service using the in-
terface name and filter. The URL Context must use the owning bundle to perform the service queries.
The owning bundle is the bundle that requested the initial Context from the JNDI Context Manager
service or received its Context through the In it ia lContext class. The returned objects must not be in-
compatible with the class space of the owning bundle.

The lookup for a URL with the osgi : scheme and service path returns the service with highest
service.ranking and the lowest service. id . This scheme only allows a single service to be found. Mul-
tiple services can be obtained with the osgi : scheme and servicel ist path:

servicelist ::= 'osgi:servicelist/' query?

If this osgi :servicel ist scheme is used from a lookup method then a Context object is returned in-
stead of a service object. Calling the l istBindings method will produce a NamingEnumeration object
that provides Binding objects. A Binding object contains the name, class of the service, and the ser-
vice object. The bound object is the service object contained in the given Context.

JNDI Services Specification Version 1.0 OSGi URL Scheme

OSGi Compendium Release 6 Page 821

When the Context class l ist method is called, the Naming Enumeration object provides a NameClas-
sPair object. This NameClassPair object will include the name and class of each service in the Con-
text. The l ist method can be useful in cases where a client wishes to iterate over the available ser-
vices without actually getting them. If the service itself is required, then l istBindings method should
be used.

If multiple services matched the criteria listed in the URL, there would be more than one service
available in the Context, and the corresponding Naming Enumeration would contain the same
number of services.

If multiple services match, a call to l istBindings on this Context would return a list of bindings
whose name are a string with the service. id number, for example:

1283

Thus the following lookup is valid:

osgi:servicelist/javax.sql.DataSource/(&(db=mydb)(version=3.1))

A service can provide a JNDI service name if it provides the following service property:

• osgi . jndi .service.name - An alternative name that the service can be looked up by when the osgi :
URL scheme is used.

If a service is published with a JNDI service name then the service matches any URL that has this
service name in the place of interface . For example, if the JNDI service name is foo , then the follow-
ing URL selects this service:

osgi:service/foo

Using a JNDI service name that can be interpreted as an interface name must be avoided, if this hap-
pens the result is undefined.

A JNDI client can also obtain the Bundle Context of the owning bundle by using the osgi : scheme
namespace with the f ramework/bundleContext name. The following URL must return the Bundle
Context of the owning bundle:

osgi:framework/bundleContext

After the NamingEnumeration object has been used it must be closed by the client. Implementations
must then unget any gotten services or perform other cleanup.

126.6.1 Service Proxies
The OSGi URL Context handles the complexities by hiding the dynamic nature of OSGi. The OS-
Gi URL Context must handle the dynamics by proxying the service objects. This proxy must imple-
ment the interface given in the URL. If the JNDI service name instead of a class name is used, then
all interfaces under which the service is registered must be implemented. If an interface is not com-
patible with the owning bundle's class space then it must not be implemented on the proxy, it must
then be ignored. If this results in no implemented interfaces then an Illegal Argument Exception
must be thrown.

Interfaces can always be proxied but classes are much harder. For this reason, an implementation is
free to throw an Illegal Argument Exception when a class is used in the URL or in one of the regis-
tration names.

Getting the actual service object can be delayed until the proxy is actually used to call a method. If
a method is called and the actual service has been unregistered, then the OSGi URL Context must
attempt to rebind it to another service that matches the criteria given in the URL the next time it is

Traditional Client Model JNDI Services Specification Version 1.0

Page 822 OSGi Compendium Release 6

called. When no alternative service is available, a Service Exception with the UNREGISTERED type
code must be thrown. Services obtained with the osgi : URL scheme must therefore be stateless be-
cause the rebinding to alternative services is not visible to the caller; there are no listeners defined
for this rebinding, see Services and State on page 822.

If the reference was looked up using osgi :servicel ist then proxies must still be used, however, these
proxies must not rebind when their underlying service is unregistered. Instead, they must throw a
Service Exception with the UNREGISTERED type whenever the proxy is used and the proxied service
is no longer available.

126.6.2 Services and State
A service obtained through a URL Context lookup is proxied. During the usage of this service, the
JNDI Implementation can be forced to transparently rebind this service to another instance. The
JNDI specification is largely intended for portability. For this reason, it has no mechanism architect-
ed to receive notifications about this rebinding. The client code is therefore unable to handle the dy-
namics.

The consequence of this model is that stateful services require extra care because applications can-
not rely on the fact that they always communicate with the same service. Virtually all OSGi speci-
fied services have state.

126.7 Traditional Client Model
A JNDI Implementation must at startup register the In it ia lContextFactoryBui lder object and the
ObjectFactoryBui lder object with the NamingManager class. As described in JNDI Overview on page
812, the JNDI code in the JRE will then delegate all Context related requests to the JNDI Imple-
mentation. Setting these singletons allows code that is not aware of the OSGi framework to use
Context implementations from JNDI Providers registered with the OSGi service registry and that are
managed as bundles. The JNDI Implementation therefore acts as a broker to the service registry for
OSGi unaware code.

This brokering role can only be played when the JNDI Implementation can set the singletons as
specified in Naming Manager Singletons on page 813. If the JNDI Implementation cannot set these
singletons then it should log an error with the Log Service, if available. It can then not perform the
following sections.

126.7.1 New Initial Context
The client typically requests a Context using the following code:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
InitialContext ctx = new InitialContext(env);

The created In it ia lContext object is a facade for the real Context that is requested by the caller. It pro-
vides the bootstrapping mechanism for JNDI Provider pluggability. In order to obtain the provider's
Context, the In it ia lContext class makes a call to the static getContext method on the NamingMan-
ager class. The JNDI code in the JRE then delegates any request for an initial Context object to the
JNDI Implementation through the registered In it ia lContextFactoryBui lder singleton. The JNDI
Implementation then determines the Bundle Context of the caller as described in Caller's Bundle
Context on page 823. If no such Bundle Context can be found, a No Initial Context Exception is
thrown to the caller. This Bundle Context must be from an ACTIVE bundle.

This Bundle Context is then used to get the JNDI Context Manager service. This service is then used
as described in Context Creation on page 815 to get an initial Context. This initial Context is then
used in the In it ia lContext object as the default initial context. In this specification this is normally

JNDI Services Specification Version 1.0 Traditional Client Model

OSGi Compendium Release 6 Page 823

called the backing context. An In it ia lContext object constructed through an Initial Context Factory
Builder will not use the URL lookup mechanism, it must delegate all operations to the its backing
context. A Context obtained through the JNDI Context Manager provides the URL lookup behavior
instead.

126.7.2 Static Conversion
JNDI provides a general object conversion facility that is used by the URL Context and the process
of restoring an object from a Reference object, see Object and Reference Conversion on page 813. A
JNDI Implementation must take over this conversion by setting the static Object Factory Builder
singleton, see Naming Manager Singletons on page 813. Non-OSGi aware Context implementa-
tions will use the NamingManager static getObject Instance method for object conversion. This
method then delegates to the set singleton Object Factory Builder to obtain an ObjectFactory ob-
ject that understands how to convert the given description to an object. The JNDI Implementation
must return an Object Factory that understands the OSGi service registry. If the getObject Instance
method is called on this object it must use the same rules as defined for the JNDI Provider Admin
service getObject Instance(Object, javax.naming.Name,javax.naming.Context,Map) method, see
JNDI Provider Admin service on page 817. The Bundle Context that must be used with respect to
this service is the caller's Bundle Context, see Caller's Bundle Context on page 823. If the Bundle
Context is not found, the description object must be returned. The calling bundle must not be re-
quired to import the org.osgi .service. jndi package.

126.7.3 Caller's Bundle Context
The following mechanisms are used to determine the callers Bundle Context:

1. Look in the JNDI environment properties for a property called

osgi.service.jndi.bundleContext

If a value for this property exists then use it as the Bundle Context. If the Bundle Context has
been found stop.

2. Obtain the Thread Context Class Loader; if it, or an ancestor class loader, implements the
BundleReference interface, call its getBundle method to get the client's Bundle; then call get-
BundleContext on the Bundle object to get the client's Bundle Context. If the Bundle Context has
been found stop.

3. Walk the call stack until the invoker is found. The invoker can be the caller of the In it ia lContext
class constructor or the NamingManager or DirectoryManager getObject Instance methods.
• Get the class loader of the caller and see if it, or an ancestor, implements the BundleReference

interface.
• If a Class Loader implementing the BundleReference interface is found call the getBundle

method to get the clients Bundle; then call the getBundleContext method on the Bundle to
get the clients Bundle Context.

• If the Bundle Context has been found stop, else continue with the next stack frame.

126.7.4 Life Cycle Mismatch
The use of static access to the JNDI mechanisms, NamingManager and In it ia lContext class methods,
in the traditional client programming model produces several problems with regard to the OSGi life
cycle. The primary problem being that there is no dependency management in place when static
methods are used. These problems do not exist for the JNDI Context Manager service. Therefore, OS-
Gi applications are strongly encouraged to use the JNDI Context Manager service.

The traditional programming model approach relies on two JVM singletons in the Naming Manag-
er, see Naming Manager Singletons on page 813. The JNDI Implementation bundle must set both
singletons before it registers its JNDI Context Manager service and JNDI Provider Admin service.
However, in OSGi there is no defined start ordering, primarily because bundles can be updated at

Security JNDI Services Specification Version 1.0

Page 824 OSGi Compendium Release 6

any moment in time and will at such time not be available to provide their function anyway. For
this reason, OSGi bundles express their dependencies with services.

The lack of start ordering means that a bundle could create an In it ia lContext object before the JNDI
Implementation has had the chance to set the static Initial Context Factory Builder singleton. This
means that the JNDI implementation inside the JRE will provide its default behavior and likely have
to throw an exception. A similar exception is thrown for the Object Factory Builder singleton.

There is a also a (small) possibility that a client will call new Init ia lContext() after the singletons
have been set, but before the JNDI Context Manager and JNDI Provider Admin services have been
registered. This specification requires that these services are set after the singletons are set. In this
race condition the JNDI Implementation should throw a No Initial Context Exception, explaining
that the JNDI services are not available yet.

126.8 Security

126.8.1 JNDI Implementation
A JNDI Implementation may wish to assert that the user of the provider has some relevant Java 2 se-
curity permission. Since the JNDI implementation is an intermediary between the JNDI client and
provider this means that the JNDI implementation needs to have any permissions required to access
any JNDI Provider. As a result the JNDI implementation needs All Permission. This will result in the
JNDI clients permissions being checked to see if it has the relevant permission to access the JNDI
Provider.

The JNDI Implementation must make any invocation to access these services in a doPriv i ledged
check. A JNDI client must therefore not be required to have the following permissions, which are
needed by a JNDI Implementation:

ServicePermission ..ObjectFactory REGISTER,GET
ServicePermission ..DirObjectFactory REGISTER,GET
ServicePermission ..ObjectFactoryBuilder REGISTER,GET
ServicePermission ..InitialContextFactory REGISTER,GET
ServicePermission ..InitialContextFactoryBuilder REGISTER,GET
ServicePermission ..JNDIProviderAdmin REGISTER,GET

The JNDI Implementation bundle must have the appropriate permissions to install the In it ia lCon-
textFactoryBui lder and ObjectFactoryBui lder instances using the appropriate methods on the Nam-
ingManager class. This requires the following permission:

RuntimePermission "setFactory"

126.8.2 JNDI Clients
A JNDI client using the JNDI Context Manager service must have the following permissions:

ServicePermission ..JNDIContextManager GET

Obtaining a reference to a JNDI Context Manager service should be considered a privileged opera-
tion and should be guarded by permissions.

126.8.3 OSGi URL namespace
A JNDI client must not be able to obtain services or a Bundle Context that the client bundle would
not be able to get via the core OSGi API. To allow a client to use the osgi namespace to get a service
the bundle must have the corresponding Service Permission. When using the osgi namespace to
obtain the Bundle Context the client bundle must have Admin Permission for the Bundle Context.

JNDI Services Specification Version 1.0 org.osgi.service.jndi

OSGi Compendium Release 6 Page 825

These permissions must be enforced by the osgi URL namespace handler. If there is no proper per-
mission, the implementation must throw a Name Not Found Exception to prevent exposing the ex-
istence of such services.

126.9 org.osgi.service.jndi

JNDI Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jndi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jndi ; vers ion="[1.0,1.1)"

126.9.1 Summary

• JNDIConstants - Constants for the JNDI implementation.
• JNDIContextManager - This interface defines the OSGi service interface for the JNDICon-

textManager.
• JNDIProviderAdmin - This interface defines the OSGi service interface for the JNDIProviderAd-

min service.

126.9.2 public class JNDIConstants
Constants for the JNDI implementation.

Concurrency Immutable

126.9.2.1 public static final String BUNDLE_CONTEXT = "osgi.service.jndi.bundleContext"

This JNDI environment property can be used by a JNDI client to indicate the caller's BundleContext.
This property can be set and passed to an InitialContext constructor. This property is only useful in
the "traditional" mode of JNDI.

126.9.2.2 public static final String JNDI_SERVICENAME = "osgi.jndi.service.name"

This service property is set on an OSGi service to provide a name that can be used to locate the ser-
vice other than the service interface name.

126.9.2.3 public static final String JNDI_URLSCHEME = "osgi.jndi.url.scheme"

This service property is set by JNDI Providers that publish URL Context Factories as OSGi Services.
The value of this property should be the URL scheme that is supported by the published service.

126.9.3 public interface JNDIContextManager
This interface defines the OSGi service interface for the JNDIContextManager. This service provides
the ability to create new JNDI Context instances without relying on the InitialContext constructor.

Concurrency Thread-safe

126.9.3.1 public Context newInitialContext() throws NamingException

□ Creates a new JNDI initial context with the default JNDI environment properties.

org.osgi.service.jndi JNDI Services Specification Version 1.0

Page 826 OSGi Compendium Release 6

Returns an instance of javax.naming.Context

Throws NamingException– upon any error that occurs during context creation

126.9.3.2 public Context newInitialContext(Map environment) throws NamingException

environment JNDI environment properties specified by caller

□ Creates a new JNDI initial context with the specified JNDI environment properties.

Returns an instance of javax.naming.Context

Throws NamingException– upon any error that occurs during context creation

126.9.3.3 public DirContext newInitialDirContext() throws NamingException

□ Creates a new initial DirContext with the default JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException– upon any error that occurs during context creation

126.9.3.4 public DirContext newInitialDirContext(Map environment) throws NamingException

environment JNDI environment properties specified by the caller

□ Creates a new initial DirContext with the specified JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException– upon any error that occurs during context creation

126.9.4 public interface JNDIProviderAdmin
This interface defines the OSGi service interface for the JNDIProviderAdmin service. This service
provides the ability to resolve JNDI References in a dynamic fashion that does not require calls to
NamingManager.getObject Instance() . The methods of this service provide similar reference resolu-
tion, but rely on the OSGi Service Registry in order to find ObjectFactory instances that can convert
a Reference to an Object. This service will typically be used by OSGi-aware JNDI Service Providers.

Concurrency Thread-safe

126.9.4.1 public Object getObjectInstance(Object refInfo,Name name,Context context,Map environment) throws
Exception

refInfo Reference info

name the JNDI name associated with this reference

context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

□ Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception– in the event that an error occurs while attempting to resolve the JNDI reference.

126.9.4.2 public Object getObjectInstance(Object refInfo,Name name,Context context,Map environment,Attributes
attributes) throws Exception

refInfo Reference info

name the JNDI name associated with this reference

context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

JNDI Services Specification Version 1.0 References

OSGi Compendium Release 6 Page 827

attributes the naming attributes to use when resolving this object

□ Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception– in the event that an error occurs while attempting to resolve the JNDI reference.

126.10 References

[1] Java Naming and Directory Interface
http://docs.oracle.com/javase/6/docs/technotes/guides/jndi/index.html

[2] Java Naming and Directory Interface Tutorial from Sun Microsystems
http://download.oracle.com/javase/6/docs/technotes/guides/jndi/index.html

[3] JNDI Standard Property Names
http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/Context.html

References JNDI Services Specification Version 1.0

Page 828 OSGi Compendium Release 6

JPA Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 829

127 JPA Service Specification

Version 1.0

127.1 Introduction
The Java Persistence API (JPA) is a specification that sets a standard for persistently storing objects in
enterprise and non-enterprise Java based environments. JPA provides an Object Relational Mapping
(ORM) model that is configured through persistence descriptors. This Java Persistence Service speci-
fication defines how persistence units can be published in an OSGi framework, how client bundles
can find these persistence units, how database drivers are found with the OSGi JDBC Specification,
as well as how JPA providers can be made available within an OSGi framework.

Applications can be managed or they can be unmanaged. Managed applications run inside a Java EE
Container and unmanaged applications run in a Java SE environment. The managed case requires a
provider interface that can be used by the container, while in the unmanaged case the JPA provider
is responsible for supporting the client directly. This specification is about the unmanaged model
of JPA except in the areas where the managed model is explicitly mentioned. Additionally, multiple
concurrent providers for the unmanaged case are not supported.

This JPA Specification supports both [1] JPA 1.0 and [2] JPA 2.0.

127.1.1 Essentials

• Dependencies - There must be a way for persistence clients, if they so require, to manage their de-
pendencies on a compatible persistence unit.

• Compatibility - The Persistence Unit service must be able to function in non-managed mode ac-
cording to existing standards and interfaces outlined in the JPA specification.

• Modularity - Persistent classes and their accompanying configuration can exist in a separate bun-
dle from the client that is operating on them using the Persistence Unit service.

• JDBC - Leverage the OSGi JDBC Specification for access to the database.

127.1.2 Entities

• JPA - The Java Persistence API, [1] JPA 1.0 and [2] JPA 2.0.
• JPA Provider - An implementation of JPA, providing the Persistence Provider and JPA Services to

Java EE Containers and Client Bundles.
• Interface Bundle - A bundle containing the interfaces and classes in the javax.persistence name-

space (and its sub-namespaces) that are defined by the JPA specification.
• Persistence Bundle - A bundle that includes, a Meta-Persistence header, one or more Persistence De-

scriptor resources, and the entity classes specified by the Persistence Units in those resources.
• Client Bundle - The bundle that uses the Persistence Bundle to retrieve and store objects.
• Persistence Descriptor - A resource describing one or more Persistence Units.
• Persistence Unit - A named configuration for the object-relational mappings and database access as

defined in a Persistence Descriptor.
• Entity Manager - The interface that provides the control point of retrieving and persisting objects

in a relational database based on a single Persistence Unit for a single session.

Introduction JPA Service Specification Version 1.0

Page 830 OSGi Compendium Release 6

• Entity Manager Factory - A service that can create Entity Managers based on a Persistence Unit for
different sessions.

• Entity Manager Factory Builder - A service that can build an Entity Manager Factory for a specific
Persistence Unit with extra configuration parameters.

• Managed Client - A Client Bundle that is managed by a Container
• Static Client - A Client that uses the static factory methods in the Persistence class instead of ser-

vices.
• Static Persistence - The actor that enables the use of the Persistence class static factory methods to

obtain an Entity Manager Factory.
• JDBC Provider - The bundle providing a Data Source Factory service.

Figure 127.1 JPA Service overview

JPA Provider Impl

Client Impl

Container Impl

Entity Classes
Impl

Persistence
Provider

Entity
Manager
Factory

Persistence
Descriptor

ManagedClient
Impl

unit
name

*

*

Static Persistence
Impl

Persistence

Static Client Impl

Data Source Factory

Entity
Manager
Factory
Builder

osgi.unit.name=...
osgi.unit.version=...
osgi.unit.provider=...

in
je

ct
s

127.1.3 Dependencies
This specification is based on JPA 1.0 and JPA 2.0. JPA 2.0 is backward compatible with JPA 1.0. For
this reason, the versions of the packages follow the OSGi recommended version policy with the ad-
dition of a special JPA marker that annotates the specification version for JPA. All JPA Packages must
also have an attribute called jpa that specifies the JPA version. The purpose of this attribute is to
make it clear what JPA version belongs to this package.

Table 127.1 Dependency versions

JPA Packages Export Version Client Import Range Provider Imp. Range
javax.persistence 1.0 [1.0,2.0) [1.0,1.1)JPA 1.0
javax.persistence.spi 1.0 [1.0,2.0) [1.0,1.1)

JPA Service Specification Version 1.0 JPA Overview

OSGi Compendium Release 6 Page 831

JPA Packages Export Version Client Import Range Provider Imp. Range
javax.persistence 1.1 [1.1 ,2.0) [1.1 ,1 .2)JPA 2.0
javax.persistence.spi 1.1 [1.1 ,2.0) [1.1 ,1 .2)

For example, JPA should have an export declaration like:

Export-Package: javax.persistence; version=1.1; jpa=2.0, ...

127.1.4 Synopsis
A JPA Provider tracks Persistence Bundles; a Persistence Bundle contains a Meta-Persistence man-
ifest header. This manifest header enumerates the Persistence Descriptor resources in the Persis-
tence Bundle. Each resource's XML schema is defined by the JPA 1.0 or JPA 2.0 specification. The JPA
Provider reads the resource accordingly and extracts the information for one or more Persistence
Units. For each found Persistence Unit, the JPA Provider registers an Entity Manager Factory Builder
service. If the database is defined in the Persistence Unit, then the JPA Provider registers an Entity
Manager Factory service during the availability of the corresponding Data Source Factory.

The identification of these services is handled through a number of service properties. The Entity
Manager Factory service is named by the standard JPA interface, the Builder version is OSGi specific;
it is used when the Client Bundle needs to create an Entity Manager Factory based on configuration
properties.

A Client Bundle that wants to persist or retrieve its entity classes depends on an Entity Manager Fac-
tory (Builder) service that corresponds to a Persistence Unit that lists the entity classes. If such a ser-
vice is available, the client can use this service to get an Entity Manager, allowing the client to re-
trieve and persist objects as long as the originating Entity Manager Factory (Builder) service is regis-
tered.

In a non-OSGi environment, it is customary to get an Entity Manager Factory through the Persis-
tence class. This Persistence class provides a number of static methods that give access to any local-
ly available JPA providers. This approach is not recommended in an OSGi environment due to class
loading and start ordering issues. However, OSGi environments can support access through this sta-
tic factory with a Static Persistence bundle.

127.2 JPA Overview
Java Persistence API (JPA) is a specification that is part of [3] Java EE 5. This OSGi Specification is
based on [1] JPA 1.0 and [2] JPA 2.0. This section provides an overview of JPA as specified in the JCP.
The purpose of this section is to introduce the concepts behind JPA and define the terminology that
will be used in the remainder of the chapter.

The purpose of JPA is to simplify access to relational databases for applications on the object-orient-
ed Java platform. JPA provides support for storing and retrieving objects in a relational database. The
JPA specification defines in detail how objects are mapped to tables and columns under the full con-
trol of the application. The core classes involved are depicted in Figure 127.2.

JPA Overview JPA Service Specification Version 1.0

Page 832 OSGi Compendium Release 6

Figure 127.2 JPA Client View

Client CodeEntity Class
Entity Class

Entity Manager
Factory

Entity Manager Connection

Data SourcePersistence
Descriptor

persists
with

created by

mapped by

db

db

mappings for
Mapping
Descriptor

db

from

The JPA specifications define a number of concepts that are defined in this section for the purpose of
this OSGi specification. However, the full syntax and semantics are defined in the JPA specifications.

127.2.1 Persistence
Classes that are stored and retrieved through JPA are called the entity classes. In this specification, the
concept of entity classes includes the embeddable classes, which are classes that do not have any per-
sistent identity, and mapped super classes that allow mappings, but are not themselves persistent.
Entity classes are not required to implement any interface or extend a specific superclass, they are
Plain Old Java Objects (POJOs). It is the responsibility of the JPA Provider to connect to a database
and map the store and retrieve operations of the entity classes to their tables and columns. For per-
formance reasons, the entity classes are sometimes enhanced. This enhancement can take place dur-
ing build time, deploy time, or during class loading time. Some enhancements use byte code weav-
ing, some enhancements are based on sub-classing.

The JPA Provider cannot automatically perform its persistence tasks; it requires configuration infor-
mation. This configuration information is stored in the Persistence Descriptor. A Persistence Descrip-
tor is an XML file according of one of the two following namespaces:

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd

The JPA standard Persistence Descriptor must be stored in META-INF/persistence.xml . It is usually
in the same class path entry (like a JAR or directory) as the entity classes.

The JPA Provider parses the Persistence Descriptor and extracts one or more Persistence Units. A Per-
sistence Unit includes the following aspects:

• Name - Every Persistence Unit must have a name to identify it to clients. For example: Account-
ing .

• Provider Selection - Restriction to a specific JPA Provider, usually because there are dependencies in
the application code on provider specific functionality.

• JDBC Driver Selection - Selects the JDBC driver, the principal and the credentials for selecting and
accessing a relational database. See JDBC Access in JPA on page 834.

• Properties - Standard and JPA Provider specific properties.

The object-relational mappings are stored in special mapping resources or are specified in annota-
tions.

A Persistence Unit can be complete or incomplete. A complete Persistence Unit identifies the database
driver that is needed for the Persistence Unit, though it does not have to contain the credentials. An
incomplete Persistence Unit lacks this information.

JPA Service Specification Version 1.0 JPA Overview

OSGi Compendium Release 6 Page 833

The relations between the class path, its entries, the entity classes, the Persistence Descriptor and
the Persistence Unit is depicted in Figure 127.3 on page 833.

Figure 127.3 JPA Configuration

Class path entry
(JAR/directory)

Entity Classes

Persistence
Descriptor
persistence.xml

Persistence Unit

JDBC Driver

lists
1 * 1 0,1 1 *

contains contains

depends on
*

0,1

Class Path

persisted by
* *

*

JPA recognizes the concept of a persistence root. The persistence root is the root of the JAR (or directo-
ry) on the class path that contains the META-INF/persistence.xml resource.

127.2.2 JPA Provider
The JPA specifications provide support for multiple JPA Providers in the same application. An Ap-
plication selects a JPA Provider through the Persistence class, using static factory methods. One of
these methods accepts a map with configuration properties. Configuration properties can override in-
formation specified in a Persistence Unit or these properties add new information to the Persistence
Unit.

The default implementation of the Persistence class discovers providers through the Java EE ser-
vices model, this model requires a text resource in the class path entry called:

 META-INF/services/ javax.persistence.PersistenceProvider

This text resource contains the name of the JPA Provider implementation class.

The Persistence class createEntityManagerFactory method provides the JPA Provider with the
name of a Persistence Unit. The JPA Provider must then scan the class path for any META-INF/
persistence.xml entries, these are the available Persistence Descriptors. It then extracts the Persis-
tence Units to find the requested Persistence Unit. If no such Persistence Unit can be found, or the
JPA Provider is restricted from servicing this Persistence Unit, then nul l is returned. The Persistence
class will then continue to try the next found or registered JPA Provider.

A Persistence Unit can restrict JPA Providers by specifying a JPA Provider class, this introduces a
provider dependency. The specified JPA Provider class must implement the PersistenceProvider inter-
face. This implementation class name must be available from the JPA Provider's documentation. JPA
Providers that do not own the specified JPA Provider class must ignore such a Persistence Unit.

Otherwise, if the Persistence Unit is not restricted, the JPA Provider is assigned to this Persistence
Unit; it must be ready to provide an EntityManagerFactory object when the application requests
one.

The JPA Provider uses the Persistence Unit, together with any additional configuration properties,
to construct an Entity Manager Factory. The application then uses this Entity Manager Factory to con-
struct an Entity Manager, optionally providing additional configuration properties. The Entity Man-
ager then provides the operations for the application to store and retrieve entity classes from the
database.

The additional configuration properties provided with the creation of the Entity Manager Factory or
the Entity Manager are often used to specify the database driver and the credentials. This allows the

JPA Overview JPA Service Specification Version 1.0

Page 834 OSGi Compendium Release 6

Persistence Unit to be specified without committing to a specific database, leaving the choice to the
application at runtime.

The relations between the application, Entity Manager, Entity Manager Factory and the JPA Provider
are depicted in Figure 127.4 on page 834.

Figure 127.4 JPA Dynamic Model

Entity Manager Entity Manager
Factory

JPA Provider

Persistence Unit

uses
1 * * 1 * 1

implemented
by

Application

Data Source
Factory

created
by

provides db
connections

*

1 1

1

discovers

Persistence
Descriptor

1

*

0,1 *
specified

by

1

*

127.2.3 Managed and Unmanaged
The JPA specifications make a distinction between a managed and an unmanaged mode. In the man-
aged mode the presence of a Java EE Container is assumed. Such a container provides many services
for its contained applications like transaction handling, dependency injection, etc. One of these as-
pects can be the interface to the relational database. The JPA specifications therefore have defined a
special method for Java EE Containers to manage the persistence aspects of their Managed Clients.
This method is the createContainerEntityManagerFactory method on the PersistenceProvider in-
terface. This method is purely intended for Java EE Containers and should not be used in other envi-
ronments.

The other method on the PersistenceProvider interface is intended to be used by the Persistence
class static factory methods. The Persistence class searches for an appropriate JPA Provider by asking
all available JPA Providers to create an Entity Manager Factory based on configuration properties.
The first JPA Provider that is capable of providing an Entity Manager Factory wins. The use of these
static factory methods is called the unmanaged mode. It requires a JPA Provider to scan the class path
to find the assigned Persistence Units.

127.2.4 JDBC Access in JPA
A Persistence Unit is configured to work with a relational database. JPA Providers communicate
with a relational database through compliant JDBC database drivers. The database and driver para-
meters are specified in the Persistence Unit or configured during Entity Manager Factory or Entity
Manager creation with the configuration properties. The configuration properties for selecting a
database in non-managed mode were proprietary in JPA 1.0 but have been standardized in version
2.0 of JPA:

• javax.persistence. jdbc.dr iver - Fully-qualified name of the driver class
• javax.persistence. jdbc.ur l - Driver-specific URL to indicate database information
• javax.persistence. jdbc.user - User name to use when obtaining connections
• javax.persistence. jdbc.password - Password to use when obtaining connections

JPA Service Specification Version 1.0 Bundles with Persistence

OSGi Compendium Release 6 Page 835

127.3 Bundles with Persistence
The primary goal of this specification is to simplify the programming model for bundles that need
persistence. In this specification there are two application roles:

• Persistence Bundle - A Persistence Bundle contains the entity classes and one or more Persistence
Descriptors, each providing one or more Persistence Units.

• Client Bundle -A Client Bundle contains the code that manipulates the entity classes and uses an
Entity Manager to store and retrieve these entity classes with a relational database. The Client
Bundle obtains the required Entity Manager(s) via a service based model.

These roles can be combined in a single bundle.

127.3.1 Services
A JPA Provider uses Persistence Units to provide Client Bundles with a configured Entity Manager
Factory service and/or an Entity Manager Factory Builder service for each assigned Persistence Unit:

• Entity Manager Factory service - Provides an EntityManagerFactory object that depends on a com-
plete Persistence Unit. That is, it is associated with a registered Data Source Factory service.

• Entity Manager Factory Builder service - The Entity Manager Factory Builder service provides the
capability of creating an EntityManagerFactory object with additional configuration properties.

These services are collectively called the JPA Services. Entity Managers obtained from such JPA Ser-
vices can only be used to operate on entity classes associated with their corresponding Persistence
Unit.

127.3.2 Persistence Bundle
A Persistence Bundle is a bundle that specifies the Meta-Persistence header, see Meta Persistence Header
on page 838. This header refers to one or more Persistence Descriptors in the Persistence Bundle.
Commonly, this is the META-INF/persistence.xml resource. This location is the standard for non-
OSGi environments, however an OSGi bundle can also use other locations as well as multiple re-
sources.

For example, the contents of a simple Persistence Bundle with a single Person entity class could look
like:

META-INF/
META-INF/MANIFEST.MF
OSGI-INF/address.xml
com/acme/Person.class

The corresponding manifest would then look like:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Meta-Persistence: OSGI-INF/address.xml
Bundle-SymbolicName: com.acme.simple.persistence
Bundle-Version: 3.2.4.200912231004

A Persistence Bundle is a normal bundle; it must follow all the rules of OSGi and can use all OSGi
constructs like Bundle-Classpath, fragment bundles, import packages, export packages, etc. Howev-
er, there is one limitation: any entity classes must originate in the bundle's JAR, it cannot come from
a fragment. This requirement is necessary to simplify enhancing entity classes.

Bundles with Persistence JPA Service Specification Version 1.0

Page 836 OSGi Compendium Release 6

127.3.3 Client Bundles
A Client Bundle uses the entity classes from a Persistence Bundle to provide its required functional-
ity. To store and retrieve these entity classes a Client Bundle requires an Entity Manager that is con-
figured for the corresponding Persistence Unit.

An Entity Manager is intended to be used by a single session, it is not thread safe. Therefore, a client
needs an Entity Manager Factory to create an Entity Manager. In an OSGi environment, there are
multiple routes to obtain an Entity Manager Factory.

A JPA Provider must register an Entity Manager Factory service for each assigned Persistence Unit
that is complete. Complete means that it is a configured Persistence Unit, including the reference to
the relational database. The Entity Manager Factory service is therefore bound to a Data Source Fac-
tory service and Client Bundles should not attempt to rebind the Data Source Factory with the con-
figuration properties of the createEntityManager(Map) method. See Rebinding on page 842 for the
consequences. If the Data Source Factory must be bound by the Client Bundle then the Client Bun-
dle should use the Custom Configured Entity Manager on page 836.

The Entity Manager Factory service must be registered with the service properties as defined in Ser-
vice Registrations on page 839. These are:

• osgi .unit .name - (Str ing) The name of the Persistence Unit
• osgi .unit .vers ion - (Str ing) The version of the associated Persistence Bundle
• osgi .unit .provider - (Str ing) The implementation class name of the JPA Provider

The life cycle of the Entity Manager Factory service is bound to the Persistence Bundle, the JPA
Provider, and the selected Data Source Factory service.

A Client Bundle that wants to use an Entity Manager Factory service should therefore use an appro-
priate filter to select the Entity Manager Factory service that corresponds to its required Persistence
Unit. For example, the following snippet uses Declarative Services, see Declarative Services Specifica-
tion on page 289, to statically depend on such a service:

<reference name="accounting"
 target="(&(osgi.unit.name=Accounting)(osgi.unit.version=3.2.*))"
 interface="javax.persistence.EntityManagerFactory"/>

127.3.4 Custom Configured Entity Manager
If a Client Bundle needs to provide configuration properties for the creation of an Entity Manager
Factory it should use the Entity Manager Factory Builder service. This can for example be used to pro-
vide the database selection properties when the Persistence Unit is incomplete or if the database se-
lection needs to be overridden.

The Entity Manager Factory Builder service's life cycle must not depend on the availability of any
Data Source Factory, even if a JDBC driver class name is specified in the Persistence Descriptor. The
Entity Manager Factory Builder service is registered with the same service properties as the corre-
sponding Entity Factory service, see Service Registrations on page 839.

The following method is defined on the EntityManagerFactoryBui lder interface:

• createEntityManagerFactory(Map) - Returns a custom configured EntityManagerFactory in-
stance for the Persistence Unit associated with the service. Accepts a map with the configura-
tion properties to be applied during Entity Manager Factory creation. The method must return a
proper Entity Manager Factory or throw an Exception.

The createEntityManagerFactory method allows standard and vendor-specific properties to be
passed in and applied to the Entity Manager Factory being created. However, some properties cannot
be honored by the aforementioned method. For example, the javax.persistence.provider JPA prop-

JPA Service Specification Version 1.0 Extending a Persistence Bundle

OSGi Compendium Release 6 Page 837

erty, as a means to specify a specific JPA Provider at runtime, cannot be supported because the JPA
Provider has already been decided; it is the JPA Provider that registered the Entity Manager Factory
Builder service. A JPA Provider should throw an Exception if it recognizes the property but it cannot
use the property when specified through the builder. Unrecognized properties must be ignored.

Once an Entity Manager Factory is created the specified Data Source becomes associated with the
Entity Manager Factory. It is therefore not possible to re-associate an Entity Manager Factory with
another Data Source by providing different properties. A JPA Provider must throw an Exception
when an attempt is made to re-specify the database properties. See Rebinding on page 842 for fur-
ther information.

As an example, a sample snippet of a client that wants to operate on a persistence unit named Ac-
counting and pass in the JDBC user name and password properties is:

ServiceReference[] refs = context.getServiceReferences(
 EntityManagerFactoryBuilder.class.getName(),
 "(osgi.unit.name=Accounting)");
if (refs != null) {
 EntityManagerFactoryBuilder emfBuilder =
 (EntityManagerFactoryBuilder) context.getService(refs[0]);
 if (emfBuilder != null) {
 Map<String,Object> props = new HashMap<String,Object>();
 props.put("javax.persistence. jdbc.user", userString);
 props.put("javax.persistence. jdbc.password",passwordString);
 EntityManagerFactory emf = emfBuilder.createEntityManagerFactory(props);
 EntityManager em = emf.createEntityManager();
 ...
}

The example does not handle the dynamic dependencies on the associated Data Source Factory ser-
vice.

127.4 Extending a Persistence Bundle
A Persistence Bundle is identified by its Meta-Persistence manifest header that references a number
of Persistence Descriptor resources. Persistence bundles must be detected by a JPA Provider. The JPA
Provider must parse any Persistence Descriptors in these bundles and detect the assigned Persistence
Units. For each assigned Persistence Unit, the JPA Provider must register an Entity Manager Factory
Builder service when the Persistence Bundle is ready, see Ready Phase on page 839.

For complete and assigned Persistence Units, the JPA Provider must find the required Data Source
Factory service based on the driver name. When the Persistence Bundle is ready and the selected Da-
ta Source Factory is available, the JPA Provider must have an Entity Manager Factory service regis-
tered that is linked to that Data Source Factory.

When the Persistence Bundle is stopped (or the JPA Provider stops), the JPA Provider must close all
connections and cleanup any resources associated with the Persistence Bundle.

This process is outlined in detail in the following sections.

127.4.1 Class Space Consistency
A JPA Provider must ignore Persistence Bundles that are in another class space for the
javax.persistence.* packages. Such a JPA Provider cannot create JPA Services that would be visible
and usable by the Client Bundles.

Extending a Persistence Bundle JPA Service Specification Version 1.0

Page 838 OSGi Compendium Release 6

127.4.2 Meta Persistence Header
A Persistence Bundle is a bundle that contains the Meta-Persistence header. If this header is not
present, then this specification does not apply and a JPA Provider should ignore the corresponding
bundle.

The persistence root of a Persistence Unit is the root of the Persistence Bundle's JAR

The Meta-Persistence header has a syntax of:

Meta-Persistence ::= (jar-path (',' jar-path)*)?
jar-path ::= path ('!/' spath)?
spath ::= path // must not start with solidus ('/' \u002F)

The header may include zero or more comma-separated jar-paths , each a path to a Persistence De-
scriptor resource in the bundle. Paths may optionally be prefixed with the solidus (' / ' \u002F) char-
acter. The JPA Provider must always include the META-INF/persistence.xml first if it is not one of the
listed paths. Wildcards in directories are not supported. The META-INF/persistence.xml is therefore
the default location for an empty header.

For example:

Meta-Persistence: META-INF/jpa.xml, persistence/jpa.xml

The previous example will instruct the JPA Provider to process the META-INF/persistence.xml re-
source first, even though it is not explicitly listed. The JPA Provider must then subsequently process
META-INF/jpa.xml and the persistence/jpa.xml resources.

The paths in the Meta-Persistence header must be used with the Bundle.getEntry() method, or a
mechanism with similar semantics, to obtain the corresponding resource. The getEntry method
does not force the bundle to resolve when still unresolved; resolving might interfere with the effi-
ciency of any required entity class enhancements. However, the use of the getEntry method implies
that fragment bundles cannot be used to contain Persistence Descriptors nor entity classes.

Paths in the Meta-Persistence header can reference JAR files that are nested in the bundle by using
the ! / jar : URL syntax to separate the JAR file from the path within the JAR, for example:

Meta-Persistence: embedded.jar!/META-INF/persistence.xml

This example refers to a resource in the embedded. jar resource, located in the META-INF directory of
embedded. jar .

The ! / splits the jar-path in a prefix and a suffix:

• Prefix - The prefix is a path to a JAR resource in the bundle.
• Suffix - The suffix is a path to a resource in the JAR identified by the prefix.

For example:

embedded.jar!/META-INF/persistence.xml
prefix: embedded.jar
suffix: META-INF/persistence.xml

It is not required that all listed or implied resources are present in the bundle's JAR. For example,
it is valid that the default META-INF/persistence.xml resource is absent. However, if no Persistence
Units are found at all then the absence of any Persistence Unit is regarded as an error that should be
logged. In this case, the Persistence Bundle is further ignored.

127.4.3 Processing
A JPA Provider can detect a Persistence Bundle as early as its installation time. This early detection
allows the JPA Provider to validate the Persistence Bundle as well as prepare any mechanisms to en-

JPA Service Specification Version 1.0 Extending a Persistence Bundle

OSGi Compendium Release 6 Page 839

hance the classes for better performance. However, this process can also be delayed until the bundle
is started.

The JPA Provider must validate the Persistence Bundle. A valid Persistence Bundle must:

• Have no parsing errors of the Persistence Descriptors
• Validate all Persistence Descriptors against their schemas
• Have at least one assigned Persistence Unit
• Have all entity classes mentioned in the assigned Persistence Units on the Persistence Bundle's

JAR.

A Persistence Bundle that uses multiple providers for its Persistence Units could become incompati-
ble with future versions of this specification.

If any validation fails, then this is an error and should be logged. Such a bundle is ignored complete-
ly even if it also contains valid assigned Persistence Units. Only a bundle update can recover from
this state.

Persistence Units can restrict JPA Providers by specifying a provider dependency. JPA Providers that
do not own this JPA Provider implementation class must ignore such a Persistence Unit completely.
Otherwise, if the JPA Provider can service a Persistence Unit, it assigns itself to this Persistence Unit.

If after the processing of all Persistence Descriptors, the JPA Provider has no assigned Persistence
Units, then the JPA Provider must further ignore the Persistence Bundle.

127.4.4 Ready Phase
A Persistence Bundle is ready when its state is ACTIVE or, when a lazy activation policy is used,
STARTING . A JPA Provider must track the ready state of Persistence Bundles that contain assigned
Persistence Units.

While a Persistence Bundle is ready, the JPA Provider must have, for each assigned Persistence Unit,
an Entity Manager Factory Builder service registered to allow Client Bundles to create new Entity-
ManagerFactory objects. The JPA Provider must also register an Entity Manager Factory for each as-
signed and complete Persistence Unit that has its corresponding Data Source available in the service
registry.

The service registration process is asynchronous with the Persistence Bundle start because a JPA
Provider could start after a Persistence Bundle became ready.

127.4.5 Service Registrations
The JPA Services must be registered through the Bundle Context of the corresponding Persistence
Bundle to ensure proper class space consistency checks by the OSGi Framework.

JPA Services are always related to an assigned Persistence Unit. To identify this Persistence Unit and
the assigned JPA Provider, each JPA Service must have the following service properties:

• osgi .unit .name - (Str ing) The name of the Persistence Unit. This property corresponds to the
name attribute of the persistence-unit element in the Persistence Descriptor. It is used by Client
Bundles as the primary filter criterion to obtain a JPA Service for a required Persistence Unit.
There can be multiple JPA Services registered under the same osgi .unit .name , each representing
a different version of the Persistence Unit.

• osgi .unit .vers ion - (Str ing) The version of the Persistence Bundle, as specified in Bundle-Version
header, that provides the corresponding Persistence Unit. Client Bundles can filter their required
JPA Services based on a particular Persistence Unit version.

• osgi .unit .provider - (Str ing) The JPA Provider implementation class name that registered the
service. The osgi .unit .provider property allows Client Bundles to know the JPA Provider that is
servicing the Persistence Unit. Client Bundles should be careful when filtering on this proper-

Extending a Persistence Bundle JPA Service Specification Version 1.0

Page 840 OSGi Compendium Release 6

ty, however, since the JPA Provider that is assigned a Persistence Unit may not be known by the
Client Bundle ahead of time. If there is a JPA Provider dependency, it is better to specify this de-
pendency in the Persistence Unit because other JPA Providers are then not allowed to assign such
a Persistence Unit and will therefore not register a service.

127.4.6 Registering the Entity Manager Factory Builder Service
Once the Persistence Bundle is ready, a JPA Provider must register an Entity Manager Factory Builder
service for each assigned Persistence Unit from that Persistence Bundle.

The Entity Manager Factory Builder service must be registered with the service properties listed in
Service Registrations on page 839. The Entity Manager Factory Builder service is registered under
the org.osgi .service. jpa.EntityManagerFactoryBui lder name. This interface is using the JPA pack-
ages and is therefore bound to one of the two supported versions, see Dependencies on page 830.

The Entity Manager Factory Builder service enables the creation of a parameterized version of an
Entity Factory Manager by allowing the caller to specify configuration properties. This approach is
necessary if, for example, the Persistence Unit is not complete.

127.4.7 Registering the Entity Manager Factory
A complete Persistence Unit is configured with a specific relational database driver, see JDBC Ac-
cess in JPA on page 834. A JPA Provider must have an Entity Manager Factory service registered for
each assigned and complete Persistence Unit when:

• The originating Persistence Bundle is ready, and
• A matching Data Source Factory service is available. Matching a Data Source Factory service to a

Persistence Unit is discussed in Database Access on page 841.

A JPA Provider must track the life cycle of the matching Data Source Factory service; while this ser-
vice is unavailable the Entity Manager Factory service must also be unavailable. Any active Entity
Managers created by the Entity Manager Factory service become invalid to use at that time.

The Entity Manager Factory service must be registered with the same service properties as described
for the Entity Manager Factory Builder service, see Service Registrations on page 839. It should be
registered under the following name:

 javax.persistence.EntityManagerFactory

The EntityManagerFactory interface is from the JPA packages and is therefore bound to one of the
two supported versions, see Dependencies on page 830.

An Entity Manager Factory is bound to a Data Source Factory service because its assigned Persis-
tence Unit was complete. However, a Client Bundle could still provide JDBC configuration prop-
erties for the createEntityManager(Map) method. This not always possible, see Rebinding on page
842.

127.4.8 Stopping
If a Persistence Bundle is being stopped, then the JPA Provider must ensure that any resources allo-
cated on behalf of the Persistence Bundle are cleaned up and all open connections are closed. This
cleanup must happen synchronously with the STOPPING event. Any Exceptions being thrown
while cleaning up should be logged but must not stop any further clean up.

If the JPA Provider is being stopped, the JPA Provider must unregister all JPA Services that it regis-
tered through the Persistence Bundles and clean up as if those bundles were stopped.

JPA Service Specification Version 1.0 JPA Provider

OSGi Compendium Release 6 Page 841

127.5 JPA Provider
JPA Providers supply the implementation of the JPA Services and the Persistence Provider service. It
is the responsibility of a JPA Provider to store and retrieve the entity classes from a relational data-
base. It is the responsibility of the JPA Provider to register a Persistence Provider and start tracking
Persistence Bundles, see Extending a Persistence Bundle on page 837.

127.5.1 Managed Model
A JPA Provider that supports running in managed mode should register a specific service for the Ja-
va EE Containers: the Persistence Provider service. The interface is the standard JPA Persistence-
Provider interface. See Dependencies on page 830 for the issues around the multiple versions that
this specification supports.

The service must be registered with the following service property:

• javax.persistence.provider - The JPA Provider implementation class name, a documented name
for all JPA Providers.

The Persistence Provider service enables a Java EE Container to find a particular JPA Provider. This
service is intended for containers only, not for Client Bundles because there are implicit assump-
tions in the JPA Providers about the Java EE environment. A Java EE Container must obey the life
cycle of the Persistence Provider service. If this service is unregistered then it must close all connec-
tions and clean up the corresponding resources.

127.5.2 Database Access
A Persistence Unit is configured to work with a relational database. JPA Providers must commu-
nicate with a relational database through a compliant JDBC database driver. The database and dri-
ver parameters are specified with properties in the Persistence Unit or the configuration properties
when a Entity Manager Factory Builder is used to build an Entity Manager Factory. All JPA Providers,
regardless of version, in an OSGi environment must support the following properties for database
access:

• javax.persistence. jdbc.dr iver - Fully-qualified name of the driver class.
• javax.persistence. jdbc.ur l - Driver-specific URL to indicate database information
• javax.persistence. jdbc.user - User name to use when obtaining connections
• javax.persistence. jdbc.password - Password to use when obtaining connections

There are severe limitations in specifying these properties after the Entity Manager Factory is creat-
ed for the first time, see Rebinding on page 842.

127.5.3 Data Source Factory Service Matching
Providers must use the javax.persistence. jdbc.dr iver property, as defined in JDBC Access in JPA on
page 834, to obtain a Data Source Factory service. The Data Source Factory is specified in JDBC™
Service Specification on page 801. The javax.persistence. jdbc.dr iver property must be matched with
the value of the Data Source Factory service property named osgi . jdbc.dr iver.c lass .

The Data Source Factory service is registered with the osgi . jdbc.dr iver.c lass service property that
holds the class name of the driver. This property must match the javax.persistence. jdbc.dr iver ser-
vice property of the Persistence Unit.

For example, if the Persistence Unit specifies the com.acme.db.Driver database driver in the
javax.persistence. jdbc.dr iver property (or in the Persistence Descriptor property element), then the
following filter would select an appropriate Data Source Factory:

JPA Provider JPA Service Specification Version 1.0

Page 842 OSGi Compendium Release 6

(&(objectClass=org.osgi.service.jdbc.DataSourceFactory)
 (osgi . jdbc.dr iver.c lass=com.acme.db.Driver))

Once the Data Source Factory is obtained, the JPA Provider must obtain a DataSource object. This
Data Source object must then be used for all relational database access.

In [1] JPA 1.0 the JPA JDBC properties were not standardized. JPA Providers typically defined a set
of JDBC properties, similar to those defined in JPA 2.0, to configure JDBC driver access. JPA 1.0 JPA
Providers must look up the Data Source Factory service first using the JPA 2.0 JDBC properties. If
these properties are not defined then they should fall back to their proprietary driver properties.

127.5.4 Rebinding
In this specification, the Entity Manager Factory service is only registered when the Persistence Unit
is complete and a matching Data Source Factory service is available. However, the API of the Entity
Manager Factory Builder allows the creation of an Entity Manager Factory with configuration prop-
erties. Those configuration properties could contain the JDBC properties to bind to another Data
Source Factory service than it had already selected.

This case must not be supported by a JPA Provider, an Illegal Argument Exception must be thrown.
If such a case would be supported then the life cycle of the Entity Manager Factory service would
still be bound to the first Data Source Factory. There would be no way for the JPA Provider to sig-
nal to the Client Bundle that the returned Entity Manager Factory is no longer valid because the re-
bound Data Source Factory was unregistered.

Therefore, when an Entity Manager Factory is being created using the Entity Manager Factory
Builder, a JPA Provider must verify that the new properties are compatible with the properties of the
already created Entity Manager Factory. If no, then an Exception must be thrown. If they are com-
patible, then an instance of the previous Entity Manager Factory should be returned.

127.5.5 Enhancing Entity Classes
JPA Providers may choose to implement the JPA specifications using various implementation ap-
proaches and techniques. This promotes innovation in the area, but also opens the door to limita-
tions and constraints arising due to implementation choices. For example, there are JPA Providers
that perform byte code weaving during the entity class loading. Dynamic byte code weaving re-
quires that the entity classes are not loaded until the JPA Provider is first able to intercept the load-
ing of the entity class and be given an opportunity to do its weaving. It also implies that the Persis-
tence Bundle and any other bundles that import packages from that bundle must be refreshed if the
JPA Provider needs to be changed.

This is necessary because the JPA Services are registered against the Bundle Contexts of the Persis-
tence Bundles and not the Bundle Context of the JPA Providers. Client Bundles must then unget the
service to unbind themselves from the uninstalled JPA Provider. However, since most JPA Providers
perform some kind of weaving or class transformation on the entity classes, the Persistence Bundle
will likely need to be refreshed. This will cause the Client Bundles to be refreshed also because they
depend on the packages of the entity classes.

127.5.6 Class Loading
JPA Providers cannot have package dependencies on entity classes in Persistence Bundles because
they cannot know at install time what Persistence Bundles they will be servicing. However, when a
JPA Provider is servicing a Persistence Bundle, it must be able to load classes and resources from that
Persistence Bundle according to the OSGi bundle rules. To do this class loading it must obtain a class
loader that has the same visibility as the Persistence Bundle's bundle class loader. This will also al-
low it to load and manage metadata for the entity classes and resources for that Persistence Bundle's
assigned Persistence Units. These resources and entity classes must reside directly in the Persistence
Bundle, they must be accessed using the getEntry method. Entity classes and resources must not re-
side in fragments.

JPA Service Specification Version 1.0 Static Access

OSGi Compendium Release 6 Page 843

127.5.7 Validation
There is not yet an OSGi service specification defined for validation providers. If validation is re-
quired, the validation implementation will need to be included with the JPA Provider bundle.

127.6 Static Access
Non-managed client usage of JPA has traditionally been achieved through the Persistence class. In-
voking a static method on the Persistence class is a dependency on the returned JPA Provider that
cannot be managed by the OSGi framework.

However, such an unmanaged dependency is supported in this specification by the Static Persis-
tence bundle. This bundle provides backwards compatibility for programs that use existing JPA ac-
cess patterns. However, usage of this static model requires that the deployer ensures that the actors
needed are in place at the appropriate times by controlling the life cycles of all participating bun-
dles. The normal OSGi safe-guards and dependency handling do not work in the case of static access.

A Static Persistence Bundle must provide static access from the Persistence class to the JPA Services.

127.6.1 Access
There are two methods on the Persistence class:

• createEntityManagerFactory(Str ing)
• createEntityManagerFactory(Str ing,Map)

Both methods take the name of a Persistence Unit. The last method also takes a map that contains
extra configuration properties. To support the usage of the static methods on the Persistence class,
the implementation of the Persistence.createEntityManagerFactory method family must do a
lookup of one of the JPA Services associated with the selected Persistence Unit.

If no configuration properties are specified, the Static Persistence Bundle must look for an Entity
Manager Factory service with the osgi .unit .name property set to the given name. The default ser-
vice should be used because no selector for a version is provided. If no such service is available, nul l
must be returned. Provisioning of multiple versioned Persistence Units is not supported. Deployers
should ensure only a single version of a Persistence Unit with the same name is present in an OSGi
framework at any moment in time.

Otherwise, if configuration properties are provided, the Static Access implementation must look
for an Entity Manager Factory Builder service with the osgi .unit .name property set to the given Per-
sistence Unit name. If no such service exists, nul l must be returned. Otherwise, the default service
must be used to create an Entity Manager Factory with the given configuration properties. The re-
sult must be returned to the caller.

For service lookups, the Static Persistence Bundle must use its own Bundle Context, it must not at-
tempt to use the Bundle Context of the caller. All exceptions should be passed to the caller.

The class space of the Entity Manager Factory and the class space of the client cannot be enforced
to be consistent by the framework because it is the Persistence class that is doing the lookup of the
service, and not the actual calling Client Bundle that will be using the Entity Manager Factory. The
framework cannot make the connection and therefore cannot enforce that the class spaces corre-
spond. Deployers should therefore ensure that the involved class spaces are correctly wired.

127.7 Security
The security for this specification is based on the JPA specification.

org.osgi.service.jpa JPA Service Specification Version 1.0

Page 844 OSGi Compendium Release 6

127.8 org.osgi.service.jpa

JPA Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jpa; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jpa; vers ion="[1.0,1.1)"

127.8.1 Summary

• EntityManagerFactoryBui lder - This service interface offers JPA clients the ability to create in-
stances of EntityManagerFactory for a given named persistence unit.

127.8.2 public interface EntityManagerFactoryBuilder
This service interface offers JPA clients the ability to create instances of EntityManagerFactory for
a given named persistence unit. A service instance will be created for each named persistence unit
and can be filtered by comparing the value of the osgi.unit.name property containing the persis-
tence unit name. This service is used specifically when the caller wants to pass in factory-scoped
properties as arguments. If no properties are being used in the creation of the EntityManagerFactory
then the basic EntityManagerFactory service should be used.

127.8.2.1 public static final String JPA_UNIT_NAME = "osgi.unit.name"

The name of the persistence unit.

127.8.2.2 public static final String JPA_UNIT_PROVIDER = "osgi.unit.provider"

The class name of the provider that registered the service and implements the JPA
javax.persistence.PersistenceProvider interface.

127.8.2.3 public static final String JPA_UNIT_VERSION = "osgi.unit.version"

The version of the persistence unit bundle.

127.8.2.4 public EntityManagerFactory createEntityManagerFactory(Map<String,Object> props)

props Properties to be used, in addition to those in the persistence descriptor, for configuring the Entity-
ManagerFactory for the persistence unit.

□ Return an EntityManagerFactory instance configured according to the properties defined in the cor-
responding persistence descriptor, as well as the properties passed into the method.

Returns An EntityManagerFactory for the persistence unit associated with this service. Must not be null.

127.9 References
[1] JPA 1.0

http://jcp.org/en/jsr/summary?id=220

[2] JPA 2.0
http://jcp.org/en/jsr/summary?id=317

JPA Service Specification Version 1.0 References

OSGi Compendium Release 6 Page 845

[3] Java EE 5
http://www.oracle.com/technetwork/java/javaee/tech/index.html

References JPA Service Specification Version 1.0

Page 846 OSGi Compendium Release 6

Web Applications Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 847

128 Web Applications Specification

Version 1.0

128.1 Introduction
The Java EE Servlet model has provided the backbone of web based applications written in Java. Giv-
en the popularity of the Servlet model, it is desirable to provide a seamless experience for deploying
existing and new web applications to Servlet containers operating on the OSGi framework. Previ-
ously, the Http Service in the catalogue of OSGi compendium services was the only model specified
in OSGi to support the Servlet programming model. However, the Http Service, as defined in that
specification, is focused on the run time, as well as manual construction of the servlet context, and
thus does not actually support the standard Servlet packaging and deployment model based on the
Web Application Archive, or WAR format.

This specification defines the Web Application Bundle, which is a bundle that performs the same
role as the WAR in Java EE. A WAB uses the OSGi life cycle and class/resource loading rules instead
of the standard Java EE environment. WABs are normal bundles and can leverage the full set of fea-
tures of the OSGi framework.

Web applications can also be installed as traditional WARs through a manifest rewriting process.
During the install, a WAR is transformed into a WAB. This specification was based on ideas devel-
oped in [5] PAX Web Extender.

This Web Application Specification provides support for web applications written to the Servlet 2.5
specification, or later. Given that Java Server Pages, or JSPs, are an integral part of the Java EE web ap-
plication framework, this specification also supports the JSP 2.1 specification or greater if present.
This specification details how a web application packaged as a WAR may be installed into an OSGi
framework, as well as how this application may interact with, and obtain, OSGi services.

128.1.1 Essentials

• Extender - Enable the configuration of components inside a bundle based on configuration data
provided by the bundle developer.

• Services - Enable the use of OSGi services within a Web Application.
• Deployment - Define a mechanism to deploy Web Applications, both OSGi aware and non OSGi

aware, in the OSGi environment.
• WAR File Support - Transparently enhance the contents of a WAR's manifest during installation

to add any headers necessary to deploy a WAR as an OSGi bundle.

128.1.2 Entities

• Web Container - The implementation of this specification. Consists of a Web Extender, a Web URL
Handler and a Servlet and Java Server Pages Web Runtime environment.

• Web Application - A program that has web accessible content. A Web Application is defined by [2]
Java EE Web Applications.

• Web Application Archive (WAR) - The Java EE standard resource format layout of a JAR file that
contains a deployable Web Application.

• Web Application Bundle - A Web Application deployed as an OSGi bundle, also called a WAB.
• WAB - The acronym for a Web Application Bundle.

Introduction Web Applications Specification Version 1.0

Page 848 OSGi Compendium Release 6

• Web Extender - An extender bundle that deploys the Web Application Bundle to the Web Run-
time based on the Web Application Bundle's state.

• Web URL Handler - A URL handler which transforms a Web Application Archive (WAR) to con-
form to the OSGi specifications during installation by installing the WAR through a special URL
so that it becomes a Web Application Bundle.

• Web Runtime - A Java Server Pages and Servlet environment, receiving the web requests and trans-
lating them to servlet calls, either from Web Application servlets or other classes.

• Web Component - A Servlet or Java Server Page (JSP).
• Servlet - An object implementing the Servlet interface; this is for the request handler model in the

Servlet Specification.
• Servlet Context - The model representing the Web Application in the Servlet Specification.
• Java Server Page (JSP) - A declarative, template based model for generating content through

Servlets that is optionally supported by the Web Runtime.
• Context Path - The URI path prefix of any content accessible in a Web Application.

Figure 128.1 Web Container Entities

Web URL Handler
Impl

Web Application

URL Stream
Handler Service
url.handler.protocol=webbundle

Web Extender
Impl

Web Runtime
Impl

Web ARchive

Event Admin

Web Container

invoke
servlets

install bundle

Servlet Context

web.xml

Web
Server

transformer

0,1

 g
et

 co
nt

en
t

co
nf

ig
ur

ed
 b

y

re
w

rit
es

m
an

ife
st

128.1.3 Dependencies
The package dependencies for the clients of this specification are listed in the following table.

Table 128.1 Dependency versions

Packages Export Version Client Import Range
javax.servlet 2.5 [2.5,3.0)
javax.servlet .http 2.5 [2.5,3.0)
javax.servlet . jsp.el 2.1 [2.1,3.0)
javax.servlet . jsp. jst l .core 1.2 [1.2,2.0)
javax.servlet . jsp. jst l .fmt 1.2 [1.2,2.0)
javax.servlet . jsp. jst l .sql 1 .2 [1.2,2.0)
javax.servlet . jsp. jst l .t lv 1.2 [1.2,2.0)
javax.servlet . jsp.resources 2.1 [2.1,3.0)

Web Applications Specification Version 1.0 Web Container

OSGi Compendium Release 6 Page 849

Packages Export Version Client Import Range
javax.servlet . jsp.tagext 2.1 [2.1,3.0)
javax.servlet . jsp 2.1 [2.1,3.0)

JSP is optional for the Web Runtime.

128.1.4 Synopsis
The Web Application Specification is composed of a number of cooperating parts, which are imple-
mented by a Web Container. A Web Container consists of:

• Web Extender - Responsible for deploying Web Application Bundles (WAB) to a Web Runtime,
• Web Runtime - Provides support for Servlet and optionally for JSPs, and
• Web URL Handler - Provides on-the-fly enhancements of non-OSGi aware Web ARchives (WAR)

so that they can be installed as a WAB.

WABs are standard OSGi bundles with additional headers in the manifest that serve as deployment
instructions to the Web Extender. WABs can also contain the Java EE defined web.xml descriptor in
the WEB-INF/ directory. When the Web Extender detects that a WAB is ready the Web Extender de-
ploys the WAB to the Web Runtime using information contained in the web.xml descriptor and the
appropriate manifest headers. The Bundle Context of the WAB is made available as a Servlet Con-
text attribute. From that point, the Web Runtime will use the information in the WAB to serve con-
tent to any requests. Both dynamic as well as static content can be provided.

The Web URL Handler allows the deployment of an unmodified WAR as a WAB into the OSGi
framework. This Web URL Handler provides a URL stream handler with the webbundle: scheme. In-
stalling a WAR with this scheme allows the Web URL Handler to interpose itself as a filter on the in-
put stream of the contents of the WAR, transforming the contents of the WAR into a WAB. The Web
URL Handler rewrites the manifest by adding necessary headers to turn the WAR into a valid WAB.
Additional headers can be added to the manifest that serve as instructions to the Web Extender.

After a WAB has been deployed to the Web Runtime, the Web Application can interact with the OS-
Gi framework via the provided Bundle Context. The Servlet Context associated with this WAB fol-
lows the same life cycle as the WAB. That is, when the underlying Web Application Bundle is start-
ed, the Web Application is deployed to the Web Runtime. When the underlying Web Application
Bundle is stopped because of a failure or other reason, the Web Application is undeployed from the
Web Run-time.

128.2 Web Container
A Web Container is the implementation of this specification. It consists of the following parts:

• Web Extender - Detects Web Application Bundles (WAB) and tracks their life cycle. Ready WABs
are deployed to the Web Runtime.

• Web Runtime - A runtime environment for a Web Application that supports the [3] Servlet 2.5 spec-
ification and [4] JSP 2.1 specification or later. The Web Runtime receives web requests and calls the
appropriate methods on servlets. Servlets can be implemented by classes or Java Server Pages.

• Web URL Handler - A URL stream handler providing the webbundle: scheme. This scheme can be
used to install WARs in an OSGi framework. The Web URL Handler will then automatically add
the required OSGi manifest headers.

The extender, runtime, and handler can all be implemented in the same or different bundles and
use unspecified mechanisms to communicate. This specification uses the defined names of the sub-
parts as the actor; the term Web Container is the general name for this collection of actors.

Web Application Bundle Web Applications Specification Version 1.0

Page 850 OSGi Compendium Release 6

128.3 Web Application Bundle
Bundles are the deployment and management entities under OSGi. A Web Application Bundle (WAB)
is deployed as an OSGi bundle in an OSGi framework, where each WAB provides a single Web Ap-
plication. A Web Application can make use of the [3] Servlet 2.5 specification and [4] JSP 2.1 specification
programming models, or later, to provide content for the web.

A WAB is defined as a normal OSGi bundle that contains web accessible content, both static and dy-
namic. There are no restrictions on bundles. A Web Application can be packaged as a WAB during
application development, or it can be transparently created at bundle install time from a standard
Web Application aRchive (WAR) via transformation by the Web URL Handler, see Web URL Handler
on page 854.

A WAB is a valid OSGi bundle and as such must fully describe its dependencies and exports (if any).
As Web Applications are modularized further into multiple bundles (and not deployed as WAR files
only) it is possible that a WAB can have dependencies on other bundles.

A WAB may be installed into the framework using the BundleContext. instal lBundle methods. Once
installed, a WAB's life cycle is managed just like any other bundle in the framework. This life cy-
cle is tracked by the Web Extender who will then deploy the Web Application to the Web Runtime
when the WAB is ready and will undeploy it when the WAB is no longer ready. This state is depicted
in Figure 128.2.

Figure 128.2 State diagram Web Application

DEPLOYING

init

collision resolved

DEPLOYED UNDEPLOYING

UNDEPLOYEDFAILED

Web Application
deployed to runtime

WAB or Web
Extender stopped

Web Application
no longer available

WAB started

failure

128.3.1 WAB Definition
A WAB is differentiated from non Web Application bundles through the specification of the addi-
tional manifest header:

Web-ContextPath ::= path

The Web-ContextPath header specifies the value of the Context Path of the Web Application. All
web accessible content of the Web Application is available on the web server relative to this Con-
text Path. For example, if the context path is /sales , then the URL would be something like: http://
www.acme.com/sales. The Context Path must always begin with a solidus (' / ' \u002F).

The Web Extender must not recognize a bundle as a Web Application unless the Web-ContextPath
header is present in its manifest and the header value is a valid path for the bundle.

A WAB can optionally contain a web.xml resource to specify additional configuration. This web.xml
must be found with the Bundle f indEntr ies method at the path:

Web Applications Specification Version 1.0 Web Application Bundle

OSGi Compendium Release 6 Page 851

 WEB-INF/web.xml

The f indEntr ies method includes fragments, allowing the web.xml to be provided by a fragment. The
Web Extender must fully support a web.xml descriptor that specifies Servlets, Filters, or Listeners
whose classes are required by the WAB.

128.3.2 Starting the Web Application Bundle
A WAB's Web Application must be deployed while the WAB is ready. Deployed means that the Web
Application is available for web requests. Once deployed, a WAB can serve its web content on the
given Context Path. Ready is when the WAB:

• Is in the ACTIVE state, or
• Has a lazy activation policy and is in the STARTING state.

The Web Extender should ensure that serving static content from the WAB does not activate the
WAB when it has a lazy activation policy.

To deploy the WAB, the Web Extender must initiate the deploying of the Web Application into a
Web Runtime. This is outlined in the following steps:

1. Wait for the WAB to become ready. The following steps can take place asynchronously with the
starting of the WAB.

2. Post an org/osgi/service/web/DEPLOYING event. See Events on page 857.
3. Validate that the Web-ContextPath manifest header does not match the Context Path of any oth-

er currently deployed web application. If the Context Path value is already in use by another
Web Application, then the Web Application must not be deployed, and the deployment fails, see
Failure on page 852. The Web Extender should log the collision. If the prior Web Application
with the same Context Path is undeployed later, this Web Application should be considered as a
candidate, see Stopping the Web Application Bundle on page 853.

4. The Web Runtime processes deployment information by processing the web.xml descriptor, if
present. The Web Container must perform the necessary initialization of Web Components in
the WAB as described in the [3] Servlet 2.5 specification. This involves the following sub-steps in
the given order:
• Create a Servlet Context for the Web Application.
• Instantiate configured Servlet event listeners.
• Instantiate configured application filter instances etc.

The Web Runtime is required to complete instantiation of listeners prior to the start of execu-
tion of the first request into the Web Application by the Web Runtime. Attribute changes to the
Servlet Context and Http Session objects can occur concurrently. The Servlet Container is not
required to synchronize the resulting notifications to attribute listener classes. Listener classes
that maintain state are responsible for the integrity of the data and should handle this case ex-
plicitly.

If event listeners or filters are used in the web.xml , then the Web Runtime will load the corre-
sponding classes from the bundle activating the bundle if it was lazily started. Such a configura-
tion will therefore not act lazily.

5. Publish the Servlet Context as a service with identifying service properties, see Publishing the
Servlet Context on page 852.

6. Post an org/osgi/service/web/DEPLOYED event to indicate that the web application is now avail-
able. See Events on page 857.

If at any moment before the org/osgi/service/web/DEPLOYED event is published the deployment of
the WAB fails, then the WAB deployment fails, see Failure on page 852.

Web Application Bundle Web Applications Specification Version 1.0

Page 852 OSGi Compendium Release 6

128.3.3 Failure
Any validation failures must prevent the Web Application from being accessible via HTTP, and
must result in a org/osgi/service/web/FAILED event being posted. See Events on page 857. The sit-
uation after the failure must be as if the WAB was never deployed.

128.3.4 Publishing the Servlet Context
To help management agents with tracking the state of Web Applications, the Web Extender must
register the Servlet Context of the WAB as a service, using the Bundle Context of the WAB. The
Servlet Context service must be registered with the service properties listed in the following table.

Table 128.2 Servlet Context Service Properties

Property Name Type Description
osgi .web.symbol icname Str ing The symbolic name for the Web Application

Bundle
osgi .web.version Str ing The version of the Web Application Bundle. If no

Bundle-Version is specified in the manifest then
this property must not be set.

osgi .web.contextpath Str ing The Context Path from which the WAB's content
will be served.

128.3.5 Static Content
A deployed WAB provides content on requests from the web. For certain access paths, this can serve
content from the resources of the web application: this is called static content. A Web Runtime must
use the Servlet Context resource access methods to service static content, the resource loading strat-
egy for these methods is based on the f indEntr ies method, see Resource Lookup on page 858. For
confidentiality reasons, a Web Runtime must not return any static content for paths that start with
one of the following prefixes:

WEB-INF/
OSGI-INF/
META-INF/
OSGI-OPT/

These protected directories are intended to shield code content used for dynamic content generation
from accidentally being served over the web, which is a potential attack route. In the servlet speci-
fication, the WEB-INF/ directory in the WAR is protected in such a way. However, this protection is
not complete. A dependent JAR can actually be placed outside the WEB-INF directory that can then
be served as static content. The same is true for a WAB. Though the protected directories must nev-
er be served over the web, there are no other checks required to verify that no content can be served
that is also available from the Bundle class path.

It is the responsibility of the author of the WAB to ensure that confidential information remains
confidential by placing it in one of the protected directories. WAB bundles should be constructed in
such a way that they do not accidentally expose code or confidential information. The simplest way
to achieve this is to follow the WAR model where code is placed in the WEB-INF/classes directory
and this directory is placed on the Bundle's class path as the first entry. For example:

Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/acme.jar

128.3.6 Dynamic Content
Dynamic content is content that uses code to generate the content, for example a servlet. This code
must be loaded from the bundle with the Bundle loadClass method, following all the Bundle class
path rules.

Web Applications Specification Version 1.0 Web Application Bundle

OSGi Compendium Release 6 Page 853

Unlike a WAR, a WAB is not constrained to package classes and code resources in the WEB-INF/
classes directory or dependent JARs in WEB-INF/l ib/ only. These entries can be packaged in any way
that's valid for an OSGi bundle as long as such directories and JARs are part of bundle class path as
set with the Bundle-ClassPath header and any attached fragments. JARs that are specified in the Bun-
dle-ClassPath header are treated like JARs in the WEB-INF/l ib/ directory of the Servlet specification.
Similarly, any directory that is part of the Bundle-ClassPath header is treated like WEB-INF/classes
directory of the Servlet specification.

Like WARs, code content that is placed outside the protected directories can be served up to clients
as static content.

128.3.7 Content Serving Example
This example consists of a WAB with the following contents:

acme.jar:
 Bundle-ClassPath: WEB-INF/classes, LIB/bar.jar
 Web-ContextPath: /acme

 WEB-INF/lib/foo.jar
 LIB/bar.jar
 index.html
 favicon.ico

The content of the embedded JARs foo. jar and bar. jar is:

foo.jar: bar.jar:
 META-INF/foo.tld META-INF/bar.tld
 foo/FooTag.class bar/BarTag.class

Assuming there are no special rules in place then the following lists specifies the result of a number
of web requests for static content:

/acme/index.html acme.wab:index.html
/acme/favicon.ico acme.wab:favicon.ico
/acme/WEB-INF/lib/foo.jar not found because protecteddirectory
/acme/LIB/bar.jar acme.wab:LIB/bar.jar (code, but not protected)

In this example, the tag classes in bar. jar must be found (if JSP is supported) but the tag classes in
foo. jar must not because foo. jar is not part of the bundle class path.

128.3.8 Stopping the Web Application Bundle
A web application is stopped by stopping the corresponding WAB. In response to a WAB STOPPING
event, the Web Extender must undeploy the corresponding Web Application from the Servlet Con-
tainer and clean up any resources. This undeploying must occur synchronously with the WAB's
stopping event. This will involve the following steps:

1. An org/osgi/service/web/UNDEPLOYING event is posted to signal that a Web Application will
be removed. See Events on page 857.

2. Unregister the corresponding Servlet Context service
3. The Web Runtime must stop serving content from the Web Application.
4. The Web Runtime must clean up any Web Application specific resources as per servlet 2.5 speci-

fication.
5. Emit an org/osgi/service/web/UNDEPLOYED event. See Events on page 857.
6. It is possible that there are one or more colliding WABs because they had the same Context Path

as this stopped WAB. If such colliding WABs exists then the Web Extender must attempt to de-
ploy the colliding WAB with the lowest bundle id.

Web URL Handler Web Applications Specification Version 1.0

Page 854 OSGi Compendium Release 6

Any failure during undeploying should be logged but must not stop the cleaning up of resources
and notification of (other) listeners as well as handling any collisions.

128.3.9 Uninstalling the Web Application Bundle
A web application can be uninstalled by uninstalling the corresponding WAB. The WAB will be
uninstalled from the OSGi framework.

128.3.10 Stopping of the Web Extender
When the Web Extender is stopped all deployed WABs are undeployed as described in Stopping the
Web Application Bundle on page 853. Although the WAB is undeployed it remains in the ACTIVE
state. When the Web Extender leaves the STOPPING state all WABs will have been undeployed.

128.4 Web URL Handler
The Web URL Handler acts as a filter on the Input Stream of an install operation. It receives the
WAB or WAR and it then generates a JAR that conforms to the WAB specification by rewriting the
manifest resource. This process is depicted in Figure 128.3.

Figure 128.3 Web URL Handler

Web URL Handler
Impl

URL Stream
Handler Service
url.handler.protocol=webbundle

Web ARchive
or

WAB

install bundle

= transformer

WAB

en
ha

nc
es

m
an

ife
st

When the Web Container bundle is installed it must provide the webbundle: scheme to the URL
class. The Web URL Handler has two primary responsibilities:

• WAB - If the source is already a bundle then only the Web-ContextPath can be set or overwritten.
• WAR - If the source is a WAR (that is, it must not contain any OSGi defined headers) then convert

the WAR into a WAB.

The Web URL Handler can take parameters from the query arguments of the install URL, see URL
Parameters on page 855.

The URL handler must validate query parameters, and ensure that the manifest rewriting results in
valid OSGi headers. Any validation failures must result in Bundle Exception being thrown and the
bundle install must fail.

Once a WAB is generated and installed, its life cycle is managed just like any other bundle in the
framework.

Web Applications Specification Version 1.0 Web URL Handler

OSGi Compendium Release 6 Page 855

128.4.1 URL Scheme
The Web URL Handler's scheme is defined to be:

scheme ::= 'webbundle:' embedded '?' web-params
embedded ::= <embedded URL according to RFC 1738>
web-params ::= (web-param ('&' web-param)*)?
web-param ::= <key> '=' <value>

The web-param <key> and <value> as well as the <embedded ur l> must follow [6] Uniform Resource
Locators, RFC 1738 for their escaping and character set rules.A Web URL must further follow all the
rules of a URL. Whitespaces are not allowed between terms.

An example for a webbundle: URL:

webbundle:http://www.acme.com:8021/sales.war?Web-ContextPath=/sales

Any URL scheme understood by the framework can be embedded, such as an http: , or f i le : URL.
Some forms of embedded URL also contain URL query parameters and this must be supported. The
embedded URL most be encoded as a standard URL. That is, the control characters like colon (' : '
\u003A), solidus (' / ' \u002F), percent ('%' \u0025), and ampersand ('& ' \u0026) must not be encod-
ed. Thus the value returned from the getPath method may contain a query part. Any implementa-
tion must take care to preserve both the query parameters for the embedded URL, and for the com-
plete webbundle: URL. A question mark must always follow the embedded URL to simplify this pro-
cessing. The following example shows an HTTP URL with some query parameters:

webbundle:http://www.acme.com/sales?id=123?Bundle-SymbolicName=com.example&
 Web-ContextPath=/

128.4.2 URL Parsing
The URL object for a webbundle: URL must return the following values for the given methods:

• getProtocol - webbundle
• getPath - The complete embedded URL
• getQuery - The parameters for processing of the manifest.

For the following example:

webbundle:http://acme.com/repo?war=example.war?Web-ContextPath=/sales

The aforementioned methods must return:

• getProtocol - webbundle
• getPath - http://acme.com/repo?war=example.war
• getQuery - Web-ContextPath=/sales

128.4.3 URL Parameters
All the parameters in the webbundle: URL are optional except for the Web-ContextPath parameter.
The parameter names are case insensitive, but their values must be treated as case sensitive. Table
128.3 describes the parameters that must be supported by any webbundle: URL Stream handler. A
Web URL Handler is allowed to support additional parameters.

Table 128.3 Web bundle URL Parameters

Parameter Name Description
Bundle-Symbol icName The desired symbolic name for the resulting WAB.

Web URL Handler Web Applications Specification Version 1.0

Page 856 OSGi Compendium Release 6

Parameter Name Description
Bundle-Version The version of the resulting WAB. The value of this parameter must

follow the OSGi versioning syntax.
Bundle-ManifestVersion The desired bundle manifest version. Currently, the only valid value

for this parameter is 2 .
Import-Package A list of packages that the war file depends on.
Web-ContextPath The Context Path from which the Servlet Container should serve con-

tent from the resulting WAB. This is the only valid parameter when
the input JAR is already a bundle. This parameter must be specified.

128.4.4 WAB Modification
The Web URL Handler can set or modify the Web-ContextPath of a WAB if the input source is al-
ready a bundle. It must be considered as a bundle when any of the OSGi defined headers listed in Ta-
ble 128.3 is present in the bundle.

For WAB Modification, the Web URL Handler must only support the Web-ContextPath parameter
and it must not modify any existing headers other than the Web-ContextPath. Any other parameter
given must result in a Bundle Exception.

128.4.5 WAR Manifest Processing
The Web URL Handler is designed to support the transparent deployment of Java EE Web ARchives
(WAR). Such WARs are ignorant of the requirements of the underlying OSGi framework that hosts
the Web Runtime. These WARs are not proper OSGi bundles because they do not contain the neces-
sary metadata in the manifest. For example, a WAR without a Bundle-ManifestVersion, Import-Pack-
age, and other headers cannot operate in an OSGi framework.

The Web URL Handler implementation copies the contents of the embedded URL to the output and
rewrites the manifest headers based on the given parameters. The result must be a WAB.

Any parameters specified must be treated as manifest headers for the web. The following manifest
headers must be set to the following values if not specified:

• Bundle-ManifestVersion - Must be set to 2.
• Bundle-Symbol icName - Generated in an implementation specific way.
• Bundle-ClassPath - Must consist of:

• WEB-INF/classes
• All JARs from the WEB-INF/l ib directory in the WAR. The order of these embedded JARs is un-

specified.
• If these JARs declare dependencies in their manifest on other JARs in the bundle, then these

jars must also be appended to the Bundle-ClassPath header. The process of detecting JAR de-
pendencies must be performed recursively as indicated in the Servlet Specification.

• Web-ContextPath - The Web-ContextPath must be specified as a parameter. This Context Path
should start with a leading solidus (' / ' \u002F). The Web URL handler must add the preceding
solidus it if it is not present.

The Web URL Handler is responsible for managing the import dependencies of the WAR. Imple-
mentations are free to handle the import dependencies in an implementation defined way. They can
augment the Import-Package header with byte-code analysis information, add a fixed set of clauses,
and/or use the DynamicImport-Package header as last resort.

Any other manifest headers defined as a parameter or WAR manifest header not described in this
section must be copied to the WAB manifest by the Web URL Handler. Such an header must not be
modified.

Web Applications Specification Version 1.0 Events

OSGi Compendium Release 6 Page 857

128.4.6 Signed WAR files
When a signed WAR file is installed using the Web URL Handler, then the manifest rewriting
process invalidates the signatures in the bundle. The OSGi specification requires fully signed bun-
dles for security reasons, security resources in partially signed bundles are ignored.

If the use of the signing metadata is required, the WAR must be converted to a WAB during devel-
opment and then signed. In this case, the Web URL Handler cannot be used. If the Web URL Han-
dler is presented with a signed WAR, the manifest name sections that contain the resource's check
sums must be stripped out by the URL stream handler. Any signer files (*.SF and their correspond-
ing DSA/RSA signature files) must also be removed.

128.5 Events
The Web Extender must track all WABs in the OSGi framework in which the Web Extender is in-
stalled. The Web Extender must post Event Admin events, which is asynchronous, at crucial points
in its processing. The topic of the event must be one of the following values:

• org/osgi/service/web/DEPLOYING - The Web Extender has accepted a WAB and started the
process of deploying a Web Application.

• org/osgi/service/web/DEPLOYED - The Web Extender has finished deploying a Web Application,
and the Web Application is now available for web requests on its Context Path.

• org/osgi/service/web/UNDEPLOYING - The web extender started undeploying the Web Applica-
tion in response to its corresponding WAB being stopped or the Web Extender is stopped.

• org/osgi/service/web/UNDEPLOYED - The Web Extender has undeployed the Web Application.
The application is no longer available for web requests.

• org/osgi/service/web/FAILED - The Web Extender has failed to deploy the Web Application, this
event can be fired after the DEPLOYING event has fired and indicates that no DEPLOYED event
will be fired.

For each event topic above, the following properties must be published:

• bundle.symbol icName - (Str ing) The bundle symbolic name of the WAB.
• bundle. id - (Long) The bundle id of the WAB.
• bundle - (Bundle) The Bundle object of the WAB.
• bundle.version - (Version) The version of the WAB.
• context.path - (Str ing) The Context Path of the Web Application.
• t imestamp - (Long) The time when the event occurred
• extender.bundle - (Bundle) The Bundle object of the Web Extender Bundle
• extender.bundle. id - (Long) The id of the Web Extender Bundle.
• extender.bundle.symbol icName - (Str ing) The symbolic name of the Web Extender Bundle.
• extender.bundle.version - (Version) The version of the Web Extender Bundle.

In addition, the org/osgi/service/web/FAILED event must also have the following property:

• exception - (Throwable) If an exception caused the failure, an exception detailing the error that
occurred during the deployment of the WAB.

• col l is ion - (Str ing) If a name collision occurred, the Web-ContextPath that had a collision
• col l is ion.bundles - (Collect ion<Long>) If a name collision occurred, a collection of bundle ids

that all have the same value for the Web-ContextPath manifest header.

Interacting with the OSGi Environment Web Applications Specification Version 1.0

Page 858 OSGi Compendium Release 6

128.6 Interacting with the OSGi Environment

128.6.1 Bundle Context Access
In order to properly integrate in an OSGi environment, a Web Application can access the OSGi ser-
vice registry for publishing its services, accessing services provided by other bundles, and listening
to bundle and service events to track the life cycle of these artifacts. This requires access to the Bun-
dle Context of the WAB.

The Web Extender must make the Bundle Context of the corresponding WAB available to the Web
Application via the Servlet Context osgi-bundlecontext attribute. A Servlet can obtain a Bundle
Context as follows:

BundleContext ctxt = (BundleContext)
 servletContext.getAttribute("osgi-bundlecontext");

128.6.2 Other Component Models
Web Applications sometimes need to inter-operate with services provided by other component
models, such as a Declarative Services or Blueprint. Per the Servlet specification, the Servlet Con-
tainer owns the life cycle of a Servlet; the life cycle of the Servlet must be subordinate to the life cy-
cle of the Servlet Context, which is only dependent on the life cycle of the WAB. Interactions be-
tween different bundles are facilitated by the OSGi service registry. This interaction can be managed
in several ways:

• A Servlet can obtain a Bundle Context from the Servlet Context for performing service registry
operations.

• Via the JNDI Specification and the osgi :service JNDI namespace. The OSGi JNDI specification
describes how OSGi services can be made available via the JNDI URL Context. It defines an
osgi :service namespace and leverages URL Context factories to facilitate JNDI integration with
the OSGi service registry.

Per this specification, it is not possible to make the Servlet life cycle dependent on the availability of
specific services. Any synchronization and service dependency management must therefore be done
by the Web Application itself.

128.6.3 Resource Lookup
The getResource and getResourceAsStream methods of the ServletContext interface are used
to access resources in the web application. For a WAB, these resources must be found accord-
ing to the f indEntr ies method, this method includes fragments. For the getResource and getRe-
sourceAsStream method, if multiple resources are found, then the first one must be used.

Since the getResource and getResourceAsStream methods do not support wildcards while the f ind-
Entr ies method does it is necessary to escape the wildcard asterisk ('* ' \u002A) with prefixing it
with a reverse solidus (' \ ' \u005C). This implies that a reverse solidus must be escaped with an extra
reverse solidus. For example, the path foo\bar* must be escaped to foo\\bar* .

The getResourcePaths method must map to the Bundle getEntryPaths method, its return type is a
Set and can not handle multiples. However, the paths from the getEntryPaths method are relative
while the methods of the getResourcePaths must be absolute.

For example, assume the following manifest for a bundle:

Bundle-ClassPath: localized, WEB-INF
...

This WAB has an attached fragment acme-de. jar with the following content:

Web Applications Specification Version 1.0 Security

OSGi Compendium Release 6 Page 859

META-INF/MANIFEST.MF
localized/logo.png

The getResource method for local ized/logo.png uses the f indEntr ies method to find a resource in
the directory / local ized and the resource logo.png . Assuming the host bundle has no local ized/ di-
rectory, the Web Runtime must serve the logo.png resource from the acme-de. jar .

128.6.4 Resource Injection and Annotations
The Web Application web.xml descriptor can specify the metadata-complete attribute on the web-
app element. This attribute defines whether the web.xml descriptor is complete, or whether the class-
es in the bundle should be examined for deployment annotations. If the metadata-completeat-
tribute is set to true , the Web Runtime must ignore any servlet annotations present in the class files
of the Web Application. Otherwise, if the metadata-complete attribute is not specified, or is set to
fa lse , the container should process the class files of the Web Application for annotations, if support-
ed.

A WAB can make use of the annotations defined by [7] JSR 250 Common Annotations for the Java Plat-
form if supported by the Web Extender. Such a WAB must import the packages the annotations are
contained in. A Web Extender that does not support the use of JSR 250 annotations must not process
a WAB that imports the annotations package.

128.6.5 Java Server Pages Support
Java Server Pages (JSP) is a rendering technology for template based web page construction. This
specification supports [4] JSP 2.1 specification if available with the Web Runtime. The servlet element
in a web.xml descriptor is used to describe both types of Web Components. JSP components are de-
fined implicitly in the web.xml descriptor through the use of an implicit . jsp extension mapping, or
explicitly through the use of a jsp-group element.

128.6.6 Compilation
A Web Runtime compiles a JSP page into a Servlet, either during the deployment phase, or at the
time of request processing, and dispatches the request to an instance of such a dynamically created
class. Often times, the compilation task is delegated to a separate JSP compiler that will be respon-
sible for identifying the necessary tag libraries, and generating the corresponding Servlet. The con-
tainer then proceeds to load the dynamically generated class, creates an instance and dispatches the
servlet request to that instance.

Supporting in-line compilation of a JSP inside a bundle will require that the Web Runtime main-
tains a private area where it can store such compiled classes. The Web Runtime can leverage its pri-
vate bundle storage area. The Web Runtime can construct a special class loader to load generated JSP
classes such that classes from the bundle class path are visible to newly compiled JSP classes.

The JSP specification does not describe how JSP pages are dynamically compiled or reloaded. Vari-
ous Web Runtime implementations handle the aspects in proprietary ways. This specification does
not bring forward any explicit requirements for supporting dynamic aspects of JSP pages.

128.7 Security
The security aspects of this specification are defined by the [3] Servlet 2.5 specification.

128.8 References

[1] Jave Enterprise Edition Release 5

References Web Applications Specification Version 1.0

Page 860 OSGi Compendium Release 6

Java 1.5.0 Packages. http://www.oracle.com/technetwork/java/javaee/tech/javaee5-jsp-135162.html

[2] Java EE Web Applications
http://www.oracle.com/technetwork/java/javaee/tech/webapps-138511.html

[3] Servlet 2.5 specification
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html

[4] JSP 2.1 specification
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html

[5] PAX Web Extender
http://team.ops4j.org/wiki/display/paxweb/Pax+Web

[6] Uniform Resource Locators, RFC 1738
http://www.ietf.org/rfc/rfc1738.txt

[7] JSR 250 Common Annotations for the Java Platform
http://jcp.org/aboutJava/communityprocess/pfd/jsr250/index.html

Coordinator Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 861

130 Coordinator Service Specification

Version 1.0

130.1 Introduction
The OSGi programming model is based on the collaboration of standard and custom components.
In such a model there is no central authority that has global knowledge of the complete application.
Though this lack of authority can significantly increase reusability (and robustness) there are times
when the activities of the collaborators must be coordinated. For example, a service that is repeated-
ly called in a task could optimize performance by caching intermediate results until it knew the task
was ended.

To know when a task involving multiple collaborators has ended is the primary purpose of the Co-
ordinator service specification. The Coordinator service provides a rendezvous for an initiator to
create a Coordination where collaborators can decide to participate. When the Coordination has
ended, all participants are informed.

This Coordinator service provides an explicit Coordination model, the Coordination is explicitly
passed as a parameter, and an implicit model where the Coordination is associated with the current
thread. Implicit Coordinations can be nested.

Coordinators share the coordination aspects of the resource model of transactions. However, the
model is much lighter-weight because it does not support any of the ACID properties.

130.1.1 Essentials

• Coordination - Provide a solution to allow multiple collaborators to coordinate the outcome of a
task initiated by an initiator.

• Initiator - An initiator must be able to initiate a coordination and control the final outcome.
• Participants - Participants in the task must be informed when the coordination has ended or failed

as well as being able to terminate the Coordination.
• Time-out - A Coordination should fail after a given time-out.
• Blocking - Provide support for blocking and serializing access to Participants.
• Nesting - It must be possible to nest Coordinations.
• Per Thread Model - Provide a per-thread current Coordination model.
• Variables - Provide a variable space per Coordination

130.1.2 Entities

• Coordinator - A service that can create and enumerate Coordinations.
• Coordination - Represents the ongoing Coordination.
• Initiator - The party that initiates a Coordination.
• Participant - A party that wants to be informed of the outcome of a Coordination.
• Collaborator - Either a participant or initiator.

Usage Coordinator Service Specification Version 1.0

Page 862 OSGi Compendium Release 6

Figure 130.1 Class and Service overview

Participant ImplInitiator

Coordinator Impl

Coordinator

<<interface>>
Coordination

130.2 Usage
This section is an introduction in the usage of the Coordinator service. It is not the formal specifica-
tion, the normative part starts at Coordinator Service on page 871. This section leaves out some of
the details for clarity.

130.2.1 Synopsis
The Coordinator service provides a mechanism for multiple parties to collaborate on a common task
without a priori knowledge of who will collaborate in that task. A collaborator can participate by
adding a Participant to the Coordination. The Coordination will notify the Participants when the co-
ordination is ended or when it is failed.

Each Coordination has an initiator that creates the Coordination object through the Coordinator ser-
vice. The initiator can then push this object on a thread-local stack to make it an implicit Coordi-
nation or it can pass this object around as a parameter for explicit Coordinations. Collaborators can
then use the current Coordination on the stack or get it from a parameter. Whenever a bundle wants
to participate in the Coordination it adds itself to the Coordination as a participant. If necessary, a
collaborator can initiate a new Coordination, which could be a nested Coordination for implicit Co-
ordinations.

A Coordination must be terminated. Termination is either a normal end when the initiator calls the
end method or it is failed when the fa i l method is called. A Coordination can be failed by any of the
collaborators. A Coordination can also fail independently due to a time-out or when the initiator re-
leases its Coordinator service. All participants in the Coordination are informed in reverse participa-
tion order about the outcome in a callback for ended or failed Coordinations.

A typical action diagram with a successful outcome is depicted in Figure 130.2.

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 6 Page 863

Figure 130.2 Action Diagram Implicit Coordination

initiator Coordinator Coordination Collaborator Participant
begin()

new()

work()

addParticpant()

new()

end()
ended()

addParticpant()

130.2.2 Explicit Coordination
The general pattern for an initiator is to create a Coordination through the Coordinator service, per-
form the work in a try block, catch any exceptions and fail the Coordination in the catch block, and
then ensure ending the Coordination in the finally block. The finally block can cause an exception.
This is demonstrated in the following example:

Coordination c = coordinator.create("com.example.work",0);
try {
 doWork(c);
} catch(Exception e) {
 c.fail(e);
} finally {
 c.end();
}

This deceptively small template is quite robust:

• If the doWork method throws an Exception then the template fails with a Coordination Excep-
tion because it is failed in the try block.

• Any exceptions thrown in the try block are automatically causing the Coordination to fail.
• The Coordination is always terminated and removed from the stack due to the finally block.
• All failure paths, Coordinations that are failed by any of the collaborators, time-outs, or oth-

er problems are handled by the end method in the finally block. It will throw a FAILED or
PARTIALLY_ENDED Coordination Exception for any of the failures.

The different failure paths and their handling is pictured in Figure 130.3.

Usage Coordinator Service Specification Version 1.0

Page 864 OSGi Compendium Release 6

Figure 130.3 Flow through the Coordination template

create(...)

end(...)

method body

try

finally

asynchronous failurecatch

fail(...)

fail(...)

fail(...)

finally

The example shows an explicit Coordination because the create method is used, implicit Coordina-
tions are used in Implicit Coordinations on page 865. The parameters of the create method are the
name of the Coordination and its time-out. The name is used for informational purposes as well as
security. For security reasons, the name must follow the same syntax as the Bundle Symbolic Name.
In a secure environment the name can be used to limit Coordinations to a limited set of bundles. For
example, a set of bundles signed by a specific signer can use names like com.acme.* that are denied
to all other bundles.

The zero time-out specifies that the Coordination will not have a time-out. Otherwise it must be a
positive long, indicating the number of milliseconds the Coordination may take. However, imple-
mentations should have a configurable time-out to ensure that the system remains alive.

In the doWork method the real work is done in conjunction with the collaborators. Explicit Coordi-
nations can be passed to other threads if needed. Collaborators can decide to add participants when-
ever they require a notification when the Coordination has been terminated. For example, the fol-
lowing code could be called from the doWork method:

void foo(Coordination c) {
 doPrepare();
 c.addParticipant(this);
}

This method does the preparation work but does not finalize it so that next time it can use some in-
termediate results. For example, the prepare method could cache a connection to a database that
should be reused during the Coordination. The collaborator can assume that it will be called back
on either the fa i led or ended method. These methods could look like:

public void ended(Coordination c) { doFinish(); }
public void failed(Coordination c) { doFailed(); }

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 6 Page 865

The Coordinator provides the guarantee that this code will always call the doFinish method when
the Coordination succeeds and doFai led method when it failed.

The Participant must be aware that the ended(Coordination) and fa i led(Coordination) methods can
be called on any thread.

If the doWork method throws an exception it will end up in the catch block of the initiator. The
catch block will then fail the Coordination by calling the fa i l method with the given exception.
If the Coordination was already terminated because something else already had failed it then the
method call is ignored, only the first fail is used, later fails are ignored.

In all cases, the finally block is executed last. The finally block ends the Coordination. If this coor-
dination was failed then it will throw a Coordination Exception detailing the reason of the failure.
Otherwise it will terminate it and notify all the participants.

The Coordination Exception is a Runtime Exception making it unnecessary to declare it.

130.2.3 Multi Threading
Explicit Coordinations allow the Coordination objects to be passed to many different collabora-
tors who can perform the work on different threads. Each collaborator can fail the Coordination
at any moment in time or the time-out can occur on yet another thread. Participants must there-
fore be aware that the callbacks ended and fa i led can happen on any thread. The following exam-
ple shows a typical case where a task is parallelized. If any thread fails the Coordination, all other
threads could be notified before they're finished.

Executor executor = ...
final CountDownLatch latch = new CountdownLatch(10);
final Coordination c = coordinator.create("parallel", 0);
for (int i=0; i<10; i++) {
 executor.execute(
 new Runnable() {
 public void run() { baz(c); latch.countDown(); }
 });
 }
 latch.await();
 c.end();

The Coordination object is thread safe so it can be freely passed around.

130.2.4 Implicit Coordinations
An explicit Coordination requires that the Coordination is passed as a parameter to the doWork
method. The Coordinator also supports implicit Coordinations. With implicit Coordinations the Co-
ordinator maintains a thread local stack of Coordinations where the top of this stack is the current
Coordination for that thread. The usage of the implicit Coordination is almost identical to the ex-
plicit Coordinations except that all the work occurs on a single thread. The control flow is almost
identical to explicit Coordinations:

Coordination c = coordinator.begin("com.example.work",0);
try {
 doWork();
} catch(Exception e) {
 c.fail(e);
} finally {
 c.end();
}

Usage Coordinator Service Specification Version 1.0

Page 866 OSGi Compendium Release 6

See also Figure 130.3. However, in this case the finally block with the call to the end method is even
more important. With an implicit Coordination the Coordination is put on a thread local stack in
the begin method and must therefore be popped when the Coordination is finished. The finally
block ensures therefore the proper cleanup of this thread local stack.

The difference between implicit and explicit Coordinations is that the implicit Coordination is not
passed as a parameter, instead, collaborators use the current Coordination. With implicit Coordina-
tions all method invocations in a thread can always access the current Coordination, even if they
have many intermediates on the stack. The implicit model allows a collaborator many levels down
the stack to detect a current Coordination and register itself without the need to modify all interme-
diate methods to contain a Coordination parameter. The explicit model has the advantage of explic-
itness but requires all APIs to be modified to hold the parameter. This model does not support pass-
ing the parameter through layers that are not aware of the Coordination. For example, OSGi services
in general do not have a Coordination parameter in their methods making the use of explicit Coor-
dinations impossible.

Collaborators can act differently in the presence of a current Coordination. For example, a collabora-
tor can optimize its work flow depending on the presence of a current Coordination.

Coordinator coordinator = ...
void foo() {
 doPrepare();
 if (!coordinator.addParticipant(this))
 doFinish();
}

The Coordinator service has an addPart ic ipant method that makes working with the current Coor-
dination simple. If there is a current Coordination then the Coordinator service will add the partic-
ipant and return true , otherwise it returns fa lse . It is therefore easy to react differently in the pres-
ence of a current Coordination. In the previous example, the doFinish method will be called imme-
diately if there was no current Coordination, otherwise it is delayed until the Coordination fails or
succeeds. The participant callbacks look the same as in the previous section:

public void ended(Coordination c) { doFinish(); }
public void failed(Coordination c) { doFailed(); }

Though the code looks very similar for the implicit and explicit Coordinations there are some addi-
tional rules for implicit Coordinations.

The end method must be called on the same thread as the begin method, trying to end it on another
thread results in a WRONG_THREAD Coordination Exception being thrown.

Even though the end method must be called on the initiating thread, the callbacks to the Partici-
pants can be done on any thread as the specification allows the Coordinator to use multiple threads
for all callbacks.

130.2.5 Partial Ending
The Coordination is a best effort mechanism to coordinate, not a transaction model with integrity
guarantees. This means that users of the Coordinator service must understand that there are cases
where a Coordination ends in limbo. This happens when one of the Participants throws an Excep-
tion in the ended callback. This is similar to a transactional resource manager failing to commit in
a 2-phase commit after it has voted yes in the prepare phase; a problem that is the cause of much of
the complexity of a transaction manager. The Coordinator is limited to use cases that do not require
full ACID properties and can therefore be much simpler. However, users of the Coordinator service
must be aware of this limitation.

If a Participant throws an exception in the ended method, the end method that terminated the Co-
ordination must throw a PARTIALLY_ENDED Coordination Exception. It is then up to the initiator to

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 6 Page 867

correct the situations. In most cases, this means allowing the exception to be re-thrown and handle
the failure at the top level. Handling in those cases usually implies logging and continuing.

The following code shows how the PARTIALLY_ENDED case can be handled more explicitly.

Coordination c = coordinator.begin("work",0);
try {
 doWork();
} catch(Excption e) {
 c.fail(e);
} finally {
 try {
 c.end();
 } catch(CoordinationException e) {
 if (e.getType() == CoordinationException.PARTIALLY_ENDED) {
 // limbo!
 ...
 }
 }
}

130.2.6 Locking
To participate in a Coordination and receive callbacks a collaborator must add a Part ic ipant object to
the Coordination. The addPart ic ipant(Part ic ipant) method blocks if the given Part ic ipant object is
already used in another Coordination. This blocking facility can be used to implement a number of
simple locking schemes that can simplify maintaining state in a concurrent environment.

Using the Part ic ipant object as the key for the lock makes it simple to do course grained locking. For
example, a service implementation could use the service object as a lock, effectively serializing ac-
cess to this service when it is used in a Coordination. Coarse grained locking allows all the state to
be maintained in the coarse object and not having to worry about multiplexing simultaneous re-
quests. The following code uses the coarse locking pattern because the collaborator implements the
Part ic ipant interface itself:

public class Collaborator implements Participant{
 public void doWork(Coordination coordination) {
 ...
 coordination.addParticipant(this);
 }

 public void ended(Coordination c) { ... }
 public void failed(Coordination c) { ... }
}

The simplicity of the coarse grained locking is at the expense of lower performance because tasks
are serialized even if it would have no contention. Locks can therefore also be made more fine
grained, allowing more concurrency. In the extreme case, creating a new object for each participa-
tion makes it possible to never lock. For example, the following code never locks because it always
creates a new object for the Participant:

 public void doWork(Coordination coordination){
 final State state = ...
 coordination.addParticipant(
 new Participant() {
 public void ended(Coordination c) { state ... }
 public void failed(Coordination c) { state ...}

Usage Coordinator Service Specification Version 1.0

Page 868 OSGi Compendium Release 6

 }); }

130.2.7 Failing
Any collaborator can fail an ongoing Coordination by calling the fa i l (Throwable) method, the
Throwable parameter must not be nul l . When the Coordination has already terminated then this
is a no-op. The Coordinator service has a convenience method that fails the current Coordination if
present. The fa i l methods return a boolean that is true when the method call causes the termination
of the Coordination, in all other cases it is fa lse .

Failing a Coordination will immediately perform the callbacks and reject any addition-
al Participants by throwing an ALREADY_ENDED Coordination Exception. The asynchro-
nous nature of the fail method implies that it is possible to have been called even before the
addPart ic ipant(Part ic ipant) method has returned. Anybody that has the Coordination object can
check the failed state with the getFai lure() method.

In general, the best and most robust strategy to handle failures is to throw an Exception from the
collaborator, allowing the initiator to catch the exception and properly fail the Coordination.

130.2.8 Time-out
The time-out is specified in the Coordinator create(Str ing, long) or begin(Str ing, long) methods. A
time-out of zero is indefinite, otherwise the time-out specifies the number of milliseconds the Co-
ordination can take to terminate. A given time-out can be extended with the extendTimeout(long)
method. This method will add an additional time-out to the existing deadline if a prior deadline was
set. For example, the following code extends the time-out with 5 seconds whenever a message must
be sent to a remote address:

Object sendMessage(Message m) {
 Coordination c = coordinator.peek();
 Address a = m.getDestination();
 if (c != null && a.isRemote()) {
 c.extendTimeout(5000);
 }
 return sendMessage0(m);
}

Applications should not rely on the exact time-out of the Coordination and only use it as a safety
function against deadlocks and hanging collaborators.

130.2.9 Joining
When a Coordination is terminated it is not yet completely finished, the callback to the Participants
happens after the atomic termination. In certain cases it is necessary to ensure that a method does
not progress until all the participants have been notified. It is therefore possible to wait for the Coor-
dination to completely finish with the jo in(long) method. This method can have a time-out. For ex-
ample:

void collaborate(final Coordination c) {
 doWork();
 Thread t = new Thread() {
 public void run(){
 try {
 c.join(0);
 ... // really terminated here, all participantscalled back
 } catch(Exception e) { ... }
 }
 };

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 6 Page 869

 t.start();
}

130.2.10 Variables
A Participant is likely to have to maintain state that is particular for the collaboration. This state is
usually needed in the ended method to properly finalize the work. In general, the best place to store
this state is in the Part ic ipant object itself, inner classes and final variables are a good technique for
storing the state. However, the state can also be stored in a Coordination variable. Each Coordina-
tion has a private set of variables that can be obtained with the getVariables() method. The resulting
map takes a class as the key and returns an Object. The map is not synchronized, any changes to the
map must be synchronized on the returned Map object to ensure the visibility of the changes to oth-
er threads. The class used for the key is not related to the returned type, it is a Class object to provide
a convenient namespace.

The following example shows how the state can be stored with variables.

public void doWork(Coordination coordination){
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 if (state == null) {
 state = new State(this);
 map.put(state);
 ... do initial work
 }
 }
 ... do other work
 coordination.addParticipant(this);
}
public void ended(Coordination c) {
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 .. finalize
 }
}
public void failed(Coordination c) {
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 .. finalize
 }
}

130.2.11 Optimizing Example
For example, a web based system has a charge service:

public interface Charge {
 void charge(String reason, int amount);
}

This service is used throughout the system for charging the tasks the system performs. Each servlet
request can actually create multiple Charge Data Records (CDR). For this reason, a Coordination is
started before the page is constructed. Each part of the page that has an associated cost must create a
CDR. There are the following issues at stake:

Usage Coordinator Service Specification Version 1.0

Page 870 OSGi Compendium Release 6

• Charging should not take place when failing, and
• Performance can be optimized to only persist the CDRs once, and
• The user must be passed to the Charge service.

To begin with the request code:

public void doGet(HttpServletRequest rq, HttpServletResponsersp) {
 Coordination c = coordinator.begin("com.acme.request", 30000);
 try {
 Principal p = rq.getUserPrincipal();
 Map<Class<?>,Object> map = c.getVariables();
 map.put(Principal.class, p);
 buildPage(rq,rsp);
 } catch(Exception e) { c.fail(e); }
 finally { c.end(); }
}

Each method that has a charge will call the Charge service. The following code shows an implemen-
tation of this Charge service.

public class ChargeImpl implements Charge,Participant {
 final List<CDR> records = new ArrayList<CDR>();

 public void charge(String reason, int amount) {
 Coordination c = coordinator.peek();
 if (c == null) {
 save(Arrays.asList(new CDR(null, reason, amount)));
 } else {
 Principal p = getPrincipal(c);
 records.add(new CDR(p, reason, amount));
 c.addParticipant(this);
 }
 }

 Principal getPrincipal(Coordination c) {
 if (c == null)
 return null;

 Map<Class<?>,Object> map = c.getVariables();
 synchronized(map) {
 Principal p = (Principal) map.get(Principal.class);
 return p != null ? p : getPrincipal(c.getEnclosingCoordination());
 }
 }

 public void ended(Coordination c) {
 save(records);
 records.clear();
 }
 public void failed(Coordination c) {
 records.clear();
 }

 void save(List<CDR> records) { ... }
}

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Compendium Release 6 Page 871

130.2.12 Security Example
The Coordination Permission is a filter based permission that is asserted for many of the methods in
the API, the bundle that is checked is always the bundle that created the corresponding Coordina-
tion. For example:

ALLOW {
 [BundleSignerCondition "cn=ACME"]
 (CoordinationPermission "(signer=cn=ACME)" "*")
}

This example allows bundles signed by ACME to perform all Coordination actions on Coordina-
tions created by bundles signed by ACME.

The filter can also assert the name of the Coordination:

coordination.name

It is therefore possible to create a name based protection scheme. By denying all bundles except a se-
lect group through the use of a name prefix, the use of Coordinations can be restricted to this select
group:

DENY {
 [BundleSignerCondition "cn=ACME" "!"]
 (CoordinationPermission "(coordination.name=com.acme.*)""*")
}
ALLOW {
 (CoordinationPermission "(coordination.name=*)" "*")
}

If a bundle is not signed by ACME it will be denied the use of Coordination names starting with
com.acme. though it will be allowed to use any other name. This effectively enables only bundles
signed by ACME to create Coordinations with this name prefix.

130.3 Coordinator Service
The Coordinator service is the entry point for the Coordination. It provides the following functions:

• Coordination creation
• Life cycle management of a Coordination
• Thread based Coordinations
• Introspection

130.3.1 Coordination Creation
A Coordination object is created by an initiator. An initiator can create a Coordination object with
the Coordinator create(Str ing, long) or begin(Str ing, long) method. Each Coordination when creat-
ed gets a positive long identity that is available with getId() . Ids are a unique identifier for a specif-
ic Coordinator service. The id is always increasing, that is, a Coordination with a higher id is created
later.

The create methods specify the name of the Coordination. This name is a security concept, see Secu-
rity on page 876, as well as used for debugging. The coordination name must therefore conform
to the same syntax as a bundle symbolic name:

coordination-name ::= symbolic-name // see OSGi Core Release 6

Coordinator Service Coordinator Service Specification Version 1.0

Page 872 OSGi Compendium Release 6

Passing a name that does not conform to this syntax must throw an Illegal Argument Exception.
There are no constraints on duplicates, multiple different Coordinations can use the same name.
The name of the Coordination is available with the getName() method.

130.3.2 Adding Participants
The Coordination object can be passed to collaborators as a parameter in a method call. Some of these
collaborators might be interested in participating in the given Coordination, they can achieve this by
adding a Part ic ipant object to the Coordination.

A Participant is a collaborator that requires a callback after the Coordination has been terminat-
ed, either when it ended or when it failed. To participate, it must add a Part ic ipant object to a Coor-
dination with the addPart ic ipant(Part ic ipant) method on Coordination. This method throws an
ALREADY_ENDED or FAILED Coordination Exception when the Coordination has been terminated.

When a Participant is:

• Not in any Coordination - Add it to the given Coordination and return.
• In target Coordination - Ignore, participant is already present. A Participant can participate in the

same Coordination multiple times by calling addPart ic ipant(Part ic ipant) but will only be called
back once when the Coordination is terminated. Its order must be defined by the first addition.

• In another Coordination - Lock until after the other Coordination has notified all the Participants.
Implementations can detect deadlocks in certain cases and throw a Coordination Exception if a
dead lock exist, otherwise the deadlock is solved when the Coordination times out.

Verifying if a Participant object is already in another Coordination must use identity and not equali-
ty.

130.3.3 Active
A Coordination is active until it is terminated. A Coordination can terminate because it is ended, or it
is failed. The following methods cause a termination:

• end() - A normal end. All participants that were added before the end call are called back on their
ended(Coordination) method.

• fa i l (Throwable) - The Coordination has failed, this will call back the fa i led(Coordination)
method on the participants. This method can be called by the Coordinator, the initiator, or any of
the collaborators. There are a number of failures that are built in to the Coordinator. These fail-
ures use singleton Exception instances defined in the Coordination interface:
• TIMEOUT - If the Coordination times out the Coordination is failed with the TIMEOUT excep-

tion instance in Coordination.
• RELEASED - If the Coordinator that created the Coordination was unget, all Coordinations cre-

ated by it will fail with the RELEASED exception.

The state diagram for the Coordination is pictured in Figure 130.4.

Figure 130.4 Coordination state diagram

ACTIVE

END FAIL

fail(Throwable)end()

automatic
transition
explicit
transition

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Compendium Release 6 Page 873

130.3.4 Explicit and Implicit Models
The Coordinator supports two very different models of usage: explicit and implicit. The explicit model
is when a Coordination is created and passed around as a parameter. The second model is the implic-
it model where the Coordinator maintains a thread local stack of Coordinations. Any collaborator
can then decide to use the top of the stack as the current Coordination. The peek() method provides
access to the current Coordination.

The begin(Str ing, long) method creates a new Coordination and pushes this on the stack, beginning
an implicit Coordination. This is identical to:

coordinator.create("work",0).push();

Once a Coordination is pushed on a stack it is from that moment on associated with the current
thread. A Coordination can only be pushed once, the ALREADY_PUSHED Coordination Exception
must be thrown when the Coordination is already associated with one of the thread local stacks
maintained by the Coordinator service.

The Coordination is removed from the stack in the end() method. The end() method must not only
terminate itself but it must also terminate all nested Coordinations.

The current Coordination can also be explicitly removed with the Coordinator pop() method.

A Coordination that is pushed on a thread local stack returns the associated thread on the get-
Thread() method. This method returns nul l for Coordinations not on any stack, that is, explicit Coor-
dinations.

130.3.5 Termination
Both the end() and fa i l (Throwable) methods terminate the Coordination if it was not already ter-
minated. Termination is atomic, only the end or the fa i l method can terminate the Coordination.
Though this happens on different threads, a Coordination can never both end and fail from any per-
spective. That is, if a fail races with end then only one of them can win and the other provides the
feedback that the Coordination was already terminated.

Terminating a Coordination has the following effects:

• It is atomic, it can only happen once in a Coordination
• It freezes the set of participants, no more participants can be added

130.3.6 Ending
The end() method should always be called at the end of a Coordination to ensure proper termina-
tion, notification, and cleanup. The end method throws a FAILED or PARTIALLY_ENDED Coordina-
tion Exception if the Coordination was failed before.

If the Coordination had already been ended before then this is a programming error and an
ALREADY_ENDED Configuration Exception is thrown. The end() method should never be called
twice on the same Coordination.

If the termination succeeds then the participants must be notified by calling the
ended(Coordination) method on each Participant that had been successfully added to the Coordina-
tion. This callback can take place on any thread but must be in reverse order of adding. That is, the
last added Participant is called back first.

Participants must never make any assumptions about the current Coordination in the callback. The
Coordination it was added to is therefore given as an explicit parameter in the ended(Coordination)
method.

If a Participant throws an Exception then this must not prevent the calling of the remaining par-
ticipants. The Exception should be logged. If a Participant has thrown an Exception then the end()

Coordinator Service Coordinator Service Specification Version 1.0

Page 874 OSGi Compendium Release 6

method must throw a PARTIALLY_ENDED Coordination Exception after the last Participant has re-
turned from its callback, otherwise the method returns normally. Participants should normally not
throw Exceptions in their callbacks.

If the Coordination is implicit (it is pushed on a stack) then the Coordination must be removed
from its stack after the participants have been called back. This requires that the ending thread is
the same as the thread of the Coordination. The end thread is the thread of the end() method call. If
the Coordination's thread is not the same as the ending thread then a WRONG_THREAD Coordina-
tion Exception is thrown.

If the ending Coordination is on the stack but it is not the current Coordination then each nested
Coordination must be ended before the current Coordination, see Nesting Implicit Coordinations on
page 874 for more information.

The fa i l (Throwable) method must not remove the current Coordination, it must remain on the
stack. The initiator must always call the end() method. Always calling end() in a f inal ly block is
therefore paramount.

130.3.7 Failing, TIMEOUT, ORPHANED, and RELEASED
Failing can happen asynchronously during the time a Coordination is active. A Coordination is
failed by calling fa i l (Throwable) . The Throwable argument must not be nul l , it is the cause of the
failure.

Failing a Coordination must first terminate it. If the Coordination was already terminated the
fa i l (Throwable) method has no effect. Otherwise, it must callback all its added Participants on the
fa i led(Coordination) callback method. Exceptions thrown from this method should be logged and
further ignored. The callback can occur on any thread, including the caller's.

Implicit Coordinations must not be popped from its stack in a fail nor is it necessary to call the fa i l
method from any particular thread. The removal of the Coordination from the stack must happen
in the end method.

There are two asynchronous events that can also fail the Coordination. If the Coordination times
out, it will be treated as a fa i l (TIMEOUT) and if the Coordinator is ungotten with active Coordina-
tions then each of those Coordinations must fail as if fa i l (RELEASED) is called.

A Coordination can also be orphaned. An orphaned Coordination has no longer any outside refer-
ences. This means that the Coordination can no longer be ended or failed. Such Coordinations must
fail with an ORPHANED Exception.

130.3.8 Nesting Implicit Coordinations
Implicit Coordinations can be nested. For this reason, the Coordinator maintains a thread local
stack of Coordinations where the top, accessible with the peek() method, is the current Coordina-
tion. Each time a new Coordination is begun with the begin(Str ing, long) method, the current Co-
ordination is replaced with the newly created Coordination. When that Coordination is ended, the
previous current Coordination is restored. Nesting is always on the same thread, implicit Coordina-
tions are always associated with a single thread, available through its getThread() method. The end
method must be called on the same thread as the begin(Str ing, long) or last push() method.

Using the standard model for implicit Coordinations, where the initiator always ends the Coordi-
nation on the same thread as it begun, ensures that nesting is properly handled. However, in cer-
tain cases it is necessary to manipulate the stack or make implicit Coordinations explicit or vice ver-
sa. For this reason, it is possible to pop Coordinations from the stack with the pop() method. This
method disassociates the Coordination from the current thread and restores the previous (if any)
Coordination as the current Thread. A Coordination can then be made the current Coordination for
a thread by calling the push() method. However, a Coordination can be pushed on the stack at most
once. If a Coordination is pushed a second time, in any thread, the ALREADY_PUSHED Coordination
Exception must be thrown.

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Compendium Release 6 Page 875

The Coordination is removed from its stack when the end() method is called. It is therefore highly
recommended to always end a Coordination in the nesting order. However, it is possible that a Co-
ordination is ended that is not the current Coordination, it has nested Coordinations that were not
properly ended. In that case all nested Coordinations must be ended in reverse creation order, that
is, the current Coordination first, by calling the end method on it.

If any Coordination fails to end properly (including PARTIALLY_ENDED) then the remaining Coordi-
nations on the stack must fail and chain the exceptions. In pseudo code:

while (coordinator.peek() != this) {
 try {
 coordinator.peek().end();
 } catch (CoordinationException e) {
 coordinator.peek().fail(e);
 }
}

130.3.9 Time-outs
When a Coordination is created it will receive a time-out. A time-out is a positive value or zero. A ze-
ro value indicates that the Coordination should have no time-out. This does not imply that a Coordi-
nation will never time-out, implementations are allowed to be configured with a limit to the maxi-
mum active time for a Coordination.

Collaborators can extend the time out with the extendTimeout(long) method. If no time-out was
set (0), this method will be ignored. Otherwise the given amount (which must be positive) is added
to the existing deadline. A Coordinator implementation can fail the Coordination earlier, however,
when configured to do so.

If a Coordination is timed out, the Coordination is failed with a fa i l (TIMEOUT) method call from an
unspecified thread, see Failing, TIMEOUT, ORPHANED, and RELEASED on page 874.

130.3.10 Released
The Coordination's life cycle is bound to the Coordinator service that created it. If the initiator's
bundle ungets this service then the Coordinator must fail all the Coordinations created by this Co-
ordinator by calling the fa i l (RELEASED) method.

Participants from bundles that are stopped are not taken into account. This means that it is possible
that a participant is called while its bundle is stopped. Stopped Participants should fail any Coordi-
nations that they participate in.

130.3.11 Coordinator Convenience Methods
The Coordinator contains a number of convenience methods that can be used by collaborators to in-
teract with the current Coordination.

• begin(Str ing, long) - Is logically the same as create(Str ing, long) . push() .
• addPart ic ipant(Part ic ipant) - This method makes it easy to react differently to the presence of a

current implicit Coordination. If a current Coordination exists, the participant is added and true
is returned (or an exception thrown if the Coordination is already terminated), otherwise fa lse is
returned.

• fa i l (Throwable) - If there is no current Coordination, this method returns false. Otherwise it re-
turns the result of calling fa i l (Throwable) on the current Coordination. This method therefore
only returns true when a current Coordination was actually terminated due to this call.

130.3.12 Administrative Access
The Coordination objects provide a number of methods that are used for administrating the Coordi-
nations and the Coordinator.

Security Coordinator Service Specification Version 1.0

Page 876 OSGi Compendium Release 6

• getBundle() - Provide the bundle that created the Coordination. This bundle is the bundle be-
longing to the Bundle Context used to get the Coordinator service.

• getFai lure() - The Exception that caused this Coordination to fail or nul l . There are two fixed ex-
ception instances for a time out (TIMEOUT), when the Coordination is orphaned (ORPHANED),
and when the Coordinator service is released (RELEASED).

• getId() - The Coordination's id.
• getName() - The name of the Coordination.
• getPart ic ipants() - The current list of participants. This is a mutable snapshot of the added partic-

ipants. Changing the snapshot has no effect on the Coordination.
• getThread() - Answer the thread associated with an implicit Coordination. If the Coordination is

not implicit then the answer is nul l .
• getEnclosingCoordination() - Return the enclosing Coordination.

And for the Coordinator:

• getCoordination(long) - Retrieve a Coordination by its id.
• getCoordinations() - Get a list of active Coordinations

130.3.13 Summary
A Coordination can exist in three different states ACTIVE, END, and FAIL. During its life it will tran-
sition from ACTIVE to either END or FAIL. The entry (when the state is entered) and exit (when the
state is left) actions when this transition takes place and the effect on the different methods are sum-
marized in the following table.

Table 130.1 States and transitions

State/Method ACTIVE END FAIL
entry action Notify all the participants by call-

ing the ended(Coordination)
method.

Notify all the participants by
calling the fa i led(Coordination)
method.

exit action Terminate
end() -> END .

Can throw
PARTIALLY_ENDED

throws ALREADY_ENDED throws FAILED

fai l (Throwable) -> FAIL , return true . return fa lse . return fa lse .

130.4 Security
This specification provides a Coordination Permission. This permission can enforce the name of the
coordination as well as assert the properties of the initiating bundle, like for example the signer or
bundle symbolic name. The permission therefore uses a filter as name, as defined in the filter based
permissions section in OSGi Core Release 6, see OSGi Core Release 6. There is one additional parame-
ter for the filter:

coordination.name

The value is the given name of the Coordination. Restricting the name of a Coordination allows the
deployer to limit the use of this name to a restricted set of bundles.

The following actions are defined:

• INITIATE - Required to initiate and control a Coordination.
• PARTICIPATE - Required to participate in a Coordination.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 6 Page 877

• ADMIN - Required to administrate a Coordinator.

The target bundle of the Coordination Permission is the initiator's bundle. This is the bundle that
got the Coordinator service to create the Coordination. An initiator must therefore have permission
to create Coordinations for itself.

There are two constructors available:

• CoordinationPermission(Str ing,Str ing) - The constructor for the granted permission. It is given a
filter expression and the actions that the permission applies to.

• CoordinationPermission(Str ing,Bundle,Str ing) - The constructor for the requested permission.
It is given the name of the permission, the bundle that created the corresponding coordination,
and the requested actions.

130.5 org.osgi.service.coordinator

Coordinator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.coordinator; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.coordinator; vers ion="[1.0,1.1)"

130.5.1 Summary

• Coordination - A Coordination object is used to coordinate a number of independent Partici-
pants.

• CoordinationException - Unchecked exception which may be thrown by a Coordinator imple-
mentation.

• CoordinationPermission - A bundle's authority to create or use a Coordination.
• Coordinator - A Coordinator service coordinates activities between different parties.
• Part ic ipant - A Participant participates in a Coordination.

130.5.2 public interface Coordination
A Coordination object is used to coordinate a number of independent Participants.

Once a Coordination is created, it can be used to add Participant objects. When the Coordination is
ended, the participants are notified. A Coordination can also fail for various reasons. When this oc-
curs, the participants are notified of the failure.

A Coordination must be in one of two states, either ACTIVE or TERMINATED. The transition be-
tween ACTIVE and TERMINATED must be atomic, ensuring that a Participant can be guaranteed of
either receiving an exception when adding itself to a Coordination or of receiving notification the
Coordination has terminated.

A Coordination object is thread safe and can be passed as a parameter to other parties regardless of
the threads these parties use.

The following example code shows how a Coordination should be used.

 void foo() {

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 878 OSGi Compendium Release 6

 Coordination c = coordinator.create("work", 0);
 try {
 doWork(c);
 }
 catch (Exception e) {
 c.fail(e);
 }
 finally {
 c.end();
 }
 }

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

130.5.2.1 public static final Exception ORPHANED

A singleton exception that will be the failure cause when a Coordination has been orphaned.

130.5.2.2 public static final Exception RELEASED

A singleton exception that will be the failure cause when the Coordinations created by a bundle are
terminated because the bundle released the Coordinator service.

130.5.2.3 public static final Exception TIMEOUT

A singleton exception that will be the failure cause when a Coordination times out.

130.5.2.4 public void addParticipant(Participant participant)

participant The Participant to register with this Coordination. The participant must not be nul l .

□ Register a Participant with this Coordination.

Once a Participant is registered with this Coordination, it is guaranteed to receive a notification for
either normal or failure termination when this Coordination is terminated.

Participants are registered using their object identity. Once a Participant is registered with this Coor-
dination, subsequent attempts to register the Participant again with this Coordination are ignored
and the Participant is only notified once when this Coordination is terminated.

A Participant can only be registered with a single active Coordination at a time. If a Participant is al-
ready registered with an active Coordination, attempts to register the Participation with another ac-
tive Coordination will block until the Coordination the Participant is registered with terminates.
Notice that in edge cases the notification to the Participant that this Coordination has terminated
can happen before this method returns.

Attempting to register a Participant with a terminated Coordination will result in a CoordinationEx-
ception being thrown.

The ordering of notifying Participants must follow the reverse order in which the Participants were
registered.

Throws CoordinationException– If the Participant could not be registered with this Coordination. This ex-
ception should normally not be caught by the caller but allowed to be caught by the initiator of this
Coordination.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.5 public void end()

□ Terminate this Coordination normally.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 6 Page 879

If this Coordination has been pushed on the thread local Coordination stack of anoth-
er thread, this method does nothing except throw a CoordinationException of type
CoordinationException.WRONG_THREAD.

If this Coordination has been pushed on the thread local Coordination stack of this thread but is not
the current Coordination, then the Coordinations on the thread local Coordination stack above this
Coordination must be terminated and removed from the thread local Coordination stack before this
Coordination is terminated. Each of these Coordinations, starting with the current Coordination,
will be terminated normally . If the termination throws a CoordinationException, then the next Co-
ordination on the thread local Coordination stack will be terminated as a failure with a failure cause
of the thrown CoordinationException. At the end of this process, this Coordination will be the cur-
rent Coordination and will have been terminated as a failure if any of the terminated Coordinations
threw a CoordinationException

If this Coordination is the current Coordination, then it will be removed from the thread local Coor-
dination stack.

If this Coordination is already terminated, a CoordinationException is thrown. If this Coordination
was terminated as a failure, the failure cause will be the cause of the thrown CoordinationExcep-
tion.

Otherwise, this Coordination is terminated normally and then all registered Participants are noti-
fied. Participants should finalize any work associated with this Coordination. The successful return
of this method indicates that the Coordination has terminated normally and all registered Partici-
pants have been notified of the normal termination.

It is possible that one of the Participants throws an exception during notification. If this happens,
this Coordination is considered to have partially failed and this method must throw a Coordina-
tionException of type CoordinationException.PARTIALLY_ENDED after all the registered Partici-
pants have been notified.

Throws CoordinationException– If this Coordination has failed, including timed out, or partially failed or
this Coordination is on the thread local Coordination stack of another thread.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.2.6 public long extendTimeout(long timeMillis)

timeMillis The time in milliseconds to extend the current timeout. If the initial timeout was specified as 0, no
extension must take place. A zero must have no effect.

□ Extend the time out of this Coordination.

Participants can call this method to extend the timeout of this Coordination with at least the speci-
fied time. This can be done by Participants when they know a task will take more than normal time.

This method will return the new deadline if an extension took place or the current deadline if, for
whatever reason, no extension takes place. Note that if a maximum timeout is in effect, the deadline
may not be extended by as much as was requested, if at all. If there is no deadline, zero is returned.
Specifying a timeout extension of 0 will return the existing deadline.

Returns The new deadline in milliseconds. If the specified time is 0, the existing deadline is returned. If this
Coordination was created with an initial timeout of 0, no timeout is set and 0 is returned.

Throws CoordinationException– If this Coordination is terminated.

I l legalArgumentException– If the specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 880 OSGi Compendium Release 6

130.5.2.7 public boolean fail(Throwable cause)

cause The failure cause. The failure cause must not be nul l .

□ Terminate this Coordination as a failure with the specified failure cause.

If this Coordination is already terminated, this method does nothing and returns fa lse .

Otherwise, this Coordination is terminated as a failure with the specified failure cause and then all
registered Participants are notified. Participants should discard any work associated with this Coor-
dination. This method will return true .

If this Coordination has been pushed onto a thread local Coordination stack, this Coordination is
not removed from the stack. The creator of this Coordination must still call end() on this Coordina-
tion to cause it to be removed from the thread local Coordination stack.

Returns true if this Coordination was active and was terminated by this method, otherwise fa lse .

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.8 public Bundle getBundle()

□ Returns the bundle that created this Coordination. This is the bundle that obtained the Coordinator
service that was used to create this Coordination.

Returns The bundle that created this Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.9 public Coordination getEnclosingCoordination()

□ Returns the Coordination enclosing this Coordination if this Coordination is on the thread local Co-
ordination stack.

When a Coordination is pushed onto the thread local Coordination stack, the former current Coor-
dination, if any, is the enclosing Coordination of this Coordination. When this Coordination is re-
moved from the thread local Coordination stack, this Coordination no longer has an enclosing Co-
ordination.

Returns The Coordination enclosing this Coordination if this Coordination is on the thread local Coordina-
tion stack or nul l if this Coordination is not on the thread local Coordination stack or has no enclos-
ing Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.10 public Throwable getFailure()

□ Returns the failure cause of this Coordination.

If this Coordination has failed, then this method will return the failure cause.

If this Coordination timed out, this method will return TIMEOUT as the failure cause. If this Coordi-
nation was active when the bundle that created it released the Coordinator service, this method will
return RELEASED as the failure cause. If the Coordination was orphaned, this method will return
ORPHANED as the failure cause.

Returns The failure cause of this Coordination or nul l if this Coordination has not terminated as a failure.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 6 Page 881

130.5.2.11 public long getId()

□ Returns the id assigned to this Coordination. The id is assigned by the Coordinator service which
created this Coordination and is unique among all the Coordinations created by the Coordinator
service and must not be reused as long as the Coordinator service remains registered. The id must be
positive and monotonically increases for each Coordination created by the Coordinator service.

Returns The id assigned to this Coordination.

130.5.2.12 public String getName()

□ Returns the name of this Coordination. The name is specified when this Coordination was created.

Returns The name of this Coordination.

130.5.2.13 public List<Participant> getParticipants()

□ Returns a snapshot of the Participants registered with this Coordination.

Returns A snapshot of the Participants registered with this Coordination. If no Participants are registered
with this Coordination, the returned list will be empty. The list is ordered in the order the Partic-
ipants were registered. The returned list is the property of the caller and can be modified by the
caller.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.2.14 public Thread getThread()

□ Returns the thread in whose thread local Coordination stack this Coordination has been pushed.

Returns The thread in whose thread local Coordination stack this Coordination has been pushed or nul l if
this Coordination is not in any thread local Coordination stack.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.15 public Map<Class<?>,Object> getVariables()

□ Returns the variable map associated with this Coordination. Each Coordination has a map that can
be used for communicating between different Participants. The key of the map is a class, allowing
for private data to be stored in the map by using implementation classes or shared data by using
shared interfaces. The returned map is not synchronized. Users of the map must synchronize on the
Map object while making changes.

Returns The variable map associated with this Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPANT] for this Coor-
dination.

130.5.2.16 public boolean isTerminated()

□ Returns whether this Coordination is terminated.

Returns true if this Coordination is terminated, otherwise fa lse if this Coordination is active.

130.5.2.17 public void join(long timeMillis) throws InterruptedException

timeMillis Maximum time in milliseconds to wait. Specifying a time of 0 will wait until this Coordination is
terminated.

□ Wait until this Coordination is terminated and all registered Participants have been notified.

Throws InterruptedException– If the wait is interrupted.

I l legalArgumentException– If the specified time is negative.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 882 OSGi Compendium Release 6

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.18 public Coordination push()

□ Push this Coordination object onto the thread local Coordination stack to make it the current Coor-
dination.

Returns This Coordination.

Throws CoordinationException– If this Coordination is already on the any thread's thread local Coordina-
tion stack or this Coordination is terminated.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.3 public class CoordinationException
extends RuntimeException
Unchecked exception which may be thrown by a Coordinator implementation.

130.5.3.1 public static final int ALREADY_ENDED = 4

The Coordination has already terminated normally.

130.5.3.2 public static final int ALREADY_PUSHED = 5

The Coordination was already on a thread's thread local Coordination stack.

130.5.3.3 public static final int DEADLOCK_DETECTED = 1

Registering a Participant with a Coordination would have resulted in a deadlock.

130.5.3.4 public static final int FAILED = 2

The Coordination has terminated as a failure with Coordination.fail(Throwable). When this excep-
tion type is used, the getCause() method must return a non-null value.

130.5.3.5 public static final int LOCK_INTERRUPTED = 6

The current thread was interrupted while waiting to register a Participant with a Coordination.

130.5.3.6 public static final int PARTIALLY_ENDED = 3

The Coordination has partially ended.

130.5.3.7 public static final int UNKNOWN = 0

Unknown reason for this exception.

130.5.3.8 public static final int WRONG_THREAD = 7

The Coordination cannot be ended by the calling thread since the Coordination is on the thread lo-
cal Coordination stack of another thread.

130.5.3.9 public CoordinationException(String message,Coordination coordination,int type,Throwable cause)

message The detail message for this exception.

coordination The Coordination associated with this exception.

cause The cause associated with this exception.

type The type of this exception.

□ Create a new Coordination Exception with a cause.

Throws I l legalArgumentException– If the specified type is FAILED and the specified cause is nul l .

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 6 Page 883

130.5.3.10 public CoordinationException(String message,Coordination coordination,int type)

message The detail message for this exception.

coordination The Coordination associated with this exception.

type The type of this exception.

□ Create a new Coordination Exception.

Throws I l legalArgumentException– If the specified type is FAILED .

130.5.3.11 public long getId()

□ Returns the id of the Coordination associated with this exception.

Returns The id of the Coordination associated with this exception or -1 if no Coordination is associated with
this exception.

130.5.3.12 public String getName()

□ Returns the name of the Coordination associated with this exception.

Returns The name of the Coordination associated with this exception or "<>" if no Coordination is associated
with this exception.

130.5.3.13 public int getType()

□ Returns the type for this exception.

Returns The type of this exception.

130.5.4 public final class CoordinationPermission
extends BasicPermission
A bundle's authority to create or use a Coordination.

CoordinationPermission has three actions: in it iate , part ic ipate and admin .

Concurrency Thread-safe

130.5.4.1 public static final String ADMIN = "admin"

The action string admin .

130.5.4.2 public static final String INITIATE = "initiate"

The action string in it iate .

130.5.4.3 public static final String PARTICIPATE = "participate"

The action string part ic ipate .

130.5.4.4 public CoordinationPermission(String filter,String actions)

filter A filter expression. Filter attribute names are processed in a case sensitive manner. A special value of
"*" can be used to match all coordinations.

actions admin , in it iate or part ic ipate (canonical order).

□ Creates a new granted CoordinationPermission object. This constructor must only be used to create
a permission that is going to be checked.

Examples:

 (coordination.name=com.acme.*)
 (&(signer=*,o=ACME,c=US)(coordination.name=com.acme.*))
 (signer=*,o=ACME,c=US)

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 884 OSGi Compendium Release 6

When a signer key is used within the filter expression the signer value must escape the special filter
chars ('*', '(', ')').

The name is specified as a filter expression. The filter gives access to the following attributes:

• signer - A Distinguished Name chain used to sign the exporting bundle. Wildcards in a DN are
not matched according to the filter string rules, but according to the rules defined for a DN chain.

• location - The location of the exporting bundle.
• id - The bundle ID of the exporting bundle.
• name - The symbolic name of the exporting bundle.
• coordination.name - The name of the requested coordination.

Filter attribute names are processed in a case sensitive manner.

Throws I l legalArgumentException– If the filter has an invalid syntax.

130.5.4.5 public CoordinationPermission(String coordinationName,Bundle coordinationBundle,String actions)

coordinationName The name of the requested Coordination.

coordinationBun-
dle

The bundle which created the requested Coordination.

actions admin , in it iate or part ic ipate (canonical order).

□ Creates a new requested CoordinationPermission object to be used by the code that must perform
checkPermission . CoordinationPermission objects created with this constructor cannot be added to
an CoordinationPermission permission collection.

130.5.4.6 public boolean equals(Object obj)

obj The object to test for equality with this CoordinationPermission object.

□ Determines the equality of two CoordinationPermission objects. This method checks that specified
permission has the same name and CoordinationPermission actions as this CoordinationPermission
object.

Returns true if obj is a CoordinationPermission , and has the same name and actions as this CoordinationPer-
mission object; fa lse otherwise.

130.5.4.7 public String getActions()

□ Returns the canonical string representation of the CoordinationPermission actions.

Always returns present CoordinationPermission actions in the following order: admin , in it iate , par-
t ic ipate .

Returns Canonical string representation of the CoordinationPermission actions.

130.5.4.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

130.5.4.9 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object.

This method checks that the filter of the target is implied by the coordination name of this object.
The list of CoordinationPermission actions must either match or allow for the list of the target ob-
ject to imply the target CoordinationPermission action.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 6 Page 885

Returns true if the specified permission is implied by this object; fa lse otherwise.

130.5.4.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing CoordinationPermission objects.

Returns A new PermissionCol lect ion object.

130.5.5 public interface Coordinator
A Coordinator service coordinates activities between different parties.

A bundle can use the Coordinator service to create Coordination objects. Once a Coordination ob-
ject is created, it can be pushed on the thread local Coordination stack to be an implicit parameter as
the current Coordination for calls to other parties, or it can be passed directly to other parties as an
argument. The current Coordination, which is on the top of the current thread's thread local Coordi-
nation stack, can be obtained with peek().

Any active Coordinations created by a bundle must be terminated when the bundle releases the Co-
ordinator service. The Coordinator service must fail these Coordinations with the RELEASED excep-
tion.

A Participant can register to participate in a Coordination and receive notification of the termina-
tion of the Coordination.

The following example code shows a example usage of the Coordinator service.

 void foo() {
 Coordination c = coordinator.begin("work", 0);
 try {
 doWork();
 } catch (Exception e) {
 c.fail(e);
 } finally {
 c.end();
 }
 }

In the doWork method, code can be called that requires notification of the termination of the Coor-
dination. The doWork method can then register a Participant with the Coordination.

 void doWork() {
 if (coordinator.addParticipant(this)) {
 beginWork();
 } else {
 beginWork();
 finishWork();
 }
 }

 void ended(Coordination c) {
 finishWork();
 }

 void failed(Coordination c) {
 undoWork();
 }

Concurrency Thread-safe

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 886 OSGi Compendium Release 6

Provider Type Consumers of this API must not implement this type

130.5.5.1 public boolean addParticipant(Participant participant)

participant The Participant to register with the current Coordination. The participant must not be nul l .

□ Register a Participant with the current Coordination.

If there is no current Coordination, this method does nothing and returns fa lse .

Otherwise, this method calls Coordination.addParticipant(Participant) with the specified Partici-
pant on the current Coordination and returns true .

Returns fa lse if there was no current Coordination, otherwise returns true .

Throws CoordinationException– If the Participant could not be registered with the current Coordination.
This exception should normally not be caught by the caller but allowed to be caught by the initiator
of this Coordination.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for the cur-
rent Coordination.

See Also Coordination.addParticipant(Participant)

130.5.5.2 public Coordination begin(String name,long timeMillis)

name The name of this coordination. The name does not have to be unique but must follow the symbol-
ic-name syntax from the Core specification.

timeMillis Timeout in milliseconds. A value of 0 means no timeout is required. If the Coordination is not ter-
minated within the timeout, the Coordinator service will fail the Coordination with a TIMEOUT ex-
ception.

□ Create a new Coordination and make it the current Coordination.

This method does that same thing as calling create(name, timeMillis).push()

Returns A new Coordination object

Throws I l legalArgumentException– If the specified name does not follow the symbol ic-name syntax or the
specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the specified
name and creating bundle.

130.5.5.3 public Coordination create(String name,long timeMillis)

name The name of this coordination. The name does not have to be unique but must follow the symbol-
ic-name syntax from the Core specification.

timeMillis Timeout in milliseconds. A value of 0 means no timeout is required. If the Coordination is not ter-
minated within the timeout, the Coordinator service will fail the Coordination with a TIMEOUT ex-
ception.

□ Create a new Coordination.

Returns The new Coordination object.

Throws I l legalArgumentException– If the specified name does not follow the symbol ic-name syntax or the
specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the specified
name and creating bundle.

130.5.5.4 public boolean fail(Throwable cause)

cause The failure cause. The failure cause must not be nul l .

□ Terminate the current Coordination as a failure with the specified failure cause.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 6 Page 887

If there is no current Coordination, this method does nothing and returns fa lse .

Otherwise, this method returns the result from calling Coordination.fail(Throwable) with the speci-
fied failure cause on the current Coordination.

Returns fa lse if there was no current Coordination, otherwise returns the result from calling
Coordination.fail(Throwable) on the current Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for the cur-
rent Coordination.

See Also Coordination.fail(Throwable)

130.5.5.5 public Coordination getCoordination(long id)

id The id of the requested Coordination.

□ Returns the Coordination with the specified id.

Returns A Coordination having with specified id or nul l if no Coordination with the specified id
exists, the Coordination with the specified id is terminated or the caller does not have
CoordinationPermission[ADMIN] for the Coordination with the specified id.

130.5.5.6 public Collection<Coordination> getCoordinations()

□ Returns a snapshot of all active Coordinations.

Since Coordinations can be terminated at any time, Coordinations in the returned collection can be
terminated before the caller examines the returned collection.

The returned collection must only contain the Coordinations for which the caller has
CoordinationPermission[ADMIN] .

Returns A snapshot of all active Coordinations. If there are no active Coordinations, the returned list will be
empty. The returned collection is the property of the caller and can be modified by the caller.

130.5.5.7 public Coordination peek()

□ Returns the current Coordination.

The current Coordination is the Coordination at the top of the thread local Coordination stack. If
the thread local Coordination stack is empty, there is no current Coordination. Each Coordinator
service maintains thread local Coordination stacks.

This method does not alter the thread local Coordination stack.

Returns The current Coordination or nul l if the thread local Coordination stack is empty.

130.5.5.8 public Coordination pop()

□ Remove the current Coordination from the thread local Coordination stack.

The current Coordination is the Coordination at the top of the thread local Coordination stack. If
the thread local Coordination stack is empty, there is no current Coordination. Each Coordinator
service maintains its own thread local Coordination stacks.

This method alters the thread local Coordination stack, if it is not empty, by removing the Coordina-
tion at the top of the thread local Coordination stack.

Returns The Coordination that was the current Coordination or nul l if the thread local Coordination stack is
empty.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the current
Coordination.

130.5.6 public interface Participant
A Participant participates in a Coordination.

References Coordinator Service Specification Version 1.0

Page 888 OSGi Compendium Release 6

A Participant can participate in a Coordination by registering itself with the Coordination. After
successfully registering itself, the Participant is notified when the Coordination is terminated.

If a Coordination terminates normally, then all registered Participants are notified on their
ended(Coordination) method. If the Coordination terminates as a failure, then all registered Partici-
pants are notified on their failed(Coordination) method.

Participants are required to be thread safe as notification can be made on any thread.

A Participant can only be registered with a single active Coordination at a time. If a Participant is al-
ready registered with an active Coordination, attempts to register the Participation with another ac-
tive Coordination will block until the Coordination the Participant is registered with terminates.
Notice that in edge cases the notification to the Participant that the Coordination has terminated
can happen before the registration method returns.

Concurrency Thread-safe

130.5.6.1 public void ended(Coordination coordination) throws Exception

coordination The Coordination that has terminated normally.

□ Notification that a Coordination has terminated normally.

This Participant should finalize any work associated with the specified Coordination.

Throws Exception– If this Participant throws an exception, the Coordinator service should log the excep-
tion. The Coordination.end() method which is notifying this Participant must continue notifica-
tion of other registered Participants. When this is completed, the Coordination.end() method must
throw a CoordinationException of type CoordinationException.PARTIALLY_ENDED.

130.5.6.2 public void failed(Coordination coordination) throws Exception

coordination The Coordination that has terminated as a failure.

□ Notification that a Coordination has terminated as a failure.

This Participant should discard any work associated with the specified Coordination.

Throws Exception– If this Participant throws an exception, the Coordinator service should log the excep-
tion. The Coordination.fail(Throwable) method which is notifying this Participant must continue
notification of other registered Participants.

130.6 References

[1] OSGi Core Release 6
http://www.osgi.org/Specifications/HomePage

Repository Service Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 889

132 Repository Service Specification

Version 1.1

132.1 Introduction
The guiding force behind the OSGi Specifications is a reusable component model. The OSGi Core Re-
lease 6 provides a solid foundation for such a component model by providing a component collab-
oration framework with a comprehensive management model. The service specifications provide
the abstract APIs to allow many different collaborations between components. This Repository Ser-
vice Specification provides the capability to manage the external access to components and other re-
sources.

Though the Repository service can be used as a standalone service to search and retrieve general bi-
nary artifacts, called resources, it is intended to be used in conjunction with the Resolver Service Spec-
ification on page 1003.

The model of the Repository is based on the generic Requirement-Capability model defined in [3] Re-
source API Specification, this chapter relies on the definitions of the generic model.

132.1.1 Essentials

• External - Provide access to external components and resources.
• Resolve - The Repository API must be closely aligned with the Resolver API since they are intend-

ed to be used in conjunction.
• Searching - Support general queries.
• Metadata - Allow resources to provide content information.
• Retrieval - Allow the retrieval of Resources from remote locations.
• Batching - Repositories must be able to batch queries.
• Distribution - Allow Repositories to be defined with a simple storage scheme such that Reposito-

ries can be distributed on a removable media like a CD/DVD.
• Mirroring - Repositories must be able to support selecting a remote site based on the local situa-

tion.

132.1.2 Entities

• Repository - A facade to a (remote) set of resources described by capabilities.
• Resource - An artifact that has requirements that must be satisfied before it is available but pro-

vides capabilities when it becomes available.
• Requirement - An expression that asserts a capability.
• Capability - Describes a feature of the resource so that it can be required by a requirement.
• Resource Content - Provides access to the underlying bytes of the resource in the default format.

Using a Repository Repository Service Specification Version 1.1

Page 890 OSGi Compendium Release 6

Figure 132.1 Class and Service overview

Repository Impl

Repository

Management
Agent

Resolver

<<interface>>
Resource
Content

<<interface>>
Requirement

<<interface>>
Capability

<<interface>>
Resource

Resource ImplRepository
XML

metadata

repository
medium

132.1.3 Synopsis
There are many different repositories available on the Internet or on fixed media. A repository can
be made available to bundles by providing a Repository service. If such a bundle, for example a Man-
agement Agent performing a provisioning operation, finds that it has an unmatched requirement
then it can query the repository services to find matching capabilities. The Repository service can
implement the query in many different ways. It can ship the requirement to a remote side to be
processed or it can process the query locally.

This specification also provides an XML schema that can be used to describe a Repository. Instances
of this schema can be downloaded from a remote repository for local indexing or they can be stored
for example on a DVD together with the resources.

132.2 Using a Repository
The Repository service provides an abstraction to a, potentially remote, set of resources. In the
generic Capability-Requirement model, resources are modeled to declare capabilities and require-
ments. The primary purpose of a Repository is to enable a management agent that uses the Resolver
API to leverage a wide array of repositories. This Repository service specification allows different
Repository providers to be installed as bundles, and each bundle can register multiple Repository
services. The Repository is sufficiently abstract to allow many different implementations.

Repository services are identified by a number of service properties:

• service.pid - A mandatory unique identity for this Repository service.
• service.descr ipt ion - An optional human readable name for this Repository.
• repository.ur l - Optional URLs to landing pages of the repository, if they exist.

In general, the users of the Repository service should aggregate all services in the service registry.
This strategy allows the deployer to control the available Repositories. The following example, us-
ing Declarative Service annotations to show the dependencies on the service registry, shows how to
aggregate the different Repository services.

List<Repository> repos = new CopyOnWriteArrayList<Repository>();

Repository Service Specification Version 1.1 Using a Repository

OSGi Compendium Release 6 Page 891

@Reference(
cardinality = ReferenceCardinality.MULTIPLE,
policy = ReferencePolicy.DYNAMIC)
void addRepository(Repository repo) { repos.add(repo); }
void removeRepository(Repository repo) { repos.remove(repo); }

To access a resource in a Repository service it is necessary to construct a requirement, pass this to
the Repository service, and then use the returned capabilities to satisfy the resolver or to get the re-
source from the capability. The Repository then returns all matching capabilities. The requirement
matches the capability if their namespaces match and the requirement's filter is absent or matches
the attributes.

The f indProviders(Col lect ion) method takes a Collection of requirements. The reason for this col-
lection is that it allows the caller to specify multiple requirements simultaneously so that Reposito-
ries can batch requests, the requirements in this collection are further unrelated. That is, they do not
form an expression in any way. Multiple requirements as the parameter means that the result must
be a map so that the caller can find out what requirement matched what capabilities. For example:

List<Capability> find(Requirement r){
 List<Capability> result = new ArrayList<Capability>();

 for (Repository repo : repos) {
 Map<Requirement,Collection<Capability>> answer =
 repo.findProviders(Collections.singleton(r));
 result.addAll(answer.get(r));
 }
 return result;
}

Access to resources is indirect since the Repository returns capabilities. Each capability is declared
in a resource and the getResource() method provides access to the underlying resource. Since each
resource declares an osgi . identity capability it is possible to retrieve a resource from a repository if
the identity name, type, and version are known. For example, to get a bundle resource:

Resource getResource(String type, String name, Version version) {
 String filter = String.format(
 "(&(type=%s)(osgi.identity=%s)(version=%s))",
 type,
 name,
 version);

 RequirementBuilder builder = repo.newRequirementBuilder("osgi.identity");
 builder.addDirective("filter", filter);
 Requirement r = builder.build();

 List<Capability> capabilities = find(r);
 if (capabilities.isEmpty())
 return null;
 return capabilities.get(0).getResource();
}

Resources that originate from Repository services must implement the RepositoryContent interface,
this interface provides stream access to the default storage format. It is therefore possible to get the
content with the following code.

InputStream getContent(String type, Stringname, Version version) {

Using a Repository Repository Service Specification Version 1.1

Page 892 OSGi Compendium Release 6

 Resource r = getResource(type, name, version);
 if (r == null)
 return null;
 return ((RepositoryContent)r).getContent();
}

The getContent() method returns an Input Stream in the default format for that resource type. Re-
sources from a Repository should also have one or more osgi .content capabilities that advertise the
same resource in the same or different formats. The osgi .content capability has a number of attrib-
utes that provide information about the resource's download format:

• osgi .content - A unique SHA-256 for the content as read from the URL.
• url - A URL to the content.
• mime - An IANA MIME type for the content.
• size - Size in bytes of the content.

It is therefore possible to search for a specific MIME type and download that format. For example:

String getURL(String type, String name, Versionversion, String mime)
 throws Exception {
 Resource r = getResource(type, name, version);
 for (Capability cap : r.getCapabilities("osgi.content")) {
 Map<String,Object> attrs = cap.getAttributes();
 String actual = (String) attrs.get("mime");
 if (actual!=null && mime.equalsIgnoreCase(actual)) {
 String url = (String) attrs.get("url");
 if (url != null)
 return url;
 }
 }
 return null;
}

Since the osgi .content capability contains the SHA-256 digest as the osgi .content attribute it is pos-
sible to verify the download that it was correct.

Every resource has an osgi . identity capability. This namespace defines, in [2] Framework Namespaces,
the possibility to add related resources, for example javadoc or sources. A resource then has informa-
tional requirements to osgi . identity capabilities; these requirements are marked with a classi f ier di-
rective that holds the type of relation. The following example shows how it would be possible to find
such a related resource:

InputStream getRelated(Resource resource,String classifier)
 throws Exception {
 for (Requirement r : resource.getRequirements("osgi.identity")) {
 if (classifier.equals(r.getDirectives().get("classifier"))) {
 Collection<Capability> capabilities =
 repository.findProviders(Collections.singleton(r)).get(r);

 if (capabilities.isEmpty())
 continue;

 Capability c = capabilities.iterator().next();
 Resource related = c.getResource();
 return ((RepositoryContent)related).getContent();
 }

Repository Service Specification Version 1.1 Using a Repository

OSGi Compendium Release 6 Page 893

 }
 return null;
}

132.2.1 Combining Requirements
In some cases it may be useful to find resources in the repository that satisfy criteria across multiple
namespaces.

A simple Requirement object can contain a filter that makes assertions about capability attrib-
utes within a single namespace. So for example, a single requirement can state that a package
org.example.mypkg must be exported in a version between 3.1 inclusive and 4.0 exclusive:

 RequirementBuilder rb = repo.newRequirementBuilder("osgi.wiring.package");
 String rf = "(&(osgi.wiring.package=org.example.mypkg)"
 + "(version>=3.1)(!(version>=4.0)))";
 rb.addDirective("filter", rf);
 Requirement r = rb.build();

This requirement contains three conditions on the osgi .wir ing.package capability.

In some situations it may be needed to specify requirements that cover multiple namespaces.
For example a bundle might be needed that exports the above package, but the bundle must also
have the Apache License, Version 2.0 license. A resource's license is available as an attribute on the
osgi . identity namespace. Constructing a constraint that combines requirements from multiple
namespaces can be done by using an Expression Combiner, which can be obtained from the Reposi-
tory service. The Repository service provides a f indProviders(RequirementExpression) overload that
can take a requirement expression and returns a Promise to a collection of matching resources.

 RequirementBuilder lb = repo.newRequirementBuilder("osgi.identity");
 String lf = "(license=http://opensource.org/licenses/Apache-2.0)";
 lb.addDirective("filter", lf);

 RequirementExpression expr = repo.getExpressionCombiner().and(
 lb.buildExpression(), rb.buildExpression());

 Promise<Collection<Resource>> p = repo.findProviders(expr);

 // Let findProviders() do its work async and update a ui component
 // once the result is available
 p.then(new Success<Collection<Resource>, Void>() {
 public Promise<Void> call(Promise<Collection<Resource>> resolved)
 throws Exception {
 ui.update(resolved.getValue());
 return null;
 }
 });

 // Instead of the async chain above its also possiblye to
 // wait for the promise value synchronously:
 // Collection<Resource> resources = p.getValue();

For more details on OSGi Promises, see the Promises Specification on page 1137.

Repository Repository Service Specification Version 1.1

Page 894 OSGi Compendium Release 6

132.3 Repository
A Repository service provides access to capabilities that satisfy a given requirement. A Repository
can be the facade of a remote server containing a large amount of resources, a repository on remov-
able media, or even a collection of bundles inside a ZIP file. A Repository communicates in terms
of requirements and capabilities as defined in [3] Resource API Specification. This model is closely
aligned with the Resolver Service Specification on page 1003.

A Repository service must be registered with the service properties given in the following table.

Table 132.1 Repository Service Properties

Attribute Opt Type Description
service.pid mandatory Str ing A globally unique identifier for this Repository.
service.descr ipt ion optional Str ing The Repository Name
repository.ur l optional Str ing+ URLs related to this Repository.

The Repository implements the following methods:

• f indProviders(Col lect ion) - For each requirement find all the capabilities that match that require-
ment and return them as a Map<Requirement,Col lect ion<Capabi l i ty>> .

• f indProviders(RequirementExpression) - Find all resources that match the requirement expres-
sion. The requirement expression is used to combine multiple requirements using the and , or
and not operators.

• getExpressionCombiner() - Obtain an expression combiner. This expression combiner is used to
produce requirement expressions from simple requirements or other requirement expressions.

• newRequirementBui lder(Str ing) - Obtain a convenience builder for Requirement objects.

A Repository must not perform any namespace specific actions or matching. The Repository must
therefore match a requirement to a capability with the following rules:

• The namespace must be identical, and
• The requirement's filter is absent or it must match the capability's attributes.

Resources originating from a Repository service must additionally:

• Implement the RepositoryContent interfaces, see Repository Content on page 894.
• Provide at least one osgi .content Capability, see osgi.content Namespace on page 894.

132.3.1 Repository Content
Resources originating from a Repository must implement the RepositoryContent interface. The pur-
pose of this interface is to allow users of the Repositories access to an Input Stream that provides ac-
cess to the resource.

The RepositoryContent interface provides a single method:

• getContent() - Return an Input Stream for the resource, if more than one osgi .content capability
is present the content associated with the first capability is returned.

132.4 osgi.content Namespace
A resource is a logical concept, to install a resource in an environment it is necessary to get access to
its contents. A resource can be formatted in different ways. It is possible to deliver a bundle as a JAR
file, a Pack200 file, or some other format. In general, the RepositoryContent interface provides ac-
cess to the default format.

Repository Service Specification Version 1.1 XML Repository Format

OSGi Compendium Release 6 Page 895

The Repository can advertise the different formats with osgi .content capabilities. Each of those ca-
pabilities is identified with a unique SHA-256 checksum and has a URL for the resource in the spec-
ified format. The size and mime attributes provide information the download format, this can be
used for selection. If more than one osgi .content capability is associated with a resource, the first ca-
pability must represent the default format. If the resource has a standard or widely used format (e.g.,
JAR for bundles and ESA for subsystems), and that format is provided as part of the repository, then
that format should be the default format.

The osgi .content Namespace supports the attributes defined in the following table and Content-
Namespace .

Table 132.2 osgi.content definition

Name Kind M/O Type Syntax Description
osgi .content CA M String [0-9a-fA-F]{64} The SHA-256 hex encoded digest for this re-

source
url CA M String <url> The URL to the bytes. This must be an ab-

solute URL.
size CA M Long [0-9]+ The size of the resource in bytes as it will be

read from the URL.
mime CA M String <mime type> An IANA defined MIME type for the format

of this content.

132.5 XML Repository Format
This is an optional part of the specification since the Repository interface does not provide access
how the Repository obtains its information. However, the purpose of this part of the specification is
to provide a commonly recognized format for interchanging Repository metadata.

This section therefore describes an XML schema to represent Repository content. It is expected that
Internet based Repositories can provide such an XML file to clients. A Repository XML file can be
used as a common interchange format between multiple Repository implementations.

The Repository XML describes a number of resources with their capabilities and requirements. Addi-
tionally the XML can refer to other Repository XML files. The XML Schema can be found at its XML
namespace, see XML Repository Schema on page 898. The XML structure, which closely follows the
Requirement-Capability model, is depicted in Figure 132.2.

Figure 132.2 XML Structure

<repository>

<referral> <resource>

<requirement> <capability>

<attribute> <directive> <attribute> <directive>

XML Repository Format Repository Service Specification Version 1.1

Page 896 OSGi Compendium Release 6

The different elements are discussed in the following sections. All types are derived from the XML
Schema types, see [4] XML Schema Part 2: Data types Second Edition.

132.5.1 Repository Element
The repository element is the root of the document. The repository element has the following child
elements:

• referral* - Referrals to other repositories for a federated model, see Referral Element on page
896.

• resource* - Resource definitions, see Resource Element on page 896.

The repository element has the attributes defined in the following table.

Table 132.3 repository element attributes

Attribute Type Description
name NCName The name of this Repository. For informational purposes.
increment long Counter which increments every time the repository is

changed. Can be used by clients to check for changes. The
counter is not required to increase monotonically.

132.5.2 Referral Element
The purpose of the referral element is to allow a Repository to refer to other Repositories, allowing
for federated Repositories. Referrals are applied recursively. However, this is not always desired. It is
therefore possible to limit the depth of referrals. If the depth attribute is >= 1, the referred reposito-
ry must be included but it must not follow any referrals from the referred repository. If the depth at-
tribute is more than one, referrals must be included up to the given depth. Depths of referred repos-
itories must also be obeyed, where referred repositories may reduce the effective depth but not in-
crease it. For example if a top repository specifies a depth of 5 and a level 3 repository has a depth of
1 then the repository on level 5 must not be used. If not specified then there is no limit to the depth.
Referrals that have cycles must be ignored, a resource of a given Repository must only occur once in
a Repository.

The referral element has the attributes defined in the following table.

Table 132.4 referral element attributes

Attribute Type Description
depth int The max depth of referrals
url anyURI A URL to where the referred repository XML can be found.

The URL can be absolute or relative to the URI of the current
XML resource.

132.5.3 Resource Element
The resource element defines a Resource. The resource element has the following child elements:

• requirement* - The requirements of this resource, see Requirement Element on page 897.
• capabi l i ty* - The capabilities of this resource, see Capability Element on page 896.

The Resource element has no attributes.

132.5.4 Capability Element
The capabi l i ty element maps to a capability, it holds the attributes and directives. The capabi l i ty ele-
ment has the following child elements:

• direct ive* - The directives for the capability, see Directive Element on page 898.

Repository Service Specification Version 1.1 XML Repository Format

OSGi Compendium Release 6 Page 897

• attr ibute* - The attributes for the capability, see Attribute Element on page 897.

The capabi l i ty element has the attributes defined in the following table.

Table 132.5 capability element attributes

Attribute Type Description
namespace token The namespace of this capability

132.5.5 Requirement Element
The requirement element maps to a requirement, it holds the attributes and directives. The require-
ment element has the following child elements:

• direct ive* - The directives for the requirement, see Directive Element on page 898.
• attr ibute* - The attributes for the requirement, see Attribute Element on page 897.

The requirement element has the attributes defined in the following table.

Table 132.6 requirement element attributes

Attribute Type Description
namespace token The namespace of this requirement

132.5.6 Attribute Element
An attr ibute element describes an attribute of a capability or requirement. Attributes are used to
convey information about the Capability-Requirement. Attributes for the capability are used for
matching the requirement's filter. The meaning of attributes is described with the documentation of
the namespace in which they reside.

Attributes are optionally typed according to the [1] Framework Module Layer specification. The de-
fault type is Str ing , the value of the value attribute. However, if a type attribute is specified and it is
not Str ing then the value attribute must be converted according to the type attribute specifier. The
syntax of the type attribute is as follows:

type ::= list | scalar
list ::= 'List<' scalar '>' // no spaces between terminals
scalar ::= 'String' | 'Version' | 'Long' | 'Double'

A list conversion requires the value to be broken in tokens separated by comma (',' \u002C). White-
space around the list and around commas must be trimmed for non-String types. Each token must
then be converted to the given type according to the scalar type specifier. The exact rules for the
comma separated lists are defined in [1] Framework Module Layer, see Bundle Capability Attributes.

The conversion of value s , when scalar , must take place with the following methods:

• Str ing - No conversion, use s
• Version - Version.parseVersion(s)
• Long - After trimming whitespace, Long.parseLong(s)
• Double - After trimming whitespace, Double.parseDouble(s)

The attr ibute element has the attributes defined in the following table.

Table 132.7 attribute element attributes

Attribute Type Description
name token The name of the attribute
value str ing The value of the attribute.
type The type of the attribute, the syntax is outlined in the previ-

ous paragraphs.

XML Repository Schema Repository Service Specification Version 1.1

Page 898 OSGi Compendium Release 6

132.5.7 Directive Element
A direct ive element describes a directive of a capability or a requirement. Directives are used to con-
vey information about the Capability-Requirement. The meaning of directives is described with the
documentation of the namespace in which they reside.

The direct ive element has the attributes defined in the following table.

Table 132.8 directive element attributes

Attribute Type Description
name token The name of the attribute
value str ing The value of the attribute.

132.5.8 Sample XML File
The following example shows a very small XML file. The file contains one resource.

<repository name='OSGiRepository'
 increment='13582741'
 xmlns='http://www.osgi.org/xmlns/repository/v1.0.0'>
 <resource>

 <requirement namespace='osgi.wiring.package'>
 <directive name='filter' value=
 '(&(osgi.wiring.package=org.apache.commons.pool)(version>=1.5.6))'/>
 </requirement>

 <requirement namespace='osgi.identity'>
 <directive name='effective' value='meta'/>
 <directive name='resolution' value='optional'/>
 <directive name='filter' value=
 '(&(version=1.5.6)(osgi.identity=org.acme.pool-src))'
 <directive name='classifier' value='sources'/>
 </requirement>

 <capability namespace='osgi.identity'>
 <attribute name='osgi.identity' value='org.acme.pool'/>
 <attribute name='version'type='Version' value='1.5.6'/>
 <attribute name='type' value='osgi.bundle'/>
 </capability>

 <capability namespace='osgi.content'>
 <attribute name='osgi.content' value='e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
 <attribute name='url' value='http://www.acme.com/repository/org/acme/pool/org.acme.pool-1.5.6.jar'/>
 <attribute name='size' type='Long' value='4405'/>
 <attribute name='mime' value='application/vnd.osgi.bundle'/>
 </capability>

 <capability namespace='osgi.wiring.bundle'>
 <attribute name='osgi.wiring.bundle' value='org.acme.pool'/>
 <attribute name='bundle-version' type='Version' value='1.5.6'/>
 </capability>

 <capability namespace='osgi.wiring.package'>
 <attribute name='osgi.wiring.package' value='org.acme.pool'/>
 <attribute name='version' type='Version' value='1.1.2'/>
 <attribute name='bundle-version' type='Version' value='1.5.6'/>
 <attribute name='bundle-symbolic-name' value='org.acme.pool'/>
 <directive name='uses' value='org.acme.pool,org.acme.util'/>
 </capability>

 </resource>
</repository>

132.6 XML Repository Schema
The namespace of this schema is:

Repository Service Specification Version 1.1 XML Repository Schema

OSGi Compendium Release 6 Page 899

http://www.osgi.org/xmlns/repository/v1.0.0

The schema for this namespace can be found at the location implied in its name. The recommended
prefix for this namespace is repo .

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:repo="http://www.osgi.org/xmlns/repository/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/repository/v1.0.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.0.1">

 <element name="repository" type="repo:Trepository" />
 <complexType name="Trepository">
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="resource" type="repo:Tresource" />
 <element name="referral" type="repo:Treferral" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the repository. The name may contain
 spaces and punctuation.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="increment" type="long">
 <annotation>
 <documentation xml:lang="en">
 An indication of when the repository was last changed. Client's can
 check if a
 repository has been updated by checking this increment value.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tresource">
 <annotation>
 <documentation xml:lang="en">
 Describes a general resource with
 requirements and capabilities.
 </documentation>
 </annotation>
 <sequence>
 <element name="requirement" type="repo:Trequirement" minOccurs="0" maxOccurs="unbounded"/>
 <element name="capability" type="repo:Tcapability" minOccurs="1" maxOccurs="unbounded"/>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Treferral">
 <annotation>
 <documentation xml:lang="en">
 A referral points to another repository XML file. The
 purpose of this element is to create a federation of
 repositories that can be accessed as a single
 repository.
 </documentation>
 </annotation>
 <attribute name="depth" type="int" use="optional">
 <annotation>

XML Repository Schema Repository Service Specification Version 1.1

Page 900 OSGi Compendium Release 6

 <documentation xml:lang="en">
 The depth of referrals this repository acknowledges.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="url" type="anyURI" use="required">
 <annotation>
 <documentation xml:lang="en">
 The URL to the referred repository. The URL can be
 absolute or relative from the given repository’s
 URL.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tcapability">
 <annotation>
 <documentation xml:lang="en">
 A named set of type attributes and directives. A capability can be
 used to resolve a requirement if the resource is included.
 </documentation>
 </annotation>
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="directive" type="repo:Tdirective" />
 <element name="attribute" type="repo:Tattribute" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="namespace" type="string">
 <annotation>
 <documentation xml:lang="en">
 Name space of the capability. Only requirements with the
 same name space must be able to match this capability.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Trequirement">
 <annotation>
 <documentation xml:lang="en">
 A filter on a named set of capability attributes.
 </documentation>
 </annotation>
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="directive" type="repo:Tdirective" />
 <element name="attribute" type="repo:Tattribute" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="namespace" type="string">
 <annotation>
 <documentation xml:lang="en">
 Name space of the requirement. Only capabilities within the
 same name space must be able to match this requirement.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tattribute">

Repository Service Specification Version 1.1 XML Repository Schema

OSGi Compendium Release 6 Page 901

 <annotation>
 <documentation xml:lang="en">
 A named value with an optional type that decorates
 a requirement or capability.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="value" type="string">
 <annotation>
 <documentation xml:lang="en">
 The value of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="type" type="repo:TpropertyType" default="String">
 <annotation>
 <documentation xml:lang="en">
 The type of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tdirective">
 <annotation>
 <documentation xml:lang="en">
 A named value of type string that instructs a resolver
 how to process a requirement or capability.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the directive.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="value" type="string">
 <annotation>
 <documentation xml:lang="en">
 The value of the directive.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="TpropertyType">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Version" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="List<String>" />
 <enumeration value="List<Version>" />
 <enumeration value="List<Long>" />
 <enumeration value="List<Double>" />
 </restriction>
 </simpleType>
 <attribute name="must-understand" type="boolean" default="false">

Capabilities Repository Service Specification Version 1.1

Page 902 OSGi Compendium Release 6

 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents to require that
 the document consumer understand the extension. This attribute must be
 qualified when used.
 </documentation>
 </annotation>
 </attribute>
</schema>

132.7 Capabilities
Implementations of the Repository Service specification must provide the capabilities listed in this
section.

132.7.1 osgi.implementation Capability
The Repository Service implementation bundle must provide the osgi . implementation capability
with name osgi . repository . This capability can be used by provisioning tools and during resolution
to ensure that a Repository Service implementation is present. The capability must also declare a us-
es constraint for the org.osgi .service.repository package and provide the version of this specifica-
tion:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.repository";
 uses:="org.osgi.service.repository";
 version:Version="1.1"

This capability must follow the rules defined for the osgi.implementation Namespace on page 997.

132.7.2 osgi.service Capability
The Repository Service implementation must provide a capability in the osgi .service namespace
representing the Repository service. This capability must also declare a uses constraint for the
org.osgi .service.repository package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.repository.Repository";
 uses:="org.osgi.service.repository"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

132.8 Security

132.8.1 External Access
Repositories in general will get their metadata and artifacts from an external source, which makes
them an attack vector for a malevolent Bundle that needs unauthorized external access. Since a Bun-
dle using a Repository has no knowledge of what sources the Repository will access it will be neces-
sary for the Repository to implement the external access in a doPriv i leged block. Implementations
must ensure that callers cannot influence/modify the metadata in such a way that the getContent()
method could provide access to arbitrary Internet resources. This could for example happen if:

• The implementation relies on the osgi .content namespace to hold the URL
• The attributes Map from the osgi .content Capability is modifiable

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Compendium Release 6 Page 903

If the malevolent Bundle could change the osgi.content attribute it could change it to arbitrary
URLs. This example should make it clear that Repository implementations must be very careful.

132.8.2 Permissions
Implementations of this specification will need the following minimum permissions.

ServicePermission[...Repository, REGISTER]
SocketPermission[... carefully restrict external access...]

Users of this specification will need the following minimum permissions.

ServicePermission[...Repository, GET]

132.9 org.osgi.service.repository

Repository Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.repository; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.repository; vers ion="[1.1 ,1 .2)"

132.9.1 Summary

• AndExpression - A RequirementExpression representing the and of a number of requirement ex-
pressions.

• ContentNamespace - Content Capability and Requirement Namespace.
• ExpressionCombiner - An ExpressionCombiner can be used to combine requirement expres-

sions into a single complex requirement expression using the and , or and not operators.
• IdentityExpression - A RequirementExpression representing a requirement.
• NotExpression - A RequirementExpression representing the not (negation) of a requirement ex-

pression.
• OrExpression - A RequirementExpression representing the or of a number of requirement ex-

pressions.
• Repository - A repository service that contains resources.
• RepositoryContent - An accessor for the content of a resource.
• RequirementBui lder - A builder for requirements.
• RequirementExpression - The super interface for all requirement expressions.

132.9.2 public interface AndExpression
extends RequirementExpression
A RequirementExpression representing the and of a number of requirement expressions.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

org.osgi.service.repository Repository Service Specification Version 1.1

Page 904 OSGi Compendium Release 6

132.9.2.1 public List<RequirementExpression> getRequirementExpressions()

□ Return the requirement expressions that are combined by this AndExpression .

Returns An unmodifiable list of requirement expressions that are combined by this AndExpression . The list
contains the requirement expressions in the order they were specified when this requirement ex-
pression was created.

132.9.3 public final class ContentNamespace
extends Namespace
Content Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

132.9.3.1 public static final String CAPABILITY_MIME_ATTRIBUTE = "mime"

The capability attribute that defines the IANA MIME Type/Format for this content.

132.9.3.2 public static final String CAPABILITY_SIZE_ATTRIBUTE = "size"

The capability attribute that contains the size, in bytes, of the content. The value of this attribute
must be of type Long .

132.9.3.3 public static final String CAPABILITY_URL_ATTRIBUTE = "url"

The capability attribute that contains the URL to the content.

132.9.3.4 public static final String CONTENT_NAMESPACE = "osgi.content"

Namespace name for content capabilities and requirements.

Also, the capability attribute used to specify the unique identifier of the content. This identifier is
the SHA-256 hash of the content.

132.9.4 public interface ExpressionCombiner
An ExpressionCombiner can be used to combine requirement expressions into a single complex re-
quirement expression using the and , or and not operators.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.4.1 public AndExpression and(RequirementExpression expr1,RequirementExpression expr2)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

□ Combine two RequirementExpressions into a requirement expression using the and operator.

Returns An AndExpression representing an and of the specified requirement expressions.

132.9.4.2 public AndExpression and(RequirementExpression expr1,RequirementExpression
expr2,RequirementExpression ... moreExprs)

expr1 The first requirement expression to combine into the returned requirement expression.

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Compendium Release 6 Page 905

expr2 The second requirement expression to combine into the returned requirement expression

moreExprs Optional, additional requirement expressions to combine into the returned requirement expression.

□ Combine multiple RequirementExpressions into a requirement expression using the and operator.

Returns An AndExpression representing an and of the specified requirement expressions.

132.9.4.3 public IdentityExpression identity(Requirement req)

req The requirement to wrap in a requirement expression.

□ Wrap a Requirement in an IdentityExpression. This can be useful when working with a combina-
tion of Requirements and RequirementExpresions.

Returns An IdentityExpression representing the specified requirement.

132.9.4.4 public NotExpression not(RequirementExpression expr)

expr The requirement expression to negate.

□ Return the negation of a RequirementExpression.

Returns A NotExpression representing the not of the specified requirement expression.

132.9.4.5 public OrExpression or(RequirementExpression expr1,RequirementExpression expr2)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

□ Combine two RequirementExpressions into a requirement expression using the or operator.

Returns An OrExpression representing an or of the specified requirement expressions.

132.9.4.6 public OrExpression or(RequirementExpression expr1,RequirementExpression
expr2,RequirementExpression ... moreExprs)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

moreExprs Optional, additional requirement expressions to combine into the returned requirement expression.

□ Combine multiple RequirementExpressions into a requirement expression using the or operator.

Returns An OrExpression representing an or of the specified requirement expressions.

132.9.5 public interface IdentityExpression
extends RequirementExpression
A RequirementExpression representing a requirement.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.5.1 public Requirement getRequirement()

□ Return the Requirement contained in this IdentityExpression .

Returns The requirement contained in this IdentityExpression .

132.9.6 public interface NotExpression
extends RequirementExpression
A RequirementExpression representing the not (negation) of a requirement expression.

org.osgi.service.repository Repository Service Specification Version 1.1

Page 906 OSGi Compendium Release 6

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.6.1 public RequirementExpression getRequirementExpression()

□ Return the requirement expression that is negated by this NotExpression .

Returns The requirement expression that is negated by this NotExpression .

132.9.7 public interface OrExpression
extends RequirementExpression
A RequirementExpression representing the or of a number of requirement expressions.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.7.1 public List<RequirementExpression> getRequirementExpressions()

□ Return the requirement expressions that are combined by this OrExpression .

Returns An unmodifiable list of requirement expressions that are combined by this OrExpression . The list
contains the requirement expressions in the order they were specified when this requirement ex-
pression was created.

132.9.8 public interface Repository
A repository service that contains resources.

Repositories may be registered as services and may be used as by a resolve context during resolver
operations.

Repositories registered as services may be filtered using standard service properties.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.8.1 public static final String URL = "repository.url"

Service property to provide URLs related to this repository.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

132.9.8.2 public Map<Requirement,Collection<Capability>> findProviders(Collection<? extends Requirement>
requirements)

requirements The requirements for which matching capabilities should be returned. Must not be nul l .

□ Find the capabilities that match the specified requirements.

Returns A map of matching capabilities for the specified requirements. Each specified requirement must ap-
pear as a key in the map. If there are no matching capabilities for a specified requirement, then the
value in the map for the specified requirement must be an empty collection. The returned map is
the property of the caller and can be modified by the caller. The returned map may be lazily populat-
ed, so calling size() may result in a long running operation.

132.9.8.3 public Promise<Collection<Resource>> findProviders(RequirementExpression expression)

expression The RequirementExpression for which matching capabilities should be returned. Must not be nul l .

□ Find the resources that match the specified requirement expression.

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Compendium Release 6 Page 907

Returns A promise to a collection of matching Resources. If there are no matching resources, an empty col-
lection is returned. The returned collection is the property of the caller and can be modified by the
caller. The returned collection may be lazily populated, so calling size() may result in a long run-
ning operation.

Since 1.1

132.9.8.4 public ExpressionCombiner getExpressionCombiner()

□ Return an expression combiner. An expression combiner can be used to combine multiple require-
ment expressions into more complex requirement expressions using and, or and not operators.

Returns An ExpressionCombiner .

Since 1.1

132.9.8.5 public RequirementBuilder newRequirementBuilder(String namespace)

namespace The namespace for the requirement to be created.

□ Return a new RequirementBui lder which provides a convenient way to create a requirement.

For example:

 Requirement myReq = repository.newRequirementBuilder("org.foo.ns1").
 addDirective("filter", "(org.foo.ns1=val1)").
 addDirective("cardinality", "multiple").build();

Returns A new requirement builder for a requirement in the specified namespace.

Since 1.1

132.9.9 public interface RepositoryContent
An accessor for the content of a resource. All Resource objects which represent resources in a Repos-
itory must implement this interface. A user of the resource can then cast the Resource object to this
type and then obtain an InputStream to the content of the resource.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.9.1 public InputStream getContent()

□ Returns a new input stream to the content of this resource. The content is represented on the re-
source through the osgi .content capability. If more than one such capability is associated with the
resource, the first such capability is returned.

Returns A new input stream for associated content.

132.9.10 public interface RequirementBuilder
A builder for requirements.

Since 1.1

Provider Type Consumers of this API must not implement this type

132.9.10.1 public RequirementBuilder addAttribute(String name,Object value)

name The attribute name.

value The attribute value.

□ Add an attribute to the set of attributes.

References Repository Service Specification Version 1.1

Page 908 OSGi Compendium Release 6

Returns This requirement builder.

132.9.10.2 public RequirementBuilder addDirective(String name,String value)

name The directive name.

value The directive value.

□ Add a directive to the set of directives.

Returns This requirement builder.

132.9.10.3 public Requirement build()

□ Create a requirement based upon the values set in this requirement builder.

Returns A requirement created based upon the values set in this requirement builder.

132.9.10.4 public IdentityExpression buildExpression()

□ Create a requirement expression for a requirement based upon the values set in this requirement
builder.

Returns A requirement expression created for a requirement based upon the values set in this requirement
builder.

132.9.10.5 public RequirementBuilder setAttributes(Map<String,Object> attributes)

attributes The map of attributes.

□ Replace all attributes with the attributes in the specified map.

Returns This requirement builder.

132.9.10.6 public RequirementBuilder setDirectives(Map<String,String> directives)

directives The map of directives.

□ Replace all directives with the directives in the specified map.

Returns This requirement builder.

132.9.10.7 public RequirementBuilder setResource(Resource resource)

resource The resource.

□ Set the Resource .

A resource is optional. This method will replace any previously set resource.

Returns This requirement builder.

132.9.11 public interface RequirementExpression
The super interface for all requirement expressions. All requirement expressions must extend this
interface.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.10 References
[1] Framework Module Layer

OSGi Core, Chapter 3 Module Layer

Repository Service Specification Version 1.1 Changes

OSGi Compendium Release 6 Page 909

[2] Framework Namespaces
OSGi Core, Chapter 8, osgi.identity Namespace

[3] Resource API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] XML Schema Part 2: Data types Second Edition
http://www.w3.org/TR/xmlschema-2/

132.11 Changes
• Introduction of Requirement Expressions to represent combined requirements.
• Introduction of Requirement Builder to facilitate the creation of Requirement objects.
• Changes to default content for the Repository Content API and osgi .content capability.
• Introduction of osgi . implementation and osgi .service capabilities.

Changes Repository Service Specification Version 1.1

Page 910 OSGi Compendium Release 6

Service Loader Mediator Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 911

133 Service Loader Mediator
Specification

Version 1.0

133.1 Introduction
Java SE 6 introduced the Service Loader, a simple service-provider loading facility, that attempted to
unify the different ad-hoc mechanisms used by Java's many factories and builders. The design al-
lows a JAR to advertise the name of one or more embedded classes that implement a given interface
and consumers to obtain instances of these implementation classes through the Service Loader API.

Though the Service Loader is about extensibility, its own design is closed and therefore not extend-
able. It does not support a provider model that would allow different ways of finding interface im-
plementations; its classes are final and its policy is fixed. Unfortunately, the Service Loader's fixed
design uses a non-modular class loading policy; it defines its visibility scope with a class loader,
which in general requires full visibility of the application's class path. The Service Loader can there-
fore in OSGi not find implementations from other bundles. Additionally, the Service Loader also
does not enforce a life cycle; objects are handed out forever.

Since the Service Loader is the only standardized plugin mechanism in the JRE it is necessary that
the mechanism is supported in OSGi with as few changes as possible from the consumer's authors.
This specification therefore defines a mediator that ensures that the Service Loader is useful in an
OSGi Framework, allowing programs that leverage the Service Loader to be used in OSGi frame-
works almost as-is.

133.1.1 Essentials

• Compatibility - Allow JARs that run in a classic Java SE environment that leverage the Service
Loader to run in OSGi with only manifest modifications.

• Services - Register services for Service Provider bundles that opt-in.
• Security - Enforce service permissions for the Service Loader objects.
• Life Cycle - Manage the life cycle mismatch between OSGi bundles and the Service Loader's create

only model.

133.1.2 Entities

• Service Loader - An API in Java SE that allows a Consumer to find an implementation of a Service
Type from a Service Provider by searching a class loader for Service Providers.

• Service Type - The interface or class that the Service Provider must implement/extend.
• Provider Configuration File - A resource in the META-INF/services directory that has the fully

qualified name of the Service Type and contains one ore more fully qualified names of Service
Providers.

• Service Provider - An implementation class that implements or extends the Service Type.
• Consumer - A class that uses the Java SE Service Loader inside an OSGi framework.
• Mediator - An extender that mediates between Consumer bundles, the Service Loader API, and

Service Provider bundles in an OSGi environment. It consists of a Processor and a Registrar.

Introduction Service Loader Mediator Specification Version 1.0

Page 912 OSGi Compendium Release 6

• Processor - Modifies a bundle that uses the Service Loader API so that it works in an OSGi environ-
ment.

• Registrar - Registers services on behalf of a bundle that contains Service Providers.

Figure 133.1 Entities

Consumer

Service
Provider

Registrar

Service
Loader

Provider
Configuration
File

instantiates

osgi.extender=
osgi.serviceloader.registrar

manages
life cycle

advertised by

Service
TypeProcessor

Any OSGi Ser-
vice user

osgi.extender=
osgi.serviceloader.processor

processes

Mediator

osgi.serviceloader
(publishing)

decorates

osgi.serviceloader
(decorating)

133.1.3 Synopsis
This specification defines two different functions that are provided by a Mediator extender:

• Register OSGi services for each Service Provider.
• Allow Consumers that uses the Service Loader API to access Service Providers from other bun-

dles that would normally not be visible from a bundle.

A Service Provider bundle can provide access to all its Service Providers through OSGi services by
declaring a requirement on the osgi .serviceloader.registrar extender. This requirement activates
a Mediator to inspect the osgi .serviceloader capabilities. If no register directive is used then all
Service Providers for the given Service Type must be registered. Otherwise, each capability can
select one Service Provider with the register directive. The fully qualified name selects a specific
Service Provider, allowing different Service Providers to be registered with different service prop-
erties. The Mediator will then register an OSGi service factory for each selected capability. The
osgi .serviceloader capability's attributes are used to decorate the OSGi service registration with ser-
vice properties. The service factory returns a new instance for each service get.

Consumers are classes that use the Service Loader API to find Service Provider instances. Since the
Service Loader API requires full visibility the Service API fails to work inside an OSGi bundle. A
osgi .serviceloader.processor extender, which is the Mediator, processes bundles that require this ca-
pability by modifying calls to the Service Loader API to ensures that the Service Loader has visibility
to published Service Providers.

A Consumer's bundle by default receives visibility to all published Service Providers. Service
Providers are published when a bundle declares one or more osgi .serviceloader capabilities for a
Service Type. If the Consumer has an osgi .serviceloader requirement for the given Service Type
then the Mediator must only expose the bundles that are wired to those requirements and for each
bundle provide all its Service Providers.

Service Loader Mediator Specification Version 1.0 Java Service Loader API

OSGi Compendium Release 6 Page 913

133.2 Java Service Loader API
Java is quite unique with its focus on separation of specification and implementation. Virtually all Java
Specification Requests (JSR) provide a specification that can be implemented independently by dif-
ferent parties. Though this is one of the industry's best practices it raises a new problem: how to find
the implementation available in a Java environment from only the Service Type. A Service Type is
usually an interface but a base class can also be used.

Finding a Service Provider (the implementation class) from a Service Type is the so called instance
coupling problem. The use of Service Types removed the type coupling between the Consumer of the
contract and the Service Provider of the contract (the implementation) but to make things work there
is a need of at least one place where the Service Provider is instantiated. The very large number of
factories in Java reflects that this is a very common problem.

The general pattern for factories to find Service Providers was to search the class loaders for classes
with constant names, varying the package names, often using System properties to extend the dif-
ferent areas to be sought. Though a general pattern based on class loading tricks emerged in the Ja-
va VM and application programs, all these patterns differed in details and places where they looked.
This became harder and harder to maintain and often caused unexpected instances to be found.

The java.ut i l .ServiceLoader class was therefore first introduced in Java SE 6 to provide a generic so-
lution to this problem, see [1] Java Service Loader API. With this API Service Providers of a specifica-
tion can now advertise their availability by creating a Provider Configuration File in their JAR in the
META-INF/services directory. The name of this resource is the fully qualified name of the Service
Type, the Service Provider provides when instantiated.

The Provider Configuration File contains a number of lines with comments or a class name that im-
plements/extends the Service Type. For example:

org.example.Foo

A Service Provider must then advertise itself like:

META-INF/services/org.example.Foo:
 # Foo implementation
 org.acme.impl.FooImplementation

The Service Loader API finds all advertisers by constructing the name of the Provider Configuration
File from the Service Type and then calling the getResources method on the provided class loader.
This returns an enumeration of URLs to the advertisements. It then parses the contents of the re-
sources; that will provide it with a list of Service Providers for the sought Service Type without du-
plicates. The API will return an iterator that will instantiate an object for the next available Service
Provider.

To find the Configuration files for a given Service Type, the Service Loader uses a class loader. The
Consumer can select the following class loaders:

• A given class loader as an argument in the call to the constructor
• The Thread Context Class Loader (TCCL)
• The system loader (when nul l is passed or no TCCL is set)

The class loader restricts the visibility of the Service Loader to only the resources to which the class
loader has visibility. If the Service Loader has no access to the advertisement of a Service Provider
then it cannot detect it and it will thus not be found.

The Service Provider is loaded from the given class loader, however, the Class.forName method is
used, which stores it in the cache of the initiating class loader. This means that Service Providers are

Consumers Service Loader Mediator Specification Version 1.0

Page 914 OSGi Compendium Release 6

not garbage collected as long as there is a resolved bundle that used the Service Loader to get that
Service Provider.

In the Service Loader API, the class does not have to originate from the same JAR file as the adver-
tisement. In OSGi this is more restricted, the advertisement must come from the same bundle or
must be explicitly imported.

For example, to load a Foo instance the following code could be used:

ServiceLoader<Foo> sl =
 ServiceLoader.load(Foo.class);
Iterator<Foo> it = sl.iterator();
if (it.hasNext()) {
 Foo foo = it.next();
 ...
}

Though the Service Loader API is about extensibility and contract based programming it is in itself
not extendable nor replaceable. The ServiceLoader class is f inal , it comes from a sealed JAR, and is in
a java package. It also does not provide an API to provide alternate means to find implementations
for a Service Type.

133.3 Consumers
Consumers are classes that are not OSGi aware and directly use the Service Loader API. The Service
Loader has a non-modular design and Consumers therefore run into many issues when running in
an OSGi framework. Consumers should therefore in general be converted to use the OSGi service
layer since this solves the visibility issues, life cycle impedance mismatch, and other problems. The
Consumer part of this specification is therefore a last resort to use when existing code uses the Ser-
vice Loader API and cannot be modified to leverage the OSGi service layer.

133.3.1 Processing
The Service Loader Mediator can process the Consumer by modifying calls to the Service Loader
API. This specification does not detail how the Mediator ensures that the Consumer has visibility
to other Service Providers. However, a Mediator could for example set an appropriate Thread Con-
text Class Loader during the call to the Service Loader's constructor by weaving the Consumer's byte
codes.

133.3.2 Opting In
Processing is an opt-in process, the Consumer bundle must declare that it is willing to be processed.
The opt-in is handled by a requirement to the osgi .serviceloader.processor extender. This require-
ment must have a single cardinality (the default) since the Mediator uses the wiring to select the
Consumer to process when multiple Mediators are present.

For example, the following requirement in a manifest enables a bundle to be processed:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.processor)
 (version>=1.0)(!(version>=2.0)))"

If the extender osgi .serviceloader.processor requirement is satisfied then the wired Mediator must
process the Consumer.

The Mediator must give visibility to all bundles with published Service Providers unless the Con-
sumer restricts the visibility by having osgi .serviceloader requirements. Bundles publish a Service

Service Loader Mediator Specification Version 1.0 Consumers

OSGi Compendium Release 6 Page 915

Type, meaning all their Service Providers for that type, by having at least one osgi .serviceloader ca-
pability for that Service Type.

133.3.3 Restricting Visibility
A Consumer's bundle can restrict its visibility to certain bundles by declaring an osgi .serviceloader
requirement for each Service Type it wants to use. Only bundles wired from those requirement pro-
vide their advertised Service Providers. If no such requirements are declared then all bundles with
the published Service Type become available.

The cardinality can be used to select a single Service Provider's bundle or multiple bundles if it
needs to see all Service Provider bundles. The requirement can be made optional if the Consumer's
bundle can work also when no Service Provider bundle is available. See osgi.serviceloader Namespace
on page 921 for more details.

For example, a requirement that restricts visibility to the org.example.Foo Service Providers could
look like:

Require-Capability:
 osgi.serviceloader;
 filter:="(osgi.serviceloader=org.example.Foo)";
 cardinality:=multiple

In this example, any bundle that publishes the org.example.Foo Service Type will contribute its Ser-
vice Providers.

Visibility can also be restricted to bundles that publish with capability's attributes. Any bundle that
has at least one matching capability will then be able to contribute all its Service Providers. For ex-
ample, the following example selects only bundles that have the classi f ied property set:

osgi.serviceloader; filter:="(classified=*)"

With Service Registrations, see Registering Services on page 918, the capability can discriminate be-
tween multiple Service Providers in the same bundle. The Service Loader API does not have this fea-
ture: any wired requirement has visibility to all Service Providers in the wired bundle, regardless of
the registered directive.

133.3.4 Life Cycle Impedance Mismatch
A Consumer can only see Service Provider instances of bundles that are active during the time the
next instance is created. That is, the Mediator must treat the life cycle of the Service Provider as if
it was a service. However, the Service Loader implementations perform extensive class loader tech-
niques and cache results. The exact life cycle of the Service Provider bundle with respect to the Con-
sumer is therefore impossible to enforce.

The Service Loader API does not have a life cycle, objects are assumed to stay alive during the du-
ration of the VM's process and due to the use of Class.forName in the Service Loader implementa-
tions. Therefore a Mediator should refresh a Consumer bundle when it is using a Service Provider
and that Service Provider's bundle becomes stopped otherwise long running applications can run
out of memory when bundles are regularly updated.

133.3.5 Consumer Example
A legacy JAR for which there is no more source code uses the Service Loader API to get access to
com.example.Codec instances through the Service Loader API.

It is wrapped in a bundle that then has the following manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2

Service Provider Bundles Service Loader Mediator Specification Version 1.0

Page 916 OSGi Compendium Release 6

Bundle-SymbolicName: com.example.impl
Bundle-Version: 23.98.1.v199101232310.02011
Import-Package: com.example; version=3.45
Bundle-ClassPath: legacy.jar

The manifest must then declare that the bundle must be processed, this is triggered by requiring the
osgi .serviceloader.processor extender:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.processor)
 (version>=1.0)(!(version>=2.0)))"

With this manifest, the Consumer bundle has full visibility to all Service Provider bundles that are
published. The following lines can be added to restrict the visibility to codecs that have support for
WAVE formats (although all Service Providers in that bundle will be visible to the consumer).

,
 osgi.serviceloader;
 filter:="(&(format=WAVE)(osgi.serviceloader=com.example.Codec))"

133.4 Service Provider Bundles
A Service Provider bundle is a bundle that contains one or more Service Providers that are usable by
the Service Loader API. This section shows how Service Provider bundles should be constructed and
what options they have.

133.4.1 Advertising
Service Providers are implementation classes that are advertised under a Service Type according to the
rules in the Service Loader API. A Service Provider is advertised with a Provider Configuration File in
a JAR. In an OSGi environment the Service Provider must reside in the same bundle as the advertise-
ment or be imported. A single Provider Configuration File can contain multiple Service Providers.
See Java Service Loader API on page 913.

133.4.2 Publishing the Service Providers
Service Providers can be used in two different scenarios:

• A Service Provider can be used by a processed Consumer as a Service Type, or
• It can be registered as a service.

A Service Type must be published to allow its use it in these scenarios. Publishing a Service Type con-
sists of providing one or more osgi .serviceloader capabilities for an advertised Service Type, see
osgi.serviceloader Namespace on page 921. These osgi .serviceloader capabilities must specify a ful-
ly qualified class name of the Service Type, there is no wildcarding allowed. Therefore, publishing a
service implicitly makes all corresponding Service Providers available to Consumers.

If a bundle does not provide osgi .serviceloader capabilities then it does not publish any Service
Providers and its Service Providers can therefore not be used by Consumers. They can then also not
be registered as OSGi services, see OSGi Services on page 917. Tools can use the advertisement of
the Service Provider in the JAR to automatically generate the osgi .serviceloader capabilities in the
manifest.

For example, the following capability publishes all the Service Providers in its bundle that advertise
the com.example.Codec interface:

Service Loader Mediator Specification Version 1.0 Service Provider Bundles

OSGi Compendium Release 6 Page 917

Provide-Capability:
 osgi.serviceloader;
 osgi.serviceloader=com.example.Codec;
 uses:="com.example"

A Service Provider bundle must not require the osgi .serviceloader.processor extender unless it
needs to be processed; publishing a Service Type is sufficient to allow Consumers to use the pub-
lished Service Types.

133.4.3 OSGi Services
The Service Provider can have its osgi .serviceloader capabilities be registered as services that pro-
vide instances from the Service Providers. For this, the Service Provider bundle must require the
osgi .serviceloader.registrar extender, which is the Mediator. For example:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.registrar)
 (version>=1.0)(!(version>=2.0)))"

The registrar must then inspect each osgi .serviceloader capability and register an associated OSGi
Service for each Service Provider selected by that capability. A Service Provider is selected when:

• The capability has no register directive, or
• The register directive matches the fully qualified name of the Service Provider.

A register directive selects a Service Provider if it contains the fully qualified name of the Service
Provider, that is, the implementation class. Selection only works for services, Consumer will always
see all Service Providers regardless of the register directive due to limitations in the Service Loader
API.

For example, the following manifest selects all Service Providers of the com.example.Foo Service
Type since no register directive is present:

Provide-Capability:
 osgi.serviceloader;
 uses:="com.example";
 osgi.serviceloader=com.example.Foo

Selected Service Providers must be registered as defined in Registering Services on page 918, with
the capability's attributes as decorating service properties. Private service properties (attributes that
start with a full stop ('.' \u002E) and the defined capability attributes in the osgi .serviceloader
namespace are not registered as service properties.

The following example would register the format service property but not the .h int service property
for the com.acme.impl .WaveFoo Service Provider.

 osgi.serviceloader;
 osgi.serviceloader=com.example.Foo;
 uses:="com.example";
 format=WAVE;
 .hint=E5437Qy7;
 register:="com.acme.impl.WaveFoo"

The Mediator must only register OSGi services for selected Service Providers; the Service Provider
bundle can therefore decide not to register certain Service Providers and register them with another
mechanism, for example Declarative Services or in a bundle activator.

Service Loader Mediator Service Loader Mediator Specification Version 1.0

Page 918 OSGi Compendium Release 6

Since the Mediator must use the bundle context of the Service Provider to register the OSGi service
the Service Provider bundle must have the proper Service Permission REGISTER for the Service Type.

133.4.4 Service Provider Example
A Foo Codecs JAR needs to be ported to OSGi, it provides a Service Provider for the
org.example.Codec Service Type. In this example the JAR is given a new manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.example.foo.codecs
Import-Package: com.example; version=3.45

To ensure that the bundle opts in to registering its services it must require the
osgi .serviceloader.registrar extender.

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.registrar)
 (version>=1.0)(!(version>=2.0)))"

To publish two Service Providers for the same type, two capabilities must be declared:

Provide-Capability:
 osgi.serviceloader;
 osgi.serviceloader="com.example.Codec";
 format:List<String>="WAVE,WMF";
 register:="com.acme.impl.FooWaveCodec";
 uses:="com.example,org.apache.common.codecs",
 osgi.serviceloader;
 osgi.serviceloader="com.example.Codec";
 format:List<String>=SINUS;
 register:="com.acme.impl.sinus.FooSinusCodec";
 uses:="com.example"

This example implicitly publishes the Service Type com.example.Codec multiple times with dif-
ferent attributes. Consumers that match any of these capabilities will however have visibility to
all Service Providers since the Service Loader API cannot discriminate between different Service
Providers from the same bundle.

133.5 Service Loader Mediator
A Mediator is the osgi .serviceloader.processor and osgi .serviceloader.registrar extender bundle
that has the following responsibilities:

• It registers selected Service Providers as OSGi services.
• It processes any Consumers so that Service Loader API calls have proper visibility to published

Service Provider bundles.

133.5.1 Registering Services
The Mediator must track bundles that are wired to its osgi .extender=osgi .serviceloader.registrar
capability. These are called the managed bundles. For all managed bundles the Mediator must enu-
merate all osgi .serviceloader capabilities and register selected Service Providers as OSGi services. A
Service Provider is selected by an osgi .serviceloader capability when:

Service Loader Mediator Specification Version 1.0 Service Loader Mediator

OSGi Compendium Release 6 Page 919

• The advertised Service Type matches the corresponding osgi .serviceloader capability's Service
Type, and

• The register directive is absent, or
• The register directive contains the fully qualified name of the Service Provider.

An osgi .serviceloader capability that selects a Service Provider is said to decorate that Service
Provider. A capability can decorate multiple Service Providers of the same Service Type and the
same Service Provider can be decorated by different capabilities. Figure 133.2 depicts the resulting
relations and their cardinalities since the relations are non-trivial.

Figure 133.2 Cardinality Service Type

Service Type osgi.
serviceloader
Capability

Service
Provider

advertised
by

decorated
by (qualified by the register directive)

published by

1

0..n

0..n

0..n1

1..n

The OSGi service for each selected Service Provider must be registered under the advertised Service
Type of the Service Provider, which must match the Service Type specified in the capability.

133.5.2 OSGi Service Factory
The Mediator must register an OSGi service factory with the bundle context of the Service Provider's
bundle. The OSGi service factory must be implemented such that it creates a new instance for
each bundle that gets the service. This behavior is similar, though not quite identical, to the
ServiceLoader. load() method that gives each consumer a separate instance of the service. The differ-
ence is that different users inside a bundle will share the same instance.

Each service registration is controlled by a decorating osgi .serviceloader capability. The attributes
on this capability must be registered with the OSGi service as service properties, except for:

• Private - Private properties, property names that start with a full stop ('.' \u002E) must not be reg-
istered.

The following service property must be registered, overriding any identical named properties in the
decorating capability:

• serviceloader.mediator - (Long) The bundle id of the mediator.

The Mediator should not verify class space consistency since the OSGi framework already enforces
this as long as the publishing capability specifies the uses directive.

Any services registered in the OSGi Service Registry must be unregistered when the Service
Provider's bundle is stopped or the Mediator is stopped.

133.5.3 Service Loader and Modularity
The Service Loader API causes issues in a modular environment because it requires a class loader
that has wide visibility. In a modular environment like OSGi the Consumer, the Service Type, and
the Service Provider can, and should, all reside in different modules because they represent different
concerns. Best practice requires that only the Service Type is shared between these actors. However,

Service Loader Mediator Service Loader Mediator Specification Version 1.0

Page 920 OSGi Compendium Release 6

for the Service Loader to work as it was designed the Consumer must provide a class loader that has
visibility of the Service Provider. The Service Provider is an implementation class, exporting such
classes is the anathema of modularity. However, since the standard JRE provides application wide
visibility this was never a major concern.

The simplest solution is to make the Service Loader aware of OSGi, its API clear is mappable to the
OSGi service layer. However, the Service Loader is not extensible. The result is that using the Service
Loader in OSGi fails in general because the Service Loader is unable to find the Service Providers.
The issues are:

• The use of the Thread Context Class Loader (TCCL) is not defined in an OSGi environment. It
should be set by the caller and this cannot be enforced. The multi threaded nature of OSGi makes
it hard to predict what thread a Consumer will use, making it impossible to set an appropriate
TCCL outside the Consumer.

• A bundle cannot import META-INF/services since the name is not a package name. Even if it
could, the OSGi framework can only bind a single exporter to an importer for a given package.
The Service Loader API requires access to all these pseudo-packages via the Class Loader's getRe-
sources method, the technique used to find Service Providers.

• Instantiating a Service Provider requires access to internal implementation classes, by exporting
these classes, an implementing bundle would break its encapsulation.

• If a Service Provider was exported then importing this class in a Consumer bundle would couple
it to a specific implementation package; this also violates the principle of loose coupling.

• The Service Loader API does assume an eternal life cycle, there is no way to signal that a Service
Provider is no longer available. This is at odds with the dynamic bundle life cycle.

133.5.4 Processing Consumers
Consumers are not written for OSGi and require help to successfully use the Service Loader API. It is
the Mediator's responsibility to ensure that bundles that are wired to published Service Types have
access to these Service Provider's instances through the Service Loader API.

This specification does not define how this is done. There are a number of possibilities and it is up to
the Mediator to provide the guarantee to the Consumer that it has been properly processed.

A Mediator must only process Consumer's bundles that are wired to the osgi .extender capability for
the osgi .serviceloader.processor extender. Since Consumers must require this extender capability
with the default cardinality of 1 there can at most be one extender wired to a Consumer.

133.5.5 Visibility
The Mediator must process the Consumer bundle in such a way that when the Consumer uses the
Service Loader API it receives all the Service Providers of bundles that:

• Provide one or more osgi .serviceloader capabilities for the requested Service Type, and
• Are not type space incompatible with the requester for the given Service Type, and
• Either the Consumer has no osgi .serviceloader requirements or one of its requirements is wired

to one of the osgi .serviceloader capabilities.

The Mediator must verify that the Consumer has Service Permission GET for the given Service Type
since the Consumer uses the Service Type as a service. This specification therefore reuses the Service
Permission for this purpose. The check must be done with the ServicePermission(Str ing,Str ing)
constructor using the bundle's Access Control Context or the bundle's hasPermission method.

133.5.6 Life Cycle
There is a life cycle mismatch between the Service Loader API and the dynamic OSGi world. A Ser-
vice Loader provides a Consumer with an object that could come from a bundle that is later stopped

Service Loader Mediator Specification Version 1.0 osgi.serviceloader Namespace

OSGi Compendium Release 6 Page 921

and/or refreshed. Such an object becomes stale. Mediators should attempt to refresh bundles that
have access to these stale objects.

133.6 osgi.serviceloader Namespace
The osgi .serviceloader Namespace:

• Allows the Consumer's bundle to require the presence of a Service Provider for the required Ser-
vice Type.

• Provides the service properties for the service registration.
• Indicates which Service Providers should be registered as an OSGi service.

The namespace is defined in the following table and ServiceLoaderNamespace , see Common Name-
spaces Specification on page 993 for the legend of this table.

Table 133.1 osgi.serviceloader namespace definition

Name Kind M/O Type Syntax Description
osgi .serviceloader CA M String qname The Service Type's fully qualified name.
* CA O * * Additional matching attributes are per-

mitted. These attributes will be registered
as custom service properties unless they
are private (start with a full stop).

register CD O String qname Use this capability to register a different
Service Factory under the Service Type
for each selected Service Provider.

A Service Provider is selected if the Ser-
vice Type is the advertising Service Type
and the Service Provider's fully qualified
name matches the given name. If no reg-
ister directive is present all advertised
Service Providers must be registered. To
register no Service Providers, because the
capability must only be used to publish,
provide an empty string.

133.7 Use of the osgi.extender Namespace
This section specifies the extender names for Mediators. They are used by both by Consumer and
Service Provider bundles to ensure that a Mediator is present. Both names are defined for the general
osgi .extender namespace in osgi.extender Namespace in OSGi Core Release 6.

The osgi .extender namespace requires the use of an extender name, the name of the Mediator exten-
ders is:

osgi.serviceloader.processor
osgi.serviceloader.registrar

The version is for this specification is in both cases:

1.0.0

Security Service Loader Mediator Specification Version 1.0

Page 922 OSGi Compendium Release 6

133.8 Security

133.8.1 Mediator
The Mediator will require significant permissions to perform its tasks. First, it will require access to
the Bundle Context of the Service Provider bundle, which means it must have Admin Permission:

AdminPermission[<Service Provider Bundles>,CONTEXT|METADATA|CLASS]

Since it will have to register on behalf of the Service Provider bundle it must have complete liberty
to register services:

ServicePermission[<Service Type>,REGISTER]

Depending on the way the Consumers are processed additional requirements may be necessary.

The Mediator connects two parties; it must ensure that neither party will receive additional permis-
sions.

133.8.2 Consumers
Consumers must have:

ServicePermission[<Service Type>,GET]
PackagePermission[<Service Type's package>,IMPORT]
CapabilityPermission["osgi.extender", REQUIRE]
CapabilityPermission["osgi.serviceloader", REQUIRE]

The Mediator must ensure that the Consumer has the ServicePermission before it provides the in-
stance. It must use the Bundle Context hasPermission method or the bundle's Access Control Con-
text to verify this.

133.8.3 Service Providers
Service Providers must have:

ServicePermission[<Service Type>,REGISTER]
PackagePermission[<Service Type's package>,IMPORT]
CapabilityPermission["osgi.extender", REQUIRE]
CapabilityPermission["osgi.serviceloader", PROVIDE]

The Mediator must ensure that the Service Provider has the ServicePermission before it provides the
instance. It must use the Bundle Context hasPermission method or the bundle's Access Control Con-
text to verify this.

133.9 org.osgi.service.serviceloader

Service Loader Mediator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.serviceloader; vers ion="[1.0,2.0)"

Service Loader Mediator Specification Version 1.0 References

OSGi Compendium Release 6 Page 923

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.serviceloader; vers ion="[1.0,1.1)"

133.9.1 Summary

• ServiceLoaderNamespace - Service Loader Capability and Requirement Namespace.

133.9.2 public final class ServiceLoaderNamespace
extends Namespace
Service Loader Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long
• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

All unspecified capability attributes, unless the attribute name starts with full stop ('.' \u002E), are
also used as service properties when registering a Service Provider as a service.

Concurrency Immutable

133.9.2.1 public static final String CAPABILITY_REGISTER_DIRECTIVE = "register"

The capability directive used to specify the implementation classes of the service. The value of this
attribute must be of type List<Str ing> .

If this directive is not specified, then all advertised Service Providers that match the service type
name must be registered. If this directive is specified, then only Service Providers that match the ser-
vice type name whose implementation class is contained in the value of this attribute must be regis-
tered. To not register a service for this capability use an empty string.

133.9.2.2 public static final String SERVICELOADER_NAMESPACE = "osgi.serviceloader"

Namespace name for service loader capabilities and requirements.

Also, the capability attribute used to specify the fully qualified name of the service type.

133.10 References

[1] Java Service Loader API
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

References Service Loader Mediator Specification Version 1.0

Page 924 OSGi Compendium Release 6

Subsystem Service Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 925

134 Subsystem Service Specification

Version 1.1

134.1 Introduction
The OSGi Core Release 6 specifies a life-cycle model where bundles can be installed, resolved, and
started in order to provide their own classes and services as well as use those provided by other bun-
dles in the system. In the core framework, the bundle is the coarsest deployment unit that a manage-
ment agent is able to work with; however, oftentimes it is necessary to work with collections of bun-
dles and other types of resources, such as subsystems and implementation specific resources. For ex-
ample, a collection of bundles may correspond to a particular feature of a middleware product, such
as a Web container. The applications deployed to that container may also be developed as a collec-
tion of bundles that an administrator is required to manage as a consistent whole. The Subsystems
specification provides a declarative model for defining resource collections, including bundles, and
an API for installing and managing those collections of resources.

Many use cases only require unscoped resource collections where all provided capabilities are freely
exported to and all required capabilities are freely imported from the system. However, in some cas-
es, it is important to allow the exporting of provided capabilities to be scoped such that they can on-
ly be used by a subset of resources in the system. It may also be necessary to restrict the importing
of required capabilities from outside the collection to ensure its internal capabilities are always pre-
ferred over capabilities outside the collection. For example, applications running on a Web appli-
cation server or in a cloud environment may be deployed to the same server instance. The side-ef-
fects of co-locating applications on the same server must be minimized, and scoping is used to en-
sure each application does not use the classes and services of the others.

The framework provides hooks for influencing resolution, and access to bundles and services. These
framework hooks may be used to implement scoping for a collection of bundles. The Subsystems
specification provides a higher-level declarative model for defining scoping for collections of re-
sources, including bundles.

When deploying a collection of bundles in an OSGi framework, gaps can exist between the require-
ments of the bundles and the capabilities provided by the target runtime. Management agents are
responsible for ensuring additional bundles are installed to plug these gaps such that the collection
of bundles will resolve and run. The Resolver Service Specification on page 1003 and Repository Service
Specification on page 889 help management agents address these needs but do not cover how deploy-
ment works for resource collections, especially when those collections are scoped. Scoping affects
requirement and capability resolution and therefore affects the choice of resources. The Subsystems
specification defines resolution and provisioning rules to help management agents consistently de-
ploy collections of resources. The specification also defines a format for developers and testers to
provide predetermined deployment resolutions to help ensure consistency between test and pro-
duction environments.

134.1.1 Essentials

• Collections - Allow the management of a collection of resources as a whole.
• Scoping - Provide support for isolating resources in the collection such that a subset of their capa-

bilities (for example packages and services) are available to satisfy requirements outside the Sub-

Introduction Subsystem Service Specification Version 1.1

Page 926 OSGi Compendium Release 6

system and a subset of their requirements are able to resolve to capabilities provided outside the
Subsystem.

• Sharing - Allow Scoped Subsystems to share their resources with others and share resources from
others.

• Dynamic - Provide life cycle information to users of Subsystems and be able to react to changes in
the state of the environment in which a Subsystem is deployed.

• Flexible - Enable a flexible definition with subsequent resolution to determine the resources to be
used.

• Deterministic - Enable the choice of resources deployed for a Subsystem to be determined ahead of
deployment.

• Life-cycle - Define a life cycle for a Subsystem describing how it affects the Subsystem's resources
and allow the life cycle to be observed.

• Reflective - Allow discovery of runtime structural and state information.
• Resolution - Allow the resolution of a flexible definition during installation to determine the re-

sources to be used.
• Recursive - Allow Subsystems to be defined in terms of other Subsystems.

134.1.2 Entities

• Subsystem - A collection of resources, such as bundles, or other Subsystems, administered as a
whole through a Subsystem service.

• Subsystem Manifest - A manifest used to provide a Subsystem definition.
• Deployment Manifest - A manifest used to provide a deployment definition for a Subsystem. The

definition identifies the exact resources to be deployed for the Subsystem.
• Subsystem Archive - A zip file with an .esa extension that describes a Subsystem definition. It may

include the Subsystem Manifest, Deployment Manifest, or resource files that constitute the Sub-
system.

• Resource - An element which may be used in the composition of a Subsystem, such as a bundle or
another Subsystem.

• Repository - A service that is used to discover a Subsystem's content and dependencies. The reposi-
tory service is described in the Repository Service Specification on page 889.

• Resolver - A service used to resolve requirements against capabilities to determine the resources
required by a Subsystem. The resolver service is described in the Resolver Service Specification on
page 1003.

• Constituent - A resource that belongs to one or more Subsystems.

Subsystem Service Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 927

Figure 134.1 Entities org.osgi.service.subsystem

Resolver

Subsystem
Impl

Management
Agent Impl

Repository

Subsystem

<<interface>>
Subsystem

Subsystem
Archive

children

0..n

0..n

1

1

1..n

1

no
cycles

parents

134.1.3 Synopsis
The OSGi framework does not provide any support for managing collections of resources. Manage-
ment of collections of resources is enabled by a Subsystems implementation. When a Subsystems
implementation is installed into the framework, it registers a Subsystem service. This service rep-
resents the framework as the Root Subsystem, which is a Subsystem that provides the capability to
install and manage other child Subsystems, and is the parent of those Subsystems, but does not itself
have a parent.

A Subsystem Archive provides a definition of a Subsystem that is read by the Subsystem implemen-
tation as part of installation. The Subsystem is packaged in a Subsystem Archive (.esa) file which
is the Subsystem equivalent of a bundle . jar file. The Subsystem definition can be described using
a Subsystem Manifest or defaulted based on the name and contents of the Subsystem Archive. In-
stalling a new Subsystem results in another Subsystem service being registered to represent that
Subsystem in the runtime. Each Subsystem service enables management and reflection of the Sub-
system it represents.

A Subsystem Manifest allows flexibility in the identification of the Subsystem's content resources
through version ranges and optionality. The exact versions to be deployed and any required depen-
dencies (resources required to satisfy unresolved requirements of the Subsystem's content resources)
can be identified in an optional Deployment Manifest. The corresponding resource binaries can be
packaged in the Subsystem Archive, or found in a repository. Depending on the type of Subsystem
the Subsystem Manifest may describe a sharing policy for the Subsystem, such as the packages or ser-
vices the Subsystem exports or imports. The Deployment Manifest also describes the sharing policy
details for the Subsystem and is defined by the type of Subsystem and the sharing policy described in
the Subsystem Manifest.

A Subsystem that does not have a Deployment Manifest has its deployment details calculated dur-
ing installation. This may be done using the Resolver Service Specification on page 1003, if available.
The starting set of requirements to be resolved are those identifying the Subsystem content (that is,
requirements for content resources). The Subsystems implementation provides a resolve context
that implements the policy for the Subsystem and consults the configured Repository services to
find candidates to satisfy requirements.

This resolve context can also represent the target deployment environment, which might be a live
framework, or a static definition of a target runtime. The resulting resolution is used to determine
the exact resources to provision, equivalent to those identified in the deployment manifest. If any

Subsystems Subsystem Service Specification Version 1.1

Page 928 OSGi Compendium Release 6

of the Repository or Resolver services are unavailable, then a Subsystem implementation can use its
own means to determine the deployment, or fail the installation.

A Subsystem definition includes sharing policy configuration to scope requirements and capabili-
ties visibility into and out of a Subsystem. The Subsystems specification defines the concept of Sub-
system types to help simplify the configuration of sharing policies. Each type has its own default
sharing policy, for example, to forbid the sharing of capabilities out, or to share all capabilities in.
Three Subsystem types are defined in the Subsystems specification: application, composite and feature.

An Application Subsystem is a Scoped Subsystem with a sharing policy associated with what is of-
ten considered to be an application. An application does not share (export) any capabilities. Any re-
quirements that are not satisfied by the application's contents are automatically imported from out-
side the application.

A Composite Subsystem is a Scoped Subsystem with a fully explicit sharing policy. Capabilities may
be explicitly imported into, or exported out of, the Composite Subsystem.

A Feature Subsystem is an Unscoped Subsystem and so all its requirements and capabilities are
shared.

This specification allows for other types to be defined, including ones outside this specification.

134.2 Subsystems
This specification defines a unit of installation called a Subsystem. A Subsystem is comprised of re-
sources, including OSGi bundles and other Subsystems, which together can provide functions to
end users.

A Subsystem is deployed as a Subsystem Archive (.esa) file. Subsystem Archives are used to store
Subsystems and optionally their resources in a standard ZIP-based file format. This format is defined
in [4] Zip File Format. Subsystems normally use the Subsystem Archive extension of .esa but are not
required to. However there is a special MIME type reserved for OSGi Subsystems that can be used to
distinguish Subsystems from normal ZIP files. This MIME type is:

application/vnd.osgi.subsystem

The type is defined in [5] IANA application/vnd.osgi.subsystem. A Subsystem is a ZIP file that:

• Contains zero or more resources. These resources may be OSGi bundles or other Subsystems.
Subsystems may be nested or included to any depth.

• Contains an optional Subsystem Manifest named OSGI-INF/SUBSYSTEM.MF . The Subsystem
Manifest describes the contents of the Subsystem Archive and provides information about the
Subsystem. The Subsystem Archive uses headers to specify information that the Subsystems im-
plementation needs to install, resolve and start the Subsystem correctly. For example, it can state
the list of content resources that comprise the Subsystem and the Subsystem's type.

• Contains an optional Deployment Manifest file named OSGI-INF/DEPLOYMENT.MF . The Deploy-
ment Manifest describes the content resources, dependencies, and sharing policy that need to be
provisioned to satisfy the Subsystem definition and ultimately allow it to resolve at runtime.

The Subsystem and Deployment Manifest follow the JAR manifest format (version 1.0), but with the
following relaxed rules:

• No limit on the line length. Lines are allowed to exceed the JAR manifest maximum of 72 bytes.
• The last line is not required to be a carriage-return new-line combination.
• There is only one section in the manifest (the main section). A Subsystems implementation is

free to ignore other sections of the manifest.

Subsystem Service Specification Version 1.1 Subsystems

OSGi Compendium Release 6 Page 929

Once a Subsystem is started, its functionality is provided. Depending on the type of Subsystem it
may expose capabilities, such as packages and services, to other resources installed in the OSGi
framework.

134.2.1 Subsystem Manifest Headers
A Subsystem can carry descriptive information about itself in the Subsystem manifest file contained
in its Subsystem Archive under the name OSGI-INF/SUBSYSTEM.MF . This specification defines Sub-
system manifest headers, such as Subsystem-SymbolicName and Subsystem-Version, which Subsys-
tem developers use to supply descriptive information about a Subsystem. A Subsystems implemen-
tation must:

• Process the main section of the manifest. Any other sections of the manifest can be ignored.
• Ignore unknown manifest headers. The Subsystem developer can define additional manifest

headers as needed.
• Ignore unknown attributes and directives.

All specified manifest headers are listed in the following sections. All headers are optional. Example
values are provided to help explain each header (e.g. Export-Package: org.acme.logging; version=1.0).

134.2.1.1 Export-Package: org.acme.logging; version=1.0

The Export-Package header declares the exported packages for a Scoped Subsystem. See Export-Pack-
age on page 966.

134.2.1.2 Import-Package: org.osgi.util.tracker; version="[1.4, 2.0)"

The Import-Package header declares the imported packages for a Scoped Subsystem. See Import-Pack-
age on page 966.

134.2.1.3 Preferred-Provider: com.acme.logging

The Preferred-Provider header declares a list bundles and Subsystems which are the providers
of capabilities that are preferred when wiring the requirements of a Scoped Subsystem. See Pre-
ferred-Provider Header on page 941.

134.2.1.4 Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2

The Provide-Capability header declares the capabilities exported for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.2.1.5 Require-Bundle: com.acme.chess; version= "[1.0, 2.0)"

The Require-Bundle header declares the required bundles for a Scoped Subsystem. See Require-Bundle
on page 967.

134.2.1.6 Require-Capability: osgi.ee; filter:="(osgi.ee=*)"

The Require-Capability header declares the required capabilities for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.2.1.7 Subsystem-Category: osgi, test, nursery

The Subsystem-Category header identifies the categories of the subsystem as a comma-delimited
list.

134.2.1.8 Subsystem-ContactAddress: 2400 Oswego Road, Austin, TX 74563

The Subsystem-ContactAddress header identifies the contact address where problems with the sub-
system may be reported; for example, an email address.

Subsystems Subsystem Service Specification Version 1.1

Page 930 OSGi Compendium Release 6

134.2.1.9 Subsystem-Content: com.acme.logging

The Subsystem-Content header lists requirements for resources that are considered to be the con-
tents of this Subsystem. See Subsystem-Content Header on page 939.

134.2.1.10 Subsystem-Copyright: OSGi (c) 2014

The Subsystem-Copyright header identifies the subsystem's copyright information.

134.2.1.11 Subsystem-Description: The ACME Account Admin Application

The Subsystem-Description header defines a human-readable description for this Subsystem, which
can potentially be localized.

134.2.1.12 Subsystem-DocURL: http://www.example.com/Firewall/doc

The Subsystem-DocURL header identifies the subsystem's documentation URL, from which further
information about the subsystem may be obtained.

134.2.1.13 Subsystem-ExportService: org.acme.billing.Account; filter:="(user=bob)"

The Subsystem-ExportService header specifies the exported services for a Scoped Subsystem. See
Subsystem-ExportService on page 967.

134.2.1.14 Subsystem-Icon: /icons/acme-logo.png; size=64

The optional Subsystem-Icon header provides a list of URLs to icons representing this subsystem in
different sizes. The following attribute is permitted:

• size - (integer) Specifies the size of the icon in pixels horizontal. It is recommended to always in-
clude a 64x64 icon.

The URLs are interpreted as relative to the subsystem archive. That is, if a URL with a scheme is pro-
vided, then this is taken as an absolute URL. Otherwise, the path points to an entry in the subsystem
archive file.

134.2.1.15 Subsystem-ImportService: org.acme.billing.Account; filter:="(type=premium)"

The Subsystem-ImportService header specifies the imported services for a Scoped Subsystem. See
Subsystem-ImportService on page 967.

134.2.1.16 Subsystem-License: http://www.opensource.org/licenses/jabberpl.php

The Subsystem-License header provides an optional machine readable form of license information.
The purpose of this header is to automate some of the license processing required by many organi-
zations like for example license acceptance before a subsystem is used. The header is structured to
provide the use of unique license naming to merge acceptance requests, as well as links to human
readable information about the included licenses. This header is purely informational for manage-
ment agents and must not be processed by the Subsystems implementation.

The syntax for this header is as follows:

Subsystem-License ::= '<<EXTERNAL>>' |
 (license (',' license) *)
license ::= name (';' license-attr) *
license-attr ::= description | link
description ::= 'description' '=' string
link ::= 'link' '=' <url>

This header has the following attributes:

• name - Provides a globally unique name for this license, preferably world wide, but it should at
least be unique with respect to the other clauses. The magic name <<EXTERNAL>> is used to indi-

Subsystem Service Specification Version 1.1 Subsystems

OSGi Compendium Release 6 Page 931

cate that this artifact does not contain any license information but that licensing information is
provided in some other way. This is also the default contents of this header.

Clients of this subsystem can assume that licenses with the same name refer to the same license.
This can for example be used to minimize the click through licenses. This name should be the
canonical URL of the license, it must not be localized by the translator. This URL does not have to
exist but must not be used for later versions of the license. It is recommended to use URLs from
[9] Open Source initiative. Other licenses should use the following structure, but this is not man-
dated:

 http://<domain-name>/licenses/
 <license-name>-<version>.<extension>

• descr ipt ion - (optional) Provide the description of the license. This is a short description that is
usable in a list box on a UI to select more information about the license.

• l ink - (optional) Provide a URL to a page that defines or explains the license. If this link is absent,
the name field is used for this purpose. The URL is relative to the root of the bundle. That is, it is
possible to refer to a file inside the bundle.

If the Subsystem-License statement is absent, then this does not mean that the subsystem is not li-
censed. Licensing could be handled outside the subsystem and the <<EXTERNAL>> form should be as-
sumed. This header is informational and may not have any legal bearing. Consult a lawyer before
using this header to automate licensing processing.

134.2.1.17 Subsystem-Localization: OSGI-INF/l10n/subsystem

The Subsystem-Localization header identifies the default base name of the localization proper-
ties files contained in the subsystem archive. The default value is OSGI-INF/l10n/subsystem .
Translations are therefore, by default, OSGI-INF/l10n/subsystem_de.propert ies , OSGI-INF/l10n/
subsystem_nl .propert ies, and so on. The location is relative to the root of the subsystem archive.
See Subsystem-Localization Header on page 934

134.2.1.18 Subsystem-ManifestVersion: 1

The Subsystem-ManifestVersion header defines that the Subsystem follows the rules of a Subsys-
tems Specification. It is 1 (the default) for this version of the specification. Future versions of the
Subsystems Specification can define higher numbers for this header.

134.2.1.19 Subsystem-Name: Account Application

The Subsystem-Name header defines a short, human-readable name for this Subsystem which may
be localized. This should be a short, human-readable name that can contain spaces.

134.2.1.20 Subsystem-SymbolicName: com.acme.subsystem.logging

The Subsystem-SymbolicName header specifies a non-localizable name for this Subsystem. The Sub-
system symbolic name together with a version identify a Subsystem Definition though a Subsystem
can be installed multiple times in a framework. The Subsystem symbolic name should be based on
the reverse domain name convention. See Subsystem-SymbolicName Header on page 932.

134.2.1.21 Subsystem-Type: osgi.subsystem.application

The Subsystem-Type header specifies the type for this Subsystem. Three types of Subsystems must
be supported: osgi .subsystem.appl icat ion , osgi .subsystem.composite and osgi .subsystem.feature .
See Subsystem Identifiers and Type on page 932 for details about the three different types of Subsys-
tems. See Subsystem-Type Header on page 932 for more information about the values for the Sub-
system-Type header.

134.2.1.22 Subsystem-Vendor: OSGi Alliance

The Subsystem-Vendor header contains a human-readable description of the subsystem vendor.

Subsystems Subsystem Service Specification Version 1.1

Page 932 OSGi Compendium Release 6

134.2.1.23 Subsystem-Version: 1.0

The Subsystem-Version header specifies the version of this Subsystem. See Subsystem-Version Header
on page 932.

134.2.2 Subsystem Identifiers and Type
A Subsystem is identified by a number of names that vary in their Scope:

• Subsystem identifier - A long that is a Subsystems implementation assigned unique identifier for
the full lifetime of an installed Subsystem, even if the framework or the Subsystem's implemen-
tation is restarted. Its purpose is to distinguish Subsystems installed in a framework. Subsystem
identifiers are assigned in ascending order to Subsystems when they are installed. The getSub-
systemId() method returns a Subsystem's identifier.

• Subsystem location - A name assigned by a management agent to a Subsystem during the instal-
lation. This string is normally interpreted as a URL to the Subsystem Archive but this is not
mandatory. Within a particular framework, a Subsystem location must be unique. A location
string uniquely identifies a Subsystem. The getLocation() method returns a Subsystem's loca-
tion.

• Subsystem Symbolic Name and Subsystem Version - A name and version assigned by the developer.
The combination of a Subsystem symbolic name and Subsystem version is intended to provide
a globally unique identifier for a Subsystem Archive or Subsystem definition. The getSymbol ic-
Name() method returns the assigned Subsystem name. The getVersion() method returns the as-
signed version. Though this pair is intended to be unique, it is developer assigned and there is no
verification at runtime that the pair uniquely identifies a Subsystem Archive. It is possible to in-
stall a Subsystem multiple times as long as the multiple Subsystem symbolic name and version
pairs are isolated from each other by Subsystem sharing policies.

134.2.3 Subsystem-SymbolicName Header
The Subsystem-SymbolicName header specifies the symbolic name of the Subsystem. The Subsys-
tem-SymbolicName header may also specify arbitrary matching attributes. Subsystem-Symbolic-
Name is an optional header; the default value is derived as described in Deriving the Subsystem Identi-
ty on page 933.

The Subsystem-SymbolicName header must conform to the following syntax:

Subsystem-SymbolicName ::= symbolic-name(';' parameter)*

No directives are defined by this specification for the Subsystem-SymbolicName header. The header
allows the use of arbitrary attributes that can be required by the Subsystem-Content header.

134.2.4 Subsystem-Version Header
The Subsystem-Version header is optional and must conform to the following syntax:

Subsystem-Version ::= version

If the Subsystem-Version header is not specified then the default value is derived as described in De-
riving the Subsystem Identity on page 933.

134.2.5 Subsystem-Type Header
The Subsystem-Type header specifies the type of the Subsystem. Three types of Subsystems are de-
fined by this specification:

• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

Subsystem Service Specification Version 1.1 Subsystems

OSGi Compendium Release 6 Page 933

See Subsystem Types on page 968 for details about the three different types of Subsystems. Subsys-
tem-Type is an optional header; the default value is osgi .subsystem.appl icat ion .

The following directive must be recognized for the Subsystem-Type header:

• provis ion-pol icy - (rejectDependencies|acceptDependencies) Directive used to declare if the
Subsystem is willing to accept dependencies as constituents. A constituent is the term used to refer
to a resource that belongs to one or more Subsystems. It can belong to a Subsystem as a result of
being listed as content or, as described here, can have been provisioned into the Subsystem as a
dependency. The default policy is rejectDependencies . See Accepting Dependencies on page 945
for installing and tracking dependencies. The value acceptDependencies must not be used for
Feature Subsystems. If a Feature Subsystem attempts to use the acceptDependencies policy then
the Subsystem installation must fail. If the provis ion-pol icy directive is declared and has any oth-
er value besides acceptDependencies or rejectDependencies then the Subsystem installation
must fail.

134.2.6 Deriving the Subsystem Identity
If the Subsystem-SymbolicName and Subsystem-Version are not specified, then the following rules
are defined for deriving the values of the Subsystem's symbolic name and version. If not otherwise
specified, the default value of the version is 0.0.0 .

When installing a Subsystem, the following URI syntax must be used as the location string in order
to specify default values.

subsystem-uri ::= 'subsystem://' url? '?' params?
params ::= param ('&' param)*
param ::= key '=' value
key ::= unreserved | escaped
value ::= unreserved | escaped
url ::= <see [6] RFC 1738 Uniform Resource Locators>
escaped ::= <see [7] Uniform Resource Identifiers (URI): Generic Syntax>
unreserved ::= <see [7] Uniform Resource Identifiers (URI): Generic Syntax>

The query parameters represent Subsystem Manifest header names and values. Implementations
must support the Subsystem-SymbolicName and Subsystem-Version parameters. Implementations
can support additional parameters but must fail the installation if any unsupported parameters are
included.

As an example, the following Subsystem URI has an embedded URL of:

http://www.foo.com/sub#system.esa

It includes a default symbolic name of com.acme.foo and default version of 1.0.0 .

subsystem://http%3A%2F%2Fwww.foo.com%2Fsub%2523system.esa? «
 Subsystem-SymbolicName=com.acme.foo&Subsystem-Version=1.0.0

When installing a Subsystem containing other Subsystem Archives with no symbolic name or ver-
sion, values will be derived from the Subsystem Archive file or resource name. The syntax is as fol-
lows:

subsystem-archive ::= symbolic-name ('@'version) '.esa'

If the symbolic name is not provided in the manifest and cannot be computed by any other means
then the Subsystem must fail to install.

134.2.7 Subsystem Identity Capability
The Subsystem's symbolic name, version, type and the arbitrary matching attributes specified on
the Subsystem-SymbolicName header compose the osgi . identity capability for a Subsystem re-

Subsystems Subsystem Service Specification Version 1.1

Page 934 OSGi Compendium Release 6

source. The osgi . identity capability is provided by a Subsystem resource when contained within a
Repository service, see Repository Service Specification on page 889. For example:

Subsystem-SymbolicName: org.acme.billing;category=banking
Subsystem-Version: 1.0.0
Subsystem-Type: osgi.subsystem.composite

The above headers are used to declare a Subsystem of type osgi .subsystem.composite with the sym-
bolic name of org.acme.bi l l ing , version of 1.0.0 and arbitrary matching attribute category of bank-
ing . This information will also be reflected in the osgi . identity capability of the Subsystem's Re-
source (org.osgi . resource.Resource). The following osgi . identity capability would be generated for
a Subsystem resource from the above headers using the Provide-Capability header syntax. For exam-
ple:

osgi.identity;
osgi.identity=org.acme.billing;
 version:Version=1.0.0;
 type=osgi.subsystem.composite;
 category=banking

This allows for requirements to be used to search a repository for Subsystems. The following re-
quirement could be used to search for all Subsystems of type osgi .subsystem.composite using the
Require-Capability header syntax. For example:

osgi.identity; filter:="(type=osgi.subsystem.composite)"

134.2.8 Subsystem-Localization Header
For consistency and ease of comprehension, the design for localizing subsystem manifest headers
follows the approach used by bundles.

134.2.8.1 Localization Properties

A localization entry contains key/value entries for localized information. All headers in a
subsystem's manifest can be localized. However, the subsystems implementation must always use
the non-localized versions of headers that have subsystem semantics. Note that the use of localiza-
tion on certain such headers, such as Subsystem-SymbolicName, may cause errors as a value with a
% sign will not be valid.

A localization key can be specified as the value of a subsystem's manifest header using the following
syntax:

header-value ::= ’%’text
text ::= < any value which is both a valid manifest header value and a valid
 property key name >

For example, consider the following subsystem manifest entries:

Subsystem-Name: %acme subsystem
Subsystem-Description: %acme description
Subsystem-SymbolicName: acme.Subsystem
Acme-Defined-Header: %acme special header

User-defined headers can also be localized. Spaces in the localization keys are explicitly allowed.

The previous example manifest entries could be localized by the following entries in the manifest
localization entry OSGI-INF/l10n/subsystem.propert ies .

subsystem.properties
acme\ subsystem=The ACME Subsystem
acme\ description=The ACME Subsystem provides all of the ACME \ services

Subsystem Service Specification Version 1.1 Subsystem Region

OSGi Compendium Release 6 Page 935

acme\ special\ header=user-defined Acme Data

The above manifest entries could also have French localizations in the manifest localization entry:

OSGI-INF/l10n/subsystem_fr_FR.properties.

134.2.8.2 Locating Localization Entries

The Subsystems implementation must search for localization entries by appending suffixes to the
localization base name according to a specified locale and finally appending the .properties suffix. If
a translation is not found, the locale must be made more generic by first removing the variant, then
the country and finally the language until an entry is found that contains a valid translation. For ex-
ample, looking up a translation for the locale en_GB_welsh will search in the following order:

OSGI-INF/l10n/subsystem_en_GB_welsh.properties
OSGI-INF/l10n/subsystem_en_GB.properties
OSGI-INF/l10n/subsystem_en.properties
OSGI-INF/l10n/subsystem.properties

134.3 Subsystem Region
A Region provides isolation for a group of one or more Subsystems. Each Subsystem installed must
be a member of one and only one Region. A Region consists of one and only one Scoped Subsystem
and optionally a set of Unscoped Subsystems. Every Region has one and only one Parent Region,
with the exception of the Root Region which has no Parent Region. The Region parent → child con-
nections form the Region Tree, which by definition contains no cycles.

Each Region, except the Root Region, has a sharing policy associated with it which is defined by a
Scoped Subsystem. A sharing policy consists of two parts:

• Export Policy - Defines the set of capabilities provided by the constituents contained in the Region
that are made available to the parent Region.

• Import Policy - Defines the set of capabilities which are available in the parent Region that are
made available to the child Region.

Figure 134.2 illustrates a set of Regions that contain capabilities and requirements for a capability.
For the purposes of this illustration the Subsystems and resources have been omitted.

Figure 134.2 Regions and Import/Export

RootRegion

S1Region S2Region

imports
X

Region

capability

requirement

parent→child

Wire

X

exports
X

X

In this example some constituent of Region S1Region provide a capability S1→X . The S1Region 's
sharing policy exports the capability S1→X to its parent RootRegion . The RootRegion contains a con-
stituent which has a requirement Root→X . The export sharing policy of S1Region allows visibility
to the capability S1→X from the RootRegion which allows requirement Root→X to be satisfied by
the capability S1→X . The S2Region also contains a constituent which has a requirement on S2→X .

Subsystem Relationships Subsystem Service Specification Version 1.1

Page 936 OSGi Compendium Release 6

The sharing policy of S2Region imports the capability X from its parent Region RootRegion . Since
RootRegion has visibility to the capability S1→X this allows S2Region to also have visibility to capa-
bility S1→X through its import sharing policy which allows requirement S2→X to be satisfied by the
capability S1→X .

Sharing policies of the Regions allow for a capability to be shared across an arbitrary number of Re-
gions. For those familiar with the Region digraph, see [8] Equinox Region Digraph, the connections be-
tween Subsystem Regions is more restrictive than what the full Region digraph specification allows.
A visibility path is the path over the sharing policies of the Region tree from a requirement to a capa-
bility that allows a requirement to get wired to a capability. Since all (non-Root) Regions have one
and only one Parent Region the visibility paths over the sharing policies between a requirement and a
capability is limited to 0 or 1. Figure 134.3 is another figure that illustrates a capability being shared
across many different Regions.

Figure 134.3 Regions and Sharing Capabilities

Root Region

S2RegionS1Region

exports
X

imports
X

imports X
S3Region

S5Region

S4RegionX

exports
X

imports
X

In this example the capability S3→X is exported by the S3Region sharing policy to its parent
S1Region . S1Region also exports X to its parent RootRegion . Then S2Region imports X from its par-
ent RootRegion and finally S4Region imports X from its parent S2Region . The visibility path from
requirement S4→X to capability S3→X is the following: S4 → S2 → Root → S1 → S3 .

Notice that in this example the S5Region also has a sharing policy that imports X from its parent
S3Region . Child Regions are allowed to import any capability to which the Parent Region has visi-
bility. This is true even if the Parent Region does not export the capability. Regions can selectively
choose what capabilities they want to expose (or export) to their Parent Region. Child Regions also
can selectively choose what capabilities they want to be exposed to (or import) from their Parent Re-
gion. A Parent Region has no control over what capabilities its children have visibility. Similarly a
Parent Region has no control over what capabilities a Child Region is allowed to export to the Parent
Region. In other words, a Parent Region must give a Child Region everything the Child Region asks
for (if the Parent Region has access to it) and a Parent Region must accept everything a Child Region
offers to the Parent Region.

134.4 Subsystem Relationships
Subsystems installed into a framework become part of the Subsystem graph. The Subsystem graph
may be thought of as is directed acyclic graph with one and only one source vertex, which is the
Root Subsystem. The edges have the child as the head and parent as the tail (parent→child). This is
depicted in Figure 134.4.

Subsystem Service Specification Version 1.1 Subsystem Relationships

OSGi Compendium Release 6 Page 937

Figure 134.4 Parent Child Relationship

 Root subsystem

S2

S3 S4

S1

A Subsystem installed into or included within one or more Subsystems is called a child Subsystem.
A Subsystem which has one or more child Subsystem(s) installed or included in it is called a parent
Subsystem. Note that a Subsystem may be both a parent and child Subsystem. The Subsystem graph
has the following rules:

• There is one and only one source vertex (i.e. a Subsystem with no parents), which is the Root Sub-
system.

• The Root Subsystem is considered a Scoped Subsystem of type appl icat ion with a provis ion-pol i-
cy of acceptDependencies .

• The Root Subsystem has a symbolic name of org.osgi .service.subsystem.root , version 1.0.0, Sub-
system identifier of 0, and a location of

subsystem://?Subsystem-SymbolicName=org.osgi.service.subsystem.root& «
 Subsystem-Version=1.0.0

• The Root Subsystem always exists when a Subsystems implementation is active, even if no other
Subsystems are installed and all initial bundles installed into the framework along with the Sub-
systems implementation are considered content resources of the Root Subsystem.

• All other (non-root) Subsystems must have one or more parent Subsystems. This implies that
there are no orphan Subsystems (except the Root Subsystem) and the Subsystem graph is fully
connected.

• All parents of a Subsystem belong to the same Region.
• An Unscoped Subsystem must belong to the same Region to which its parents belong.
• A Scoped Subsystem (other than the Root Subsystem) must belong to a child Region of the Re-

gion to which the Subsystem's parents belong.

When a Subsystem is installed using a Subsystem service instal l (Str ing) or
instal l (Str ing, InputStream) method the Subsystem resource becomes a constituent of the Subsystem
which the instal l method was called on. The Subsystem resource is the Subsystem Archive and may
be retrieved by calling the Subsystem service getConstituents() method. Figure 134.4 illustrates the
Root Subsystem with initial bundles A , B , SI (Subsystems implementation, may be multiple bun-
dles), and the system bundle (identifier 0).

Figure 134.5 Subsystem resources

00

R
bundle resource

Subsystem service

RootSSII AA BB

In Figure 134.5 Bundles A , B and SI are considered constituents of the Root Subsystem. The system
bundle is also considered to be a constituent of the Root Subsystem (bundle zero). A Subsystem ser-

Subsystem Relationships Subsystem Service Specification Version 1.1

Page 938 OSGi Compendium Release 6

vice R is registered that represents the Root Subsystem. When Subsystems are installed using the
Root Subsystem then these Subsystem resources become constituents of the Root Subsystem and
the Subsystems become child Subsystems of the Root Subsystem. For example, Figure 134.6 illus-
trates the Root Subsystem with Scoped Subsystem S1 with constituent bundles C and D and Scoped
Subsystem S2 with constituent bundles E and F :

Figure 134.6 Subsystems

S1 EE FF S2

R,S1,S2

Root00 SSII AA BB

CC DD

The two Subsystems S1 and S2 have the same parent and Subsystems S1 and S2 are children of the
Root Subsystem. Figure 134.7 shows a more complicated tree that has both Scoped and Unscoped
Subsystems installed. This figure omits the constituent resources and Subsystem services:

Figure 134.7 Parent Child Relationship with Unscoped Subsystems

S1 S2Root

U1 U2

U3 U4

U6 U7

134.4.1 Prevent Cycles and Recursion
It is possible to end up with cycles in the parent → child relationships between Subsystems con-
tained in the same Region. Figure 134.8 illustrates this.

Figure 134.8 Subsystems and cycles

S1

U1 U2

Root

In this example Subsystem S1 has been installed. The Scoped Subsystem S1 has included in its con-
stituents the Unscoped Subsystems U1 and U2 . Furthermore U1 has included the Unscoped Subsys-
tem U2 as a constituent and U2 has included the Unscoped Subsystem U1 as a constituent. This caus-
es Unscoped Subsystem U1 to have parents S1 and U2 and Unscoped Subsystem U2 to have parents
S1 and U1 . There is now a cycle between the Subsystems U1 and U2 . Subsystems implementations
must detect this cycle and fail the installation of such a degenerative Subsystem. The top level Sub-
system being installed must fail the install operation by throwing a Subsystem Exception. In this
case the install operation of the S1 Subsystem must fail with a Subsystem Exception being thrown.

Subsystem Service Specification Version 1.1 Determining Content

OSGi Compendium Release 6 Page 939

Cycles may also exist in the definition of Scoped Subsystems which includes other child Subsys-
tems. Figure 134.9 illustrates this.

Figure 134.9 Scoped Subsystems and cycles

Root S2S1

In this example the Scoped Subsystem S1 includes as a child the Scoped Subsystem S2 . The S2 Sub-
system also includes as a child the Scoped Subsystem S1 . Subsystems implementations must detect
this and fail the installation of such a degenerative Subsystem. The top level Subsystem being in-
stalled must fail the install operation by throwing a Subsystem Exception. In this case the install op-
eration of the first S1 Subsystem must fail by throwing a Subsystem Exception.

134.5 Determining Content
A Subsystem definition may declare different types of content resources. A Subsystems implementa-
tion may support additional types, but the following types must be supported:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.feature
• osgi .subsystem.composite

A Subsystems implementation is free to support additional content types as value-add, but an im-
plementation is required to fail the installation of a Subsystem which declares content resource
types which are not recognized by the implementation.

The individual content resources may be specified in the following ways:

• The Subsystem-Content header, or
• The entries of the Subsystem Local Repository, see Resource Repositories on page 942.

134.5.1 Subsystem-Content Header
The Subsystem-Content header contains a list of symbolic names, with optional attribute and direc-
tive assertions. Each element specifies a single resource that is to be a content resource of the Sub-
system. See also Discovering Content Resources on page 943. The Subsystem-Content header must
conform to the following syntax:

Subsystem-Content ::= resource (','resource)*
resource ::= symbolic-name (';' parameter)*

The Subsystem-Content header may specify the following directives:

• resolut ion - (mandatory | optional) A mandatory content resource prevents the Subsystem from
successfully installing when the constituent cannot be found (or satisfied); an optional content
resource allows a Subsystem to successfully install even if the content cannot be found (or satis-
fied). The default value is mandatory .

• start-order - (Integer >= 1) Specifies the start order of the content resource in relation to other
content resources of the Subsystem. See Start Order on page 953.

The Subsystem-Content header may specify the following architected matching attributes as well as
any arbitrary matching attributes:

Determining Content Subsystem Service Specification Version 1.1

Page 940 OSGi Compendium Release 6

• version - (Version) A version range used to select the version of the resource to use. This follows
the OSGi version range scheme, including the default value of 0.0.0.

• type - Indicates the type of the content. It is recommended that a reverse domain name conven-
tion is used unless those types and their processing is standardized by the OSGi Alliance, for ex-
ample bundles. The default type is osgi .bundle . A Subsystems implementation may support ad-
ditional types, but the following types must be supported:
• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

For example, the following header specifies three Subsystem constituents:

Subsystem-Content:
 org.acme.billing.impl;
 type=osgi.bundle;
 version=1.0,
 org.acme.billing.frag;
 type=osgi.fragment;
 version=1.0,
 org.acme.billing.credit.subsystem;
 type=osgi.subsystem.composite;
 version=1.0

The above header specifies three content resources of a Subsystem:

• A bundle resource with the symbolic name org.acme.bi l l ing. impl at version 1.0 or greater
• A fragment resource with the symbolic name org.acme.bi l l ing.frag at version 1.0 or greater
• A child composite Subsystem resource with the symbolic name

org.acme.bi l l ing.credit .subsystem at version 1.0 or greater

134.5.2 Subsystem-Content Requirements
Each element of the Subsystem-Content header is used to locate a resource that is to be used as con-
tent of the Subsystem. One way of describing the elements of the Subsystem-Content header is in
terms of a Requirement using the osgi . identity namespace. The Requirement is defined in [3] Re-
source and Wiring. To illustrate, a single Subsystem-Content element:

org.acme.billing.impl;
 type=osgi.bundle;
 version=1.0

This Subsystem-Content header can be converted into the following osgi . identity Requirement with
the Require-Capability syntax for illustration:

osgi.identity;
 filter:="(&
 (osgi.identity=org.acme.billing.impl)
 (type=osgi.bundle)
 (version>=1.0)
)"

All directives specified on the Subsystem-Content header, except start-order , should be includ-
ed in the Requirement. All attributes should be included in the f i l ter directive of the Require-
ment. Notice that the version attribute is a range and must be converted into a proper filter. The

Subsystem Service Specification Version 1.1 Determining Content

OSGi Compendium Release 6 Page 941

VersionRange.toFi l ter method can be used to do this conversion. All other matching attributes are
treated as type String and use an equality operation in the filter. Here is an example of a more com-
plex transformation to Requirement:

org.acme.billing.credit.subsystem;
 type=osgi.subsystem.composite;
 version="[1.0, 1.1)";
 category=banking;
 resolution:=optional;
 start-order:=1

The above Subsystem-Content element converts into the following osgi . identity Requirement:

osgi.identity;
 filter:="(&
 (osgi.identity=org.acme.billing.impl)
 (type=osgi.subsystem.composite)
 (&(version>=1.0)(!(version>=1.1))
 (category=banking)
)"
 resolution:=optional

134.5.3 Preferred-Provider Header
The Preferred-Provider header contains a list of symbolic names, with optional attributes assertions.
Each element specifies a single bundle or Subsystem resource that is to be preferred when resolving
the requirements of the Subsystem content resources. The Preferred-Provider header must conform
to the following syntax:

Preferred-Provider ::= resource (',' resource)*
resource ::= symbolic-name (';' attribute)*

The Preferred-Provider header may specify the following architected matching attributes:

• version - (Version) A version range used to select the version of the bundle or Subsystem to use.
This follows the OSGi version range scheme, including the default value of 0.0.0.

• type - (String) Indicates the type of the provider. Valid types are:
• osgi .bundle
• osgi .subsystem.composite
• osgi .subsystem.feature

The default type is osgi .subsystem.composite . Specifying an unsupported type results in an in-
stallation failure.

Each element of the Preferred-Provider header is used to locate a resource that is to be used as a pre-
ferred provider of the Subsystem. The Preferred-Provider header elements are converted to Require-
ments using the osgi . identity namespace just like the Subsystem-Content header except the default
type is osgi .subsystem.composite . See Subsystem-Content Requirements on page 940.

Because this header influences resolution, it is only valid for it to be used on a Scoped Subsystem. If
a Subsystems implementation encounters this header on an Unscoped Subsystem, it must fail the
installation of the Subsystem.

The Preferred-Provider header has the effect of influencing the import policy into the Region repre-
senting the Scoped Subsystem that specified the header. If there are multiple candidate capabilities
for a requirement and one or more of those capabilities is from a bundle or Subsystem identified in
the Preferred-Provider header, then the Region import policy must prefer the capabilities from the
preferred bundle or Subsystem.

Determining Content Subsystem Service Specification Version 1.1

Page 942 OSGi Compendium Release 6

A resource may be considered as a preferred provider only if it is a constituent of either the Scoped
Subsystem's or any ancestor's Region.

134.5.4 Resource Repositories
When a Subsystem is installed the Subsystems implementation is responsible for provisioning re-
sources that are associated with the Subsystem. For example, the Subsystem's content resources as
well as any resources that are needed to satisfy dependencies of a Subsystem's content resources.
During the Subsystem install process the Subsystems implementation uses a defined set of reposito-
ries to find the required resources needed to install a Subsystem. This set of repositories includes the
following:

• Local Repository - Contains the resources included in the Subsystem Archive, see Local Repository
on page 942.

• System Repository - Contains the resources currently installed, see System Repository on page
942

• Repository Services - The set of repositories registered as OSGi services, see Repository Services on
page 942.

• Content Repository - The set of resources that comprise the Subsystem content, see Content Reposito-
ry on page 942

• Preferred Repository - The set of resources that are considered preferred providers, see Preferred
Repository on page 943.

134.5.4.1 Local Repository

The Root of the Subsystem Archive contains 0 or more resources. The Subsystems implementation
must read all entries (except directory entries) in the Root of the Subsystem Archive and treat each
entry as a potential resource. One way of describing the resource entries contained in the Root of the
Subsystem Archive is in the terms of an Repository implementation. For the purpose of this spec-
ification these resources are referred to as the Subsystem's Local Repository. The Local Repositories
must not be registered as an OSGi Repository service. Also, it is not required that the Subsystem im-
plementation actually implement a Local Repository as a concrete implementation of the Reposito-
ry service interface.

134.5.4.2 System Repository

The term System Repository is used to describe the set of resources that are constituents of one or
more of the currently installed Subsystems. The System Repository must not be registered as an OS-
Gi service. Also it is not required that System Repository be implemented as a concrete implemen-
tation of the Repository service. There is a single System Repository representing the resources in-
stalled in the OSGi framework.

134.5.4.3 Repository Services

The repositories which are registered as Repository services, see Repository Service Specification on
page 889. These Repositories are used to discover Subsystem content resources and dependencies. A
Subsystems implementation searches registered Repository services by service ranking order.

134.5.4.4 Content Repository

The set of content resources for a Subsystem is referred to as the Subsystem's Content Repository.
Similar to the Local and System Repositories, the Content Repositories must not be registered as an
OSGi service and it is not required that the Subsystems implementation actually implement a Con-
tent Repository as a concrete implementation of the Repository service. There are two types of re-
sources that can exist in a Subsystem's Content Repository:

• Installable Content - A content resource which must be installed and result in a distinct resource at
runtime. That is, a distinct bundle or Subsystem installation.

Subsystem Service Specification Version 1.1 Determining Content

OSGi Compendium Release 6 Page 943

• Shared Content - A content resource which is already installed and is a constituent of one or more
already installed Subsystems that belong to the same Region as the Subsystem that the Subsys-
tem content repository is for. This resource must be reused, the Subsystems implementation
must not install another instance of the resource.

Details on how the content resources are discovered for the Content Repository are discussed in Dis-
covering Content Resources on page 943.

134.5.4.5 Preferred Repository

The set of resources which are considered preferred providers of capabilities required by a Subsys-
tem is referred to as the Preferred Provider Repository for the Subsystem. The Preferred Provider
Repository for a Subsystem must not be registered as an OSGi service and it is not required that the
Subsystems implementation actually implement the Preferred Provider Repository as a concrete im-
plementation of the Repository service.

The following steps must be followed to discover the resources of the preferred provider repository
for a Subsystem:

1. The Preferred-Provider header is parsed into a list of elements where each element specifies a
single osgi . identity requirement, see Preferred-Provider Header on page 941.

2. For each osgi . identity requirement a Requirement object is created and used to search Reposito-
ries for preferred provider resources.

3. The System Repository is searched. For each capability found in the System Repository; if the
resource providing the osgi . identity capability is a constituent contained in the parent Region
of the Scoped Subsystem's Region then the providing Resource of the Capability is considered a
preferred provider and the search stops; otherwise continue to the next step.

4. The Subsystem's Local Repository is searched. If a capability is found then the providing re-
source is used as a preferred provider and the search stops; otherwise continue to the next step.

5. The registered Repository services are searched. If a repository service finds a capability then the
providing resource is used as a preferred provider and the search stops; otherwise the preferred
provider is not found.

134.5.5 Discovering Content Resources
When a Subsystem is installed the Subsystems implementation must determine the set of resources
that compose the content of the Subsystem. The content resources of a Subsystem may be specified
in the following ways:

• The values of the Subsystem-Content header must be used if it is present. See Subsystem-Content
Header on page 939.

• The content of the Subsystem's Local Repository, if the Subsystem-Content header is not present.

When a Deployment Manifest is not present, Pre-Calculated Deployment on page 963, the Subsys-
tems implementation must use this information to discover the content resources for a Subsystem
as described in the following sections.

134.5.5.1 Declared Subsystem-Content

If the Subsystem-Content manifest header is declared then the following steps must be followed to
discover the Subsystem's contents:

• The Subsystem-Content header is parsed into a list of elements where each element specifies a
single osgi . identity requirement. For each osgi . identity requirement element a Requirement is
created and used to search Repositories for content resources.
• If the Subsystem is a Scoped Subsystem then continue to the next step; otherwise if the Sub-

system is an Unscoped Subsystem then the System Repository must be searched in order to

Determining Dependencies Subsystem Service Specification Version 1.1

Page 944 OSGi Compendium Release 6

discover any currently installed resources that match the content Requirement. For each
matching capability found it must be determined if the capability provider Resource is a con-
stituent of a Subsystem which is in the same Region as the installing Subsystem; if so then the
provider Resource must be used as an shared content resource. If no shared content resource is
found then continue to the next step; otherwise the search stops.

• The Subsystem's Local Repository is searched to find a matching Capability for the content
Requirement. If a Capability is found then the providing Resource of the Capability is used as
an installable content resource of the Subsystem. If no installable content resource is found then
continue to the next step, otherwise the search stops.

• The registered Repository services are searched to find a matching capability for the content
Requirement. If a Repository finds a provider for the content requirement then the provider
Resource of the capability is used as an installable content resource of the Subsystem. If no
matching provider is found then the discovery of the content resource has failed.

134.5.5.2 Use Subsystem Local Repository

If the Subsystem-Content header is not declared then the list of content resources is defined as all
the Resources within the Subsystem's Local Repository which provide an osgi . identity capability
with the type attribute of:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature
• Any other type that is supported by the implementation.

If a resource is found to be an unsupported type then installation of the Subsystem must fail.

For Scoped Subsystems this list is used as is and each Resource is considered an installable content
resource. For Unscoped Subsystems the System Repository must be searched in order to determine
if there are any already installed contents resources which may be used as a shared content resources.
If no shared content resource can be found then the resource is considered an installable content re-
source.

134.6 Determining Dependencies
When a Subsystem is installed the Subsystems implementation determines the set of resources that
compose the content of the Subsystem. Content resources may have requirements on capabilities
that are not provided by any of the content resources for the Subsystem. When a Subsystem is in-
stalled the Subsystems implementation must determine the set of additional resources that are re-
quired in order to allow the Subsystem's content resources to resolve. These additional resources are
called dependencies. When a Subsystem is installed the set of dependencies contains two types of re-
sources:

• Installable Dependency - A resource which must be installed and result in a distinct resource at
runtime. That is, a distinct bundle or Subsystem installation.

• Preinstalled Dependency - A resource which is already installed and is a constituent of one or more
already installed Subsystems and the required capabilities provided by the resource are accessi-
ble according to the sharing policies of the Subsystems. This resource must be reused, the Sub-
systems implementation must not install another instance of the resource.

When a Deployment Manifest is not present, see Pre-Calculated Deployment on page 963, the Sub-
systems implementation must determine the set of dependencies for the Subsystem. To determine

Subsystem Service Specification Version 1.1 Accepting Dependencies

OSGi Compendium Release 6 Page 945

the set of dependencies the Subsystems implementation should attempt to resolve the Subsystem
content resources before installing the content resources. One possible way of resolving the content
resources, before installing them, is to use a Resolver service, see Resolver Service Specification on page
1003. This specification illustrates the behavior of dependency resource discovery using terms
defined by the Resolver service. A Subsystems implementation is not required to use the Resolver
service to accomplish dependency resource discovery. Other mechanisms may be used to accom-
plish the same goal as long as the resolution results in a valid class space. Subsystems implementa-
tions need not guarantee to find a solution to every resolution problem, but if a valid solution is not
found, then discovery of the dependencies must fail, resulting in an installation failure.

In order to use the Resolver service the Subsystems implementation has to provide a ResolveCon-
text object that represents the currently installed Subsystems and their constituent resources. This
resolve context must search Repositories in the following order when searching for capabilities to
satisfy content dependencies within the ResolveContext.f indProviders method. The Content Repos-
itory, Preferred Provider Repository, System Repository and Local Repository must all be searched
and all the results presented to the Resolver with a corresponding preference. If a result was found
in these repositories, searching the registered Repository services is optional, but if no result was
found yet, the registered Repository services must be searched. The order of matching capabilities
presented to the Resolver must coincide with the Repository search order.

1. The Content Repository.
2. The Preferred Provider Repository.
3. The System Repository. For each matching capability found in the System Repository the Subsys-

tems implementation must determine if the capability is accessible to the content resources of
the installing Subsystem according to the sharing policy of the Subsystem. See Sharing Capabili-
ties on page 947 for more details on Subsystem types and their sharing policies.

4. The Local Repository. This allows a Subsystem Archive to optionally include dependencies.
5. The registered Repository services.

Any matching capabilities found in the steps after step 1 above are considered to be provided by po-
tential dependencies for the Subsystem. The capabilities found in the System Repository are provid-
ed by already installed resources, referred to as potential pre-installed dependencies. The capabilities
found which are provided by other potential dependencies must be installed in order to resolve the
Subsystem content resources, referred to as installable dependencies.

The Resolver's job is to select one of the potential capabilities returned by the f indProviders method
as the capability to satisfy a Requirement. At the end of a resolve operation a result (Map<Resource,
L ist<Wire>) is returned which contains the Resources that got resolved and a list containing the
Wires for the resolved Resource. The Subsystems implementation uses this resolution result in or-
der to determine which resolved Resources are content resources, pre-installed dependencies, or in-
stallable dependencies. The installable dependencies must be installed as described in Accepting De-
pendencies on page 945. The pre-installed dependencies must have their reference count incre-
mented as described in Reference Count on page 952.

134.7 Accepting Dependencies
When a Subsystem is installed the Subsystems implementation must determine the set of instal-
lable dependencies as described in Determining Dependencies on page 944. The Subsystems imple-
mentation must also determine what Subsystem is willing to accept the installable dependency as a
constituent, referred to as an accepted dependency constituent. A Subsystem declares that it is willing to
accept dependencies as constituents by specifying the provis ion-pol icy directive with the acceptDe-
pendencies value on the Subsystem-Type header, see Subsystem-Type Header on page 932.

The acceptDependencies provision policy is useful for creating isolation layers that do not pollute
parent Regions with dependencies. For example, an application container may be implemented as

Accepting Dependencies Subsystem Service Specification Version 1.1

Page 946 OSGi Compendium Release 6

a Subsystem. Such a container Subsystem could be installed into something called a kernel Subsys-
tem. Applications are installed as Subsystems into the container Subsystem. In this case the con-
tainer Subsystem would likely use the acceptDependencies provision policy so that any applica-
tions installed into the container Subsystem do not end up polluting the kernel Subsystem with the
application's dependencies.

A dependency becomes an accepted dependency constituent of the Subsystem with a provision pol-
icy of acceptDependencies and that lies on the longest path between the Root Subsystem and the
Subsystem being installed, inclusively. Note that a Subsystem that has acceptDependencies provi-
sion policy will accept its own installable dependencies as constituents since it lies on the longest
path between the Root Subsystem and itself, inclusively.

The following figure illustrates a simple example of accepting dependency constituents. A Scoped
Subsystem S2 is being installed into another Scoped Subsystem S1 and S1 has a provis ion-pol icy of
acceptDependencies . When S2 is being installed the Subsystems implementation discovers con-
tent resources A and B and installable dependencies C and D . This is depicted in Figure 134.10.

Figure 134.10 Provision Policy

provision-policy:=
acceptDependencies

S1Root S2

provision-policy:=
acceptDependencies

CC DD AA BB

In the previous example the Subsystem with a provis ion-pol icy of acceptDependencies and that
lies on the longest path between the Root Subsystem and the Subsystem being installed is S1 . There-
fore the installable dependencies C and D become accepted dependency constituents of S1 .

Figure 134.11 illustrates the same example but with S2 also having a provis ion-pol icy of acceptDe-
pendencies

Figure 134.11 Provision Policy

provision-policy:=
acceptDependencies

Root
S2

S1

provision-policy:=
acceptDependencies

provision-policy:=
acceptDependencies

AA BB

CC DD

In this example the Subsystem with a provis ion-pol icy of acceptDependencies and that lies on the
longest path between the Root Subsystem and the Subsystem being installed is S2 itself. Therefore
the installable dependencies C and D become accepted dependency constituents of S2 .

Figure 134.12 illustrates the same example but with S1 and S2 not defining the provis ion-pol icy (de-
fault is rejectDependencies). The Root Subsystem always has a provis ion-pol icy of acceptDepen-
dencies :

Figure 134.12 Subsystems and acceptDependencies

Root
S2S1 AA BB

CC DD

00 SSII

Subsystem Service Specification Version 1.1 Sharing Capabilities

OSGi Compendium Release 6 Page 947

In this example the Subsystem with a provision policy of acceptDependencies and that lies on the
longest path between the Root Subsystem and the Subsystem being installed is the Root Subsystem.
Therefore the installable dependencies C and D become accepted dependency constituents of the
Root Subsystem.

134.8 Sharing Capabilities
Scoped Subsystems define a sharing policy for the Region they are contained in. A sharing policy
controls access to capabilities between parent → child Region boundaries. For Subsystems, a sharing
policy is composed of two parts: an import policy and an export policy:

• Export Policy - Defines the set of capabilities provided by the constituents contained in the Region
that are made available to the parent Region.

• Import Policy - Defines the set of capabilities which are available in the parent Region that are
made available to the child Region.

The import sharing policies of a Subsystem's ancestor parent chain may prevent a Subsystem from
accessing the required capabilities provided by a dependency. Figure 134.13 illustrates this.

Figure 134.13 Sharing Capabilities

s1Root

Allow

Allow

S2

BB

AA

Allow

Deny

DD

CC

provision-policy:=
acceptDependencies

00

SSII

In this example the C and D provide capabilities that are required by A and B respectively. The import
sharing policy of S2 allows the capabilities to be imported into S2 , but the import sharing policy for
S1 denies the import of one of the capabilities and allows the other. In order for A or B to access capa-
bilities provided by C or D they must traverse both the import sharing policy of S2 and S1 . Ultimate-
ly S1 sharing policy prevents the necessary access to the dependencies necessary to resolve S2 . Such
a situation must be detected during the discovery of the installable dependencies and result in a fail-
ure to install the dependencies. This must result in the failure to install the Subsystem that requires
the dependency, in this case S2 .

134.8.1 Preferred Provider
The sharing policy for a Scoped Subsystem may specify a set of preferred providers. If a capability is
provided by a preferred provider then that capability must be used to resolve a Scoped Subsystem's
import policy. Figure 134.13 illustrates this.

Figure 134.14 Preferred Provider

s2
rootBB

s1 import X
prefers S2

exports
X

CCAA

XX

Root

00 SSII

Region Context Bundle Subsystem Service Specification Version 1.1

Page 948 OSGi Compendium Release 6

In this example constituent B of the Root Region provides the capability X (called Root→X). Also con-
stituent C of S2Region provides the capability S2→X . The export sharing policy of S2 policy exports
the capability S2→X to its parent Region, the RootRegion . The S1Region contains a constituent A
that has a requirement on S1→X . The two capabilities, Root→X and S2→X , are available to satisfy the
requirement S1→X . The S1Region 's import sharing policy imports capability X and has a preferred
provider of S2 . This means that the capability S2→X must be used to satisfy the requirement S1→X .

134.8.2 System Capabilities
The osgi .ee and osgi .nat ive namespaces are used by the System Bundle to describe capabilities for
the Java execution environment and the native environment. These capabilities must only be pro-
vided by the System Bundle. A Subsystems implementation must allow access to the osgi .ee and
osgi .nat ive capabilities provided by the System Bundle to every Subsystem installed. This includes
scoped subsystems which may or may not already have an import sharing policy configured to im-
port these namespaces from the System Bundle.

134.9 Region Context Bundle
The Region context bundle provides a perspective from a constituent of a Subsystem contained in
the Region. When a Scoped Subsystem is installed the Subsystems implementation must generate
the Region context bundle and install it as a constituent bundle of the Subsystem. The Region con-
text bundle has the following characteristics:

• Has a symbolic name of org.osgi .service.subsystem.region.context.<subsystem id>
• Version 1.0.0
• Has a location string of <subsystem location>/<subsystem id>
• Must always be allowed to resolve and start (i.e. has no requirements, imports or bundle activa-

tor).
• Has a start-level of 1 and is persistently started.
• Is installed and started before the Subsystem service is registered.

This bundle is installed and must remain active as long as the Subsystem is installed. If the Region
context bundle is stopped, updated or uninstalled then the Subsystem runtime should log an error
and may ensure the context bundle is installed and restarted.

When the Subsystems implementation is active it must establish the Root Subsystem, see Subsystem
Service on page 955. In establishing the Root Subsystem the Subsystems implementation must en-
sure that there is a Region context bundle available for the Root Region. This Root Region context
bundle will have a symbolic name of org.osgi .service.subsystem.region.context.0 .

Typically the Region's context bundle would be used to obtain a bundle context with the getBundle-
Context() method, which has a perspective as a constituent of the Region. This is useful in the fol-
lowing ways:

• Implementing Subsystem aware extenders. Such extenders need to be able to register listeners
and monitor the inside of a Region in order to react to the constituent bundles of a Region.

• Monitoring of internal events.

134.10 Explicit and Implicit Resources
Depending on how a resource is installed the Subsystems implementation considers the resource
to be either an explicit resource or implicit resource. An explicit resource is a resource whose installa-
tion was initiated by an agent outside of the Subsystems implementation. An implicit resource is a re-

Subsystem Service Specification Version 1.1 Explicit and Implicit Resources

OSGi Compendium Release 6 Page 949

source whose installation was initiated by the Subsystems implementation during the explicit in-
stallation of a Subsystem, including the content and dependencies of the explicitly installed Subsys-
tem.

134.10.1 Explicit Resources
An explicit resource is a resource that was installed programmatically, by an agent outside of the
Subsystems implementation, using some resource specific API. This specification defines two types
of resources that can be installed explicitly:

• Subsystem resource - A Subsystem resource may be installed explicitly by using the Subsystem ser-
vice. Note that content and dependencies of an explicitly installed Subsystem are not considered
to be explicit resources themselves since they were implicitly installed by the Subsystems imple-
mentation.

• Bundle resource - A bundle resource may be installed explicitly by using a bundle context. This in-
cludes fragments.

134.10.1.1 Explicit Bundle Resources

When a bundle is installed explicitly with a bundle context, the Subsystems implementation must
determine the Subsystem of which a bundle becomes a constituent. The following rules are fol-
lowed when a bundle is installed explicitly with a bundle context:

1. Determine the bundle performing the install. This is the bundle whose Bundle Context is per-
forming the install operation.

2. Determine the target Region. This is the Region to which the bundle performing the install oper-
ation belongs.

3. If a bundle with the same symbolic name and version already exists in the target Region then
the bundle installation must fail unless the same location string is used. If the same location is
used then the existing bundle is returned. This may be accomplished by the use of a bundle col-
lision hook.

4. Determine the Subsystem(s) of which the bundle performing the install is a constituent. The
bundle performing the install may be a shared resource. In that case the bundle performing the
install is a constituent of two or more Subsystems.

5. The newly installed bundle must become a constituent of all the Subsystems of which the bun-
dle performing the install is a constituent.

134.10.1.2 Explicit Subsystem Resources

When a Subsystem is installed explicitly with a Subsystem service, the Subsystems implementa-
tion must determine what Subsystem(s) the Subsystem resource and its children will become a con-
stituent of. The following rules are followed when a Subsystem is installed:

1. Determine the target Subsystem. This is the Subsystem service which is performing the install
operation or the Subsystem which includes another Subsystem as part of its content, see Deter-
mining Content on page 939.

2. Determine the target Region. This is the Region to which the target Subsystem belongs.
3. If no Subsystem resource with the same location exists then continue to the next step; otherwise

do the following:
• If the existing Subsystem is not a part of the target Region then fail the install operation by

throwing a Subsystem Exception; otherwise continue to the next step.
• If the existing Subsystem symbolic name, version and type is not the same as the Subsystem

being installed then fail the install operation by throwing a Subsystem Exception; otherwise
continue to the next step.

• If the existing Subsystem is already a constituent of the target Subsystem then return the
existing Subsystem from the install method; otherwise the existing Subsystem resource be-

Explicit and Implicit Resources Subsystem Service Specification Version 1.1

Page 950 OSGi Compendium Release 6

comes a shared resource by increasing the reference count of the existing Subsystem by one,
see Reference Count on page 952, and the existing Subsystem becomes a constituent of the
target Subsystem; finally, the existing Subsystem is returned from the install method.

4. If no Subsystem resource with the same symbolic-name and version already exists in the target
Region then the Subsystem resource being installed becomes a constituent of the Subsystem tar-
get; otherwise do the following:
• If the existing Subsystem type is not the same as the type of the Subsystem being installed

then fail the install operation by throwing a Subsystem Exception; otherwise continue to the
next sub-step.

• If the existing Subsystem is already a constituent of the target Subsystem then return the
existing Subsystem from the install method; otherwise the existing Subsystem resource be-
comes a shared resource by increasing the reference count of the existing Subsystem by one
and the existing Subsystem becomes a constituent of the target Subsystem; finally, the exist-
ing Subsystem is returned from the install method.

134.10.2 Explicit Resource Example
A scenario is used to illustrate the rules for determining which Subsystem an explicitly installed re-
source is a constituent. Figure 134.15 illustrates the Root Subsystem with initial content bundles A ,
SI (Subsystems implementation) and the system bundle (id = 0) installed.

Figure 134.15 Explicit Resource Example

Root

R

00 SSII AA

If bundle A uses its own Bundle Context to explicitly install bundle B then bundle B becomes a con-
stituent of the Root Subsystem. If bundle A uses Subsystem R to install Scoped Subsystem S1 then the
S1 resource becomes a constituent of the Root Subsystem and S1 Subsystem becomes a child of the
Root Subsystem. S1 contains constituent bundles C and D . Also, if bundle B uses Subsystem R to in-
stall Scoped Subsystem S2 then the S2 resource becomes a constituent of the Root Subsystem and
the S2 Subsystem becomes a child of the Root Subsystem. S2 contains constituent bundles E and F .
Figure 134.16 illustrates this.

Figure 134.16 Subsystems and Resources

S1
Root

R,S1,S2

S2S2S1 EECC

DD

00 SSII AA

BB FF

Then if bundle C uses its own Bundle Context to install bundle F (using a different location string
from constituent bundle S2→F) then the bundle becomes a constituent of S1 . If bundle E uses Sub-

Subsystem Service Specification Version 1.1 Explicit and Implicit Resources

OSGi Compendium Release 6 Page 951

system service S2 to install Unscoped Subsystem U1 (with constituents G and H) and installs Un-
scoped Subsystem U2 (with constituents H and J) then both Subsystem bundles U1 and U2 become
constituents of S2 . The S2 Subsystem also becomes the parent Subsystem for both U1 and U2 Subsys-
tems, see Figure 134.17.

Figure 134.17 Subsystems and Resources

Root

R,S1,S2,U1,U2

S1

S1 S2

U1

U2

S2,U1,U2

00

SSII

AA BB

DD

CC

FF

FF

EE

GG HH

HH JJ

sa
m

e
bu

nd
le

In this scenario bundle H is a shared constituent of both U1 and U2 Subsystems. If bundle H installs
a bundle K with its bundle context then bundle K becomes a shared constituent of both U1 and U2
Subsystems. Also, if Subsystem service U1 is used to install Scoped Subsystem S3 and Subsystem ser-
vice U2 is also used to install Subsystem S3 then S3 resource becomes a shared constituent of both
Unscoped Subsystems U1 and U2. The following illustrates this:

Figure 134.18 Subsystems and Resources

Root

R,S2,S3,U1,U2

S2

U1

U2

S2,U1U2,S3 S3

S3

AA

BB

SSII

00

EE

FF

GG HH KK

HH KK JJ

CC

sa
m

e
bu

nd
le

s

Since the S3 Subsystem resource is a shared constituent of both Subsystems U1 and U2 the S3 Sub-
system has two parents: U1 and U2. In this case S3 Subsystem has two parent Subsystems but the
S3Region still must only have one parent of S2Region. This is enforced by the rule that requires
all of the parents of a Subsystem to belong to the same Region. For Scoped Subsystems the Region
which contains all of the Subsystem's parents is parent Region.

So far the examples have illustrated cases where the Root Subsystem has Scoped Subsystem chil-
dren. It is also acceptable for an Unscoped Subsystem to be installed into the Root Region as the fol-
lowing figure illustrates:

Resource References Subsystem Service Specification Version 1.1

Page 952 OSGi Compendium Release 6

Figure 134.19 Subsystems and Resources

Root

U1

U2

R,U1,U2,S1 S1

S1

00

SSII

AA CC DD

CC BB EE

sa
m

e
bu

nd
le

134.11 Resource References
A Subsystems implementation must track the resources which are installed and determine which
Subsystems reference a resource. The reference count indicates the number of installed Subsystems
which reference an installed resource. The resource references and reference counts are used by the
Subsystems implementation to determine if an installed resource is eligible for garbage collection
and also plays a role in determining when a resource should be started and stopped, see Starting and
Stopping Resources on page 953 ; the term reference count is only used to illustrate these concepts.
The reference count of a resource is not exposed in the API of Subsystems. The following types of re-
sources are referenced by a Subsystem:

• Content Resources - These are the content resources which were installed when the Subsystem
was installed, that is the resources declared in the Subsystem-Content header or from the Local
Repository when the Subsystem-Content header is not specified, see Determining Content on page
939. Content Resources are considered to be implicit resources.

• Explicit Resources - These are constituent resources which are installed explicitly, see Explicit Re-
sources on page 949.

• Dependencies - These resources provide capabilities required to satisfy requirements for a
Subsystem's content resources, see Determining Dependencies on page 944. Dependencies are
considered to be implicit resources.

Accepted dependency constituents are not defined as being referenced by the Subsystem of which
they are a constituent unless constituent resource is a dependency for that Subsystem. Parent Sub-
systems are also not defined as being referenced by a child Subsystem.

134.11.1 Reference Count
When a Subsystem is being installed the Subsystems implementation must determine what re-
sources are referenced by the Subsystem being installed. Each resource that is referenced by the Sub-
system being installed will have its reference count incremented by 1. A top-level Subsystem being
installed may contain child Subsystems. Each resource that is referenced by the child Subsystem be-
ing installed will have its reference count incremented by 1.

When a Subsystem is being uninstalled the Subsystems implementation must determine what re-
sources are referenced by the Subsystem being uninstalled. Each resource that is referenced by the
Subsystem being uninstalled will have its reference count decremented by 1. A top-level Subsystem
being uninstalled may contain child Subsystems. Each resource that is referenced by each child Sub-
system being uninstalled will have its reference count decremented by 1.

Subsystem Service Specification Version 1.1 Starting and Stopping Resources

OSGi Compendium Release 6 Page 953

When a reference count gets set to zero then the resource is eligible for garbage collection and will
be uninstalled. A Subsystems implementation may perform the garbage collection immediately or
postpone the garbage collection for later. If garbage collection is postponed then the Subsystems im-
plementation must prevent any additional usage of capabilities provided by the resource which is to
be uninstalled. The garbage collection must occur in a reasonable period of time.

Bundle resources (including fragments) and Subsystem resources may be uninstalled explicitly. For
example, uninstalling a Subsystem resource through the Subsystem service, or by other means out-
side of the Subsystems API such as uninstalling a bundle using a Bundle object. Each of the follow-
ing must occur when a resource is explicitly uninstalled:

• If the resource being explicitly uninstalled was not itself installed explicitly then an error must
be logged indicating that the explicitly uninstalled resource still has one or more Subsystems ref-
erencing it.

• If the resource being explicitly uninstalled was itself installed explicitly and the reference count
is greater than 1 then an error must be logged indicating that the explicitly uninstalled resource
still has one or more Subsystems referencing it.

• The resource being explicitly uninstalled has its reference count set to 0 and finally the resource
is uninstalled.

134.12 Starting and Stopping Resources
A Subsystem can be started by calling the Subsystem start method or the Subsystems implementa-
tion can automatically start the Subsystem if the Subsystem is ready and the autostart setting of the
Subsystem indicates that it must be started.

A Subsystem is ready if the Subsystem's parent is in the process of starting or is active. A started
Subsystem may need to be automatically started again by the Subsystems implementation after a
restart. The Subsystems implementation therefore maintains a persistent autostart setting for each
Subsystem. This autostart setting can have the following values:

• Stopped - The Subsystem should not be started.
• Started - The Subsystem must be started once it is ready.

Subsystem resources which are installed as content resources, see Discovering Content Resources on
page 943, of one or more Subsystems must have their autostart setting set to started.

When a Subsystem is started and stopped then the resources the Subsystem references may be start-
ed and stopped. See for details Starting on page 961 and Stopping on page 961.

The Subsystems implementation must track the resources which are installed and be able to de-
termine when a resource must be started and stopped. To describe this behavior the term active use
count is used. A active use count indicates the number of active Subsystems which reference a re-
source. The active use count is used by the Subsystems implementation in order to determine when
a resource is started and stopped. The term active use count is only used to illustrate the starting and
stopping of resources. The active use count of a resource is not exposed in the API of Subsystems.

Resource starting and stopping only applies to resources for which it is valid to start and stop. For
example, it is not valid to start or stop resources of type osgi .f ragment and a Subsystems implemen-
tation must not attempt to start or stop such resources.

134.12.1 Start Order
A Subsystem's Subsystem-Content header, see Subsystem-Content Header on page 939, can use the
optional start-order directive for each content resource it declares. The start-order directive speci-
fies the start order of the content resource in relation to other content resources of the Subsystem.
Content resources are started in ascending order and stopped in descending order according to the

Starting and Stopping Resources Subsystem Service Specification Version 1.1

Page 954 OSGi Compendium Release 6

start-order directive values. Content resources with the same start-order value may be started and
stopped in any order in relation to each other. There is no default value for start-order . If the start-
order is not specified then a Subsystem implementation is free to start the resource in any order. For
example, the following header specifies four Subsystem content resources:

Subsystem-SymbolicName: S1
Subsystem-Type: osgi.subsystem.composite
Subsystem-Content:
 A;
 type=osgi .bundle;
 version=1.0;
 start-order:=3,
 B;
 type=osgi.bundle;
 version=1.0;
 start-order:=2,
 C;
 type=osgi.bundle;
 version=1.0;
 start-order:=1,
 D;
 type=osgi.bundle;
 version=1.0;
 start-order:=2

The above headers specify a Subsystem S1 with four content resources: A , B , C and D . The start-order
directive is used to sort the content resources to determine the order to start or stop them when the
Subsystem is started or stopped. The content resources are sorted from lowest to highest start-order.
Content resources that have the same start-order value may be started and stopped in any order in
relation to each other. In this example the content resources are sorted into the list [C] , [B, D] , [A] .
C has the lowest start-order, therefore it is the first in the list. B and D have the same start-order and
therefore can be started in any order in relation to each other. Finally A is last in the list because it
has the highest start-order.

When the Subsystem S1 is started the content resource C must be started first, followed by the start-
ing of B and D in any order, finally resource A is started last. When the Subsystem S1 is stopped the
content resource A must be stopped first, followed by the stopping of B and D in any order, finally re-
source C is stopped last.

Resources that do not specify a start-order can be started and stopped in any order.

134.12.2 Active Use Count
When a Subsystem is being started the Subsystems implementation must increment the active use
count of every resource which is referenced by the Subsystem being started, see Resource References
on page 952. After incrementing the active use counts of the resources referenced by a Subsys-
tem, the Subsystems implementation must determine which referenced resources need to be start-
ed. For each resource referenced by the Subsystem which is valid to be started; if the active use count
is greater than zero and the resource is not currently active then the resource must be started. The
collection of dependencies are started before the Subsystem's content resources. The start order for
the individual resources contained in the collection of dependencies is not specified. See Start Order
on page 953.

When a Subsystem is being stopped the Subsystems implementation must decrement the active
use count of every resource which is referenced by the Subsystem being stopped. After decrement-
ing the active use counts of the resources referenced by a Subsystem, the Subsystems implementa-
tion must determine which referenced resources need to be stopped. For each resource referenced
by the Subsystem which is valid to be started; if the active use count equals zero and the resource is

Subsystem Service Specification Version 1.1 Subsystem Service

OSGi Compendium Release 6 Page 955

currently active then the resource must be stopped. The Subsystem content resources are stopped
before the collection of dependencies. Start Order on page 953 describes the stop order of the
Subsystem's content resources. The stop order of the individual resources contained in the collec-
tion of dependencies is not specified.

When starting the resource types supported by this specification the following rules apply:

• osgi .bundle - The bundle must be transiently started using the activation policy of the bundle,
that is with the Bundle.START_ACTIVATION_POLICY .

• osgi .f ragment - fragments cannot be started, this is a no-op.
• osgi .subsystem.appl icat ion , osgi .subsystem.composite , osgi .subsystem.feature - The Subsys-

tem must be transiently started if its autostart setting is set to started.

When stopping the resource types supported by this specification the following rules apply:

• osgi .bundle - The bundle must be persistently stopped.
• osgi .f ragment - Fragments cannot be stopped, this is a no-op.
• osgi .subsystem.appl icat ion , osgi .subsystem.composite , osgi .subsystem.feature - The Subsys-

tem must be transiently stopped. Its autostart setting must not be changed.

Note that for resources referenced by a stopped Subsystem; bundle resources are persistently
stopped and Subsystem resources are transiently stopped. This is a safeguard to handle cases where
a constituent bundle is eagerly started by some other agent outside of the Subsystems implementa-
tion. Persistently started bundles will get auto started by the framework according to the start-lev-
el of the bundle. This can cause a constituent bundle to be stopped even though the Subsystem it is
a constituent of is not active. To avoid this situation the Subsystems implementation always clears
the persistent autostart setting of the bundle resources.

Subsystem resources which are referenced by a Subsystem are started or stopped transiently. There
is no API to transiently start or stop a Subsystem. The Subsystems implementation must perform
the starting or stopping of a referenced Subsystem normally except the starting or stopping process
does not change the autostart setting for the referenced Subsystem.

134.13 Subsystem Service
The Subsystem service represents an Subsystem Archive resource that is installed in an OSGi Frame-
work. The installation of a Subsystem can only be performed by using the Subsystem service API or
through implementation specific means. The Subsystem interface's methods and service properties
can be divided into the following categories:

• Information - Access to information about the Subsystem itself as well as other Subsystems that
are installed.

• Life Cycle - The possibility to install other Subsystems and start, stop, and uninstall Subsystems.

For each Subsystem installed, the Subsystems implementation must register an associated Subsys-
tem object as a service. The Subsystem service is used for monitoring the state of the Subsystem, for
controlling the life cycle of the installed Subsystem and for installing child Subsystems.

134.13.1 Root Subsystem
A Subsystems implementation must register the Root Subsystem service. When a Subsystems im-
plementation is started for the first time it must establish the Root Subsystem. The following steps
are required to establish the Root Subsystem.

1. The Root Subsystem has a symbolic name org.osgi .service.subsystem.root , version 1.0.0 (the
version of the Subsystems specification), a Subsystem id of 0 and a location of

Subsystem Service Subsystem Service Specification Version 1.1

Page 956 OSGi Compendium Release 6

subsystem://?Subsystem-SymbolicName=org.osgi.service.subsystem.root& «
 Subsystem-Version=1.0.0

2. The Root Subsystem has no parent Subsystem. More specifically the Root Subsystem is the only
source vertex in the Subsystem graph.

3. The Root Subsystem is considered a Scoped Subsystem of type appl icat ion , with provis ion-pol i-
cy of acceptDependencies . Since the Root Subsystem has no parent it does not import or export
any capabilities.

4. The Subsystem content is the set of bundles installed in the framework that do not belong to
any other Subsystem.

5. The root subsystem has a region context bundle as described in Region Context Bundle on page
948.

The Root Subsystem always exists when a Subsystems implementation is present and active, even
if no other Subsystems are installed The Root Subsystem is used as the starting point for installing
Subsystems as child Subsystems. The Root Subsystem cannot be stopped or uninstalled by calling
the Subsystem service stop or uninstall methods. Any attempt to do so must result in a Subsystem
Exception.

134.13.2 Subsystem Service Properties
The primary means of discovering and monitoring a Subsystem is the Subsystem service. A Subsys-
tems implementation must register one Subsystem service for each Subsystem installed. The Sub-
system service is used for monitoring and controlling the life-cycle of the installed Subsystem. Ser-
vice properties on the Subsystem service carry most of the information required to monitor Subsys-
tem life cycle operations and the current state of a Subsystem. The following table describes the ser-
vice properties of a Subsystem:

Table 134.1 Subsystem Mandatory Service Properties

Key Name Type Description
subsystem.id Long The Subsystem id of the Subsystem
subsystem.symbol icName Str ing The symbolic name of the Subsystem
subsystem.version Version The version of the Subsystem
subsystem.type Str ing The type of Subsystem.
subsystem.state Subsystem.State Contains the current state of the Subsystem

134.13.3 Subsystem States
The Subsystem service property subsystem.state contains the current state of the Subsystem (this is
referred to as the subsystem state). All Subsystem states are defined by the Subsystem.State enum , for
example, INSTALLED . The possible values of a subsystem.state are shown in the table below:

Table 134.2 Subsystem States

subsystem.state Description
INSTALLING When a Subsystem is first installed the Subsystems implementation must register a Subsys-

tem service with the initial subsystem.state of INSTALLING . The subsystem.state must re-
main in the INSTALLING state until all of the Subsystem constituents are installed successfully.

INSTALLED When all contents of a Subsystem has been successfully provisioned then the subsystem.state
is set to INSTALLED .

INSTALL_FAILED Indicates that some failure occurred while attempting to install the Subsystem's contents.

Subsystem Service Specification Version 1.1 Subsystem Service

OSGi Compendium Release 6 Page 957

subsystem.state Description
RESOLVING Starting a Subsystem triggers the resolution of a Subsystem if the subsystem.state is INS-

TALLED . A RESOLVING state indicates that a resolve process is occurring in an attempt to re-
solve all of the subsystem's content resources.

RESOLVED Indicates that the Subsystem is resolved. A Subsystem is resolved if all of its content resources
are resolved.

STARTING Indicates that the Subsystem is in the process of being started. During this state the resources
the Subsystem references which are eligible for starting are started, see Starting and Stop-
ping Resources on page 953. Once all the eligible resources are successfully started then the
subsystem.state is set to ACTIVE .

ACTIVE The ACTIVE state indicates that all eligible resources referenced by the Subsystem were suc-
cessfully started during the starting process.

STOPPING Indicates that the Subsystem is in the process of being stopped. During this state the resources
referenced by the Subsystem are stopped if appropriate.

UNINSTALLING Indicates that the Subsystem is in the process of being uninstalled. During this state the re-
sources referenced by the Subsystem are marked for garbage collection if they are eligible, see
Resource References on page 952.

UNINSTALLED When all of the resources referenced by the Subsystem which are eligible for garbage collec-
tion have been uninstalled then the subsystem.state is set to UNINSTALLED .

134.13.4 Subsystem Service Registrations
The Subsystems implementation must register one Subsystem service for each Subsystem installed.
The Subsystems implementation must provide access to every Subsystem service from the Root Re-
gion. Every other Region must have access to the following Subsystem Services:

• Subsystem service representing the Scoped Subsystem of the Region.
• All Unscoped Subsystem services contained in the Region.
• All Subsystems which are children of a Subsystem contained in the Region.

A Region is granted access to the Subsystem services listed above automatically by the Subsystems
implementation regardless of the sharing policy defined by the Scoped Subsystem of that Region.
Additional Subsystem services may be imported into a Region from its parent Region by the sharing
policy defined by the Scoped Subsystem of that Region.

For example, a Root Subsystem and Root Region that has two Scoped Subsystem children, S1 and S2 .
All Subsystem services are registered by the Subsystems implementation and are visible in the Root
Region. The S1 Subsystem service is also implicitly visible in the S1 Region because it represents the
Scoped Subsystem S1 contained in that Region. Similarly the S2 Subsystem service is also implicitly
visible from the S2 Region. This example is depicted in Figure 134.20.

Figure 134.20 Root, attached to Scoped Subsystems S1, S2

S1
Root

R,S1,S2

S2S2S1 DD

CC

00 SSII EE

FF

Figure 134.21 defines a more complicated scenario where Subsystems and multiple children are in-
volved.

Subsystem Life Cycle Subsystem Service Specification Version 1.1

Page 958 OSGi Compendium Release 6

Figure 134.21 Complex example Subsystem scoping

Root

R,S1.U1,U2,S2,U3,U4,S3,U5

C

S1

U1

E

F

S2

U2

S1,U1,U2

B U3

U4

S2,U3,U4,S3

U5

S3

G

SI0

S3,U5

All Subsystem services are visible in the Root Region. The S1 Subsystem service is also implicitly vis-
ible in the S1 Region because it represents the Scoped Subsystem S1 contained in that Region. The S1
Region also has visibility to the U1 and U2 Subsystem services because these Unscoped Subsystems
are contained in the S1 Region. Similarly the S2 Subsystem service is also implicitly visible from the
S2 Region. The S2 Region also has visibility to the U3 and U4 Subsystem services because these Un-
scoped Subsystems are contained in the S2 Region. The S2 Region also has visibility to the S3 Subsys-
tem service because the S3 Subsystem is a child of a Subsystem contained in the S2 Region. Finally,
the S3 Region has implicit visibility to the S3 Subsystem service and it has visibility to the U5 Sub-
system service because the Unscoped Subsystem is contained in the S3 Region.

Note that a Scoped Subsystem's import sharing policy may grant its Region visibility to additional
Subsystem services.

134.13.5 Subsystem Manifest Headers
The Subsystem service interface has the getSubsystemHeaders(Locale) method which returns
the values of the Subsystem's manifest headers. The headers returned by this method includes
the values specified in the Subsystem manifest file and the values derived by the Subsystems im-
plementation. Certain manifest headers may be derived at install time by the Subsystems imple-
mentation if they were not specified in the Subsystem manifest file. When a Subsystem manifest
value is derived then the derived value must be included in the headers returned by the method
getSubsystemHeaders(Locale) . The following Subsystem manifest headers may be derived by the
Subsystems implementation:

• Subsystem-SymbolicName
• Subsystem-Version
• Subsystem-Content

134.14 Subsystem Life Cycle
The Subsystems specification provides an API to control the life cycle operations of a Subsystem. For
each Subsystem installed there is an associated Subsystem object (also registered as a Subsystem ser-
vice). A Subsystem's life-cycle is controlled by operations performed on the Subsystem object. Op-
erations performed on the Subsystem may also cause equivalent operations on the resources refer-
enced by the Subsystem. For example starting a Subsystem will cause all of its content resources to
start if appropriate.

Subsystem Service Specification Version 1.1 Subsystem Life Cycle

OSGi Compendium Release 6 Page 959

For Scoped Subsystems the export and import sharing policies are initially disabled at runtime and
get enabled at runtime by the Subsystems implementation depending on the state of the Scoped
Subsystem which defines the sharing policy. When an import sharing policy is disabled at runtime,
none of the installed resources contained in the Region associated with the Scoped Subsystem have
visibility to capabilities available in the parent Region. Once an import policy is enabled at runtime
the installed resources contained in the Region have visibility to capabilities available in the parent
Region according to what the import sharing policy specifies. When an export sharing policy is dis-
abled at runtime, none of the capabilities provided by installed resources contained in the Region
associated with the Scoped Subsystem are visible in the parent Region. Once an export policy is en-
abled at runtime the capabilities provided by installed resources contained in the Region are visible
in the parent Region according to what the export sharing policy specifies.

The subsystem.state is a reflection of the last action performed on the Subsystem through the Sub-
system service. The use of any other API to change the state of a resource referenced by a Subsystem
directly does not result in a change of the subsystem.state (i.e. calling stop on a bundle). For exam-
ple, uninstalling a Subsystem content resource which is a bundle does not cause the Subsystem to
be uninstalled, but it does result in an error being logged.

All references to changing the state of this Subsystem include both changing the state of the Sub-
system object as well as the state property of the Subsystem service.

The following figure illustrates the life cycle of a Subsystem:

Figure 134.22 State diagram Subsystems

INSTALLING

failed

INSTALLED

RESOLVING

INSTALL_FAILED

UNINSTALLING UNINSTALLED

RESOLVED

STARTING STOPPING

ACTIVE

start

failed

success

uninstall

failed

uninstall

install

start

success stop
uninstall

134.14.1 Installing
A Subsystem's install process is initiated using one of the Subsystem service's install methods. The
Subsystems implementation must assign a unique Subsystem identifier that is higher than any pre-
vious installed Subsystem identifier. Previously installed Subsystem identifiers include Subsystems
which were uninstalled in a previous session of the framework. The installation of a Subsystem
must be:

Subsystem Life Cycle Subsystem Service Specification Version 1.1

Page 960 OSGi Compendium Release 6

• Persistent - The Subsystem must remain installed across framework and Java VM invocations un-
til the Subsystem is explicitly uninstalled.

• Atomic - The install method must completely install the Subsystem or, if installation fails, the
Subsystems implementation must leave the framework in the same state as it was before the
method was called.

Once a Subsystem has been installed, a Subsystem object is created and all remaining life cycle oper-
ations for the installed Subsystem must be performed upon this object. The returned Subsystem ob-
ject can be used to start, stop, and uninstall the Subsystem as well as install child Subsystems.

When a Subsystem is being installed the Subsystems implementation must perform the following
operations synchronously before returning from the install method:

1. Determine the symbolic name, version, and type for the Subsystem being installed as defined
in Subsystems on page 928. If the Subsystem name, version or type are invalid then the install
fails and a Subsystem Exception is thrown.

2. Determine the Subsystems for which the Subsystem being installed will become a constituent
of by following the steps in Explicit and Implicit Resources on page 948.

3. Determine the Subsystem identifier. Subsystem identifiers are unique and assigned by the Sub-
systems implementation.

4. If the Subsystem is a Scoped Subsystem then create the new Region for the Subsystem and in-
stall and start the Region context bundle. See Region Context Bundle on page 948 for the Region
context bundle.

5. Register a Subsystem service with the initial subsystem.state service property set to INSTAL-
LING . This Subsystem service represents the Subsystem resource. See Subsystem Service Properties
on page 956 and Subsystem Service Registrations on page 957 for more details.

6. Determine the Subsystem content resources. See Determining Content on page 939 for details
on how the Subsystem contents are determined. If the contents cannot be discovered successful-
ly and the content is not optional then an installation failure occurs and a Subsystem Exception
is thrown. Otherwise continue to the next step.

7. Determine the Subsystem dependencies. See Determining Dependencies on page 944 for details
on determining the Subsystem's dependencies. If the dependencies cannot be determined suc-
cessfully then an installation failure occurs and a Subsystem Exception is thrown. Otherwise
continue to the next step.

8. Install the dependencies. The Subsystems implementation must prevent resolution of depen-
dency wires to the capabilities provided by the installed dependencies until the Subsystem has
successfully entered INSTALLED state. See Explicit and Implicit Resources on page 948 for details
on where dependencies are installed and see Resource References on page 952 for how they are
tracked. If any dependency fails to install then an installation failure occurs and a Subsystem Ex-
ception is thrown. Otherwise continue to the next step.

9. Install content resources. The content resources must be disabled from resolving until the Sub-
system has successfully entered INSTALLED state. If any content resource fails to install then and
installation failure occurs and a Subsystem Exception is thrown. Otherwise continue to the next
step.

10. If the Subsystem is scoped, enable the import sharing policy for the Region. See Sharing Capabili-
ties on page 947.

11. Enable resolution for all of the Subsystem content and any dependencies installed. Set the
subsystem.state to INSTALLED and return the installed Subsystem object.

The state INSTALL_FAILED is used to inform about an installation failure. All installation failures use
the following steps:

1. When a Subsystem fails to install it enters the INSTALL_FAILED state.
2. Immediately transition the Subsystem to the UNINSTALLING state.

Subsystem Service Specification Version 1.1 Subsystem Life Cycle

OSGi Compendium Release 6 Page 961

3. All content and dependencies which may have been installed by the Subsystem installing
process must be uninstalled.

4. Transition the Subsystem to the UNINSTALLED state.
5. Unregister the Subsystem service.
6. If the Subsystem is scoped then, uninstall the Region context bundle.
7. Throw a Subsystem Exception indicating an install failure.

134.14.2 Resolving
A Subsystem's resolve process is initiated by performing a start operation on a Subsystem whose
subsystem.state is currently set to INSTALLED . There is no explicit operation for initiating the re-
solve process of a Subsystem. The Subsystems implementation is free to initiate the resolve process
for a Subsystem for any reason. For example, the Subsystems implementation may choose to try to
resolve all currently installed Subsystems when the start operation is performed on a single Subsys-
tem.

134.14.3 Starting
A Subsystem can be started by calling the Subsystem start() method or the Subsystems implemen-
tation can automatically start the Subsystem if the Subsystem is ready and the autostart setting of
the Subsystem indicates that it must be started. When a Subsystem is being started the Subsystems
implementation must perform the following operations synchronously before returning from the
start() method:

1. If the subsystem.state is INSTALL_FAILED , UNINSTALLED , or UNINSTALLING , then an Illegal
State Exception is thrown.

2. Set the Subsystems autostart setting to started.
3. If the subsystem.state is ACTIVE then the start method returns immediately.
4. If the Subsystem is not ready to be started then the start method returns immediately.
5. If this subsystem.state is RESOLVING , STARTING or STOPPING , then the start method must wait

for starting or stopping to complete before continuing. If this does not occur in a reasonable
time, a Subsystem Exception is thrown to indicate the Subsystem was unable to be started.

6. If the subsystem.state is RESOLVED then continue to the next step; otherwise if the
subsystem.state is INSTALLED then the subsystem.state is set to RESOLVING and an attempt is
made to resolve all of the Subsystem's content resources. If all contents are resolved then set the
subsystem.state to RESOLVED , enable the export sharing policy and continue to the next step;
otherwise a starting failure occurs and a Subsystem Exception is thrown.

7. Set the subsystem.state to STARTING .
8. Start all resources referenced by the Subsystem according to Starting and Stopping Resources on

page 953. If all of the resources start successfully then continue to the next step; otherwise a
start failure occurs.

9. Set the subsystem.state to ACTIVE and return.

All start failures use the following steps:

1. If the subsystem state is STARTING then change the state to STOPPING .
2. Stop all resources that were started as part of this operation.
3. Change the state to INSTALLED or RESOLVED depending on if the Subsystem was resolved.
4. Throw a Subsystem Exception indicating the cause of the start failure.

134.14.4 Stopping
A Subsystem's stop process is initiated using the Subsystem service's stop() method. When a Subsys-
tem is being stopped the Subsystems implementation must perform the following operations syn-
chronously before returning from the stop() method:

Subsystem Life Cycle Subsystem Service Specification Version 1.1

Page 962 OSGi Compendium Release 6

1. If the subsystem.state is UNINSTALLED , INSTALL_FAILED , or UNINSTALLING , then an Illegal
State Exception is thrown.

2. Set the Subsystems autostart setting to stopped.
3. If the subsystem.state is RESOLVED or INSTALLED then the stop() method returns immediately.
4. If this subsystem.state is STARTING or STOPPING , then the stop method must wait for starting

or stopping to complete before continuing. If this does not occur in a reasonable time, a Subsys-
tem Exception is thrown to indicate the Subsystem was unable to be stopped.

5. Set the subsystem.state to STOPPING .
6. Stop all resources referenced by the Subsystem according to Starting and Stopping Resources on

page 953. If any error occurs while stopping a resource the Subsystems implementation must
continue to stop the remaining resources that are eligible to stop.

7. Set the subsystem.state to RESOLVED .

With regard to error handling while stopping resources referenced by the Subsystem, errors sub-
sequent to the first should be logged. Once the stop process has completed, a Subsystem Exception
must be thrown with the initial error as the specified cause.

134.14.5 Uninstalling
A Subsystem's uninstall process is initiated using the Subsystem service's uninstal l () method. To
whatever extent possible, the Subsystems implementation must determine the resources referenced
by the Subsystem which are eligible for garbage collection, Reference Count on page 952. This
method must always uninstall the Subsystem from the persistent storage of the Subsystems imple-
mentation.

Once this method returns, the state of the platform must be the same as if the Subsystem had never
been installed, unless some bundle resource which was uninstalled has exported package which are
being used by other bundles still installed in the platform. All old exports must remain available for
existing bundles and future resolves until the uninstalled bundle is refreshed or the framework is
restarted.

When a Subsystem is being uninstalled the Subsystems implementation must perform the follow-
ing operations before returning from the uninstal l () method:

1. If the subsystem.state is UNINSTALLED then this method returns immediately.
2. If the subsystem.state is STARTING , STOPPING or ACTIVE then the Subsystem is stopped accord-

ing to Stopping on page 961. Otherwise continue to the next step.
3. If the subsystem.state is INSTALLING and the installing process is interruptible, fail the install

process; otherwise, wait until the installation is complete.
4. If the subsystem.state is in the INSTALL_FAILED state then skip to step 6.
5. Set the subsystem.state to INSTALLED .
6. Set the subsystem.state to UNINSTALLING .
7. Determine the resources referenced by the Subsystem which are eligible for garbage collection

according to Reference Count on page 952. If a Subsystems implementation does garbage col-
lection synchronously and any error occurs while uninstalling a resource the Subsystems imple-
mentation must continue to uninstall the remaining resources that are eligible to garbage col-
lect.

8. Set the subsystem.state to UNINSTALLED .
9. Unregister the Subsystem service.
10. If the Subsystem is a Scoped Subsystem then uninstall the Region context bundle. At this point

the Region no longer exists.

With regard to error handling while synchronously uninstalling resources eligible for garbage col-
lection, errors subsequent to the first should be logged. Once the uninstall process has completed, a
Subsystem Exception must be thrown with the initial error as the specified cause.

Subsystem Service Specification Version 1.1 Pre-Calculated Deployment

OSGi Compendium Release 6 Page 963

134.15 Pre-Calculated Deployment
A pre-calculated deployment in the form of a deployment manifest can be included as part of a Sub-
system Archive or provided by a deployer at installation time. Manifests provided at install time
override those included within an archive, and those within an archive override calculated ones.
The deployment manifest defines the precise deployment of the Subsystem. Providing a deploy-
ment manifest means a Subsystem can be deployed and the exact resources that are installed are
known ahead of time. This allows test teams to test specific deployments and these same deploy-
ments can then be used in production. The deployment manifest is a locking down of the variability
in a Subsystem manifest (or the equivalent if the Subsystem definition is calculated during deploy-
ment based on the Subsystem Archive). The deployment manifest follows the same syntax rules as
the Subsystem manifest but uses different headers for deployment-specific information. A deploy-
ment manifest describes the following:

• The exact versions for content resources
• Any dependencies required to resolve the Subsystem's content that are not satisfied by the target

runtime
• Sharing policy for requirements and capabilities shared into or out of the Subsystem.

Because a Deployment Manifest's dependencies bridge between the requirements of the Subsystem
and the capabilities of the target runtime, it is not guaranteed to be portable. If available, the Subsys-
tem service implementation must first attempt to use the Deployment Manifest to deploy the Sub-
system. If the Deployment Manifest is found not to work, for example, the chosen resources do not
resolve for the target runtime, then the Subsystem's implementation must fail the installation of the
Subsystem.

134.15.1 Deployment Headers
A Subsystem can carry descriptive information about its deployment in the Deployment Manifest
file contained in its Subsystem Archive under the name OSGI-INF/DEPLOYMENT.MF . This specifi-
cation defines Deployment Manifest headers such as Deployed-Content, which Subsystem deploy-
ers (typically tools) use to supply deployment information about a Subsystem. A Subsystems imple-
mentation must:

• Process the main section of the manifest. Individual section of the manifest are ignored.
• Ignore unknown manifest headers. The Subsystem deployer can define additional manifest head-

ers as needed.
• Ignore unknown attributes and directives.

All specified manifest headers are listed in the following sections, and include example values. All
headers are optional, unless specifically indicated.

134.15.1.1 Deployment-ManifestVersion: 1

The Deployment-ManifestVersion header defines that the deployment manifest follows the rules of
a Subsystems Specification. It is 1 (the default) for this version of the specification. Future versions
of the Subsystems Specification can define higher numbers for this header.

134.15.1.2 Subsystem-SymbolicName: com.acme.subsystem.logging

The Subsystem-SymbolicName header specifies a non-localizable name for the Subsystem that the
deployment manifest is for. The Subsystem symbolic name together with a version must identify a
unique Subsystem though it can be installed multiple times in a framework. See Validating Subsys-
tem Identity on page 964.

Pre-Calculated Deployment Subsystem Service Specification Version 1.1

Page 964 OSGi Compendium Release 6

134.15.1.3 Subsystem-Version: 1.0

The Subsystem-Version header specifies the version of this Subsystem that the deployment manifest
is for. See Validating Subsystem Identity on page 964.

134.15.1.4 Deployed-Content: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0

The Deployed-Content header lists requirements for the exact resources that are considered to be
the contents of this Subsystem. This header identifies the exact versions of the resources listed in
the Subsystem-Content header. See Deployed-Content on page 965.

134.15.1.5 Provision-Resource: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0

The Provision-Resource header lists requirements for the exact resources to be installed in order to
satisfy requirements from the Deployed-Content resources that are not satisfied by the capabilities
of the target runtime. See Provision-Resource on page 965.

134.15.1.6 Import-Package: com.acme.api;version="[1.0,1.1)"

The Import-Package header lists package requirements for capabilities that are to be imported into a
Scoped Subsystem. See Import-Package on page 966.

134.15.1.7 Export-Package: com.acme.api;version=1.0.1

The Export-Package header lists package capabilities that are to be exported out of a Scoped Subsys-
tem. See Export-Package on page 966.

134.15.1.8 Require-Bundle: com.acme.logging;version="[1.0, 1.1)"

The Require-Bundle header lists bundle requirements for bundle capabilities that are to be imported
into a Scoped Subsystem. See Require-Bundle on page 967.

134.15.1.9 Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2

The Provide-Capability header declares the capabilities exported for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.15.1.10 Require-Capability: osgi.ee; filter:="(osgi.ee=*)"

The Require-Capability header declares the required capabilities for a Scoped Subsystem. See [3] Re-
source and Wiring.

134.15.1.11 Subsystem-ImportService: com.acme.service.Logging

The Subsystem-ImportService header lists service requirements for service capabilities that are to be
imported into a Scoped Subsystem. See Services on page 967.

134.15.1.12 Subsystem-ExportService: com.acme.service.Logging

The Subsystem-ExportService header lists service requirements that are matched against service ca-
pabilities provided by the Deployed-Content resources. Any matching capabilities are exported out
of the Scoped Subsystem.

134.15.2 Validating Subsystem Identity
The Subsystem to which the deployment manifest applies is identified by the Subsystem's symbolic
name and version headers. These headers are identical to those specific in the Subsystem manifest.
A Subsystem runtime must validate that the headers specified in the deployment manifest match
those of the Subsystem manifest, taking into account Subsystem manifest defaulting rules. This al-
lows the two manifests to be managed by teams separately during development or testing whilst en-
suring no mistakes have been made when they are brought together for deployment. If the headers
do not match, then the runtime must not use the deployment manifest and must fail the installa-
tion.

Subsystem Service Specification Version 1.1 Pre-Calculated Deployment

OSGi Compendium Release 6 Page 965

134.15.3 Deployed-Content
The Deployed-Content header lists the exact constituents to be installed for the Subsystem. For each
mandatory entry in the Subsystem-Content header, there must be a corresponding Deployed-Con-
tent entry. If a content resources is identified as optional and there is a corresponding entry in the
deployment manifest, then it must be deployed. If there is no corresponding entry in the deploy-
ment manifest then no resource must be deployed for it. The Deployed-Content entry identifies the
exact version of the constituent whereas the Subsystem-Content entry may specify a version range.
Each Deployed-Content entry is identified by symbolic name, version and type (an osgi identity).

Deployed-Content:
 com.acme.logging;
 deployed-version=1.0,
 com.acme.persistence;
 deployed-version=1.1;
 type=osgi.subsystem.composite

Each entry must uniquely identify the resource to be provisioned as a constituent of the Subsystem.

The following mandatory matching attributes must be applied to each entry:

• deployed-version - The exact version of the resource to be deployed. Deployed version is a specif-
ic version, not a version range, hence the use of a new attribute name. There is no default value
for this attribute.

The following architected matching attribute as well as any arbitrary matching attributes can be ap-
plied to each entry:

type - The type of the constituent. It is recommended that a reverse domain name convention is
used unless those types and their processing is standardized by the OSGi Alliance (e.g. bundles). The
default value is osgi .bundle . A Subsystems implementation may support additional types, but the
following types must be supported:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

The value of this directive must match the type directive for the corresponding entry in the Subsys-
tem-Content header, including taking into account defaulting. If the type does not match, then the
installation must fail.

The following directive can be applied to each entry:

• start-order - The precedence the constituent should have during the start sequence. Resources
with lower start-order values are started before resources with higher values. Resources with the
same start-order value may be started sequentially or in parallel. The value of this directive must
match the start-order directive for the corresponding entry in the Subsystem-Content header, in-
cluding taking into account defaulting.

134.15.4 Provision-Resource
The Provision-Resource header lists the resources to be provisioned in support of the Subsystem's
dependencies. The exact location in the Subsystem hierarchy where the resources are installed is de-
termined by the provis ion-pol icy of the Subsystem or its parents.

Pre-Calculated Deployment Subsystem Service Specification Version 1.1

Page 966 OSGi Compendium Release 6

The Provision-Resource header must result in a transitively complete deployment. For example, if
a resource added to Provision-Resource brings in additional unsatisfied requirements, further re-
sources must be added to satisfy these, until there are no unresolved requirements remaining.

Provision resource has one required matching attribute:

• deployed-version - The exact version of the resource to be deployed. Deployed version is a specif-
ic version, not a version range, hence the use of a new attribute name. There is no default value
for this attribute.

The following architected matching attributes as well as any arbitrary matching attributes can be
applied to each entry:

type - The type of the resource. It is recommended that a reverse domain name convention is used
unless those types and their processing is standardized by the OSGi Alliance (e.g. bundles). The de-
fault type is osgi .bundle . A Subsystems implementation may support additional types, but the fol-
lowing types must be supported:

• osgi .bundle
• osgi .f ragment
• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

The list of the Provision-Resource entries is determined by resolving the Subsystem's requirements.
The way in which the Subsystem's requirements are resolved is dependent on the Subsystem's shar-
ing policy.

For a Scoped Subsystem the provision resources header must identify a set of resources necessary
to satisfy the requirements into the Subsystem that are not satisfied by the target deployment en-
vironment. These requirements may be for packages, services, or other types of requirements, and
are those identified in the deployment manifest using headers such as Import-Package and Subsys-
tem-ImportService.

For an Unscoped Subsystem any mandatory requirements that are not satisfied by capabilities pro-
vided by the target environment may be satisfied by other constituents or a resource added to the
Provision-Resource header. The resolution process for Unscoped Subsystems has no propensity to
resolve to capabilities provided by the Subsystem's constituents and so a resource listed in Provi-
sion-Resource may provide capabilities that are also provided by a constituent resource.

134.15.5 Import-Package
Scoped Subsystems describe the exact packages they import in their Deployment Manifests. They
do this using the bundle Import-Package header. Any packages that match the Import-Package state-
ment must be allowed into the Scoped Subsystem by its associated Region's sharing policy.

Unscoped Subsystems have a sharing policy that shares all packages and therefore their deploy-
ment manifests do not use this header to describe the sharing of individual packages. If this header
is present and the Subsystem is unscoped, then the runtime must fail the installation of the Subsys-
tem.

134.15.6 Export-Package
Scoped Subsystems describe the exact packages they export in their deployment manifests. They
do this using the bundle Export-Package header. Any packages that match the Export-Package state-
ment must be made available outside the Subsystem by its associated Region's sharing policy.

Unscoped Subsystems have a sharing policy that shares all packages and therefore their deploy-
ment manifests do not use this header to describe the sharing of individual packages. If this header

Subsystem Service Specification Version 1.1 Pre-Calculated Deployment

OSGi Compendium Release 6 Page 967

is present and the Subsystem is unscoped, then the runtime must fail the installation of the Subsys-
tem.

134.15.7 Require-Bundle
Scoped Subsystems can have Require-Bundle requirements satisfied by bundles outside the Subsys-
tem. These bundle requirements are described using the bundle Require-Bundle header. Any bun-
dles that match the Require-Bundle statement must be allowed into the Scoped Subsystem by its
associated Region's sharing policy. If a bundle matches the Require-Bundle requirement then it be-
comes available as a candidate for wiring any Require-Bundle requirements inside the Subsystem.
However, any packages the matching bundle provides are not made available to satisfy Import-Pack-
age requirements by the Region's sharing policy. If the packages are also required then they must be
listed in the deployment manifest's Import-Package header.

Unscoped Subsystems have a sharing policy that shares all bundles and therefore their deployment
manifests do not use this header to describe the sharing of specific bundles. If this header is present
and the Subsystem is unscoped, then the runtime must fail the installation of the Subsystem.

134.15.8 Services
Scoped Subsystems can import and export services using the Subsystem-ImportService and Subsys-
tem-ExportService headers respectively. These two headers must conform to the following syntax:

Subsystem-ImportService ::= service(',' service)*
Subsystem-ExportService ::= service (',' service)*
service ::= qname (';' parameter)*

Both headers support the following directive:

• f i l ter - A filter expression that is used to match against the service properties of services regis-
tered using the specified qname of the service's object class. The f i l ter directive is optional. If no
f i l ter directive is defined then all services registered using the specified qname match the service
statement.

134.15.9 Subsystem-ImportService
Scoped Subsystems describe the services they import in their deployment manifests. They do
this using the Subsystem-ImportService header. Subsystem-ImportService header defines a list
of OSGi service filters that are matched against the services visible inside the Scoped Subsystem's
parent Region. Each service visible in the Subsystem's parent Region that matches one or more
Subsystem-ImportService statements must be allowed into the Scoped Subsystem by its asso-
ciated Region's sharing policy. The following example imports services registered under the
com.acme.logging.Loginterface with a service property threshold=error .

Subsystem-ImportService: com.acme.logging.Log;filter:="(threshold=error)"

Unscoped Subsystems have a sharing policy that shares all services and therefore their deployment
manifests do not use this header to describe the sharing of specific services. If this header is present
and the Subsystem is unscoped, then the runtime must fail the installation of the Subsystem.

134.15.10 Subsystem-ExportService
Scoped Subsystems describe the services they export in their deployment manifests. They do this
using the Subsystem-ExportService header. The Subsystem-ExportService header defines a list of
OSGi service filters that are matched against the services visible inside the Scoped Subsystem's
Region. Each service visible in the Scoped Subsystem's Region that matches one or more Subsys-
tem-ExportService statements must be allowed by its associated Region's sharing policy into the

Subsystem Types Subsystem Service Specification Version 1.1

Page 968 OSGi Compendium Release 6

Scoped Subsystem's parent Region. The following example exports services registered under the
com.acme.logging.Log interface with a service property threshold=error .

Subsystem-ExportService: com.acme.logging.Log;filter:="(threshold=error)"

Unscoped Subsystems have a sharing policy that shares all services and therefore their Deployment
Manifests do not use this header to describe the sharing of specific services. If this header is present
and the Subsystem is unscoped, then the runtime must fail the installation of the Subsystem.

134.16 Subsystem Types
Subsystem types simplify the configuration of sharing policies. The type of Subsystem is specified
using the Subsystem-Type header. Each type has its own default sharing policy, for example, to for-
bid the sharing of capabilities out, or to share all capabilities in. This specification defines three Sub-
system types:

• osgi .subsystem.appl icat ion
• osgi .subsystem.composite
• osgi .subsystem.feature

Other, non-standard, types are permitted. The specifics of each standard type are describe below.

134.16.1 Application
An application is a Scoped Subsystem with a sharing policy associated with what is often consid-
ered to be an application. An application does not share (export) any capabilities to other bundles
or Subsystems. It also does not explicitly import any capabilities. Any required capabilities that are
not satisfied by the application's constituents are automatically shared in (imported) from the par-
ent Subsystem.

A Subsystem is identified as an application by specifying a Subsystem type value of
osgi .subsystem.appl icat ion in the Subsystem manifest.

Subsystem-Type: osgi.subsystem.application

134.16.2 Application Deployment
Application Subsystems are not configured using additional requirement or capability headers,
such as Import-Package. Applications do not export any capabilities. If an application Subsystem
contains any capability exports then the Subsystem runtime should log an error and must fail.

Any imported capabilities are derived from the application Subsystem content. An application Sub-
system implicitly imports any capabilities required to satisfy requirements from the Subsystem con-
tents that are not satisfied by the capabilities of the Subsystem content.

Unsatisfied mandatory requirements result in a subsystem installation failure. Unsatisfied option-
al requirements do not. However, implementations must ensure any unsatisfied optional require-
ments are added to the sharing policy.

134.16.2.1 Package Imports

Application resolution is required to prefer packages provided by content bundles over those pro-
vided outside the application. For this reason, the application Subsystem sharing policy only im-
ports packages corresponding to Import-Package statements from the content bundles that are not
satisfied when resolving the application contents in isolation. This is equivalent to first resolving
the Subsystem-Content requirements to determine the Deployed-Content and then based on this set
of resources, determining which Import-Package requirements remain unsatisfied.

Subsystem Service Specification Version 1.1 Subsystem Types

OSGi Compendium Release 6 Page 969

A deployment manifest for an application Subsystem would list these package imports using the
Import-Package header.

134.16.2.2 Service Imports

Application resolution is required to prefer services provided by content bundles over those pro-
vided outside the application. For this reason, the application Subsystem sharing policy only im-
ports services required by the Subsystem's content bundles that are not also provided by the content
bundles. This specification provides a means of declaratively identifying the services a bundle pro-
vides or requires using the Provide-Capabi l i ty and Require-Capabi l i ty headers with the osgi .service
namespace. See osgi.service Namespace on page 997

An example of a bundle providing the service and declaring it using the Provide-Capabi l i ty header
is as follows:

Provide-Capability: osgi.service;
 objectClass:List<String>="com.foo.MyService";
 uses:="com.foo"

Note that declaring a provided service in this manner only affects resolution. It does not affect ser-
vice visibility at runtime. In other words, a subsystem that imports service com.acme.Foo will see
all of the corresponding service registrations that its parent sees regardless of whether or not the
provider declared this service in the Provide-Capabi l i ty header.

An example of a bundle requiring a service and declaring the requirement using the Require-Capa-
bi l i ty header is as follows:

Require-Capability: osgi.service;
 filter:="(objectClass=com.foo.MyService)";
 effective:="active"

These headers can be hand-written (e.g., to declare programmatic use of an OSGi service) or generat-
ed by a tool (e.g., BND) based on a declarative component model configuration (e.g., Declarative Ser-
vices or Blueprint). A Subsystems implementation must assume these headers, if present, declare all
of the service dependencies. Implementations must therefore not search the bundle for additional
dependencies from other sources.

A deployment manifest for an application Subsystem would list these service imports using the
Subsystem-ImportService header.

134.16.2.3 Bundle Requirements

Application resolution is required to prefer bundle capabilities provided by content bundles over
those provided outside the application. For this reason, the application Subsystem sharing policy
only requires bundle capabilities corresponding to Require-Bundle statements from the content
bundles that are not satisfied when resolving the application contents in isolation. This is equiva-
lent to first resolving the Subsystem-Content requirements to determine the Deployed-Content and
then based on this set of resources, determining which Require-Bundle requirements remain unsat-
isfied.

A Deployment Manifest for an application Subsystem would list these bundle requirements using
the Require-Bundle header.

134.16.2.4 Generic Requirements

Application resolution is required to prefer generic capabilities provided by content bundles over
those provided outside the application. For this reason, the application Subsystem sharing policy
only generic requirements corresponding to Require-Capability statements from the content bun-
dles that are not satisfied by Provide-Capability statements of the content bundles when resolving
the application contents in isolation. This is equivalent to first resolving the Subsystem-Content re-

Subsystem Types Subsystem Service Specification Version 1.1

Page 970 OSGi Compendium Release 6

quirements to determine the Deployed-Content and then based on this set of resources, determining
which Require-Capability statements remain unsatisfied.

An deployment manifest for an application Subsystem would list these generic requirements using
the Require-Capability header.

134.16.2.5 Dependencies

Application Subsystems' implicit requirements are determined as described in the Application De-
ployment section in Determining Dependencies on page 944. Any mandatory requirements from
constituents that are not satisfied by capabilities provided by the target environment or other con-
stituents must be satisfied by additional dependencies. The Subsystem runtime is responsible for
provisioning these based on the Subsystem's provision policy or those of its scoped parents. If the
application Subsystem has an associated deployment manifest, then these resources are described in
the Provision-Resource header.

134.16.3 Composite
A composite is a Scoped Subsystem with a sharing policy that by default does not share anything
with its parent and therefore all sharing is fully explicit. Capabilities, such as packages and services,
may be explicitly imported into or exported out of the composite.

A Subsystem is identified as an composite by specifying a Subsystem type value of
osgi .subsystem.composite in the Subsystem manifest.

Subsystem-Type: osgi.subsystem.composite

134.16.3.1 Subsystem Content

The Subsystem-Content header allows version ranges for content resources. For compos-
ite Subsystems, this value must be a fixed version range (e.g. [1.0, 1 .0]) for resources of type
osgi .bundle , osgi .f ragment , osgi .subsystem.appl icat ion , osgi .subsystem.composite , and
osgi .subsystem.feature . This is due to the fact that there is an inextricable link between the ver-
sions on the explicit import and export statements made on a composite and the chosen versions of
the content bundles. Allowing variability in the content versions for these types of resources risks
introducing incompatibilities with sharing policy for the composite. If a composite Subsystem does
not use strict version ranges then the composite Subsystem must fail to install.

134.16.3.2 Package Imports

A composite Subsystem explicitly states the packages it imports using the Import-Package head-
er. If the composite includes a deployment manifest then the Import-Package header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Import-Package headers
in the composite's Subsystem manifest. If the imports are not the same then the Subsystem runtime
should log an error and must fail the installation.

134.16.3.3 Package Exports

A composite Subsystem explicitly states the packages it exports using the Export-Package head-
er. If the composite includes a deployment manifest then the Export-Package header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Export-Package headers
in the composite's Subsystem manifest. If the exports are not the same then the Subsystem runtime
should log an error and must fail the installation.

134.16.3.4 Service Imports

A composite Subsystem explicitly states the services it imports using the Subsystem-ImportService
header (see Subsystem-ImportService on page 967). For example:

Subsystem-ImportService: com.acme.logging.Log

Subsystem Service Specification Version 1.1 Subsystem Types

OSGi Compendium Release 6 Page 971

If the composite includes a deployment manifest then the Subsystem-ImportService header is
used to describe these and they must be identical (logically, not syntactically) to the Subsystem-Im-
portService headers in the composite's Subsystem manifest. If the imports are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.5 Service Exports

A composite Subsystem explicitly states the services it exports using the Subsystem-ExportService
header (see Subsystem-ExportService on page 967). For example:

Subsystem-ServiceExport: com.acme.logging.Log

If the composite includes a deployment manifest then the Subsystem-ExportService header is
used to describe these and they must be identical (logically, not syntactically) to the Subsystem-Ex-
portService headers in the composite's Subsystem manifest. If the exports are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.6 Bundle Requirements

A composite Subsystem explicitly states the bundles it requires using the Require-Bundle header.

If the composite includes a deployment manifest then the Require-Bundle header is used to describe
these and the requirements must be identical (logically, not syntactically) to the Require-Bundle re-
quirements in the composite's Subsystem manifest. If the requirements are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.7 Generic Requirements

A composite Subsystem explicitly states the generic capabilities it requires using the Require-Capa-
bility header.

If the composite includes a deployment manifest then the Require-Capability header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Require-Capability head-
ers in the composite's Subsystem manifest. If the capability requirements are not the same then the
Subsystem runtime should log an error and must fail the installation.

134.16.3.8 Generic Capabilities

A composite Subsystem explicitly states the generic capabilities it provides using the Provide-Capa-
bility header.

If the composite includes a deployment manifest then the Provide-Capability header is used to de-
scribe these and they must be identical (logically, not syntactically) to the Provide-Capability head-
ers in the composite's Subsystem manifest. If the capabilities are not the same then the Subsystem
runtime should log an error and must fail the installation.

134.16.3.9 Dependencies

A composite Subsystem's explicit requirements are stated in the Subsystem manifest. Any manda-
tory requirements that are not satisfied by capabilities provided by the target environment must be
satisfied by additional dependencies. The Subsystem runtime is responsible for provisioning these
based on the Subsystem's provision policy or the provision policy of its scoped parents. If the com-
posite Subsystem has an associated deployment manifest, then these resources are described in the
Provision-Resource header.

134.16.4 Feature
A feature is an Unscoped Subsystem and therefore provides no isolation of its own. A feature does
however always exist in the context of one and only one Region which can restrict the capabilities a
feature can see and the extent to which a feature's capabilities are shared.

Weaving Hooks Subsystem Service Specification Version 1.1

Page 972 OSGi Compendium Release 6

A Subsystem is identified as a feature by specifying a Subsystem type value of
osgi .subsystem.feature in the Subsystem manifest.

Subsystem-Type: osgi.subsystem.feature

134.16.4.1 Explicit Requirements and Capabilities

A feature Subsystem implicitly imports and exports all requirements and capabilities. If the fea-
ture Subsystem include any headers designed to modify the sharing policy of a Subsystem, such as
Import-Package or Subsystem-ImportService, then the Subsystem runtime should log an error and
must fail the installation of the Subsystem.

134.16.4.2 Dependencies

Feature Subsystems implicitly import all capabilities. A Subsystem runtime is responsible for provi-
sioning any dependencies necessary for the Subsystem's constituents to resolve. The calculation of
the dependencies can also take into account capabilities provided by the target runtime. The depen-
dencies can include resources that provide capabilities equivalent to those provided by one or more
of the constituent resources where the dependency's capability is a considered a better match in the
context of some resolution. The Subsystem runtime is responsible for provisioning the dependen-
cies based on the Subsystem's provision policy or the provision policy of its scoped parents. If the
feature Subsystem has an associated deployment manifest, then these dependencies are described in
the Provision-Resource header.

134.17 Weaving Hooks
Subsystems implementations must ensure that dynamic package imports added by weaving hooks
are available to subsystems whose classes have been woven by updating the sharing policies.

Dynamic package imports added by weaving hooks are observed by registering a WovenClassListen-
er service and receiving notifications via the WovenClassListener.modified(WovenClass) method.
The sharing policy must be updated while the woven class is in the TRANSFORMED state so that it
takes effect before the bundle wiring is updated during the transition to DEFINED ; otherwise, the
class would fail to load.

The bundle containing the woven class can be obtained by calling the
WovenClass.getBundleWir ing() .getBundle() method. A bundle might be a constituent of multiple
subsystems, but never more than one scoped subsystem. The rest are features, which have no shar-
ing policies to update. It's possible the bundle will not be a constituent of a scoped subsystem. The
scoped subsystem, if any, containing the bundle as a constituent is retrieved.

It's possible for a class load request to occur on a bundle in an unresolved subsystem because the
framework is free to resolve bundles whenever it desires. A resolved bundle can potentially receive
a class load request. For example, a BundleEventListener registered with the system bundle context
could receive the RESOLVED event and, for whatever reason, load a class. Also, a resolved bundle in
an unresolved feature might get wired to another bundle. If this is the case, the subsystem must be
resolved in order to guarantee the dynamic imports will not effect the resolution and, therefore, po-
tentially create a wiring inconsistent with the deployment manifest. Just as the framework is free
to resolve bundles at anytime and for whatever reason, Subsystems implementations are free to re-
solve subsystems.

The sharing policy is only updated if the dynamic import cannot be completely satisfied from with-
in the subsystem. Note that all dynamic imports with a wildcard must always be added to the shar-
ing policy.

Subsystem Service Specification Version 1.1 Stopping and Uninstalling Subsystems Implementation

OSGi Compendium Release 6 Page 973

134.18 Stopping and Uninstalling Subsystems
Implementation
When the Subsystems implementation is stopped all of the installed Subsystems must be persis-
tently stored and present when the Subsystems implementation becomes active again. This in-
cludes any bundles that got installed as part of a Subsystem installation. The Subsystems implemen-
tation is not required to do any additional cleanup when the Subsystems implementation is stopped
or uninstalled. All bundles that got installed as a result of installing a Subsystem may still be in-
stalled after stopping or uninstalling the Subsystems implementation bundle. If it is important to
clean up the bundles associated with a Subsystem installation then the Subsystem should be unin-
stalled before uninstalling the Subsystems implementation.

134.19 Capabilities
Implementations of the Subsystem Service specification must provide the following capabilities.

• A capability in the osgi . implementation namespace declaring the implemented specifi-
cation to be osgi .subsystem . This capability must also declare a uses constraint for the
org.osgi .service.subsystem package. For example:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.subsystem";
 version:Version="1.1";
 uses:="org.osgi.service.subsystem"

This capability must follow the rules defined for the osgi.implementation Namespace on page
997.

• A capability in the osgi .service namespace representing the Subsystem service. This capability
must also declare a uses constraint for the org.osgi .service.subsystem package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.subsystem.Subsystem";
 uses:="org.osgi.service.subsystem"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

134.20 Security

134.20.1 Subsystem Permission
The Subsystem Permission is a permission used to grant the right to manage Subsystems with the
option to restrict this right to a subset of Subsystems, called targets. For example, an operator can
give a bundle the right to only manage Subsystems with a symbolic-name prefix of com.acme. :

...SubsystemPermission("(name=com.acme.*)",

. . .)

The actions of Subsystem Permission are fine-grained. They allow a deployer to assign only the per-
missions that are necessary for a bundle. For example, a bundle may be granted only the permission
to start and stop all Subsystems:

Security Subsystem Service Specification Version 1.1

Page 974 OSGi Compendium Release 6

...SubsystemPermission["*", EXECUTE]

Code that needs to check Subsystem Permission must always use the constructor that takes a Sub-
system as a parameter: SubsystemPermission(Subsystem, Str ing) with a single action.

For example, the implementation of Subsystem.start method must check that the caller has access
to execute the Subsystem:

public class SubsystemImpl implements Subsystem{
 public void start() {
 securityManager.checkPermission(new SubsystemPermission(this,"execute"));
 }
}

The Subsystem Permission takes a Filter as its name argument. Filter based permissions are de-
scribed in [1] Filter Based Permissions. Subsystem Archives are not signed and therefore the signer key
is not supported. The keys have the following meaning for the Subsystem Permission:

• id - The Subsystem ID of a Subsystem. For example (id=23)
• locat ion - The location of a Subsystem. For example (locat ion=https://www.acme.com/down-

load/*)
• name - The symbolic name of a Subsystem. For example (name=com.acme.*)

The name parameter of the permission can also be a single wildcard character ('* ' \u002a). In that
case all Subsystems must match.

134.20.2 Actions
The action parameter of Subsystem Permission will specify the subset of privileged Subsystem man-
agement operations that are allowed. The actions that are architected are listed below. Future ver-
sions of the specification can add additional actions. The given set should therefore not be assumed
to be a closed set.

Table 134.3 Actions

Action Used in
CONTEXT Subsystem.getBundleContext
METADATA Subsystem.getSubsystemHeaders

Subsystem.getLocation
LIFECYCLE Subsystem.instal l

Subsystem.uninstal l
EXECUTE Subsystem.start

Subsystem.stop

134.20.3 Required Permissions
A Subsystems implementation must check the caller for the appropriate Subsystem Permission
before initiating a Subsystem management operation (e.g. install, start, stop, uninstall). Once the
Subsystem Permission is checked against the caller the Subsystems implementation will proceed
with the actual Subsystem operation. This operation will require a number of other permissions to
complete. For example, the Admin Permission will be needed to install, start, stop, and uninstall re-
sources of type osgi.bundle for a Subsystem. The Subsystems implementation must isolate the caller
from such permission checks by use of a proper doPriv i leged block.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 975

134.21 org.osgi.service.subsystem

Subsystem Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.subsystem; version="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.subsystem; version="[1.1 ,1 .2)"

134.21.1 Summary

• Subsystem - A subsystem is a collection of resources constituting a logical, possibly isolated,
unit of functionality.

• Subsystem.State - An enumeration of the possible states of a subsystem.
• SubsystemConstants - Defines the constants used by Subsystem service property, manifest

header, attribute and directive keys.
• SubsystemException - A Subsystem exception used to indicate a problem.
• SubsystemPermission - A bundle's authority to perform specific privileged administrative oper-

ations on or to get sensitive information about a subsystem.

134.21.2 public interface Subsystem
A subsystem is a collection of resources constituting a logical, possibly isolated, unit of functionali-
ty.

A subsystem may be scoped or unscoped. Scoped subsystems are isolated by implicit or explicit shar-
ing policies. Unscoped subsystems are not isolated and, therefore, have no sharing policy. There are
three standard types of subsystems.

• Application - An implicitly scoped subsystem. Nothing is exported, and imports are computed
based on any unsatisfied content requirements.

• Composite - An explicitly scoped subsystem. The sharing policy is defined by metadata within
the subsystem archive.

• Feature - An unscoped subsystem.

Conceptually, a subsystem may be thought of as existing in an isolated region along with zero or
more other subsystems. Each region has one and only one scoped subsystem, which dictates the
sharing policy. The region may, however, have many unscoped subsystems. It is, therefore, possible
to have shared constituents across multiple subsystems within a region. Associated with each re-
gion is a bundle whose context may be retrieved from any subsystem within that region. This con-
text may be used to monitor activity occurring within the region.

A subsystem may have children and, unless it's the root subsystem, must have at least one parent.
Subsystems become children of the subsystem in which they are installed. Unscoped subsystems
have more than one parent if they are installed in more than one subsystem within the same re-
gion. The subsystem graph may be thought of as an acyclic digraph [http://en.wikipedia.org/wi-
ki/Directed_acyclic_graph] with one and only one source vertex, which is the root subsystem. The
edges have the child as the head and parent as the tail.

A subsystem has several identifiers.

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Directed_acyclic_graph

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 976 OSGi Compendium Release 6

• Location - An identifier specified by the client as part of installation. It is guaranteed to be unique
within the same framework.

• ID - An identifier generated by the implementation as part of installation. It is guaranteed to be
unique within the same framework.

• Symbolic Name/Version - The combination of symbolic name and version is guaranteed to be
unique within the same region. Although type is not formally part of the identity, two subsys-
tems with the same symbolic names and versions but different types are not considered to be
equal.

A subsystem has a well-defined life cycle. Which stage a subsystem is in may be obtained from the
subsystem's state and is dependent on which life cycle operation is currently active or was last in-
voked.

A subsystem archive is a ZIP file having an .esa extension and containing metadata describing the
subsystem. The form of the metadata may be a subsystem or deployment manifest, as well as any
content resource files. The manifests are optional and will be computed if not present. The subsys-
tem manifest headers may be retrieved in raw or localized forms. There are five standard types of re-
sources that may be included in a subsystem.

• Bundle - A bundle that is not a fragment.
• Fragment - A fragment bundle.
• Application Subsystem - An application subsystem.
• Composite Subsystem - A composite subsystem.
• Feature Subsystem - A feature subsystem.

Resources contained by a subsystem are called constituents. There are several ways a resource may
become a constituent of a subsystem:

• A resource is listed as part of the subsystem's content.
• A subsystem resource is a child of the subsystem.
• The subsystem has a provision policy of accept dependencies.
• A bundle resource is installed using the region bundle context.
• A bundle resource is installed using the bundle context of another resource contained by the

subsystem.

In addition to invoking one of the install methods, a subsystem instance may be obtained through
the service registry. Each installed subsystem has a corresponding service registration. A subsystem
service has the following properties.

• ID - The ID of the subsystem.
• Symbolic Name - The symbolic name of the subsystem.
• Version - The version of the subsystem.
• Type - The type of the subsystem.
• State - The state of the subsystem.

Because a subsystem must be used to install other subsystems, a root subsystem is provided as a
starting point. The root subsystem may only be obtained as a service and has the following charac-
teristics.

• The ID is 0 .
• The symbolic name is org.osgi.service.subsystem.root.
• The version matches this specification's version.
• It has no parents.
• All existing bundles, including the system and subsystem implementation bundles, are con-

stituents.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 977

• The type is osgi.subsystem.application with no imports.
• The provision policy is acceptDependencies.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

134.21.2.1 public BundleContext getBundleContext()

□ Returns the bundle context of the region within which this subsystem resides.

The bundle context offers the same perspective of any resource contained by a subsystem within
the region. It may be used, for example, to monitor events internal to the region as well as external
events visible to the region. All subsystems within the same region have the same bundle context. If
this subsystem is in a state where the bundle context would be invalid, nul l is returned.

Returns The bundle context of the region within which this subsystem resides or nul l if this subsystem's
state is in INSTALL_FAILED, UNINSTALLED.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,CONTEXT], and the runtime supports permissions.

134.21.2.2 public Collection<Subsystem> getChildren()

□ Returns the child subsystems of this subsystem.

Returns The child subsystems of this subsystem. The returned collection is an unmodifiable snapshot of all
subsystems that are installed in this subsystem. The collection will be empty if no subsystems are
installed in this subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLED.

134.21.2.3 public Collection<Resource> getConstituents()

□ Returns the constituent resources of this subsystem.

Returns The constituent resources of this subsystem. The returned collection is an unmodifiable snapshot
of the constituent resources of this subsystem. If this subsystem has no constituents, the collection
will be empty.

Throws I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLED.

134.21.2.4 public Map<String,String> getDeploymentHeaders()

□ Returns the headers for this subsystem's deployment manifest.

Each key in the map is a header name and the value of the key is the corresponding header value. Be-
cause header names are case-insensitive, the methods of the map must treat the keys in a case-insen-
sitive manner. If the header name is not found, nul l is returned. Both original and derived headers
will be included in the map.

This method must continue to return the headers while this subsystem is in the INSTALL_FAILED
or UNINSTALLED states.

Returns The headers for this subsystem's deployment manifest. The returned map is unmodifiable.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,METADATA], and the runtime supports permissions.

Since 1.1

134.21.2.5 public String getLocation()

□ Returns the location identifier of this subsystem.

The location identifier is the locat ion that was passed to the install method of the parent subsystem.
It is unique within the framework.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 978 OSGi Compendium Release 6

This method must continue to return this subsystem's headers while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The location identifier of this subsystem.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,METADATA], and the runtime supports permissions.

134.21.2.6 public Collection<Subsystem> getParents()

□ Returns the parent subsystems of this subsystem.

Returns The parent subsystems of this subsystem. The returned collection is an unmodifiable snapshot of
all subsystems in which this subsystem is installed. The collection will be empty for the root subsys-
tem; otherwise, it must contain at least one parent. Scoped subsystems always have only one parent.
Unscoped subsystems may have multiple parents.

Throws I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLED.

134.21.2.7 public Subsystem.State getState()

□ Returns the current state of this subsystem.

This method must continue to return this subsystem's state while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The current state of this subsystem.

134.21.2.8 public Map<String,String> getSubsystemHeaders(Locale locale)

locale The locale for which translations are desired. The header values are translated according to the spec-
ified locale. If the specified locale is nul l or not supported, the raw values are returned. If the transla-
tion for a particular header is not found, the raw value is returned.

□ Returns the headers for this subsystem's subsystem manifest.

Each key in the map is a header name and the value of the key is the corresponding header value. Be-
cause header names are case-insensitive, the methods of the map must treat the keys in a case-insen-
sitive manner. If the header name is not found, nul l is returned. Both original and derived headers
will be included in the map.

This method must continue to return the headers while this subsystem is in the INSTALL_FAILED
or UNINSTALLED states.

Returns The headers for this subsystem's subsystem manifest. The returned map is unmodifiable.

Throws SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,METADATA], and the runtime supports permissions.

134.21.2.9 public long getSubsystemId()

□ Returns the identifier of this subsystem.

The identifier is a monotonically increasing, non-negative integer automatically generated at instal-
lation time and guaranteed to be unique within the framework. The identifier of the root subsystem
is zero.

This method must continue to return this subsystem's identifier while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The identifier of this subsystem.

134.21.2.10 public String getSymbolicName()

□ Returns the symbolic name of this subsystem.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 979

The subsystem symbolic name conforms to the same grammar rules as the bundle symbolic name
and is derived from one of the following, in order.

• The value of the Subsystem-SymbolicName header, if specified.
• The subsystem URI if passed as the locat ion along with the content to the install method.
• Optionally generated in an implementation specific way.

The combination of subsystem symbolic name and version is unique within a region. The symbolic
name of the root subsystem is org.osgi.service.subsystem.root.

This method must continue to return this subsystem's symbolic name while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The symbolic name of this subsystem.

134.21.2.11 public String getType()

□ Returns the type of this subsystem.

This method must continue to return this subsystem's type while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The type of this subsystem.

134.21.2.12 public Version getVersion()

□ Returns the version of this subsystem.

The subsystem version conforms to the same grammar rules as the bundle version and is derived
from one of the following, in order.

• The value of the Subsystem-Version header, if specified.
• The subsystem URI if passed as the locat ion along with the content to the install method.
• Defaults to 0.0.0 .

The combination of subsystem symbolic name and version is unique within a region. The version of
the root subsystem matches this specification's version.

This method must continue to return this subsystem's version while this subsystem is in the
INSTALL_FAILED or UNINSTALLED states.

Returns The version of this subsystem.

134.21.2.13 public Subsystem install(String location)

location The location identifier of the subsystem to install.

□ Installs a subsystem from the specified location identifier.

This method performs the same function as calling install(String, InputStream) with the specified
location identifier and nul l as the content.

Returns The installed subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALLING, INSTALL_FAILED, UNINSTAL-
LING, UNINSTALLED.

SubsystemException– If the installation failed.

SecurityException– If the caller does not have the appropriate SubsystemPermission[installed
subsystem,LIFECYCLE], and the runtime supports permissions.

See Also install(String, InputStream)

134.21.2.14 public Subsystem install(String location,InputStream content)

location The location identifier of the subsystem to be installed.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 980 OSGi Compendium Release 6

content The input stream from which this subsystem will be read or nul l to indicate the input stream must
be created from the specified location identifier. The input stream will always be closed when this
method completes, even if an exception is thrown.

□ Installs a subsystem from the specified content.

The specified location will be used as an identifier of the subsystem. Every installed subsystem is
uniquely identified by its location, which is typically in the form of a URI. If the specified location
conforms to the subsystem-uri grammar, the required symbolic name and optional version infor-
mation will be used as default values.

If the specified content is nul l , a new input stream must be created from which to read the subsys-
tem by interpreting, in an implementation dependent manner, the specified location.

A subsystem installation must be persistent. That is, an installed subsystem must remain installed
across Framework and VM restarts.

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

The following steps are required to install a subsystem.

1. If an installed subsystem with the specified location identifier already exists, return the installed
subsystem.

2. Read the specified content in order to determine the symbolic name, version, and type of the in-
stalling subsystem. If an error occurs while reading the content, an installation failure results.

3. If an installed subsystem with the same symbolic name and version already exists within this
subsystem's region, complete the installation with one of the following.
• If the installing and installed subsystems' types are not equal, an installation failure results.
• If the installing and installed subsystems' types are equal, and the installed subsystem is al-

ready a child of this subsystem, return the installed subsystem.
• If the installing and installed subsystems' types are equal, and the installed subsystem is not

already a child of this subsystem, add the installed subsystem as a child of this subsystem, in-
crement the installed subsystem's reference count by one, and return the installed subsystem.

4. Create a new subsystem based on the specified location and content.
5. If the subsystem is scoped, install and start a new region context bundle.
6. Change the state to INSTALLING and register a new subsystem service.
7. Discover the subsystem's content resources. If any mandatory resource is missing, an installa-

tion failure results.
8. Discover the dependencies required by the content resources. If any mandatory dependency is

missing, an installation failure results.
9. Using a framework ResolverHook , disable runtime resolution for the resources.
10. For each resource, increment the reference count by one. If the reference count is one, install the

resource. If an error occurs while installing a resource, an install failure results with that error as
the cause.

11. If the subsystem is scoped, enable the import sharing policy.
12. Enable runtime resolution for the resources.
13. Change the state of the subsystem to INSTALLED.
14. Return the new subsystem.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption. An interrupted thread should result in a SubsystemExcep-
tion with an InterruptedException as the cause and be treated as an installation failure.

All installation failure flows include the following, in order.

1. Change the state to INSTALL_FAILED.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 981

2. Change the state to UNINSTALLING.
3. All content and dependencies which may have been installed by the installing process must be

uninstalled.
4. Change the state to UNINSTALLED.
5. Unregister the subsystem service.
6. If the subsystem is a scoped subsystem then, uninstall the region context bundle.
7. Throw a SubsystemException with the cause of the installation failure.

Returns The installed subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALLING, INSTALL_FAILED, UNINSTAL-
LING, UNINSTALLED.

SubsystemException– If the installation failed.

SecurityException– If the caller does not have the appropriate SubsystemPermission[installed
subsystem,LIFECYCLE], and the runtime supports permissions.

134.21.2.15 public Subsystem install(String location,InputStream content,InputStream deploymentManifest)

location The location identifier of the subsystem to be installed.

content The input stream from which this subsystem will be read or nul l to indicate the input stream must
be created from the specified location identifier. The input stream will always be closed when this
method completes, even if an exception is thrown.

deploymentMani-
fest

The deployment manifest to use in lieu of the one in the archive, if any, or a computed one.

□ Installs a subsystem from the specified content according to the specified deployment manifest.

This method installs a subsystem using the provided deployment manifest instead of the one in the
archive, if any, or a computed one. If the deployment manifest is nul l , the behavior is exactly the
same as in the install(String, InputStream) method. Implementations must support deployment
manifest input streams in the format described by section 134.2 of the Subsystem Service Specifica-
tion. If the deployment manifest does not conform to the subsystem manifest (see 134.15.2), the in-
stallation fails.

Returns The installed subsystem.

Throws I l legalStateException– If this subsystem's state is in INSTALLING, INSTALL_FAILED, UNINSTAL-
LING, UNINSTALLED.

SubsystemException– If the installation failed.

SecurityException– If the caller does not have the appropriate SubsystemPermission[installed
subsystem,LIFECYCLE], and the runtime supports permissions.

Since 1.1

134.21.2.16 public void start()

□ Starts this subsystem.

The following table shows which actions are associated with each state. An action of Wait means
this method will block until a state transition occurs, upon which the new state will be evaluated
in order to determine how to proceed. If a state transition does not occur in a reasonable time while
waiting then no action is taken and a SubsystemException is thrown to indicate the subsystem was
unable to be started. An action of Return means this method returns immediately without taking
any other action.

State Action
INSTALLING Wait

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 982 OSGi Compendium Release 6

INSTALLED Resolve , Start
INSTALL_FAILED I l legalStateException
RESOLVING Wait
RESOLVED Start
STARTING Wait
ACTIVE Return
STOPPING Wait
UNINSTALLING I l legalStateException
UNINSTALLED I l legalStateException

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

A subsystem must be persistently started. That is, a started subsystem must be restarted across
Framework and VM restarts, even if a start failure occurs.

The following steps are required to start this subsystem.

1. Set the subsystem autostart setting to started.
2. If this subsystem is in the RESOLVED state, proceed to step 7.
3. Change the state to RESOLVING.
4. Resolve the content resources. A resolution failure results in a start failure with a state of INS-

TALLED.
5. Change the state to RESOLVED.
6. If this subsystem is scoped, enable the export sharing policy.
7. Change the state to STARTING.
8. For each eligible resource, increment the active use count by one. If the active use count is one,

start the resource. All dependencies must be started before any content resource, and content re-
sources must be started according to the specified start order. If an error occurs while starting a
resource, a start failure results with that error as the cause.

9. Change the state to ACTIVE.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption. An interrupted thread should be treated as a start failure
with an InterruptedException as the cause.

All start failure flows include the following, in order.

1. If the subsystem state is STARTING then change the state to STOPPING and stop all resources
that were started as part of this operation.

2. Change the state to either INSTALLED or RESOLVED.
3. Throw a SubsystemException with the specified cause.

Throws SubsystemException– If this subsystem fails to start.

I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLING, or UNINS-
TALLED, or if the state of at least one of this subsystem's parents is not in STARTING, ACTIVE.

SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,EXECUTE], and the runtime supports permissions.

134.21.2.17 public void stop()

□ Stops this subsystem.

The following table shows which actions are associated with each state. An action of Wait means
this method will block until a state transition occurs, upon which the new state will be evaluated

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 983

in order to determine how to proceed. If a state transition does not occur in a reasonable time while
waiting then no action is taken and a SubsystemException is thrown to indicate the subsystem was
unable to be stopped. An action of Return means this method returns immediately without taking
any other action.

State Action
INSTALLING Wait
INSTALLED Return
INSTALL_FAILED I l legalStateException
RESOLVING Wait
RESOLVED Return
STARTING Wait
ACTIVE Stop
STOPPING Wait
UNINSTALLING I l legalStateException
UNINSTALLED I l legalStateException

A subsystem must be persistently stopped. That is, a stopped subsystem must remain stopped across
Framework and VM restarts.

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

The following steps are required to stop this subsystem.

1. Set the subsystem autostart setting to stopped.
2. Change the state to STOPPING.
3. For each eligible resource, decrement the active use count by one. If the active use count is zero,

stop the resource. All content resources must be stopped before any dependencies, and content
resources must be stopped in reverse start order.

4. Change the state to RESOLVED.

With regard to error handling, once this subsystem has transitioned to the STOPPING state, every
part of each step above must be attempted. Errors subsequent to the first should be logged. Once
the stop process has completed, a SubsystemException must be thrown with the initial error as the
specified cause.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption, in which case a SubsystemException with an Interrupt-
edException as the cause should be thrown. If an interruption occurs while waiting, this method
should terminate immediately. Once the transition to the STOPPING state has occurred, however,
this method must not terminate due to an interruption until the stop process has completed.

Throws SubsystemException– If this subsystem fails to stop cleanly.

I l legalStateException– If this subsystem's state is in INSTALL_FAILED, UNINSTALLING, or UNINS-
TALLED.

SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,EXECUTE], and the runtime supports permissions.

134.21.2.18 public void uninstall()

□ Uninstalls this subsystem.

The following table shows which actions are associated with each state. An action of Wait means
this method will block until a state transition occurs, upon which the new state will be evaluated
in order to determine how to proceed. If a state transition does not occur in a reasonable time while

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 984 OSGi Compendium Release 6

waiting then no action is taken and a SubsystemException is thrown to indicate the subsystem was
unable to be uninstalled. An action of Return means this method returns immediately without tak-
ing any other action.

State Action
INSTALLING Wait
INSTALLED Uninstal l
INSTALL_FAILED Wait
RESOLVING Wait
RESOLVED Uninstal l
STARTING Wait
ACTIVE Stop , Uninstal l
STOPPING Wait
UNINSTALLING Wait
UNINSTALLED Return

All references to changing the state of this subsystem include both changing the state of the subsys-
tem object as well as the state property of the subsystem service registration.

The following steps are required to uninstall this subsystem after being stopped if necessary.

1. Change the state to INSTALLED.
2. Change the state to UNINSTALLING.
3. For each referenced resource, decrement the reference count by one. If the reference count is ze-

ro, uninstall the resource. All content resources must be uninstalled before any dependencies.
4. Change the state to UNINSTALLED.
5. Unregister the subsystem service.
6. If the subsystem is scoped, uninstall the region context bundle.

With regard to error handling, once this subsystem has transitioned to the UNINSTALLING state,
every part of each step above must be attempted. Errors subsequent to the first should be logged.
Once the uninstall process has completed, a SubsystemException must be thrown with the speci-
fied cause.

Implementations should be sensitive to the potential for long running operations and periodically
check the current thread for interruption, in which case a SubsystemException with an Interrupt-
edException as the cause should be thrown. If an interruption occurs while waiting, this method
should terminate immediately. Once the transition to the UNINSTALLING state has occurred, how-
ever, this method must not terminate due to an interruption until the uninstall process has com-
pleted.

Throws SubsystemException– If this subsystem fails to uninstall cleanly.

SecurityException– If the caller does not have the appropriate
SubsystemPermission[this,LIFECYCLE], and the runtime supports permissions.

134.21.3 enum Subsystem.State
An enumeration of the possible states of a subsystem.

These states are a reflection of what constituent resources are permitted to do and not an aggrega-
tion of constituent resource states.

134.21.3.1 INSTALLING

The subsystem is in the process of installing.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 985

A subsystem is in the INSTALLING state when the install method of its parent is active, and attempts
are being made to install its content resources. If the install method completes without exception,
then the subsystem has successfully installed and must move to the INSTALLED state. Otherwise,
the subsystem has failed to install and must move to the INSTALL_FAILED state.

134.21.3.2 INSTALLED

The subsystem is installed but not yet resolved.

A subsystem is in the INSTALLED state when it has been installed in a parent subsystem but is not or
cannot be resolved. This state is visible if the dependencies of the subsystem's content resources can-
not be resolved.

134.21.3.3 INSTALL_FAILED

The subsystem failed to install.

A subsystem is in the INSTALL_FAILED state when an unrecoverable error occurred during installa-
tion. The subsystem is in an unusable state but references to the subsystem object may still be avail-
able and used for introspection.

134.21.3.4 RESOLVING

The subsystem is in the process of resolving.

A subsystem is in the RESOLVING state when attempts are being made to resolve its content re-
sources. If the resolve process completes without exception, then the subsystem has successfully re-
solved and must move to the RESOLVED state. Otherwise, the subsystem has failed to resolve and
must move to the INSTALLED state.

134.21.3.5 RESOLVED

The subsystem is resolved and able to be started.

A subsystem is in the RESOLVED state when all of its content resources are resolved. Note that the
subsystem is not active yet.

134.21.3.6 STARTING

The subsystem is in the process of starting.

A subsystem is in the STARTING state when its start method is active, and attempts are being made
to start its content and dependencies. If the start method completes without exception, then the
subsystem has successfully started and must move to the ACTIVE state. Otherwise, the subsystem
has failed to start and must move to the RESOLVED state.

134.21.3.7 ACTIVE

The subsystem is now running.

A subsystem is in the ACTIVE state when its content and dependencies have been successfully start-
ed.

134.21.3.8 STOPPING

The subsystem is in the process of stopping.

A subsystem is in the STOPPING state when its stop method is active, and attempts are being made
to stop its content and dependencies. When the stop method completes, the subsystem is stopped
and must move to the RESOLVED state.

134.21.3.9 UNINSTALLING

The subsystem is in the process of uninstalling.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 986 OSGi Compendium Release 6

A subsystem is in the UNINSTALLING state when its uninstall method is active, and attempts are be-
ing made to uninstall its constituent and dependencies. When the uninstall method completes, the
subsystem is uninstalled and must move to the UNINSTALLED state.

134.21.3.10 UNINSTALLED

The subsystem is uninstalled and may not be used.

The UNINSTALLED state is only visible after a subsystem's constituent and dependencies are unin-
stalled. The subsystem is in an unusable state but references to the subsystem object may still be
available and used for introspection.

134.21.4 public class SubsystemConstants
Defines the constants used by Subsystem service property, manifest header, attribute and directive
keys.

The values associated with these keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

134.21.4.1 public static final String DEPLOYED_CONTENT = "Deployed-Content"

Manifest header identifying the resources to be deployed.

134.21.4.2 public static final String DEPLOYED_VERSION_ATTRIBUTE = "deployed-version"

Manifest header attribute identifying the deployed version.

134.21.4.3 public static final String DEPLOYMENT_MANIFESTVERSION = "Deployment-ManifestVersion"

Manifest header identifying the deployment manifest version. If not present, the default value is 1 .

134.21.4.4 public static final String PREFERRED_PROVIDER = "Preferred-Provider"

Manifest header used to express a preference for particular resources to satisfy implicit package de-
pendencies.

134.21.4.5 public static final String PROVISION_POLICY_ACCEPT_DEPENDENCIES = "acceptDependencies"

A value for the provision-policy directive indicating the subsystem accepts dependency resources.
The root subsystem has this provision policy.

134.21.4.6 public static final String PROVISION_POLICY_DIRECTIVE = "provision-policy"

Manifest header directive identifying the provision policy. The default value is rejectDependencies

See Also PROVISION_POLICY_ACCEPT_DEPENDENCIES, PROVISION_POLICY_REJECT_DEPENDENCIES

134.21.4.7 public static final String PROVISION_POLICY_REJECT_DEPENDENCIES = "rejectDependencies"

A value for the provision-policy directive indicating the subsystem does not accept dependency re-
sources. This is the default value.

134.21.4.8 public static final String PROVISION_RESOURCE = "Provision-Resource"

Manifest header identifying the resources to be deployed to satisfy the dependencies of a subsystem.

134.21.4.9 public static final String ROOT_SUBSYSTEM_SYMBOLICNAME = "org.osgi.service.subsystem.root"

The symbolic name of the root subsystem.

134.21.4.10 public static final String START_ORDER_DIRECTIVE = "start-order"

Manifest header directive identifying the start order of subsystem contents. There is no default val-
ue. Specified values are of type Str ing and must represent an integer.

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 987

134.21.4.11 public static final String SUBSYSTEM_CATEGORY = "Subsystem-Category"

Manifest header identifying the categories of a subsystem as a comma-delimited list.

Since 1.1

134.21.4.12 public static final String SUBSYSTEM_CONTACTADDRESS = "Subsystem-ContactAddress"

Manifest header identifying the contact address where problems with a subsystem may be reported;
for example, an email address.

Since 1.1

134.21.4.13 public static final String SUBSYSTEM_CONTENT = "Subsystem-Content"

Manifest header identifying the list of subsystem contents identified by a symbolic name and ver-
sion.

134.21.4.14 public static final String SUBSYSTEM_COPYRIGHT = "Subsystem-Copyright"

Manifest header identifying a subsystem's copyright information.

Since 1.1

134.21.4.15 public static final String SUBSYSTEM_DESCRIPTION = "Subsystem-Description"

Manifest header identifying the human readable description.

134.21.4.16 public static final String SUBSYSTEM_DOCURL = "Subsystem-DocURL"

Manifest header identifying a subsystem's documentation URL, from which further information
about the subsystem may be obtained.

Since 1.1

134.21.4.17 public static final String SUBSYSTEM_EXPORTSERVICE = "Subsystem-ExportService"

Manifest header identifying services offered for export.

134.21.4.18 public static final String SUBSYSTEM_ICON = "Subsystem-Icon"

Manifest header identifying the icon URL for the subsystem.

Since 1.1

134.21.4.19 public static final String SUBSYSTEM_ID_PROPERTY = "subsystem.id"

The name of the service property for the subsystem ID. The value of this property must be of type
Long .

134.21.4.20 public static final String SUBSYSTEM_IMPORTSERVICE = "Subsystem-ImportService"

Manifest header identifying services required for import.

134.21.4.21 public static final String SUBSYSTEM_LICENSE = "Subsystem-License"

Manifest header identifying a subsystem's license.

Since 1.1

134.21.4.22 public static final String SUBSYSTEM_LOCALIZATION = "Subsystem-Localization"

Manifest header identifying the base name of a subsystem's localization entries.

Since 1.1

134.21.4.23 public static final String SUBSYSTEM_LOCALIZATION_DEFAULT_BASENAME = "OSGI-INF/l10n/subsystem"

Default value for the Subsystem-Localization manifest header.

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 988 OSGi Compendium Release 6

Since 1.1

134.21.4.24 public static final String SUBSYSTEM_MANIFESTVERSION = "Subsystem-ManifestVersion"

Manifest header identifying the subsystem manifest version. If not present, the default value is 1 .

134.21.4.25 public static final String SUBSYSTEM_NAME = "Subsystem-Name"

Manifest header identifying the human readable subsystem name.

134.21.4.26 public static final String SUBSYSTEM_STATE_PROPERTY = "subsystem.state"

The name of the service property for the subsystem state. The value of this property must be of type
Subsystem.State.

134.21.4.27 public static final String SUBSYSTEM_SYMBOLICNAME = "Subsystem-SymbolicName"

Manifest header value identifying the symbolic name for the subsystem. Must be present.

134.21.4.28 public static final String SUBSYSTEM_SYMBOLICNAME_PROPERTY = "subsystem.symbolicName"

The name of the service property for the subsystem symbolic name.

134.21.4.29 public static final String SUBSYSTEM_TYPE = "Subsystem-Type"

Manifest header identifying the subsystem type.

See Also SUBSYSTEM_TYPE_APPLICATION, SUBSYSTEM_TYPE_COMPOSITE,
SUBSYSTEM_TYPE_FEATURE

134.21.4.30 public static final String SUBSYSTEM_TYPE_APPLICATION = "osgi.subsystem.application"

The resource type value identifying an application subsystem.

This value is used for the osgi . identity capability attribute type , the SUBSYSTEM_TYPE manifest
header and the SUBSYSTEM_TYPE_PROPERTY service property.

134.21.4.31 public static final String SUBSYSTEM_TYPE_COMPOSITE = "osgi.subsystem.composite"

The resource type value identifying an composite subsystem.

This value is used for the osgi . identity capability attribute type , the SUBSYSTEM_TYPE manifest
header and the SUBSYSTEM_TYPE_PROPERTY service property.

134.21.4.32 public static final String SUBSYSTEM_TYPE_FEATURE = "osgi.subsystem.feature"

The resource type value identifying an feature subsystem.

This value is used for the osgi . identity capability attribute type , the SUBSYSTEM_TYPE manifest
header and the SUBSYSTEM_TYPE_PROPERTY service property.

134.21.4.33 public static final String SUBSYSTEM_TYPE_PROPERTY = "subsystem.type"

The name of the service property for the subsystem type.

See Also SUBSYSTEM_TYPE_APPLICATION, SUBSYSTEM_TYPE_COMPOSITE,
SUBSYSTEM_TYPE_FEATURE

134.21.4.34 public static final String SUBSYSTEM_VENDOR = "Subsystem-Vendor"

Manifest header identifying a subsystem's vendor.

Since 1.1

134.21.4.35 public static final String SUBSYSTEM_VERSION = "Subsystem-Version"

Manifest header value identifying the version of the subsystem. If not present, the default value is
0.0.0 .

Subsystem Service Specification Version 1.1 org.osgi.service.subsystem

OSGi Compendium Release 6 Page 989

134.21.4.36 public static final String SUBSYSTEM_VERSION_PROPERTY = "subsystem.version"

The name of the service property for the subsystem version. The value of this property must be of
type Version .

134.21.5 public class SubsystemException
extends RuntimeException
A Subsystem exception used to indicate a problem.

134.21.5.1 public SubsystemException()

□ Construct a Subsystem exception with no message.

134.21.5.2 public SubsystemException(String message)

message The message to include in the exception.

□ Construct a Subsystem exception specifying a message.

134.21.5.3 public SubsystemException(Throwable cause)

cause The cause of the exception.

□ Construct a Subsystem exception specifying a cause.

134.21.5.4 public SubsystemException(String message,Throwable cause)

message The message to include in the exception.

cause The cause of the exception.

□ Construct a Subsystem exception specifying a message and a cause.

134.21.6 public final class SubsystemPermission
extends BasicPermission
A bundle's authority to perform specific privileged administrative operations on or to get sensitive
information about a subsystem. The actions for this permission are:

 Action Methods
 context Subsystem.getBundleContext
 execute Subsystem.start
 Subsystem.stop
 lifecycle Subsystem.install
 Subsystem.uninstall
 metadata Subsystem.getSubsystemHeaders
 Subsystem.getLocation

The name of this permission is a filter expression. The filter gives access to the following attributes:

• location - The location of a subsystem.
• id - The subsystem ID of the designated subsystem.
• name - The symbolic name of a subsystem.

Filter attribute names are processed in a case sensitive manner.

Concurrency Thread-safe

134.21.6.1 public static final String CONTEXT = "context"

The action string context .

org.osgi.service.subsystem Subsystem Service Specification Version 1.1

Page 990 OSGi Compendium Release 6

134.21.6.2 public static final String EXECUTE = "execute"

The action string execute .

134.21.6.3 public static final String LIFECYCLE = "lifecycle"

The action string l i fecycle .

134.21.6.4 public static final String METADATA = "metadata"

The action string metadata .

134.21.6.5 public SubsystemPermission(String filter,String actions)

filter A filter expression that can use, location, id, and name keys. Filter attribute names are processed in a
case sensitive manner. A special value of "*" can be used to match all subsystems.

actions execute , l i fecycle , metadata , or context .

□ Create a new SubsystemPermission. This constructor must only be used to create a permission that
is going to be checked.

Examples:

 (name=com.acme.*)(location=http://www.acme.com/subsystems/*))
 (id>=1)

Throws I l legalArgumentException– If the filter has an invalid syntax.

134.21.6.6 public SubsystemPermission(Subsystem subsystem,String actions)

subsystem A subsystem.

actions execute , l i fecycle , metadata , or context .

□ Creates a new requested SubsystemPermission object to be used by the code that must perform
checkPermission . SubsystemPermission objects created with this constructor cannot be added to an
SubsystemPermission permission collection.

134.21.6.7 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Determines the equality of two SubsystemPermission objects.

Returns true if obj is equivalent to this SubsystemPermission ; fa lse otherwise.

134.21.6.8 public String getActions()

□ Returns the canonical string representation of the SubsystemPermission actions.

Always returns present SubsystemPermission actions in the following order: execute , l i fecycle ,
metadata , context .

Returns Canonical string representation of the SubsystemPermission actions.

134.21.6.9 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

134.21.6.10 public boolean implies(Permission p)

p The requested permission.

Subsystem Service Specification Version 1.1 References

OSGi Compendium Release 6 Page 991

□ Determines if the specified permission is implied by this object. This method throws an exception if
the specified permission was not constructed with a subsystem.

This method returns true if the specified permission is a SubsystemPermission AND

• this object's filter matches the specified permission's subsystem ID, subsystem symbolic name,
and subsystem location OR

• this object's filter is "*"

AND this object's actions include all of the specified permission's actions.

Special case: if the specified permission was constructed with "*" filter, then this method returns
true if this object's filter is "*" and this object's actions include all of the specified permission's ac-
tions

Returns true if the specified permission is implied by this object; fa lse otherwise.

134.21.6.11 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing SubsystemPermissions.

Returns A new PermissionCol lect ion object.

134.22 References

[1] Filter Based Permissions
OSGi Core, Chapter 2, Filter Based Permissions

[2] Core Service Hooks
OSGi Core, Chapter 55 Service Hook Service Specification

[3] Resource and Wiring
OSGi Core, Chapter 6 Resource API Specification

[4] Zip File Format
The Zip file format as defined by the java.util.zip package.

[5] IANA application/vnd.osgi.subsystem
www.iana.org/assignments/media-types/application/vnd.osgi.subsystem

[6] RFC 1738 Uniform Resource Locators
http://www.ietf.org/rfc/rfc1738.txt

[7] Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[8] Equinox Region Digraph
http://underlap.blogspot.com/2011/02/stumbling-towards-better-design.html

[9] Open Source initiative
http://www.opensource.org/

134.23 Changes
• Specified the translation of subsystem manifest headers.
• Added more informational subsystem manifest headers.
• Specified the interaction between Subsystems and Weaving Hooks for the purposes of support-

ing dynamically added import packages.

Changes Subsystem Service Specification Version 1.1

Page 992 OSGi Compendium Release 6

• Added the ability to override the archive's deployment manifest at install time.
• Added the ability to retrieve deployment manifest headers.
• Specified a means for declaratively identifying the services a bundle provides.
• Modified the procedure for determining dependencies to include the capabilities, in a specified

order, from all repositories in order to increase the likelihood that a resolution will be found
such as when a uses constraint violation would otherwise result.

Common Namespaces Specification Version 1.1 Introduction

OSGi Compendium Release 6 Page 993

135 Common Namespaces
Specification

Version 1.1

135.1 Introduction
A key aspect of the OSGi general dependency model based on requirements and capabilities is the
concept of a Namespace. A Namespace defines the semantics of a Requirement-Capability pair. The
generic model is defined in the [3] Resources API Specification. This section defines a number of Name-
spaces that are not part of the OSGi Core Release 6 specification. Unless an attribute is specifically
overridden, all Namespaces inherit the attributes and directives of the default Namespace as defined
[4] Framework Namespaces Specification.

Each Namespace is defined with the following items:

• Name - the name of an attribute or directive
• Kind - Defines where the attribute or directive can be used

• CA - Capability Attribute
• CD - Capability Directive
• RA - Requirement Attribute
• RD - Requirement Directive

• M/O - Mandatory (M) or Optional (O)
• Type - The data type
• Syntax - Any syntax rules. The syntax refers in general to the syntaxes defined in [5] General Syn-

tax Definitions and [6] Common Headers.

135.1.1 Versioning
In general, capabilities in a Namespace are versioned using Semantic Versioning. See [7] Semantic
Versioning. Therefore, a capability will specify a single version and a requirement will specify a ver-
sion range. See osgi.extender Namespace for an example.

For some Namespaces, capabilities are not versioned using Semantic Versioning. The versioning
scheme used in those Namespaces will be described in the specification for the Namespace.

135.2 osgi.extender Namespace
An Extender is a bundle that uses the life cycle events from another bundle, the extendee, to extend
that bundle's functionality when that bundle is active. It can use metadata (headers, or files inside
the extendee) to control its functionality. Extendees therefore have a dependency on the Extender
that can be modeled with the osgi .extender Namespace. The definition for this Namespace can be
found in the following table and the ExtenderNamespace class.

osgi.extender Namespace Common Namespaces Specification Version 1.1

Page 994 OSGi Compendium Release 6

Table 135.1 osgi.extender Namespace

Name Kind M/O Type Syntax Description
osgi .extender CA M String symbol ic-name A symbolic name for the extender. These names

are defined in their respective specifications and
should in general use the specification top level
package name. For example, org.acme.foo . The
OSGi Alliance reserves names that start with "os-
gi .".

version CA M Version version A version. This version must correspond to the
specification of the extender.

Specifications for extenders (Blueprint, Declarative Services, etc.) should specify the values for these
attributes. Extenders that provide such a capability should list the packages that they use in their
specification in the uses directive of that capability to ensure class space consistency. For example a
Declarative Services implementation could declare its capability with the following manifest head-
er:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 uses:="org.osgi.service.component";
 version:Version="1.3"

A bundle that depends on a Declarative Services implementation should require such an extender
with the following manifest header:

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

Extenders can extend an extendee bundle even if that bundle does not require the extender, unless
the extender's specification explicitly forbids this. It is recommended that an extender should only
extend a bundle if one of the following is true:

• The bundle's wiring has a required wire for at least one osgi .extender capability with the name
of the extender and the first of these required wires is wired to the extender.

• The bundle's wiring has no required wire for an osgi .extender capability with the name of the
extender.

Otherwise, the extender should not extend the bundle.

135.2.1 Extenders and Framework Hooks
The Framework provides a number of hooks that allow groups of bundles to be scoped. For exam-
ple, the Subsystem Service Specification. An extender may want to extend the complete set of bundles
installed in the Framework even when extendee bundles are hidden from the extender. The system
bundle context provides a complete view of the bundles and services available in the Framework
even if Framework hooks are used to scope groups of bundles. The system bundle context can be
used by an extender to track all bundles installed in the Framework regardless of how Framework
hooks are used to scope groups of bundles. This is useful in scenarios where several scoped groups
contain bundles that require an extender. Instead of requiring an extender to be installed in each
scoped group of bundles, a single extender that uses the system bundle context to track extendees
can be installed to extend all scoped groups of bundles.

Common Namespaces Specification Version 1.1 osgi.contract Namespace

OSGi Compendium Release 6 Page 995

135.3 osgi.contract Namespace
Products or technologies often have a number of related APIs consisting of a large set of packages.
Some IDEs have not optimized for OSGi and requires work for each imported package. In these de-
velopment environments using modularized systems tends to require a significant amount of man-
ual effort to manage the imported packages.

The osgi .contract Namespace addresses this IDE deficiency. It allows a developer to specify a single
name and version for a contract that can then be expanded to a potentially large number of pack-
ages. For example, a developer can then specify a dependency on Java Enterprise Edition 6 contract
that can be provided by an application server.

The osgi .contract Namespace provides such a name and binds it to a set of packages with the us-
es constraint. The bundle that declares this contract must then import or export each of the listed
packages with the correct versioning. Such a bundle is called a contract bundle. The contract bundle
must ensure that it is bound to the correct versions of the packages contained within the contract it
is providing. If the contract bundle imports the packages which are specified as part of the contract
then proper matching attributes must be used to make sure it is bound to the correct versions of the
packages.

Additionally, the osgi .contract Namespace can be used in cases where API is defined by parties
that do not use Semantic Versioning. In those cases, the version of the exported package can be un-
clear and so it is difficult to specify a meaningful version range for the package import. In such cas-
es, importing the package without specifying a version range and specifying a requirement in the
osgi .contract Namespace can provide a way to create portable bundles that use the API. OSGi has
defined contract names for a number of such APIs. See [2] Portable Java Contract Definitions for more
information.

An osgi .contract capability can then be used in the following ways:

• IDEs can use the information in the uses directive to make all those packages available on the
build path. In this case the developer no longer has to specify each package separately.

• During run time the uses clause is used to enforce that all packages in the contract form a consis-
tent class space.

The uses directive will make it impossible to get wired to packages that are not valid for the con-
tract. Since the uses constrains enforce the consistency, it is in principle not necessary to version the
imported packages on client bundles since only the correctly versioned packages can be used. Con-
tracts are aggregates and therefore make clients depend on the whole and all their transitive depen-
dencies, even if the client only uses a single package of the contract.

The recommended way of using contracts is to create a contract bundle that provides the
osgi .contract capability and imports the packages with their required version range. For example:

Provide-Capability: osgi.contract;
 osgi.contract=JavaServlet;
 version:Version=2.5;
 uses:="javax.servlet,javax.servlet.http"
Export-Package:
 javax.servlet; version="2.5",
 javax.servlet.http; version="2.5"

A contract may support multiple versions of a named contract. Such a contract must use a single ca-
pability for the contract name that specifies a list of all the versions that are supported. For example,
the JavaServlet 3.1 contract capability would be specified with the following:

Provide-Capability: osgi.contract;

osgi.contract Namespace Common Namespaces Specification Version 1.1

Page 996 OSGi Compendium Release 6

 osgi.contract=JavaServlet;
 version:List<Version>="2.5,3.0,3.1";
 uses:=
 "javax.servlet,
 javax.servlet.annotation,
 javax.servlet.descriptor,
 javax.servlet.http"
Export-Package:
 javax.servlet; version="3.1",
 javax.servlet.annotation; version="3.1",
 javax.servlet.descriptor; version="3.1",
 javax.servlet.http; version="3.1"

A client bundle that requires the Servlet 2.5 contract can then have the following manifest:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))",
Import-Package:
 javax.servlet, javax.servlet.http

The client bundle will be constrained by the contract's uses constraints and automatically gets
the correct packages. In this example, no semantic versioning is used for the contract because the
Servlet Specifications do not use semantic versioning (version 3.0 is backward compatible with 2.X).

In this model it is even possible to use the normally not recommended DynamicImport-Package
header with a wild card since also this header is constrained by the uses constraints. However, using
a full wildcard can also dynamically import packages that are not part of the contract. To prevent
these unwanted dynamic imports, the exporter could include an attribute on the exports. For exam-
ple:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))"
DynamicImport-Package:
 *;JavaServlet=contract

However, this model requires the exporter to specify an agreed attribute. The contract bundle does
not require such coordination; it also allows the package exporters to reside in different and unrelat-
ed bundles.

The definition of the osgi .contract Namespace is in the following table and in the ContractName-
space class. See [2] Portable Java Contract Definitions.

Table 135.2 osgi.contract Namespace

Name Kind M/O Type Syntax Description
osgi .contract CA M String symbol ic-name A symbolic name for the contract.
version CA O Version+ version A list of versions for the contract. A contract that

supports multiple versions must use a single ca-
pability with a version attribute that lists all ver-
sions supported.

uses CD O String package-name

(',' package-name)

For a contract, the standard uses clause is used to
indicate which packages are part of the contract.
The imports or exports of those packages link
these packages to a particular version.

135.3.1 Versioning
As the osgi .contract Namespace follows the versioning of the associated contract, capabilities in
this Namespace are not semantically versioned. The associated contracts are often versioned using

Common Namespaces Specification Version 1.1 osgi.service Namespace

OSGi Compendium Release 6 Page 997

marketing or other versioning schemes and therefore the version number cannot be used as an indi-
cation of backwards compatibility.

As a result, capabilities in the osgi .contract Namespace use a discrete versioning scheme. In such a
versioning scheme, each version is treated as separate without any implied relation to another ver-
sion. A capability lists all compatible versions. A requirement only selects a single version.

135.4 osgi.service Namespace
The Service Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that potentially can register
a specific service.

• Providing a hint to the provisioning agent that the bundle requires a given service.
• Used as template for specifications like Blueprint and Declarative Services to express their pro-

vided and referenced services in the Repository model, see the Repository Service Specification.

A bundle providing this capability indicates that it can register such a service with at least the given
custom attributes as service properties. At resolve time this is a promise since there is no guarantee
that during runtime the bundle will actually register such a service; clients must handle this with
the normal runtime dependency managers like Blueprint, Declarative Services, or others.

See the following table and the ServiceNamespace class for this Namespace definition.

Table 135.3 osgi.service Namespace

Name Kind M/O Type Syntax Description
objectClass CA M List

<Str ing>

qname

(',' qname)*

The fully qualified name of the object class of the
service.

* CA O * * Custom attributes that will be provided as service
properties if they do not conflict with the service
properties rules and are not private service prop-
erties. Private properties start with a full stop ('.'
\u002E).

135.4.1 Versioning
Capabilities in the osgi .service Namespace are not versioned. The package of a service's object class
is generally versioned and the package can be associated with the capability via the uses directive.

135.5 osgi.implementation Namespace
The Implementation Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that provides an implemen-
tation of the specified specification or contract.

• Providing uses constraints to ensure that bundles which require an implementation of a specifi-
cation or contract will be wired appropriately by the framework.

• Providing a hint to the provisioning agent that the bundle requires a given specification or con-
tract implementation.

• Used as a general capability Namespace for specifications or contracts to express their provided
function in the Repository model, see the Repository Service Specification.

org.osgi.namespace.contract Common Namespaces Specification Version 1.1

Page 998 OSGi Compendium Release 6

A bundle providing this capability indicates that it implements a specification or contract with the
specified name and version. For example, the Asynchronous Service Specification would provide the
following capability:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async"

See the following table and the ImplementationNamespace class for this Namespace definition.

Table 135.4 osgi.implementation Namespace

Name Kind M/O Type Syntax Description
osgi . implementation CA M String symbol ic-name The symbolic name of the specification or con-

tract. The OSGi Alliance reserves names that start
with "osgi .".

version CA M Version version The version of the implemented specification or
contract.

* CA O * * Custom attributes that can be used to further
identify the implementation

135.6 org.osgi.namespace.contract

Contract Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.6.1 Summary

• ContractNamespace - Contract Capability and Requirement Namespace.

135.6.2 public final class ContractNamespace
extends Namespace
Contract Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.6.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification of the contract. The value of this at-
tribute must be of type Version .

135.6.2.2 public static final String CONTRACT_NAMESPACE = "osgi.contract"

Namespace name for contract capabilities and requirements.

Also, the capability attribute used to specify the name of the contract.

Common Namespaces Specification Version 1.1 org.osgi.namespace.extender

OSGi Compendium Release 6 Page 999

135.7 org.osgi.namespace.extender

Extender Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.7.1 Summary

• ExtenderNamespace - Extender Capability and Requirement Namespace.

135.7.2 public final class ExtenderNamespace
extends Namespace
Extender Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.7.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification of the extender. The value of this
attribute must be of type Version .

135.7.2.2 public static final String EXTENDER_NAMESPACE = "osgi.extender"

Namespace name for extender capabilities and requirements.

Also, the capability attribute used to specify the name of the extender.

135.8 org.osgi.namespace.service

Service Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.8.1 Summary

• ServiceNamespace - Service Capability and Requirement Namespace.

135.8.2 public final class ServiceNamespace
extends Namespace
Service Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long

org.osgi.namespace.implementation Common Namespaces Specification Version 1.1

Page 1000 OSGi Compendium Release 6

• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

135.8.2.1 public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"

The capability attribute used to specify the types of the service. The value of this attribute must be
of type List<Str ing> .

A ServiceNamespace capability should express a uses constraint for all the packages mentioned in
the value of this attribute.

135.8.2.2 public static final String SERVICE_NAMESPACE = "osgi.service"

Namespace name for service capabilities and requirements.

135.9 org.osgi.namespace.implementation

Implementation Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Alliance.

135.9.1 Summary

• ImplementationNamespace - Implementation Capability and Requirement Namespace.

135.9.2 public final class ImplementationNamespace
extends Namespace
Implementation Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.9.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification or contract being implemented.
The value of this attribute must be of type Version .

135.9.2.2 public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

Namespace name for "implementation" capabilities and requirements. This is also the capability at-
tribute used to specify the name of the specification or contract being implemented.

A ImplementationNamespace capability should express a uses constraint for the appropriate pack-
ages defined by the specification/contract the packages mentioned in the value of this attribute.

Common Namespaces Specification Version 1.1 References

OSGi Compendium Release 6 Page 1001

135.10 References

[1] Specification References
http://www.osgi.org/Specifications/Reference

[2] Portable Java Contract Definitions
http://www.osgi.org/Specifications/ReferenceContract

[3] Resources API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] Framework Namespaces Specification
OSGi Core, Chapter 8 Framework Namespaces Specification

[5] General Syntax Definitions
OSGi Core, General Syntax Definitions

[6] Common Headers
OSGi Core, Chapter 3, Common Header Syntax

[7] Semantic Versioning
OSGi Core, Chapter 3, Semantic Versioning

135.11 Changes
• Clarified osgi.extender Namespace and added a section on the relationship with framework

hooks.
• Clarified osgi.contract Namespace and examples.
• Added osgi.implementation Namespace on page 997.
• Clarified versioning of capabilities in a namespace.

Changes Common Namespaces Specification Version 1.1

Page 1002 OSGi Compendium Release 6

Resolver Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1003

136 Resolver Service Specification

Version 1.0

136.1 Introduction
Today very few applications are self contained, the predominant development model is that appli-
cations are built from (external) components, which are often open source. Application developers
add business logic, glue code, and assemble the diverse components into a resource that provides
the desired capabilities when installed in an environment. Designing the assembly has long been a
manual and error prone process, partly due to the complexity of external dependencies. Although
the direct dependencies are often given, the largest number of dependencies are usually the tran-
sitive dependencies: the dependencies of the dependencies. Modern applications can end up with
hundreds to thousands of external dependencies. Numbers that make tooling inevitable.

The OSGi framework is the first specification that provides a foundation for automating a signifi-
cant part of this assembly process. The Requirement-Capability model defined in [3] Framework Re-
source API (Core) provides a dependency model that allows resources to express dependencies, con-
straints, and capabilities. If a resource's constraints are met it provides capabilities that can satisfy
further requirements. The OSGi dependency model is fully generic and is not limited to bundles. Re-
sources can be bundles but also certificates, plugged in devices, etc.

Resolving transitive dependencies is a non-trivial process that requires careful design to achieve the
required performance since the underlying problem is NP-complete. OSGi frameworks have always
included such resolvers but these were built into the frameworks. They were not usable outside the
framework for tooling, for example automatically finding the dependencies of a bundle that needs
to be installed.

The number of dependencies is rapidly reaching a threshold where manual methods no longer can
provide reliable results. This specification therefore provides the Resolver service, a service that can
be the base for provisioning, deployment, build, and diagnostic tooling. The service can take a re-
quirement and resolve it to a wiring of resources. For example, with cloud computing a new re-
quirement can be translated into a new OSGi framework instance being started on a node and pro-
visioned with the set of bundles that satisfy the given requirement. The OSGi Resolver service is in-
tended be a corner stone of such an auto-provisioning tool.

However, the OSGi Resolver service is not limited to these higher end schemes. Build tools can use
the Resolver to find components for the build path and/or run time environment and predict the re-
sults of installing a set of bundles on a target environment. The OSGi Resolver service is an essential
part of a software model where applications are built out of independent components.

This specification is based on the concepts and API defined in the [3] Framework Resource API (Core),
[2] Framework Wiring API (Core), and the [1] Framework Module Layer. These specifications are re-
quired reading for understanding this specification. This specification is for highly specialized use,
it is not intended to be used in applications, the Resolver API is a low level service intended for sys-
tem developers with deep knowledge of the OSGi module layer.

136.1.1 Essentials

• Transitive - From a requirement, find a consistent set of resources that satisfy that requirement.
• Diagnostics - Provide diagnostic information when no resolution can be found.

Introduction Resolver Service Specification Version 1.0

Page 1004 OSGi Compendium Release 6

• Scoped Repositories - Allow the environment to control the repositories to use.
• Build Tools - Must be useful in establishing build and run time class paths.
• Provisioning - Must be useful to find a set of bundles that can be installed in a system without run-

ning into unresolved dependencies.
• OSGi - Provide the semantics of all the OSGi namespaces, including the uses constraints.
• API - The API for the Resolver must provide the base for the Framework Bundle Wiring API.
• Performant - Enable highly performant implementations.
• Frameworks - Allow Frameworks to provide their resolver as a service.
• Scalable - Allow access to, and use of, very large repositories.

136.1.2 Entities

• Environment - A container or framework that can install resources and uses a Resolver to wire
these resources.

• Resolve Context - An interface implemented by the management agent to provide the context of
the resolution.

• Wiring - Represents the state of a resource's wires, requirements, and capabilities in an environ-
ment.

• Resolver - A service that can find a set of wires that can be applied to an existing wiring state
where a set of initial resources have all their mandatory requirements satisfied.

• Wire - Links requirement to a capability.
• Resource -An artifact with requirements that need to be provisioned and resolved to provide its

capabilities.
• Requirement - A necessity for a given resource before it can provide its capabilities; expressed as a

filter expression on the attributes of a capability in a given namespace.
• Capability - A set of attributes and directives defined by a namespace, describes what a resource

provides when resolved.
• Hosted Capability - Pairs a resource with a capability to model hosting capabilities in another re-

source.
• Namespace - The type for a capability and requirement.
• Resolution - The result of a resolve operation.

Figure 136.1 Class and Service overview

Management
Agent Impl

Resolver Impl

Resolver

<<class>>
Resolve
Context

Resolve Context
Impl

<<interface>>
Resource

<<interface>>
Requirement

<<interface>>
Capability

<<interface>>
Wire

<<interface>>
Hosted
Capability

1

1

Repository

Resolver Service Specification Version 1.0 The Resolve Context

OSGi Compendium Release 6 Page 1005

136.1.3 Synopsis
The Resolver service can find a complete and consistent set of transitive dependencies starting with
an initial set of mandatory and optional resources. Such a set can be used to install resources in the
environment from local or remote repositories. To use the Resolver service, the client must provide
a ResolveContext object. This complex object represents the context of a resolution; it provides the
initial resources (optional and mandatory), defines a number of namespaces specific policies, and
provides the state of the environment.

A resolution can be based on an existing wiring in the environment, for example the current frame-
work state. For the framework, the Resolve Context can find this existing state via the [2] Framework
Wiring API (Core). The Resolver must then satisfy all the requirements of the mandatory resources.
The Resolver must always ask the Resolve Context to find additional capabilities for the unsatisfied
requirements. A capability is always associated with a resource, which is subsequently associated
with additional requirements. The final resolution must contain a set of resources that include the
initial set of mandatory resources, has no unsatisfied mandatory requirements, and is consistent
with the implied constraints. Otherwise it fails.

The Requirement-Capability model is fully generic but provides special semantics through the use
of namespaces. The Resolver must implement the standard OSGi namespaces as described in [2]
Framework Wiring API (Core), which includes the uses constraints. Part of the semantics of the OS-
Gi namespaces are delegated to the Resolve Context so that it can implement different policies. Sin-
gletons, ordering of capabilities, and matching are the responsibility of the Resolve Context; the Re-
solver never matches a requirement to a capability.

Requirements have an effect ive directive that indicates in what situations the requirement must be
resolved. Also here, the Resolve Context decides if a particular requirement is effective or not. Only
effective requirements are wired in the resolution.

Since capabilities are declared by resources that have additional requirements, the Resolver must
create a set of resources where all transitive requirements are satisfied or fail with a Resolution Ex-
ception. This Resolution Exception can provide additional details why the resolution failed, if possi-
ble.

At the end of a successful resolve operation the Resolver returns a Map<Resource,L ist<Wire>> . These
wires are a delta on the existing state, if any. The wires can then be used to provision missing re-
sources or to provide diagnostic feedback.

136.2 The Resolve Context
Provisioning is the process of providing a framework with the necessary resources to allow it to op-
erate according to set goals. In OSGi terms, this consists of installing bundles and ensuring that the
configuration is set up correctly. With OSGi, bundles explicitly describe their capabilities and re-
quirements as manifest headers. This can range from Export-Package (a capability) to a generic Pro-
vide-Capability header.

OSGi Frameworks have a resolving stage that ensures requirements are satisfied before a bundle is
allowed to provide code to the shared space. As long as the requirements are not met, the bundle
remains in the INSTALLED state and is thus prohibited from contributing capabilities. Once all the
mandatory requirements are met, the bundle becomes RESOLVED . That is, a framework combines
two decisions when it resolves bundles:

• Find a resolution based on the existing set of installed bundles.
• Move the bundles that have all their mandatory requirements satisfied to the RESOLVED state.

The Resolver service separates these two stages and thus allows a third party, the management agent, to
define the environment of the resolution. A management agent can interact with the Resolver service

The Resolve Context Resolver Service Specification Version 1.0

Page 1006 OSGi Compendium Release 6

while it is searching for a resolution because the Resolver service calls back the management agent
through a ResolveContext object. The Resolver service will therefore allow the management agent
to handle more scenarios, better diagnostics, etc.

The Resolve Context is provided by the management agent, it is an abstract base class and must
therefore be extended. It is a non-trivial class to implement since it is tightly coupled to the rules of
the environment; it represents the policies of the management agent for that environment. For OS-
Gi framework resolvers, the Resolve Context must understand and implement a part of the OSGi
framework namespaces.

With the Resolver service, a management agent can try out resolutions before any bundle can see
the result of such a resolution but it can also include extra bundles or other resources on demand.
The Resolver service will also allow resolutions to be calculated for other frameworks.

For example, a management agent could use a Resolver service to find missing dependencies and in-
stall them on demand from a local directory with bundles. Such a Provisioner could have the follow-
ing skeleton:

public class Provisioner {
 File bundles = ...;
 Map<String,Resource> resources = ...;
 Resolver resolver = ...;
 BundleContext context = ...;

 public void install(String location) {
 Resource resource = resources.get(location);
 if (resource == null) error(...);

 try {
 ResolveContextImpl rc = ...
 rc.addMandatory(resource);
 Set<Resource> provision = resolver.resolve(rc).keySet();

 for (Resource rb : provision) {
 String location = getLocation(rb);

 Bundle bundle = context.installBundle(location);
 if (!isFragment(bundle))
 bundle.start();
 }
 } catch(ResolutionException re) {
 ... // diagnostics
 } catch(BundleException be) {
 ... // diagnostics
 }
 }
}

136.2.1 Mandatory and Optional Resources
The Resolve Context provides all the parameters for the resolve operation, the Resolver does not
maintain any state between invocations. The Resolve Context must therefore provide the mandato-
ry and optional resources, which are essentially the input parameters to the resolve operation. The
resolver must find a solution that includes at least the initial mandatory resources and should in-
clude the optional resources.

Resolver Service Specification Version 1.0 The Resolve Context

OSGi Compendium Release 6 Page 1007

136.2.2 Finding Capabilities
The Resolve Context's f indProviders(Requirement) method must be implemented in such a way
that it returns an ordered list of capabilities. The Resolver will treat the order of the capabilities as
preferences, the first element is more preferred than a later element. The Resolver cannot guarantee
that the wiring obeys this preference since there can be other constraints. However, a Resolver must
use this preference order for simple cases and try to use it in more constrained situations.

The Resolver does not make any assumptions, this means that the f indProviders(Requirement)
method must do all the matching. Even though the Resolver gets the mandatory and op-
tional resources it will not search these for capabilities to satisfy requirements. If the
f indProviders(Requirement) method does not search these resources then their capabilities will not
be used. The same is true for the existing wiring state used.

Since this section describes the Resolver with respect to a provisioning agent, the set of resources is
not limited to the installed set. That is, normally when a framework is resolved the Resolver only
has to include installed resources. However, for a provisioning agent it is possible to retrieve exter-
nal resources. The Repository Service Specification on page 889 provides access to resource repositories
but a management agent is free to find capabilities by any alternative means.

For resolving an OSGi framework the specifications outlines a number of heuristics that guide the
order of wiring bundles and packages:

1. A resource that is already resolved, that is, it is already wired
2. The highest version
3. The lowest bundle id

The Resolver can, and likely will, use the returned list to maintain its internal state during
the resolve operation while trying out different potential solutions. It can add and remove
capabilities at will. The returned list must therefore be mutable and not reused, after it is re-
turned; it becomes owned by the Resolver. However, the Resolver can call back later with the
insertHostedCapabi l i ty(List ,HostedCapabi l i ty) method, giving back the returned list as the first pa-
rameter, see Insert Hosted Capabilities on page 1010.

For example, assume that all possible resources in the previous example can be gotten with the
getSortedResources method in the preferred resource order. This list contains all installed re-
sources as well as any potentially installable resources. This list is sorted once on the given ordering
criteria, this only has to be done once and not for each f indProviders(Requirement) method invoca-
tion. The following code, which does not order by capability versions, could then be a simple skele-
ton for the f indProviders(Requirement) method on the ResolveContextImpl inner class:

public List<Capability> findProviders(Requirement requirement) {
 List<Capability> result = new ArrayList<Capability>();

 for (Resource r : getSortedResources())
 for (Capability c : r.getCapabilities(null))
 if (match(requirement, c))
 result.add(c);

 return result;
}

136.2.3 Matching
The f indProviders(Requirement) method is responsible for only returning the capabilities that the
management agent wants to be considered by the Resolver. Since the Resolver must never match
any requirements to capabilities it allows the management agent to fully control the matching.
However, in an OSGi environment the following matching behavior is expected:

The Resolve Context Resolver Service Specification Version 1.0

Page 1008 OSGi Compendium Release 6

• Requirements and capabilities must be in the same namespace.
• Only requirements and capabilities that have no effect ive directive or have the directive set to

resolve should be considered.
• The requirement's filter must match the capability's attributes.
• If the namespace is an osgi .wir ing.* namespace then the mandatory directive on the capability

must be supported. Mandatory attributes are defined with a mandatory directive on a capability,
they contain a list of attribute names. Each of these attributes must be used in the filter. Since the
filter must be constructed from the corresponding manifest header it is sufficient to search the
filter string with a regular expression that detects the usage of an attribute name.

The following example shows a skeleton match method that provides OSGi semantics:

boolean match(Requirement r, Capability c){
 if (!r.getNamespace().equals(c.getNamespace()))
 return false;

 String effective = c.getDirectives().get("effective");
 if (!(effective == null || effective.equals("resolve")))
 return false;

 String f = r.getDirectives().get("filter");
 if (f != null) {
 Filter filter = context.createFilter(f);
 if (!filter.matches(c.getAttributes()))
 return false;
 }

 if (!c.getNamespace().startsWith("osgi.wiring."))
 return true;

 String mandatory = c.getDirectives().get("mandatory");
 if (mandatory == null)
 return true;

 List<String> attrs =
 Arrays.asList(mandatory.toLowerCase().split("\\s*,\\s*"));

 Matcher m = FILTER_ASSERT_PATTERN.matcher(f == null ? "": f);
 while(m.find())
 attrs.remove(m.group(1)); // the attribute name

 return mandatory.isEmpty();
}

136.2.4 Repositories
Resolving to provision a framework is different than a framework resolving itself. During provision-
ing remote repositories can be consulted to find external resources while the framework only re-
solves a limited set (the installed bundles). These repositories generally contain magnitudes more
bundles than what is installed in a framework.

Repositories do not implement any namespace specific semantics and therefore do not understand
any directives. Repositories only verify the requirement's filter (if any) against the capability's attrib-
utes. The Resolver expects the Resolve Context to do the namespace specific matching. The Reposito-
ry Service Specification on page 889 provides the details for a service that abstracts a Requirement-Ca-
pability aware repository.

Resolver Service Specification Version 1.0 The Resolve Context

OSGi Compendium Release 6 Page 1009

With such a repository service the f indProviders(Requirement) method can be implemented as fol-
lows:

List<Repository> repositories = new CopyOnWriteArrayList<Repository>();

void addRepository(Repository repository) { repositories.add(repository);}
void removeRepository(Repository repository){ repositories.remove(repository);}

public List<Capability> findProviders(Requirement requirement) {
 List<Capability> result = new ArrayList<Capability>();

 // previous findProviders that searches the initial resources

 for (Repository repository : repositories) {
 Collection<Capability> capabilities = repository.findProviders(
 Collections.singleton(requirement)).get(requirement);
 for (Capability c : capabilities)
 if (match(requirement, c))
 result.add(c);
 }
 return result;
}

136.2.5 Existing Wiring State
The Resolver service always creates a list of wires that should be added to an existing state. To get
the existing state, the ResolveContext interface specifies the getWir ings() method. This method
must return the existing state as a Map<Resource,Wir ing> . A Wiring is an object that reflects the
wired state of a resource in the environment. From this object, all declared and hosted capabilities
and requirements can be found, including their wires if any. The Resolver needs this existing state to
create a consistent resolution. For example, uses constraints require access to the existing state.

The Resolver service API is based on the generic Requirement-Capability model. This API is im-
plemented by the OSGi framework to reflect its internal wiring, see [2] Framework Wiring API
(Core). When the Resolver service is used for an OSGi framework then the Resolve Context can
provide the existing wiring state based on the Framework Wiring API. The interfaces used in the
org.osgi .f ramework.wir ing package all extend their counterpart in the org.osgi . resource package
(the generic model). For example, the BundleCapabi l i ty interface extends the Capabi l i ty interface.

The framework wiring API models all the power and complexities of the OSGi framework. One of
those aspects is removal pending. Each installed bundle is represented by one or more bundle revi-
sions. Each bundle revision is a Resource object but only one is the current bundle revision. Dur-
ing a resolve operation a framework can actually wire to the current bundle revision but is not for-
bidden to also select the pending removal bundle revisions. The Resolve Context must therefore de-
cide if it provides only the current bundle revisions or all. The best policy solution in this case is to
always refresh after a (batch) of install operations and only resolve when there are no pending-re-
moval bundle revisions. However, certain management agents attempt to manage a system that is in
this half-way state and will then be required to include the pending-removal revisions.

The following example code shows a possible implementation of the getWir ings() method. It only
uses the current wiring and ignores removal pending bundle revisions:

public Map<Resource,Wiring> getWirings(){
 Map<Resource,Wiring> wirings = new HashMap<Resource,Wiring>();

 for (Bundle b : context.getBundles()) {
 BundleRevision revision = b.adapt(BundleRevision.class);
 if (revision != null) {

The Resolve Context Resolver Service Specification Version 1.0

Page 1010 OSGi Compendium Release 6

 Wiring wiring = revision.getWiring();
 if (wiring != null)
 wirings.put(revision, wiring);
 }
 }
 return wirings;
}

136.2.6 Effective
The Resolver service is designed to work with OSGi frameworks but the scope is broader; its de-
sign allows many alternative usages. The effect ive directive on the capabilities and requirements
is meant to allow requirements and capabilities to be effective in different phases. The default is re-
solve , the value for an OSGi framework resolving process. Bundles and other OSGi defined artifacts
must declare their capabilities and requirements in the resolve effective time to be considered by an
OSGi resolver.

However, Resolvers can use the effect ive directive to run the Resolver at other times than the stan-
dard OSGi framework resolve. For example, it could be possible to define an active time to resolve the
service dependencies.

For this reason, the Resolver is designed to be agnostic for this directive, it will always ask the Re-
solveContext if a requirement is effective. It does this with the isEffect ive(Requirement) method.
Since the Resolver service never matches requirements to capabilities it is also up to the Resolve
Context to decide how to treat the effect ive directive. For an OSGi resolve operation, capabilities
should also have an effective time value of resolve (or not set since resolve is the default).

To make requirements effective during the resolving of bundles it will be necessary to implement
the isEffect ive(Requirement) method similar to:

public boolean isEffective(Requirement requirement) {
 String e = requirement.getDirectives().get("effective");
 return e==null || "resolve".equals(e);
}

136.2.7 Insert Hosted Capabilities
One of the complex aspects of resolving for an OSGi framework is handling fragments. For frag-
ments, the declared capabilities are going to be hosted by their hosts. The Requirement and Capabi l-
ity objects have a getResource method that returns the associated resource. For hosted capabilities
and requirements this must be the hosting resource and for others the declaring resource.

The HostedCapabi l i ty interface defines the interface for allowing the hosting resource to be
returned instead of the declaring resource. Since the Resolver service creates these Hosted
Capabilities the Resolver needs a way to add them to the lists of capabilities returned from
f indProviders(Requirement) . The Resolver service cannot add them itself since this list has a prefer-
ence order, the Resolver service must therefore ask the Resolve Context to insert this new capability
to allow the Resolve Context to maintain the desired order.

The Resolve Context must therefore implement an insertHostedCapabi l i ty(List ,HostedCapabi l i ty)
method. The given list must have been returned earlier from a f indProviders(Requirement) method
invocation. The Resolve Context must find the appropriate position to insert the HostedCapabi l i ty
object, insert it, and return the index of the inserted object.

It is the responsibility of the Resolve Context to find the proper position. In Finding Capabilities on
page 1007 it was discussed how the f indProviders(Requirement) method must return an ordered
list. The insertHostedCapabi l i ty(List ,HostedCapabi l i ty) has that same responsibility.

The following example shows how the Hosted Capability is inserted based on the index of the host-
ed resource's index in the sorted list of resources the management agent maintained. The example

Resolver Service Specification Version 1.0 The Resolve Context

OSGi Compendium Release 6 Page 1011

iterates through the capabilities and compares the index of sorted resources to indicate preference.
If it finds a capability from a resource that was later in the list of sorted resources then it inserts it at
that position. A real implementation should also take the version of the capability into account.

public int insertHostedCapability(
 List<Capability> caps, HostedCapability hc) {

 List<Resource> resources = getSortedResources();
 int index = resources.indexOf(hc.getResource());

 for (int i =0; i < caps.size(); i++) {
 Capability c = caps.get(i);
 int otherIndex = resources.indexOf(c.getResource());
 if (otherIndex > index) {
 caps.add(i, hc);
 return i;
 }
 }
 caps.add(hc);
 return caps.size()-1;
}

136.2.8 Fragments
Fragments are resources that have an osgi .wir ing.host requirement that must match a capability
from one or more host bundles. However, for example an Export-Package in a fragment must be
merged with its attached hosts. These capabilities and requirements from namespaces that appear
as if they come from the host bundle are called hosted.

Since fragments are not required by the host bundle, there will be no resource requiring the frag-
ment bundles. The Resolver will therefore never ask the Resolve Context to provide fragments. How-
ever, fragments will require their hosts. A Resolver should attach any fragments available in a reso-
lution to suitable hosts.

Since fragments will not be discovered from their hosts, it can be necessary to run the resolver twice
in certain scenarios. The first resolve operation finds a resolution that is then used to find fragments
that could be attached to the included bundles. These fragments can then be added to set of manda-
tory or optional resources for an additional resolve operation.

Fragments can of course also be found by the normal finding of capabilities.

136.2.9 Singleton Capabilities
A resource can be marked as a singleton. A singleton resource has the singleton directive set to true
on the osgi . identity capability. A singleton resource conflicts with another singleton resource if:

• They have the same osgi . identity , and
• They have the same type , and
• They have a different or identical version.

This constraint is not enforced by the Resolver service to give more flexibility to management
agents. The Resolve Context must ensure that it does not return capabilities from conflicting single-
ton resources from the f indProviders(Requirement) method. When the Resolver is used with a lim-
ited set of resources then it is possible to enumerate all singletons ahead of time and use permuta-
tions. However, when repositories are used an incremental method works better because the scope
is so much larger.

When the f indProviders(Requirement) method is called for a requirement that selects a capability
declared in a singleton then it is likely that repositories will return multiple versions of this single-

The Resolve Context Resolver Service Specification Version 1.0

Page 1012 OSGi Compendium Release 6

ton including the resource with the highest available version for conflicting resources. It is there-
fore possible to maintain a white list of singletons incrementally.

Once the f indProviders(Requirement) method has created a result list, it is possible to prune this list
of conflicting singletons. This can be an incremental process, the first time a singleton is encoun-
tered in such a list of capabilities the highest version can be selected as the singleton. Other single-
tons that are in that list or come in other invocations of f indProviders(Requirement) can then no
longer provide capabilities. For example:

 Map<String,Resource> whitelist = new HashMap<String,Resource>();

 void prune(List<Capability> list) {
 Map<String,Resource> singletons = new HashMap<String,Resource>();

 for (Capability c : list) {
 Resource r = c.getResource();
 Version now = getVersion(r);
 String identity = getIdentity(r);

 if (isSingleton(r) && !whitelist.containsKey(identity)) {
 Resource selected = singletons.get(identity);
 if (selected == null)
 singletons.put(identity, r);
 else {
 Version old = getVersion(selected);
 if (now.compareTo(old)> 0)
 singletons.put(identity, r);
 }
 }
 }

 this.whitelist.putAll(singletons);

 for (Iterator<Capability> i=list.iterator(); i.hasNext();) {
 Capability c = i.next();
 Resource r = c.getResource();
 String identity = getIdentity(r);
 Resource selected = this.whitelist.get(identity);
 if (selected != null && !selected.equals(r))
 i.remove();
 }
 }

136.2.10 Diagnostics
The Resolver service throws a Resolut ionException when the resolve operation cannot find a so-
lution. This Exception provides the standard human readable message. However, there is also the
getUnresolvedRequirements() method. With this method it is possible to find what requirements
could not be matched. Though this is very useful in many cases it must be realized that resolving is
a complicated process. It is not possible to establish the exact set of missing requirements because
any unresolved resolution can have many, different, sets of unresolved requirements. This is an in-
trinsic part of the resolution problem. There is also no guarantee that providing capabilities that sat-
isfy these requirements will give a successful resolution. There could still be other constraints that
cannot be satisfied. In general, the Resolve Context can already detect any unresolved mandatory re-
quirements when it cannot find a matching capability in the f indProviders(Requirement) method.

That said, the getUnresolvedRequirements() can often point to a potential solution.

Resolver Service Specification Version 1.0 Resolver Service

OSGi Compendium Release 6 Page 1013

136.2.11 Complexity
Implementing a Resolve Context is a non-trivial task that requires extensive knowledge of the OS-
Gi framework, especially the module layer. Though this section contains numerous code examples,
they are not sufficient to implement a real Resolve Context since this would require too much code
for a specification.

136.3 Resolver Service
The Resolver service is an interface to a generic constraint solver based on the Require-Capability
model defined in [3] Framework Resource API (Core). This model defines a constraint-solving lan-
guage that is used by the Framework, see [1] Framework Module Layer, to create the mesh of class
loaders. However, the Resolver service has been designed to be useful in solving other types of con-
straint problems.

The task of the Resolver is to find a resolution. The resolve method returns a delta on an existing wiring
state. The total of existing wiring state and the applied delta is the resolution. The delta is a set of
wires between requirements and capabilities.

136.3.1 Variables
The resolve(ResolveContext) method uses a Resolve Context to provide the context and parameters
of the resolution. During the resolution process the Resolver service can callback the Resolve Con-
text to retrieve the following information:

Rm Collect ion<Resource> getMandatoryResources()
Ro Collect ion<Resource> getOptionalResources()
Cenv Map<Requirement,L ist<Capabi l i ty>> Combined answers from the

f indProviders(Requirement) method
Qeff Collect ion<Requirement> Set of effective requirements as defined by the

isEffect ive(Requirement) method
X Map<Resource,Wir ing> An existing Wiring state, getWir ings()

The Resolver service returns the following:

D Map<Resource,L ist<Wire>> The resolution, a delta on the existing state

The resolve(ResolveContext) method returns a resolution D that is a delta on the existing Wiring
state X . It is up to the Resolve Context to ensure that the delta D is installed. In for example the OSGi
framework the framework hooks can be used to guide the framework's resolving process.

136.3.2 Resolving
The goal of the Resolver is to provide a set of wires between a set of resolved resources. A resource is
resolved when all its mandatory and effective requirements are satisfied by capabilities from resolved
resources. A Resolver must not return wires between resources that have unsatisfied mandatory re-
quirements.

A mandatory requirement has a resolut ion directive that is not set or that is set to mandatory . The
effectiveness of a requirement is defined by the Resolve Context, a Resolver service must call the
isEffect ive(Requirement) method to establish if a requirement is effective for a given resolve opera-
tion. A Resolver must never create a wire from a requirement that is not effective.

To find a resolution, the Resolver must use the Resolve Context to find candidate capabilities for the
requirements declared in the resources that it needs to resolve. A candidate capability is a capabili-
ty that satisfies the requirement. From the perspective of the Resolver service, a requirement is satis-

Resolver Service Resolver Service Specification Version 1.0

Page 1014 OSGi Compendium Release 6

fied by a capability when that capability is returned from the f indProviders(Requirement) method.
A Resolver has no alternative way to find out if a requirement is satisfied by a capability and must
therefore not make any assumptions about matching. Any matching rules like for example the
osgi .wir ing.* mandatory directive must be implemented by the Resolve Context. A Resolve Context
must always return the same capabilities during a resolving operation when given the same require-
ment.

Since the resolver cannot match requirements and capabilities the Resolve Context must return ca-
pabilities for all possible resources, this must include:

• The given mandatory resources R m
• The given optional resources R o
• The existing Wiring state X

It can include additional resources that were indirectly returned through the
f indProviders(Requirement) method.

The existing wiring X provides an existing set of constraints that the Resolver service must abide by.
It can get this state with the getWir ings() method. The purpose of the existing state is to ensure that
any wires are compatible with existing wiring. For an OSGi framework it is crucial that the uses con-
straints are maintained for the resolution, see [1] Framework Module Layer.

The Resolver service can wire new requirements to existing capabilities but it can never create wires
for an existing requirement from the existing wiring.

If the Resolver service attaches a hosted resource like a fragment, and thereby needs to add new
HostedCapabi l i ty objects to a previously returned list from f indProviders(Requirement) then it
must call the Resolve Context's insertHostedCapabi l i ty(List ,HostedCapabi l i ty) method.

Fragments can be attached from resolved resources or from resources that declare the capabilities re-
turned from f indProviders(Requirement) , that is, Cenv.

This specification does not define the detailed rules and constraints associated with resolving; these
rules are defined in their namespaces. An OSGi Resolver service must support at least all name-
spaces defined in [4] Framework Namespace (Core) except for the following directives:

• mandatory - Mandatory attributes on the osgi .wir ing.* namespaces must be implement-
ed by the Resolve Context. The Resolve Context should not return capabilities from
f indProviders(Requirement) unless the rules of the OSGi mandatory directive are followed.

• singleton - Singletons are not implemented by the Resolver, the Resolve Context must not return
capabilities from f indProviders(Requirement) from conflicting singleton resources.

• effect ive - The Resolve Context decides what requirements are effective in the
isEffect ive(Requirement) method.

A Resolver service must support the uses constraints and any applicable rule defined in the [1]
Framework Module Layer for the osgi .wir ing.* namespaces.

The Resolver must return a delta wiring to the existing state (potentially empty) or throw an Excep-
tion. The resolution:

• Must contain all mandatory resources Rm as provided by getMandatoryResources() .
• Must have all resources resolved.
• Must have no wired capabilities that are declared or hosted in resources that are not resolved.
• Should include optional resources R o as provided by getOptionalResources() .

136.3.3 Resolution Exception
If the Resolver cannot find a solution or it runs into problems then it must throw a Resolution Ex-
ception, which is a Runtime Exception.

Resolver Service Specification Version 1.0 Security

OSGi Compendium Release 6 Page 1015

The Resolut ionException provides the getUnresolvedRequirements() method. If the resolution
failed then it is possible that this was caused because it failed to find matches for certain require-
ments. The information in this method can be very helpful to find a solution that will work, howev-
er, there are a number of caveats.

Resolving is an NP-complete problem. For these problems there exists no algorithm that can infer a
solution from the desired outcome. Therefore, the Resolver tries a potential solution and if that solu-
tion does not match the constraints it will backtrack and attempt another solution. An unavoidable
aspect of such solutions is that it is impossible to pin-point a single failure point if the algorithm
fails to find a solution, in general the algorithm gives up after having exhausted its search space.
However, during its search it might have been very close to a solution, for example it only missed a
single requirement, but its final failure missed many requirements.

The implication is that the reported missing requirements neither give a guarantee for a resolution
when satisfied nor indicate that this is the smallest set of missing requirements.

Therefore, getUnresolvedRequirements() is intended for human consumption and not for automat-
ed solutions.

136.4 Security

136.4.1 Resolving
The Resolver service is a pure function that has no state. The Resolve Context maintains the state
and is therefore the actor that requires most permissions. In general, it will require access to the
Wiring API and Repositories.

Since the Resolver requires no external access it does not have to be a trusted service. Resolve Con-
texts that support security must ensure that the callbacks are executed in a privileged block.

136.4.2 Minimum Implementation Permissions

PackagePermission[org.osgi.service.resolver,IMPORT]
ServicePermission[...Resolver, REGISTER]

136.4.3 Minimum Using Permissions

PackagePermission[org.osgi.service.repository,IMPORT]
PackagePermission[org.osgi.service.resolver,IMPORT]
PackagePermission[org.osgi.resource,IMPORT]
PackagePermission[org.osgi.framework.wiring,IMPORT]
PackagePermission[org.osgi.framework.namespaces,IMPORT]
ServicePermission[...Resolver, GET]
... likely needs AdaptPermissions and ServicePermission[...Repository,GET]

136.5 org.osgi.service.resolver

Resolver Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.resolver ; vers ion="[1.0,2.0)"

org.osgi.service.resolver Resolver Service Specification Version 1.0

Page 1016 OSGi Compendium Release 6

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.resolver ; vers ion="[1.0,1.1)"

136.5.1 Summary

• HostedCapabi l i ty - A capability hosted by a resource.
• Resolut ionException - Indicates failure to resolve a set of requirements.
• ResolveContext - A resolve context provides resources, options and constraints to the potential

solution of a resolve operation.
• Resolver - A resolver service resolves the specified resources in the context supplied by the

caller.

136.5.2 public interface HostedCapability
extends Capability
A capability hosted by a resource.

A HostedCapability is a Capability where the getResource() method returns a Resource that hosts
this Capability instead of declaring it. This is necessary for cases where the declaring Resource of a
Capability does not match the runtime state. For example, this is the case for fragments attached to
a host. Most fragment declared capabilities and requirements become hosted by the host resource.
Since a fragment can attach to multiple hosts, a single capability can actually be hosted multiple
times.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

136.5.2.1 public Capability getDeclaredCapability()

□ Return the Capability hosted by the Resource.

Returns The Capability hosted by the Resource.

136.5.2.2 public Resource getResource()

□ Return the Resource that hosts this Capability.

Returns The Resource that hosts this Capability.

136.5.3 public class ResolutionException
extends Exception
Indicates failure to resolve a set of requirements.

If a resolution failure is caused by a missing mandatory dependency a resolver may include any re-
quirements it has considered in the resolution exception. Clients may access this set of dependen-
cies via the getUnresolvedRequirements() method.

Resolver implementations may extend this class to provide extra state information about the reason
for the resolution failure.

136.5.3.1 public ResolutionException(String message,Throwable cause,Collection<Requirement>
unresolvedRequirements)

message The message.

cause The cause of this exception.

unresolve-
dRequirements

The unresolved mandatory requirements from mandatory resources or nul l if no unresolved require-
ments information is provided.

□ Create a Resolut ionException with the specified message, cause and unresolved requirements.

Resolver Service Specification Version 1.0 org.osgi.service.resolver

OSGi Compendium Release 6 Page 1017

136.5.3.2 public ResolutionException(String message)

message The message.

□ Create a Resolut ionException with the specified message.

136.5.3.3 public ResolutionException(Throwable cause)

cause The cause of this exception.

□ Create a Resolut ionException with the specified cause.

136.5.3.4 public Collection<Requirement> getUnresolvedRequirements()

□ Return the unresolved requirements, if any, for this exception.

The unresolved requirements are provided for informational purposes and the specific set of unre-
solved requirements that are provided after a resolve failure is not defined.

Returns A collection of the unresolved requirements for this exception. The returned collection may be emp-
ty if no unresolved requirements information is available.

136.5.4 public abstract class ResolveContext
A resolve context provides resources, options and constraints to the potential solution of a resolve
operation.

Resolve Contexts:

• Specify the mandatory and optional resources to resolve. The mandatory and optional resources
must be consistent and correct. For example, they must not violate the singleton policy of the im-
plementer.

• Provide capabilities that the Resolver can use to satisfy requirements via the
findProviders(Requirement) method

• Constrain solutions via the getWirings() method. A wiring consists of a map of existing re-
sources to wiring.

• Filter requirements that are part of a resolve operation via the isEffective(Requirement).

A resolver may call the methods on the resolve context any number of times during a resolve opera-
tion using any thread. Implementors should ensure that this class is properly thread safe.

Except for insertHostedCapability(List, HostedCapability), the resolve context methods must be
idempotent. This means that resources must have constant capabilities and requirements and the re-
solve context must return a consistent set of capabilities, wires and effective requirements.

Concurrency Thread-safe

136.5.4.1 public ResolveContext()

136.5.4.2 public abstract List<Capability> findProviders(Requirement requirement)

requirement The requirement that a resolver is attempting to satisfy. Must not be nul l .

□ Find Capabilities that match the given Requirement.

The returned list contains Capability objects where the Resource must be the declared Re-
source of the Capability. The Resolver can then add additional HostedCapability objects with the
insertHostedCapability(List, HostedCapability) method when it, for example, attaches fragments.
Those HostedCapability objects will then use the host's Resource which likely differs from the de-
clared Resource of the corresponding Capability.

The returned list is in priority order such that the Capabilities with a lower index have a preference
over those with a higher index. The resolver must use the insertHostedCapability(List, HostedCapa-

org.osgi.service.resolver Resolver Service Specification Version 1.0

Page 1018 OSGi Compendium Release 6

bility) method to add additional Capabilities to maintain priority order. In general, this is necessary
when the Resolver uses Capabilities declared in a Resource but that must originate from an attached
host.

Each returned Capability must match the given Requirement. This means that the filter in the Re-
quirement must match as well as any namespace specific directives. For example, the mandatory at-
tributes for the osgi .wir ing.package namespace.

Returns A list of Capability objects that match the specified requirement.

136.5.4.3 public Collection<Resource> getMandatoryResources()

□ Return the resources that must be resolved for this resolve context.

The default implementation returns an empty collection.

Returns A collection of the resources that must be resolved for this resolve context. May be empty if there
are no mandatory resources. The returned collection may be unmodifiable.

136.5.4.4 public Collection<Resource> getOptionalResources()

□ Return the resources that the resolver should attempt to resolve for this resolve context. Inability to
resolve one of the specified resources will not result in a resolution exception.

The default implementation returns an empty collection.

Returns A collection of the resources that the resolver should attempt to resolve for this resolve context.
May be empty if there are no optional resources. The returned collection may be unmodifiable.

136.5.4.5 public abstract Map<Resource,Wiring> getWirings()

□ Returns the wirings for existing resolved resources.

For example, if this resolve context is for an OSGi framework, then the result would contain all the
currently resolved bundles with each bundle's current wiring.

Multiple calls to this method for this resolve context must return the same result.

Returns The wirings for existing resolved resources. The returned map is unmodifiable.

136.5.4.6 public abstract int insertHostedCapability(List<Capability> capabilities,HostedCapability hostedCapability)

capabilities The list returned from findProviders(Requirement). Must not be nul l .

hostedCapability The HostedCapability to insert in the specified list. Must not be nul l .

□ Add a HostedCapability to the list of capabilities returned from findProviders(Requirement).

This method is used by the Resolver to add Capabilities that are hosted by another Resource to the
list of Capabilities returned from findProviders(Requirement). This function is necessary to allow
fragments to attach to hosts, thereby changing the origin of a Capability. This method must insert
the specified HostedCapability in a place that makes the list maintain the preference order. It must
return the index in the list of the inserted HostedCapability.

Returns The index in the list of the inserted HostedCapability.

136.5.4.7 public abstract boolean isEffective(Requirement requirement)

requirement The Requirement to test. Must not be nul l .

□ Test if a given requirement should be wired in the resolve operation. If this method returns fa lse ,
then the resolver should ignore this requirement during the resolve operation.

The primary use case for this is to test the effect ive directive on the requirement, though implemen-
tations are free to use any effective test.

Returns true if the requirement should be considered as part of the resolve operation.

Resolver Service Specification Version 1.0 References

OSGi Compendium Release 6 Page 1019

136.5.5 public interface Resolver
A resolver service resolves the specified resources in the context supplied by the caller.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

136.5.5.1 public Map<Resource,List<Wire>> resolve(ResolveContext context) throws ResolutionException

context The resolve context for the resolve operation. Must not be nul l .

□ Resolve the specified resolve context and return any new resources and wires to the caller.

The resolver considers two groups of resources:

• Mandatory - any resource in the mandatory group must be resolved. A failure to satisfy any
mandatory requirement for these resources will result in throwing a ResolutionException

• Optional - any resource in the optional group may be resolved. A failure to satisfy a mandatory
requirement for a resource in this group will not fail the overall resolution but no resources or
wires will be returned for that resource.

The resolve method returns the delta between the start state defined by
ResolveContext.getWirings() and the end resolved state. That is, only new resources and wires are
included.

The behavior of the resolver is not defined if the specified resolve context supplies inconsistent in-
formation.

Returns The new resources and wires required to satisfy the specified resolve context. The returned map is
the property of the caller and can be modified by the caller.

Throws Resolut ionException– If the resolution cannot be satisfied.

136.6 References

[1] Framework Module Layer
OSGi Core, Chapter 3 Module Layer

[2] Framework Wiring API (Core)
OSGi Core, Chapter 7 Bundle Wiring API Specification

[3] Framework Resource API (Core)
OSGi Core, Chapter 6 Resource API Specification

[4] Framework Namespace (Core)
OSGi Core, Chapter 8 Framework Namespaces Specification

References Resolver Service Specification Version 1.0

Page 1020 OSGi Compendium Release 6

REST Management Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1021

137 REST Management Service
Specification

Version 1.0

137.1 Introduction
Cloud computing is a continuing trend in the IT industry. Due to its service model which embraces
dynamism as opposed to masking it, OSGi appears to be an ideal base for building scalable and de-
pendable applications for the cloud where changes in the deployment, network topology, and ser-
vice availability are the norm rather than the exception. One of the possible scenarios for OSGi to
be successfully applied to cloud computing is using it in a Platform as a Service (PaaS) spirit. Users
write their bundles and can deploy them to a provided OSGi instance running in the cloud. This,
however, requires the platform provider to expose the OSGi management API to the end user and
make them available through a network protocol. One of the popular approaches in cloud comput-
ing to remote communication is the use of RESTful web services.

Representational State Transfer (REST) is the architectural style of the world wide web. It can be
described as a set of constraints that govern the interactions between the main components of the
Internet. Recently, REST style interaction has gained popularity as a architecture for web services
(RESTful web services), mainly to overcome the perceived complexity and verbosity of SOAP-based
web services. This specification describes a REST interface for framework management, client-side
Java and JavaScript APIs, and an extension mechanism through which other bundles can contribute
their own RESTful management APIs and make them discoverable by clients.

137.1.1 Essentials

• Client-Server - A separation of concern between the entity responsible for the user-interaction
(client) and the other entity (server) responsible for data storage. For instance, in the original
world wide web the browser is the client rendering and presenting the content delivered by one
or more web servers. As a result, web content becomes more portable and content providers
more scalable.

• Stateless - State is entirely kept at the client side. Therefore, every request must contain all state
required for the server to accomplish the transaction and deliver content. The main rationale
behind this design constraint is to again improve the scalability since in a pure stateless design
the server resources are not burdened with maintaining any client state. Another perceived ad-
vantage is that the failure models of stateless interactions is simpler and fault tolerance easier to
achieve.

• Cacheable - Content marked as cacheable can be temporarily stored and used to immediately an-
swer future equivalent requests and improve efficiency and reduce network utilization and ac-
cess latencies. Due to the end-to-end principle, caches can be placed where necessary, e.g., at the
client (forward-proxy), at the server side (backward-proxy), or somewhere in-between for exam-
ple in a content delivery network. Content marked as non-cacheable must be freshly retrieved
with every request even in the presence of caches.

• Layered - Layering introduces natural boundaries to coupling since every layer only accesses the
services provided by the lower layer and provides services to the next higher layer.

Interacting with the REST Management Service REST Management Service Specification Version 1.0

Page 1022 OSGi Compendium Release 6

• Uniform Interface - Generality of component interfaces provides a natural decoupling of imple-
mentation and interface. REST furthermore encourages the separation of identifiable resources
(addressing) and their representation (content delivery).

137.1.2 Entities

• Resource - A resource is an abstract piece of information that can be addressed by a resource iden-
tifier. The mapping of a resource to a concrete set of entities can vary over time.

• Representation - A representation is a sequence of bytes plus associated meta-data that describe the
state of a resource. The data format of a representation is called the media-type. Every concrete
representation of a resource is just one of arbitrarily many possible representations. The selec-
tion of a concrete representation of a resource can be made according to the media types support-
ed by both the client and the server.

• REST Management Service - The management service exposes a REST API for remotely managing
an OSGi framework through the network in a lightweight and portable fashion.

• Client - The client is a machine using the management service by issuing REST requests through
the network. It can do so either directly or indirectly, i.e., through client-side libraries using the
REST calls internally.

137.1.3 Synopsis
The manageable entities of an OSGi framework are mapped to resources accessible through re-
source identifiers. These identifiers are relative to the (usually externally accessible) root URL of the
management service. Clients can either discover this root URL or receive it through configuration.
Subsequently, a client is able to introspect the state of the framework and perform management op-
erations.

The internal state of a framework resource is expressed and transmitted as a representation. The for-
mat of the representation is subject to a mutual agreement between client and management service
regarding media types commonly supported by both endpoints. This specification describes two
representation formats: JSON and XML.

137.2 Interacting with the REST Management Service
The REST Management Service is not a traditional OSGi service and it does not appear in the service
registry. Its purpose is to expose a management interface to clients which can perform operations
on the framework through a network connection. Therefore, it is ideally suited for situations where
the user of an OSGi framework does not have direct access to the machine it is running on, a typical
situation in Infrastructure as a Service (IaaS) or Platform as a Service (PaaS). However, even in oth-
er domains having a lightweight and easily accessible management solution can be of benefit, e.g.,
for embedded devices. The advantage of REST is that it uses HTTP and therefore does usually not in-
terfere with firewalls. Furthermore, the REST format is easily embeddable into client-side scripting
technologies like JavaScript and can be consumed in web browsers.

Much of the value of the REST Management Service lies in client-side libraries which can use the
REST protocol and interact with the OSGi framework through the Management Service. Therefore,
this specification contains API for two clients, a Java Client API and a JavaScript Client API.

137.2.1 Resource Identifier Overview
The REST Management Service comprises of a set of resources that can be retrieved and in some cas-
es also modified through REST requests. These resources need to be made available under well-de-
fined paths so that clients can interact with them. As the initial entry point a client receives a URL
to the REST Management Service. This can be done, e.g., as part of the creation of a cloud-based OSGi

REST Management Service Specification Version 1.0 Interacting with the REST Management Service

OSGi Compendium Release 6 Page 1023

framework, and the precise mechanism would be proprietary to the cloud platform used. Relative to
this URL the client can access the resources through the following resource identifiers:

framework
framework/state
framework/startlevel
framework/bundles

framework/bundles/representations

framework/bundle/{bundleid}
framework/bundle/{bundleid}/state
framework/bundle/{bundleid}/startlevel
framework/bundle/{bundleid}/header
framework/services

framework/services/representations

framework/service/{serviceid}

f ramework/bundle/0/state is an alias for f ramework/state

Extensions to the REST Management Service can be discovered by visiting the Extensions Resource
at:

extensions

For more details on the extension mechanism see Extending the REST Management Service on page
1035

137.2.2 Filtering Results
The bundles , bundles/representat ions , services , and services/representat ions resources allow the
use of a query parameter which specifies a filter to restrict the result set. The filter expression fol-
lows the Core Specifications Framework Filter Syntax; see [1] Framework Filter Syntax.

Filters on services are matched against the service attributes. The query parameter is of the form:

f ramework/services?fi l ter=ldap-fi l ter

Filters on bundles are matched against the attributes of capabilities in the respective namespaces.
Filters on bundles have the form:

f ramework/bundles?namespace1=ldap-fi l ter1&namespace2=ldap-fi l ter2&.. .

If multiple capabilities for a given namespace are present, then a filter succeeds when one of these
capabilities matches. When multiple filter expressions across namespaces are given, these are com-
bined with the and operator.

137.2.3 Content Type Matching
Resources can present themselves through different representation variants. An implementation of
this specification must support at least the JSON representation and the XML representation of re-
sources. Clients can support a subset of representations. Matching the clients capabilities to under-
stand certain representation formats with the servers supported formats follows the typical HTTP
pattern of content negotiation and requires the client to set corresponding HTTP Accept headers for
supported formats in the form of their media types. This specification describes the format and me-
dia types for representations in JSON and XML format in Representations on page 1029.

Implementations of the REST Management Service offering different variants of representations
must return the best matching variant based on the HTTP accept header. In addition, they must re-

Resources REST Management Service Specification Version 1.0

Page 1024 OSGi Compendium Release 6

spect the file extensions defined for the different media types as specified in the respective IETF RFC
(e.g., ".xml" as specified in IETF RFC 3032 and ".json" as specified in IETF RFC 4627). If a file extension
is appended to the resource, an implementation must return the variant mandated by the file exten-
sion provided that it supports this content type.

137.3 Resources
The framework and its state is mapped to a set of different resources. Each resource is accessible
through a resource identifier, as summarized in Resource Identifier Overview on page 1022.

137.3.1 Framework Startlevel Resource
f ramework/start level

The startlevel resource represents the active start level of the framework. It supports the GET and
PUT requests.

137.3.1.1 GET

The GET request retrieves a Framework Startlevel Representation from the REST management service.
The request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a startlevel rep-
resentation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.3.1.2 PUT

The PUT request sets the target framework startlevel. The body of the request needs to be a Frame-
work Startlevel Representation. The request can return the following status codes:

• 204 (NO CONTENT): the request was received and valid. The framework will asynchronously
start to adjust the framework startlevel until the target startlevel has been reached.

• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the
REST management service.

• 400 (BAD REQUEST): the REST management service received an IllegalArgumentException
when trying to adjust the framework startlevel, e.g., because the requested startlevel was zero or
negative.

137.3.2 Bundles Resource
f ramework/bundles

The bundles resource represents the list of all bundles installed on the managed framework. It sup-
ports the GET request and two syntactically different forms of POST requests which are used to in-
stall new bundles to the framework.

Results for this resource can be filtered as described in Filtering Results on page 1023.

137.3.2.1 GET

The GET request retrieves a Bundle List Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

REST Management Service Specification Version 1.0 Resources

OSGi Compendium Release 6 Page 1025

137.3.2.2 POST with Location String

The POST request installs a new bundle to the managed framework and thereby logically appends
it to the bundles resource. The new bundle to be installed is referenced by a location string which is
passed as the body of the request. In order to disambiguate the request from the other form of POST,
the content type must be set to text/plain. In practice, the location string is usually a URL. Since the
framework will use the location retrieving the physical bundle, it needs to be accessible from the re-
motely managed framework and not necessarily from the managing client.

The management service implementation must check if the result of the install request matches the
requested bundle since the OSGi framework will return an existing bundle object as the return val-
ue of an install call if there was already one with the same location string installed. One way of do-
ing it is comparing the last modification timestamp. A detected collision is indicated to the request-
ing clients through an error code 409.

The body of the response is Bundle Representation of the newly installed bundle. The following status
codes can be returned:

• 200 (OK): the bundle has been successfully installed and the body of the response contains the
URI.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
install. The body of the message is a Bundle Exception Representation describing the reason why the
installation did not succeed.

• 409 (CONFLICT): there is already a bundle installed with the same location string.

137.3.2.3 POST with Bundle

This variant of the POST request uploads the bundle as the body of the request. The media type of
the request should be set to application/vnd.osgi.bundle which must be supported by all REST man-
agement services. Implementations are free to accept other media types for this request with the ex-
ception of text/plain. For instance, they can opt to additionally support application/zip or applica-
tion/x-jar.

Clients should use the HTTP Content-Location field to set a bundle location. If no content location
is given, REST management service implementations must generate a unique location string in or-
der to avoid unintended collisions between unrelated bundles.

The body of the response is Bundle Representation of the newly installed bundle. The following status
codes can be returned:

• 200 (OK): the bundle has been successfully installed and the body of the response contains the
URI.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
install. The body of the message is a Bundle Exception Representation describing the reason why the
installation did not succeed.

• 409 (CONFLICT): there is already a bundle installed with the same location string.

137.3.3 Bundles Representations Resource
f ramework/bundles/representat ions

137.3.3.1 GET of the Representations

The bundles resource returns a list of the URIs of all bundles installed on the framework. For clients
interested in the details of multiple bundles there is also the possibility to retrieve the bundle repre-
sentation of each installed bundle with a single request through the bundles/representations resource.

The body of the response is a Bundle Representations List Representation. The request can return the fol-
lowing status codes:

Results for this resource can be filtered as described in Filtering Results on page 1023.

Resources REST Management Service Specification Version 1.0

Page 1026 OSGi Compendium Release 6

• 200 (OK): the request has been served successfully and the body of the response is a bundle list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.3.4 Bundle Resource
f ramework/bundle/{bundleid}

The bundle resource represents a single, distinct bundle in the system. Hence, it has to be qualified
by a bundle id. The resource supports the GET, two variants of PUT, and the DELETE requests.

137.3.4.1 GET

The GET request retrieves a Bundle Representation from the REST management service. The request
can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle repre-
sentation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.4.2 PUT with Location String

The PUT request updates the bundle with a new version, referenced by a location string which is
passed as the body of the request. In order to disambiguate the request from the other form of PUT,
the content type must be set to text/plain. The same rationale applies as for POST with Location
String and POST with Bundle on page 1025, if a location string is given it must point to a location
reachable by the managed framework. If no location string is passed as the body of the request, the
framework will perform an update based on the existing bundle's location string.

The body of the response is Bundle Representation of the updated bundle. The following status codes
can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has issued the up-
date.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
update. The body of the message is a Bundle Exception Representation describing the reason why
the update did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

137.3.4.3 PUT with Bundle

The PUT request updates the bundle with a new version, uploaded as the body of the request. The
media type of the request should be set to application/vnd.osgi.bundle which must be supported
by all REST management services. Implementations are free to accept other media types for this re-
quest with the exception of text/plain. For instance, they can opt to additionally support applica-
tion/zip or application/x-jar.

The body of the response is Bundle Representation of the updated bundle. The following status codes
can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has issued the up-
date.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
update. The body of the message is a Bundle Exception Representation describing the reason why
the update did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

REST Management Service Specification Version 1.0 Resources

OSGi Compendium Release 6 Page 1027

137.3.4.4 DELETE

The DELETE request uninstalls the bundle from the framework.

The body of the response is Bundle Representation of the uninstalled bundle, where the bundle state
will be UNINSTALLED. The following status codes can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has uninstalled the
bundle.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
uninstall. The body of the message is a Bundle Exception Representation describing the reason why
the uninstallation did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

137.3.5 Bundle State Resource
f ramework/bundle/{bundleid}/state

The bundle state resource represents the internal state of an installed bundle qualified through its
bundle id. It supports the GET and PUT requests.

137.3.5.1 GET

The GET request retrieves a Bundle State Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle state
representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.5.2 PUT

The PUT request sets the target state for the given bundle. This can, e.g., be state=32 for transitioning
the bundle to started, or state=4 for stopping the bundle and transitioning it to resolved. The body
of the request needs to be a Bundle State Representation. Not all state transitions are valid. The body
of the response is the new Bundle State Representation. The request can return the following status
codes:

• 200 (OK): the request was received and valid. The framework has performed a state change and
the new bundle state is contained in the body.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
perform the state transition. The body of the message is a Bundle Exception Representation describ-
ing the reason why the operation did not succeed.

• 402 (PRECONDITION FAILED): the requested target state is not reachable from the current bun-
dle state or is not a target state. An example such state is the STOPPING state.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the

REST management service.

137.3.6 Bundle Header Resource
f ramework/bundle/{bundleid}/header

The bundle header resource represents manifest header of a bundle which is qualified by its bundle
id. It can only be read through a GET request.

Resources REST Management Service Specification Version 1.0

Page 1028 OSGi Compendium Release 6

137.3.6.1 GET

The GET request retrieves a Bundle Header Representation from the REST management service. The
raw header value is used unless an Accept-Language header is set on the HTTP request. If multiple
accepted languages are set only the first is used to localize the header. The request can return the fol-
lowing status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle head-
er representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.7 Bundle Startlevel Resource
f ramework/bundle/{bundleid}/start level

The bundle startlevel resource represents the start level of the bundle qualified by its bundle id. It
supports the GET and PUT requests.

137.3.7.1 GET

The GET request retrieves a Bundle Startlevel Representation from the REST management service. The
request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle
startlevel representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.7.2 PUT

The PUT request sets the target bundle startlevel. The body of the request needs to be a Bundle
Startlevel Representation, however only the startLevel property is used. The request can return the fol-
lowing status codes:

• 200 (OK): the request was received and valid. The REST management service has changed the
bundle startlevel according to the target value. The body of the response is the new bundle
startlevel representation.

• 400 (BAD REQUEST): either the target startlevel state involved invalid values, e.g., a startlevel
smaller or equal to zero and the REST management service got an IllegalArgumentException, or
the REST management service received a BundleException when trying to perform the startlevel
change. In the latter case, the body of the message is a Bundle Exception Representation describing
the reason why the operation did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the

REST management service.

137.3.8 Services Resource
f ramework/services

The services resource represents the set of all services available on the framework, optionally con-
strained by a filter expression. It is read-only and therefore only supports the GET request.

Results for this resource can be filtered as described in Filtering Results on page 1023.

REST Management Service Specification Version 1.0 Representations

OSGi Compendium Release 6 Page 1029

137.3.8.1 GET

The GET request retrieves a Service List Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a service list
representation.

• 400 (BAD REQUEST): the provided filter expression was not valid.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.9 Services Representations Resource
f ramework/services/representat ions

137.3.9.1 GET of the Representations

The services resource returns a list of the URIs of all services registered on the framework. For
clients interested in the details of multiple services there is also the possibility to retrieve the service
representation of each available service with a single request through the services/representations re-
source. The body of the response is a Service Representations List Representation from the REST man-
agement service. The request can return the following status codes:

Results for this resource can be filtered as described in Filtering Results on page 1023.

• 200 (OK): the request has been served successfully and the body of the response is a service list
representation.

• 400 (BAD REQUEST): the provided filter expression was not valid.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.10 Service Resource
f ramework/service/{serviceid}

The service resource represents a single, distinct service in the framework. Hence, it has to be quali-
fied by a service id. Services can only be read through the REST Management Service and therefore
only support the GET request.

137.3.10.1 GET

The GET request retrieves a Service Representation . The request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a service repre-
sentation.

• 404 (NOT FOUND): there is not service with the given service id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.4 Representations

137.4.1 Bundle Representation

137.4.1.1 JSON

Content-Type: appl icat ion/org.osgi .bundle+json

{

Representations REST Management Service Specification Version 1.0

Page 1030 OSGi Compendium Release 6

 "id":0,
 "lastModified":1314999275542,
 "state":32,
 "symbolicName":"org.eclipse.osgi",
 "version":"3.7.0.v20110613"
}

137.4.1.2 XML

Content-Type: appl icat ion/org.osgi .bundle+xml

<bundle>
 <id>0</id>
 <lastModified>1314999275542</lastModified>
 <state>32</state>
 <symbolicName>org.eclipse.osgi</symbolicName>
 <version>3.7.0.v20110613</version>
</bundle>

137.4.2 Bundles Representations

137.4.2.1 Bundle List Representation

137.4.2.1.1 JSON

Content-Type: appl icat ion/org.osgi .bundles+json

{
 [bundleURI, bundleURI, ..., bundleURI]
}

137.4.2.1.2 XML

Content-Type: appl icat ion/org.osgi .bundles+xml

<bundles>
 <uri>bundleURI</uri>
 <uri>bundleURI</uri>
 ...
 <uri>bundleURI</uri>
</bundles>

137.4.2.2 Bundle Representations List Representation

137.4.2.2.1 JSON

Content-Type: appl icat ion/org.osgi .bundles.representat ions+json

{
 [BUNDLE REPRESENTATION, BUNDLE REPRESENTATION, ..., BUNDLE REPRESENTATION]
}

137.4.2.2.2 XML

Content-Type: appl icat ion/org.osgi .bundles.representat ions+xml

<bundles>
 BUNDLE REPRESENTATION
 BUNDLE REPRESENTATION
 ...
 BUNDLE REPRESENTATION

REST Management Service Specification Version 1.0 Representations

OSGi Compendium Release 6 Page 1031

</bundles>

137.4.3 Bundle State Representation

137.4.3.1 JSON

Content-Type: appl icat ion/org.osgi .bundlestate+json

{
 "state":32
 "options":1
}

The options are used in start or stop calls. Valid options include, e.g., Bundle.START_TRANSIENT
and Bundle.START_ACTIVATION_POLICY.

137.4.3.2 XML

Content-Type: appl icat ion/org.osgi .bundlestate+xml

<bundleState>
 <state>32</state>
 <options>1</options>
</bundleState>

137.4.4 Bundle Header Representation

137.4.4.1 JSON

Content-Type: appl icat ion/org.osgi .bundleheader+json

{
 key:value,
 key:value,
 ...
 key:value
}

137.4.4.2 XML

Content-Type: appl icat ion/org.osgi .bundleheader+xml

<bundleHeader>
 <entry key="key" value="value"/>
 <entry key="key" value="value"/>
 ...
 <entry key="key" value="value"/>
<bundleHeader>

137.4.5 Framework Startlevel Representation

137.4.5.1 JSON

Content-Type: appl icat ion/org.osgi .f rameworkstart level+json

{
 "startLevel":6,
 "initialBundleStartLevel":4
}

Representations REST Management Service Specification Version 1.0

Page 1032 OSGi Compendium Release 6

137.4.5.2 XML

Content-Type: appl icat ion/org.osgi .f rameworkstart level+xml

<frameworkStartLevel>
 <startLevel>6</startLevel>
 <initialBundleStartLevel>4</initialBundleStartLevel>
</frameworkStartLevel>

137.4.6 Bundle Startlevel Representation

137.4.6.1 JSON

Content-Type: appl icat ion/org.osgi .bundlestart level+json

{
 "startLevel":6

 "activationPolicyUsed":true
 "persistentlyStarted":false
}

137.4.6.2 XML

Content-Type: appl icat ion/org.osgi .bundlestart level+xml

<bundleStartLevel>
 <startLevel>6</startLevel>

 <activationPolicyUsed>true</actiovationPolicyUsed>
 <persistentlyStarted>false</persistentlyStarted>
</bundleStartLevel>

137.4.7 Service Representation

137.4.7.1 JSON

Content-Type: appl icat ion/org.osgi .service+json

{
 "id":10,
 "properties":
 {
 "prop1":"val1",
 "prop2":2.82,
 ...
 "prop3":true
 },
 "bundle":bundleURI,
 "usingBundles":[bundleURI, bundleURI, ... bundleURI]
}

Note: service properties are converted to JSON-supported data types where possible: "str ing" , number
or boolean (true|false) . If there is no conversion to JSON data types is possible the toStr ing() result
is used as a string value.

137.4.7.2 XML

Content-Type: appl icat ion/org.osgi .service+xml

<service>

REST Management Service Specification Version 1.0 Representations

OSGi Compendium Release 6 Page 1033

 <id>10</id>
 <properties>
 <property name="prop1" value="val1"/>
 <property name="prop2" type="Float" value="2.82"/>
 ...
 <property name="prop3" type="Boolean" value="true"/>
 </properties>
 <bundle>bundleURI</bundle>
 <usingBundles>
 <bundle>bundleURI</bundle>
 <bundle>bundleURI</bundle>
 ...
 <bundle>bundleURI</bundle>
 </usingBundles>
</service>

Note: service properties are represented using the same method as used for the property XML ele-
ment in the Declarative Services specification, see Property and Properties Elements on page 309. Ser-
vice properties that cannot be represented using the supported data types, will be represented as
String values obtained via the toStr ing() method.

137.4.8 Services Representations

137.4.8.1 Service List Representation

137.4.8.1.1 JSON

Content-Type: appl icat ion/org.osgi .services+json

{
 [serviceURI, serviceURI, ..., serviceURI]
}

137.4.8.1.2 XML

Content-Type: appl icat ion/org.osgi .services+xml

<services>
 <uri>serviceURI</uri>
 <uri>serviceURI</uri>
 ...
 <uri>serviceURI</uri>
</services>

137.4.8.2 Service Representations List Representation

137.4.8.2.1 JSON

Content-Type: org.osgi .services.representat ions+json

{
 [SERVICE REPRESENTATION, SERVICE REPRESENTATION, ..., SERVICE REPRESENTATION]
}

137.4.8.2.2 XML

Content-Type: appl icat ion/org.osgi .services.representat ions+xml

<services>
 SERVICE REPRESENTATION

Clients REST Management Service Specification Version 1.0

Page 1034 OSGi Compendium Release 6

 SERVICE REPRESENTATION
 ...
 SERVICE REPRESENTATION
</services>

137.4.9 Bundle Exception Representation

137.4.9.1 JSON

Content-Type: appl icat ion/org.osgi .bundleexception+json

{
 "typecode": 5,
 "message": "BundleException: Bundle activation error"
}

137.4.9.2 XML

Content-Type: appl icat ion/org.osgi .bundleexception+xml

<bundleexception>
 <typecode>5</typecode>
 <message>BundleException: Bundle activation error</message>
</bundleexception>

137.5 Clients
The REST service can be used by a variety of clients directly. In addition this specification describes
Client APIs built over this REST protocol to facilitate use from Java and JavaScript clients.

137.5.1 Java Client
The Java Client provides a Java API over the REST API providing a convenient and portable way to
use this API from a Java application.

To use the Java Client, obtain the RestCl ientFactory service. Create a client by providing the root
URL of the REST service, for example:

RestClientFactory restClientFactory = ... // from Service Registry
RestClient restClient = restClientFactory.createRestClient(
 new URI("http://localhost:8080/restendpoint"));

// Now we can start interacting
Collection<String> bundles = restClient.getBundlePaths();
BundleDTO newBundle = restClient.installBundle(bundleLocation, bundleStream);
restClient.startBundle(newBundle.id);

The more details on the Java Client can be found in the org.osgi .service.rest .c l ient API documenta-
tion section.

137.5.2 JavaScript Client
This specification also describes a JavaScript client to the REST Management service. This client
makes it easy to manage an OSGi framework from any JavaScript environment, including Web
Browsers.

The JavaScript client follows the promises programming style; the request is made asynchronously
and a success() or fa i lure() callback is made when the response arrives.

REST Management Service Specification Version 1.0 Extending the REST Management Service

OSGi Compendium Release 6 Page 1035

To use the JavaScript client create an instance of OSGiRestCl ient providing the root URL of the REST
service.

var client = new OSGiRestClient('http://localhost:8080/restendpoint');
client.installBundle({
 success : function(res) {
 // Start the bundle once the install has finished
 client.startBundle(res.id);
 },
 failure : function(httpCode, res) {
 // handle failure
 }
});

More details on the JavaScript Client can be found in the JavaScr ipt Cl ient API API documentation
section.

137.6 Extending the REST Management Service
This specification describes a REST-based management interface for Core Framework functionali-
ty. Other services in the framework might also benefit from management access through REST. This
can involve services specified by the OSGi Alliance as part of the Core Framework, Compendium, or
Enterprise Specifications but also application-specific functionality provided by the developer. It is
desirable to expose such management services as extensions of the REST Management Service.

This REST service can be implemented by using various technologies such as Java Servlets, Restlet,
JAX-RS, and others. Therefore, it might not always be possible to integrate extensions at the imple-
mentation level because they might use other underlying technologies to implement their REST in-
terface. Defining a format for delegating requests between the REST Management Service and exten-
sions would furthermore necessarily expose implementation details and is therefore not feasible ei-
ther. As a consequence, this specification only describes how to logically integrate extensions with
the REST Management Service. Implementations of this specification might offer mechanisms for
tighter integration for the case that extensions are developed using the same underlying technology.

The main purpose of the extension mechanism is to advertise extensions to the core REST imple-
mentation, which makes them discoverable for clients. This mechanism can be used to check if a
REST interface exists for a specific service. This is done through the Extensions Resource which con-
tains a description and a path for every extension currently available. Implementations that want to
contribute their extensions to the REST Management Service can do so by registering the RestApiEx-
tension service using the [4] Whiteboard Pattern. The extension interface is only a marker and the
relevant information is exposed through the NAME , URI_PATH and optionally SERVICE properties.
Note that it is the responsibility of the extension to ensure that the endpoint announced via the
RestApiExtension service is actually present. The Whiteboard service does not realize the extension
endpoint; it purely announces it to the main REST implementation for inclusion in the Extensions
Resource.

In order to be discoverable REST interface extensions to OSGi Core, Compendium, or Enterprise ser-
vices must use their canonical package name as advertised name. E.g., the name of the REST inter-
face for the User Admin must be org.osgi .service.useradmin . This way, a client is able to check if
there is a given extension available on a host. User-defined extensions should use the package name
of the service they provide management capabilities for.

137.6.1 Extensions Resource
extensions

XML Schema REST Management Service Specification Version 1.0

Page 1036 OSGi Compendium Release 6

The extensions resource enumerates all extensions currently registered through the Whiteboard
Pattern. It is read-only and therefore only supports the GET request.

137.6.1.1 GET

The GET request retrieves a Extensions Representation . The request can return the following status
codes:

• 200 (OK): the request has been served successfully and the body of the response is a extension list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.6.2 Extensions Representation

137.6.2.1 JSON

Content-Type: appl icat ion/org.osgi .extensions+json

{
 [{ "name" : "org.osgi.service.event", "path" : "contributions/eventadmin",
 "service" : 12 }, ...]
}

137.6.2.2 XML

Content-Type: appl icat ion/org.osgi .extensions+xml

<extensions>
 <extension>
 <name>org.osgi.service.event</name>
 <path>contributions/eventadmin</path>
 <service>12</service>
 </extension>
</extensions>

137.7 XML Schema
The namespace for XML representations is:

http://www.osgi.org/xmlns/rest/v1.0.0

The recommended prefix for this namespace is rest .

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:rest="http://www.osgi.org/xmlns/rest/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/rest/v1.0.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.0.0">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for
 XML representations used by
 the REST Management Service
 Specification.
 </documentation>
 </annotation>

 <element name="bundle" type="rest:Tbundle">
 <annotation>
 <documentation xml:lang="en">

REST Management Service Specification Version 1.0 XML Schema

OSGi Compendium Release 6 Page 1037

 Representation for the
 application/org.osgi.bundle+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tbundle">
 <all>
 <element name="id" type="long" />
 <element name="lastModified" type="long" />
 <element name="state" type="integer" />
 <element name="symbolicName" type="string" />
 <element name="version" type="string" />
 </all>
 </complexType>

 <element name="bundles" type="rest:Tbundles">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles+xml and
 application/org.osgi.bundles.representations+xml content
 types.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tbundles">
 <choice>
 <element name="uri" type="string" minOccurs="0"
 maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles+xml content type.
 </documentation>
 </annotation>
 </element>
 <element name="bundle" type="rest:Tbundle"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles.representations+xml
 content type.
 </documentation>
 </annotation>
 </element>
 </choice>
 </complexType>

 <element name="bundleState" type="rest:TbundleState">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundlestate+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleState">
 <all>
 <element name="state" type="integer" />
 <element name="options" type="integer" />
 </all>
 </complexType>

 <element name="bundleHeader" type="rest:TbundleHeader">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundleheader+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleHeader">
 <sequence>
 <element name="entry" minOccurs="0" maxOccurs="unbounded">

XML Schema REST Management Service Specification Version 1.0

Page 1038 OSGi Compendium Release 6

 <complexType>
 <attribute name="key" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 </complexType>
 </element>
 </sequence>
 </complexType>

 <element name="frameworkStartLevel" type="rest:TframeworkStartLevel">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.frameworkstartlevel+xml content
 type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TframeworkStartLevel">
 <all>
 <element name="startLevel" type="integer" />
 <element name="initialBundleStartLevel" type="integer" />
 </all>
 </complexType>

 <element name="bundleStartLevel" type="rest:TbundleStartLevel">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundlestartlevel+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleStartLevel">
 <all>
 <element name="startLevel" type="integer" />
 <element name="activationPolicyUsed" type="boolean" />
 <element name="persistentlyStarted" type="boolean" />
 </all>
 </complexType>

 <element name="service" type="rest:Tservice">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.service+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tservice">
 <all>
 <element name="id" type="long" />
 <element name="properties">
 <complexType>
 <sequence>
 <element name="property" minOccurs="0"
 maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="name"
 type="string" use="required" />
 <attribute name="value"
 type="string" use="optional" />
 <attribute name="type"
 default="String" use="optional">
 <simpleType>
 <restriction
 base="string">
 <enumeration
 value="String" />
 <enumeration
 value="Long" />
 <enumeration
 value="Double" />
 <enumeration

REST Management Service Specification Version 1.0 XML Schema

OSGi Compendium Release 6 Page 1039

 value="Float" />
 <enumeration
 value="Integer" />
 <enumeration
 value="Byte" />
 <enumeration
 value="Character" />
 <enumeration
 value="Boolean" />
 <enumeration
 value="Short" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="bundle" type="string" />
 <element name="usingBundles">
 <complexType>
 <sequence>
 <element name="bundle" type="string"
 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </element>
 </all>
 </complexType>

 <element name="services" type="rest:Tservices">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services+xml and
 application/org.osgi.services.representations+xml
 content types.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tservices">
 <choice>
 <element name="uri" type="string" minOccurs="0"
 maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services+xml content type.
 </documentation>
 </annotation>
 </element>
 <element name="service" type="rest:Tservice"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services.representations+xml
 content type.
 </documentation>
 </annotation>
 </element>
 </choice>
 </complexType>

 <element name="bundleexception" type="rest:Tbundleexception">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundleexception+xml content type.
 </documentation>
 </annotation>
 </element>

Capabilities REST Management Service Specification Version 1.0

Page 1040 OSGi Compendium Release 6

 <complexType name="Tbundleexception">
 <all>
 <element name="typecode" type="integer" />
 <element name="message" type="string" />
 </all>
 </complexType>

 <element name="extensions" type="rest:Textensions">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.extensions+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Textensions">
 <sequence>
 <element name="extension" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <all>
 <element name="name" type="string" />
 <element name="path" type="string" />
 <element name="service" type="long" minOccurs="0" />
 </all>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

The schema is also available in digital form from [3] OSGi XML Schemas.

137.8 Capabilities

137.8.1 osgi.implementation Capability
An implementation of this specification must provide the osgi . implementation capability with
name osgi . rest . This capability can be used by provisioning tools and during resolution to ensure
that a REST Management implementation is present to handle REST requests defined in this specifi-
cation. The capability must also declare a uses constraint on the org.osgi .service.rest package:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.rest";
 uses:="org.osgi.service.rest";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.implementation Namespace on page 997.

137.8.2 osgi.service Capability
A bundle providing the RestCl ientFactory service as described by this specification must inform
tools about this service by providing the osgi .service capability representing this service. This capa-
bility must also declare a uses constraint for the org.osgi .service.rest .c l ient package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.rest.client.RestClientFactory";
 uses:="org.osgi.service.rest.client"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

REST Management Service Specification Version 1.0 Security

OSGi Compendium Release 6 Page 1041

137.9 Security
Like any externally visible management interface, the REST interface exposes privileged operations
and hence requires access control. Since REST builds upon the HTTP(s) protocol, authentication
mechanisms and encryption can be applied the same way as usually done for web servers: they can
be layered below the REST protocol. E.g., confidentiality of the transmitted commands can be en-
sured by using HTTPS as the underlying transport. Authentication can be added by requiring, e.g.,
basic authentication prior to accepting a REST command. The REST interface should only be imple-
mented by a trusted bundle. Implementations of this specification require all Admin Permissions
and all Service Permissions.

137.10 org.osgi.service.rest

Rest Service Package Version 1.0.

137.10.1 Summary

• RestApiExtension - Marker interface for registering extensions to the Rest API service.

137.10.2 public interface RestApiExtension
Marker interface for registering extensions to the Rest API service.

The REST service provides a RESTful interface to clients that need to manage an OSGi framework
through a network connection. Other components running on the same framework can contribute
their own specific REST interface and make it available and discoverable by registering this marker
service using the Whiteboard pattern.

Integration of third-party REST interfaces with the framework REST service on the implementation
level might not always be possible since it requires knowledge about the underlying implementa-
tion and an extension mechanism on that level. Specific technologies such as servlets might sup-
port this but the REST service could as well be implemented without the use of a supporting ab-
straction layer and not offer extensibility.

Using this marker service, the REST service includes the advertised service in the Extensions Re-
source, allowing clients to discover it and use the extension's functionality.

137.10.2.1 public static final String NAME = "org.osgi.rest.name"

This service property describes the package name of the technology manageable by this REST API
extension. Services specified in OSGi specifications must use their canonical package name as the
name. Third-party technologies should also use their package names. The type of this property is
java. lang.Str ing and the property is mandatory.

137.10.2.2 public static final String SERVICE = "org.osgi.rest.service"

This service property refers to the id of the service the REST API extension provides management
capabilities for. This can be useful if more than one service of a given type is present in the frame-
work. For example if more than one Http Service is available this property is used to associate a
REST extension managing the Http Service with a specific service instance. The type of the property
is java. lang.Long and the property is optional; if the REST extension is not directly associated with a
service in the service registry, the property should not be set.

137.10.2.3 public static final String URI_PATH = "org.osgi.rest.uri.path"

This service property describes a URI to the REST extension on this local machine. It is either an ful-
ly qualified URI with a different port if no integration with the framework REST service is possible

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 1042 OSGi Compendium Release 6

or a relative URI implicitly using the same port if integration is possible. The type of this property is
java. lang.Str ing and the property is mandatory.

137.11 org.osgi.service.rest.client

Rest Service Client Package Version 1.0.

137.11.1 Summary

• RestCl ient - A Java client API for a REST service endpoint.
• RestCl ientFactory - Factory to construct new REST client instances.

137.11.2 public interface RestClient
A Java client API for a REST service endpoint.

Provides a Java client API for accessing and managing a remote OSGi framework through the REST
API. Implementations of this interface will usually take the URL to the remote REST Management
Service instance as an argument in their constructor. Further arguments might be needed, for exam-
ple, if the cloud provider requires URL signing.

Provider Type Consumers of this API must not implement this type

137.11.2.1 public BundleDTO getBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Retrieve the bundle representation for a given bundle Id.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.2 public BundleDTO getBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Retrieve the bundle representation for a given bundle path.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.3 public Map<String,String> getBundleHeaders(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the header for a bundle given by its bundle Id.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.4 public Map<String,String> getBundleHeaders(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the header for a bundle given by its URI path.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.5 public Collection<String> getBundlePaths() throws Exception

□ Get the bundles currently installed on the managed framework.

REST Management Service Specification Version 1.0 org.osgi.service.rest.client

OSGi Compendium Release 6 Page 1043

Returns Returns a collection of the bundle URIs in the form of Strings. The URIs are relative to the REST API
root URL and can be used to retrieve bundle representations.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.6 public Collection<BundleDTO> getBundles() throws Exception

□ Get the bundle representations for all bundles currently installed in the managed framework.

Returns Returns a collection of BundleDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.7 public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the start level for a bundle given by its bundle Id.

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.8 public BundleStartLevelDTO getBundleStartLevel(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the start level for a bundle given by its URI path.

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.9 public int getBundleState(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the state for a given bundle Id.

Returns Returns the current bundle state as defined in (@link org.osgi.framework.Bundle}.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.10 public int getBundleState(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the state for a given bundle path.

Returns Returns the current bundle state as defined in (@link org.osgi.framework.Bundle}.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.11 public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception

□ Retrieves the current framework start level.

Returns Returns the current framework start level in the form of a FrameworkStartLevelDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.12 public Collection<String> getServicePaths() throws Exception

□ Gets a collection of URI paths to all installed services.

Returns Returns a collection of URI paths to the installed services.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.13 public Collection<String> getServicePaths(String filter) throws Exception

filter Passes a filter to restrict the result set.

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 1044 OSGi Compendium Release 6

□ Gets a collection of URI paths to all installed services.

Returns Returns a collection of URI paths to the installed services.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.14 public ServiceReferenceDTO getServiceReference(long id) throws Exception

id Addresses the service by its identifier.

□ Get the service representation for a service given by its service Id.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.15 public ServiceReferenceDTO getServiceReference(String servicePath) throws Exception

servicePath Addresses the service by its URI path.

□ Get the service representation for a service given by its URI path.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.16 public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.17 public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception

filter Passes a filter to restrict the result set.

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.18 public BundleDTO installBundle(String location) throws Exception

location Passes the location string to retrieve the bundle content from.

□ Install a new bundle given by an externally reachable location string, typically describing a URL.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.19 public BundleDTO installBundle(String location,InputStream in) throws Exception

location Passes the location string to be used to install the new bundle.

in Passes the input stream to a bundle.

□ Install a new bundle given by an InputStream to a bundle content.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.20 public void setBundleStartLevel(long id,int startLevel) throws Exception

id Addresses the bundle by its identifier.

startLevel The target start level.

REST Management Service Specification Version 1.0 org.osgi.service.rest.client

OSGi Compendium Release 6 Page 1045

□ Set the start level for a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.21 public void setBundleStartLevel(String bundlePath,int startLevel) throws Exception

bundlePath Addresses the bundle by its URI path.

startLevel The target start level.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.22 public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception

startLevel set the framework start level to this target.

□ Sets the current framework start level.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.23 public void startBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.24 public void startBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Start a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.25 public void startBundle(long id,int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.26 public void startBundle(String bundlePath,int options) throws Exception

bundlePath Addresses the bundle by its URI path.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.27 public void stopBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.28 public void stopBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Stop a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 1046 OSGi Compendium Release 6

137.11.2.29 public void stopBundle(long id,int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.30 public void stopBundle(String bundlePath,int options) throws Exception

bundlePath Addresses the bundle by its URI path.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.31 public BundleDTO uninstallBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Uninstall a bundle given by its bundle Id.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.32 public BundleDTO uninstallBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Uninstall a bundle given by its URI path.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.33 public BundleDTO updateBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Updates a bundle given by its bundle Id using the bundle-internal update location.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.34 public BundleDTO updateBundle(long id,String url) throws Exception

id Addresses the bundle by its identifier.

url The URL whose content is to be used to update the bundle.

□ Updates a bundle given by its URI path using the content at the specified URL.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.35 public BundleDTO updateBundle(long id,InputStream in) throws Exception

id Addresses the bundle by its identifier.

in Passes an input stream to the new bundle content.

□ Updates a bundle given by its bundle Id and passing the new bundle content in the form of an In-
putStream.

Returns Returns the BundleDTO of the updated bundle.

REST Management Service Specification Version 1.0 JavaScript Client API

OSGi Compendium Release 6 Page 1047

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.3 public interface RestClientFactory
Factory to construct new REST client instances. Each instance is specific to a REST service endpoint.

Implementations can choose to extend this interface to add additional creation methods, where ad-
ditional arguments are needed for request signing, etc.

In OSGi environments, this factory is registered as a service.

Provider Type Consumers of this API must not implement this type

137.11.3.1 public RestClient createRestClient(URI uri)

uri The URI to the REST service endpoint.

□ Create a new REST client instance.

Returns A new REST client instance for the specified REST service endpoint.

137.12 JavaScript Client API
REST JavaScript Client API Version 1.0

137.12.1 Summary

• OSGiRestCl ient - A JavaScript client API for accessing and managing a remote OSGi framework
through the REST API.

• OSGiRestCal lback - Callback object provided to the OSGiRestCl ient functions. Invoked on com-
pletion of the remote invocation.

JavaScript does not support the concept of interfaces and therefore implementations of the
JavaScript client specification can provide objects of any type as long as they conform to the to the
signatures described in this specification.

To facilitate documenting the JavaScript APIs Web IDL is used; see [2] Web IDL. This clarifies the ac-
cepted arguments and return types for otherwise untyped functions. Web IDL is only used for docu-
mentation purposes and has no bearing on the implementation of this API.

Note: some data types in Web IDL have slightly different names than commonly used in languages
like Java or JavaScript. For example a Str ing is called DOMString and the equivalent of a Java long is
called long long . Additionally, when a representation as defined in this specification is passed to one
of the JavaScript client APIs this representation is provided as a JavaScript object. Following the rec-
ommendations for mapping these to Web IDL, these JavaScript Object parameters are described us-
ing the dict ionary data type. For more information see the Web IDL specification.

137.12.2 interface OSGiRestClient
Provides a JavaScript client API for accessing and managing a remote OSGi framework through the
REST API. Implementations will provide a proprietary constructor to create objects of this signa-
ture. Once created the object can be used from JavaScript environments to manage the framework.

137.12.2.1 void getBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation as JavaScript object.

□ Get the Bundle representation of a specific bundle.

JavaScript Client API REST Management Service Specification Version 1.0

Page 1048 OSGi Compendium Release 6

137.12.2.2 void getBundleHeader((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Header representation as JavaScript object.

□ Get the Bundle Header representation of a specific bundle.

137.12.2.3 void getBundleRepresentations(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Representations List representation as JavaScript object.

□ List the bundles details.

137.12.2.4 void getBundles(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle List representation as JavaScript object.

□ List the bundles.

137.12.2.5 void getBundleStartLevel((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Start Level representation as JavaScript object.

□ Get the Bundle Start Level representation of a specific bundle.

137.12.2.6 void getBundleState((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object.

□ Get the Bundle State representation of a specific bundle.

137.12.2.7 void getFrameworkStartLevel(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Framework Start Level representation as JavaScript object.

□ Obtain the Framework Start Level.

137.12.2.8 void getService((DOMString or long long) service, OSGiRestCallback cb)

service The service, either the numeric service ID or the service URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service representation as JavaScript object.

□ Get a service representation.

137.12.2.9 void getServiceRepresentations(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service Representations List representation as JavaScript object.

□ Get all services representations.

137.12.2.10 void getServices(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service List representation as JavaScript object.

REST Management Service Specification Version 1.0 JavaScript Client API

OSGi Compendium Release 6 Page 1049

□ Get all services URIs.

137.12.2.11 void installBundle((DOMString or ArrayBuffer) bundle, OSGiRestCallback cb)

bundle The Bundle to install, either represented as a URL or as an ArrayBuffer of

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the newly installed Bundle. This parameter is optional.

□ Install a bundle from a URI or by value.

137.12.2.12 void setBundleStartLevel((DOMString or long long) bundle, dictionary bsl, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

bsl A Bundle Start Level representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Framework Start Level representation as JavaScript object. This parame-
ter is optional.

□ Change the Framework Start Level and/or initial bundle start level.

137.12.2.13 void setBundleState((DOMString or long long) bundle, dictionary state, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

state Bundle State representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Bundle Start Level representation as JavaScript object. This parameter is
optional.

□ Change the Bundle Start Level and/or other options defined in the Bundle Start Level representa-
tion.

137.12.2.14 void setFrameworkStartLevel(dictionary fwsl, OSGiRestCallback cb)

fwsl Framework Start Level representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Framework Start Level representation as JavaScript object. This parame-
ter is optional.

□ Change the Framework Start Level and/or initial bundle start level.

137.12.2.15 void startBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Start a bundle.

137.12.2.16 void startBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

options The options passed to the bundle's start method as a number.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Start a bundle.

137.12.2.17 void stopBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

References REST Management Service Specification Version 1.0

Page 1050 OSGi Compendium Release 6

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Stop a bundle.

137.12.2.18 void stopBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

options The options passed to the bundle's start method as a number.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Stop a bundle.

137.12.2.19 void uninstallBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the uninstalled Bundle. This parameter is optional.

□ Uninstall a bundle.

137.12.2.20 void updateBundle((DOMString or long long) bundle, (DOMString or ArrayBuffer) updated,
OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

updated The Bundle to update, either represented as a URL or as an ArrayBuffer of

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the updated Bundle. This parameter is optional.

□ Update a bundle from a URI or by value.

137.12.3 callback interface OSGiRestCallback
Objects implementing this signature are provided by users of the OSGiRestCl ient as callbacks. One
of the callback functions is invoked on completion of a REST invocation.

137.12.3.1 void success(object response)

response The result of the invocation. The type of this parameter is depends on the function being invoked. It
can be found in the documentation of the function.

□ Called when the invocation completes successfully.

137.12.3.2 void failure(short httpCode, object response)

httpCode The HTTP code returned. If no HTTP code is associated with the failure this parameter is set to -1 .

response The failure response.

□ Called when the invocation failed.

137.13 References

[1] Framework Filter Syntax
OSGi Core, Chapter 3.2.7 Filter Syntax

[2] Web IDL
http://www.w3.org/TR/WebIDL/

REST Management Service Specification Version 1.0 References

OSGi Compendium Release 6 Page 1051

[3] OSGi XML Schemas
http://www.osgi.org/Specifications

[4] Whiteboard Pattern
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

References REST Management Service Specification Version 1.0

Page 1052 OSGi Compendium Release 6

Asynchronous Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1053

138 Asynchronous Service
Specification

Version 1.0

138.1 Introduction
OSGi Bundles collaborate using loosely coupled services registered in the OSGi service registry. This
is a powerful and flexible model, and allows for the dynamic replacement of services at runtime. OS-
Gi services are therefore a very common interaction pattern within OSGi.

As with most Java APIs and Objects, OSGi services are primarily synchronous in operation. This has
several benefits; synchronous APIs are typically easier to write and to use than asynchronous ones;
synchronous APIs provide immediate feedback; synchronous implementations typically have a less
complex threading model.

Asynchronous APIs, however, have different advantages. Asynchronous APIs can reduce bottle-
necks by encouraging more effective use of parallelism, improving the responsiveness of the ap-
plication. In many cases high throughput systems can be written more simply and elegantly using
asynchronous programming techniques.

The Promises Specification on page 1137 provides powerful primitives for asynchronous program-
ming, including the ability to compose flows in a functional style. There are, however, many exist-
ing services that do not use the Promise API. The purpose of the Asynchronous Service is to bridge
the gap between these existing, primarily synchronous, services in the OSGi service registry, and
asynchronous programming. The Asynchronous Service therefore provides a way to invoke arbi-
trary OSGi services asynchronously, providing results and failure notifications through the Promise
API.

138.1.1 Essentials

• Async Invocation - A single method call that is to be executed without blocking the requesting
thread.

• Client - Application code that wishes to invoke one or more OSGi services asynchronously.
• Async Service - The OSGi service representing the Asynchronous Services implementation. Used

by the Client to make one or more Async Invocations.
• Async Mediator - A mediator object created by the Async Service which represents the target ser-

vice. Used by the Client to register Async Invocations.
• Success Callback - A callback made when an Async Invocation completes with a normal return

value.
• Failure Callback - A callback made when an Async Invocation completes with an exception.

138.1.2 Entities

• Async Service - A service that can create Async Mediators and run Async Invocations.
• Target Service - A service that is to be called asynchronously by the Client.
• Client - The code that makes Async Invocations using the Async Service

Usage Asynchronous Service Specification Version 1.0

Page 1054 OSGi Compendium Release 6

• Promise - A promise, representing the result of the Async Invocation.

Figure 138.1 Class and Service overview

Target ServiceClient

Async Impl

Async

<<interface>>
MyService

138.2 Usage
This section is an introduction in the usage of the Async Service. It is not the formal specification,
the normative part starts at Async Service on page 1057. This section leaves out some of the details
for clarity.

138.2.1 Synopsis
The Async Service provides a mechanism for a client to asynchronously invoke methods on a target
service. The service may be aware of the asynchronous nature of the call and actively participate
in it, or be unaware and execute normally. In either case the client's thread will not block, and will
continue executing its next instructions. Clients are notified of the completion of their task, and
whether it was successful or not, through the use of the Promise API.

Each async invocation is registered by the client making a method call on an Async Mediator, and
then started by making a call to the Async Service that created the mediator. This call returns a
Promise that will eventually be resolved with the return value from the async invocation.

An Async Mediator can be created by the client, either from an Object, or directly from a Service
Reference. Using a service reference has the advantage that the mediator will track the underlying
service. This means that if the service is unregistered before the asynchronous call begins then the
Promise will resolve with a failure, rather than continuing using an invalid service object.

138.2.2 Making Async Invocations
The general pattern for a client is to obtain the Async Service, and a service reference for the target
service. The client then creates an Async Mediator for the target service, invokes a method on the
mediator, then starts the asynchronous call. This is demonstrated in the following example:

private Async asyncService;
private ServiceReference<Foo> fooRef;
private Foo mediated;

@Reference
void setAsync(Async async) {

Asynchronous Service Specification Version 1.0 Usage

OSGi Compendium Release 6 Page 1055

 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

public synchronized void doStuff() {
 Promise<Boolean> promise = asyncService
 .call(mediated.booleanMethod(“aValue”));
 ...
}

This example demonstrates how simply clients can make asynchronous calls using the Async Ser-
vice. The eventual result can be obtained from the promise using one of the relevant callbacks.

One important thing to note is that whilst the call to cal l () or cal l (R) causes the async invocation to
begin, the actual execution of the underlying task may be queued until a thread is available to run
it. If the service has been unregistered before the execution actually begins then the promise will be
resolved with a Service Exception. The type of the Service Exception will be ASYNC_ERROR .

138.2.3 Async Invocations of Void Methods
The return value of the mediator method call is used to provide type information to the Async Ser-
vice. This, however, does not work for void methods that have no return value. In this case the client
can either pass an arbitrary object to the cal l (R) method, or use the zero argument cal l () method. In
either case the returned promise will eventually resolve with a value of nul l . This is demonstrated in
the following example.

private Async asyncService;
private ServiceReference<Foo> fooRef;
private Foo mediated;

@Reference
void setAsync(Async async) {
 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

Usage Asynchronous Service Specification Version 1.0

Page 1056 OSGi Compendium Release 6

public synchronized void doStuff() {
 mediated.voidMethod();
 Promise<?> promise = asyncService
 .call();
 ...
}

138.2.4 Fire and Forget Calls
Sometimes a client does not require any notification that an async invocation has completed. In
this case the client could use one of the cal l () or cal l (R) methods and simply discard the returned
Promise object. This, however, can be wasteful of resources. The act of resolving the Promise object
may be expensive, for example it may involve serializing the return value over a network if the re-
mote call was asynchronous.

If the client knows that no Promise object representing the result of the asynchronous task is need-
ed then it can signal this to the Async Service. This allows the Async Service to better optimize the
async invocation by not providing a result.

To indicate that the client wants to make a fire-and-forget style call the client invokes the mediator
as normal, but then begins the asynchronous invocation using the execute() method as show below.

private Async asyncService;
private ServiceReference<Foo> fooRef;

private Foo mediated;

@Reference
void setAsync(Async async) {
 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

public synchronized void doStuff() {
 mediated.someMethod();
 asyncService.execute();
 ...
}

Note that the execute() method does still return a Promise. This Promise is not the same as the ones
returned by cal l () or cal l (R) , its resolution value does not provide access to the result, but instead in-
dicates whether the fire-and-forget call could be successfully started. If there is a failure which pre-
vents the task from being executed then this is used to fail the returned promise.

Asynchronous Service Specification Version 1.0 Async Service

OSGi Compendium Release 6 Page 1057

138.2.5 Multi Threading
By their very definition asynchronous tasks do not run inline, and typically they will not run on the
same thread as the caller. This is not, however, a guarantee. A valid implementation of the Async
Service may have only one worker thread, which may be the thread currently running in the client
code. Async invocations also have the same threading model as the Promise API. This means that
callbacks may run on arbitrary threads, which may, or may not, be the same as the client thread, or
the thread which executed the asynchronous work.

It is important for multi-threaded clients to note that calls to the mediator and Async Service must
occur on the same thread. For example it is not supported to invoke a mediator using one thread,
and then to begin the async invocation by calling the cal l () , cal l (R) or execute() method on a differ-
ent thread.

138.3 Async Service
The Async Service is the primary interaction point between a client and the Async Service imple-
mentation. An Async Service implementation must expose a service implementing the Async inter-
face. Clients obtain an instance of the Async Service using the normal OSGi service registry mecha-
nisms, either directly using the OSGi framework API, or using dependency injection.

The Async Service is used to:

• Create async mediators
• Begin async invocations
• Obtain Promise objects representing the result of the async invocation

138.3.1 Using the Async Service
The first action that a client wishing to make an async invocation must take is to create an async
mediator using one of the mediate methods. Once created the client invokes the method that
should be run asynchronously, supplying the arguments that should be used. This call records the
invocation, but does not start the asynchronous task. The asynchronous task begins when the client
invokes one of the cal l or execute methods on the Async Service. The cal l methods must return a
Promise representing the async invocation. The promise must resolve with the value returned by
the async invocation, or fail with the failure thrown by the async invocation.

If the client attempts to begin an async invocation without first having called a method on the me-
diator object then the Async Service must detect this usage error and throw an I l legalStateExcep-
t ion to the client. This applies to all methods that begin an async invocation.

138.3.2 Asynchronous Failures
There are a variety of reasons that async invocations may be started correctly by the client, but then
fail without running the asynchronous task. In any of these cases the Promise representing the
async invocation must fail with a Service Exception. This Service Exception must be initialized with
a type of ASYNC_ERROR . If there is no promise representing the async invocation then there is no
way to notify the client of the failure, therefore the Service Exception must be logged by the Async
Service using all available Log Service implementations.

The following list of scenarios is not exhaustive, but indicates failure scenarios that must result in a
Service Exception with a type of async

• If the client is using a service reference backed mediator and the client bundle's bundle context
becomes invalid before looking up the target service.

• If the client is using a service reference backed mediator and the service is unregistered before
making the async invocation.

The Async Mediator Asynchronous Service Specification Version 1.0

Page 1058 OSGi Compendium Release 6

• If the client is using a service reference backed mediator and the service lookup returns nul l
• If the Async Service is unable to accept new work, for example it is in the process of being shut

down.
• If the type of the mediator object does not match the type of the service object to be invoked.

138.3.3 Thread Safety and Instance Sharing
Implementations of the Async Service must be thread safe and may be used simultaneously across
multiple clients and from multiple threads within the same client. Whilst the Async Service is able
to be used across multiple threads, if a client wishes to make an async invocation then the call to the
mediator and the call to begin the async invocation must occur on the same thread. The returned
Promise may then be shared between threads if required.

It is expected, although not required, that the Async Service implementation will use a Service Fac-
tory to create customized implementations for each client bundle. This simplifies the tracking of
the relevant client bundle context to use when performing service lookups on the client bundle's
behalf. Clients should therefore not share instances of the Async Service with other bundles. Instead
both bundles should obtain their own instances from the service registry.

138.3.4 Service Object Lifecycle Management
If the Async Service is being used to call an OSGi service object and the service reference is available
then the service object should be looked up immediately before the asynchronous task begins ex-
ecuting. This ensures that the service is still available at the point it is eventually called. Any call
to getService must have a corresponding call to ungetService after the mediated method invoked
has returned and, if available, the promise is resolved, but before the asynchronous task releases its
thread of execution.

138.4 The Async Mediator
Async mediators are dynamically created objects that have the same type or interface as the object
being mediated, and are used to record method invocations and arguments. Mediator objects are
specific to an Async Service implementation, and must only be used in conjunction with the Async
Service object that they were created by.

Mediators may be created either from a ServiceReference or from a service object. The actions and
overall result are similar for both the mediate(ServiceReference,Class) and mediate(T,Class) meth-
ods, with the primary difference being that mediated objects created from a ServiceReference will
validate whether the service object is still available immediately before the asynchronous task is ex-
ecuted.

138.4.1 Building the Mediator Object
The client passes in a Class indicating the type that should be mediated. If the class object represents
an interface type then the generated mediator object must implement that interface. If the class ob-
ject represents a Java class type then the mediator object must either be an instance of that type or
extend it.

When building a mediator object the Async Service has the opportunity to detect numerous prob-
lems, for example if the referenced service to be mediated has been unregistered. Although fail-fast
behavior is usually preferable, in this case it would force the client to handle errors in two places;
both when creating the mediator, and for the returned Promise. To simplify client usage, error cases
detected when creating a mediator must not prevent the mediator from being created and must not
result in an exception being thrown. The only reason that the Async Service may fail to create a me-
diator is if the class object passed in cannot be mediated.

There are three reasons why the Async Service may not be able to mediate a class type:

Asynchronous Service Specification Version 1.0 Fire and Forget Invocations

OSGi Compendium Release 6 Page 1059

• The class object passed in represents a final type.
• The class object passed in represents a type that has no zero-argument constructor.
• The class object passed in represents a type which has one or more public final methods present

in its type hierarchy (other than those declared by java. lang.Object).

If any of these constraints are violated and prevent the Async Service from creating a mediator then
the Async Service must throw an IllegalArgumentException.

138.4.2 Async Mediator Behaviors
When invoked, the Async mediator must record the method call, and its arguments, and then re-
turn rapidly and should avoid performing blocking operations. The values returned by the mediator
object are opaque, and the client should not attempt to interpret the returned value. The value may
be null (or null-like in the case of primitives) or contain implementation specific information. If the
mediated method call has a return type, specifically it is non-void, then this object must be passed to
the Async Service's cal l method when beginning the async invocation

Async mediators should make a best-effort attempt to detect incorrect API usage from the client. If
this incorrect usage is detected then the mediator object must throw an IllegalStateException when
invoked. An example of incorrect usage that must be detected is when a client makes multiple invo-
cations on a single mediator object from the same thread without making any calls to the Async Ser-
vice.

After a usage error has been detected and an IllegalStateException has been thrown the mediator ob-
ject must be reset so that a subsequent invocation from the client thread can proceed normally.

138.4.3 Thread Safety and Instance Sharing
Async mediators, like instances of the Async Service, are required to be thread safe. Clients may
therefore share mediator objects across threads, and can safely store them as instance fields. Whilst
mediators are thread safe, if a client wishes to make an async invocation then the call to the media-
tor and the call to cal l () or cal l (R) must occur on the same thread. The returned Promise may then be
shared between threads if required.

Async mediators created from ServiceReference objects remain directly associated with the service
reference and client bundle after creation. Clients should therefore not share mediator objects with
other bundles. Instead each bundle should create its own mediator.

138.5 Fire and Forget Invocations
The Async Service provides cal l () and cal l (R) methods for clients to use when they wish to receive
results from asynchronous tasks. Clients that do not need the result can simply discard the returned
Promise object. This, however, can be wasteful of resources. The act of resolving the Promise object
may be expensive, for example it may involve serializing the return value over a network.

To address this use case the Async Service provides the execute() method, which behaves similarly
to cal l () and cal l (R) , but does not provide access to the eventual result. Instead the execute() method
returns a Promise that indicates whether the fire-and-forget call is able to be successfully started.

The returned Promise must be resolved with nul l if the asynchronous task begins executing success-
fully. There is no happens-before relationship required, meaning that if the Promise resolves success-
fully then the task may, or may not, have started or finished. The primary usage of the Promise is ac-
tually to detect failures. If the fire-and-forget task cannot be executed for some reason, for example
the backing service has been unregistered, then the returned promise must be failed appropriately
using the same rules as defined in Asynchronous Failures on page 1057. If the returned Promise is
failed then the fire-and-forget task has not executed and will not execute in the future.

Delegating to Asynchronous Implementations Asynchronous Service Specification Version 1.0

Page 1060 OSGi Compendium Release 6

138.6 Delegating to Asynchronous Implementations
Some service APIs are already asynchronous in operation, and others are partly asynchronous, in
that some methods run asynchronously and others do not. There are also services which have a syn-
chronous API, but could run asynchronously because they are a proxy to another service. A good
example of this kind of service is a remote service. Remote services are local views of a remote end-
point, and depending upon the implementation of the endpoint it may be possible to make the re-
mote call asynchronously, optimizing the thread usage of any local asynchronous call.

Services that already have some level of asynchronous support may advertise this to clients and to
the Async Service by having their service object be an instanceof AsyncDelegate . The service object
can be cast to AsyncDelegate to be used by the Async Service implementation, or by the client di-
rectly, to make an asynchronous call on the service.

Because the Async Delegate behavior is transparently handled by the Async Service, clients of the
Async Service do not need to know whether the service object is an instanceof AsyncDelegate or
not. Their usage pattern can remain unchanged.

When making an async invocation, the Async Service must check to see whether the service ob-
ject is an instanceof AsyncDelegate . If the service object is an instanceof AsyncDelegate , then the
Async Service must attempt to delegate the asynchronous call. The exact delegation operation de-
pends on whether a Promise result is required.

138.6.1 Obtaining a Promise from an Async Delegate
If the result of the method invocation is needed by the client, then the Async Service must attempt
to delegate to the async(Method,Object[]) method. The delegation proceeds as follows:

• If the call to the Async Delegate returns a Promise, then the Promise returned by the Async Ser-
vice must be resolved with that Promise.

• If the call to the Async Delegate throws an exception, then the Promise returned by the Async
Service must be failed with the exception.

• If the Async Delegate is unable to optimize the call and returns nul l from the
async(Method,Object[]) method, the Async Service must continue processing the async invoca-
tion, treating the service as a normal service object.

138.6.2 Delegating Fire and Forget Calls to an Async Delegate
If the result of the method invocation is not needed by the client, then the Async Service must at-
tempt to delegate to the execute(Method,Object[]) method. This gives the Async Delegate imple-
mentation the opportunity to further optimize its processing. The delegation proceeds as follows:

• If the call to the Async Delegate returns true , then the Promise returned by the Async Service
must be resolved with nul l .

• If the call to the Async Delegate throws an exception, then the Promise returned by the Async
Service must be failed with the exception.

• If the Async Delegate is unable to optimize the call and returns fa lse from the
execute(Method,Object[]) method, the Async Service must continue processing the async invo-
cation, treating the service as a normal service object.

138.6.3 Lifecycle for Service Objects When Delegating
If an Async Delegate implementation accepts an asynchronous task, via a call to either
execute(Method,Object[]) or async(Method,Object[]) , then it is responsible for continuing to
process the work until completion. This means that if the service implementing Async Delegate is
unregistered for some reason, then the task must be properly cleaned up and succeed or fail as ap-
propriate.

Asynchronous Service Specification Version 1.0 Capabilities

OSGi Compendium Release 6 Page 1061

If the Async Service implementation used a service reference to obtain the service, then it must re-
lease the service object after the task has been accepted. This means that if the service object is pro-
vided by a service factory, then the service object should take extra care not to destroy its internal
state when released. The service object must remain valid until all executing asynchronous tasks as-
sociated with the service object are either completed or failed.

If an Async Delegate implementation rejects an asynchronous task, by returning fa lse or nul l , the
Async Service implementation must take over the asynchronous invocation of the method. In this
case, if the Async Service implementation used a service reference to obtain the service, the Async
Service must not release the service object until the asynchronous task is completed.

If an Async Delegate implementation throws an exception and the Async Service implementation
used a service reference to obtain the service, then the service object must be released immediately.

138.7 Capabilities
Implementations of the Asynchronous Service specification must provide the following capabili-
ties.

• A capability in the osgi . implementation namespace declaring the implemented specification to
be osgi .async . This capability must also declare a uses constraint for the org.osgi .service.async
and org.osgi .service.async.delegate packages. For example:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async,org.osgi.service.async.delegate"

This capability must follow the rules defined for the osgi.implementation Namespace on page 997.
• A capability in the osgi .service namespace representing the Async service. This capability must

also declare a uses constraint for the org.osgi .service.async package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.async.Async";
 uses:="org.osgi.service.async"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

138.8 Security
Asynchronous Services implementations must be careful to avoid elevating the privileges of client
bundles when calling services asynchronously, and also to avoid restricting the privileges of clients
that are permitted to make a call. This means that the implementation must:

• Be granted AllPermission . As the Async Service will always be on the stack when invoking a ser-
vice object asynchronously it must be granted AllPermission so that it does not interfere with se-
curity any checks made by the service object.

• Establish the caller's AccessControlContext in a worker thread before starting to call the service
object. This prevents a bundle from being able to call a service asynchronously that it would not
normally be able to call. The AccessControlContext must be collected during any call to cal l () ,
cal l (R) or execute() .

• Use a doPriv i leged block when mediating a concrete type. A no-args constructor in a concrete
type may perform actions that the client may not have permission to perform. This should not

org.osgi.service.async Asynchronous Service Specification Version 1.0

Page 1062 OSGi Compendium Release 6

prevent the client from mediating the object, as the client is not directly performing these ac-
tions.

• If the mediator object was created using a service reference, then the Async Services implementa-
tion must use the client's bundle context when retrieving the target service. If the service lookup
occurs on a worker thread, then the lookup must use the AccessControlContext collected dur-
ing the call to cal l () , cal l (R) or execute() . This prevents the client bundle from being able to make
calls on a service object that they do not have permission to obtain, and ensures that an appropri-
ately customized object is returned if the service is implemented using a service factory.

Further security considerations can be addressed using normal OSGi security rules. For example ac-
cess to the Async Service can be controlled using ServicePermission[. . .Async, GET] .

138.9 org.osgi.service.async

Asynchronous Services Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.async; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.async; vers ion="[1.0,1.1)"

138.9.1 Summary

• Async - The Asynchronous Execution Service.

138.9.2 public interface Async
The Asynchronous Execution Service. This can be used to make asynchronous invocations on OSGi
services and objects through the use of a mediator object.

Typical usage:

 Async async = ctx.getService(asyncRef);

 ServiceReference<MyService> ref = ctx.getServiceReference(MyService.class);

 MyService mediator = async.mediate(ref, MyService.class);

 Promise<BigInteger> result = async.call(mediator.getSumOverAllValues());

The Promise API allows callbacks to be made when asynchronous tasks complete, and can be used
to chain Promises.

Multiple asynchronous tasks can be started concurrently, and will run in parallel if the Async Ser-
vice has threads available.

Provider Type Consumers of this API must not implement this type

138.9.2.1 public Promise<R> call(R r)

Type Arguments <R>

r The return value of the mediated call, used for type information.

Asynchronous Service Specification Version 1.0 org.osgi.service.async

OSGi Compendium Release 6 Page 1063

□ Invoke the last method call registered by a mediated object as an asynchronous task. The result of
the task can be obtained using the returned Promise.

Typically the parameter for this method will be supplied inline like this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A Promise which can be used to retrieve the result of the asynchronous task.

138.9.2.2 public Promise<?> call()

□ Invoke the last method call registered by a mediated object as an asynchronous task. The result of
the task can be obtained using the returned Promise.

Generally it is preferable to use call(Object) like this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

However this pattern does not work for void methods. Void methods can therefore be handled like
this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 i.voidMethod()
 Promise<?> p = async.call();

Returns A Promise which can be used to retrieve the result of the asynchronous task.

138.9.2.3 public Promise<Void> execute()

□ Invoke the last method call registered by a mediated object as a "fire-and-forget" asynchronous task.
This method should be used by clients in preference to call() and call(Object) when no callbacks, or
other features of Promise, are needed.

The advantage of this method is that it allows for greater optimization of the underlying asyn-
chronous task. Clients are therefore likely to see better performance when using this method com-
pared to using call(Object) or call() and ignoring the returned Promise. The Promise returned by this
method is different from the Promise returned by call(Object) or call(), in that the returned Promise
will resolve when the fire-and-forget task is successfully started, or fail if the task cannot be started.
Note that there is no happens-before relationship and the returned Promise may resolve before or af-
ter the fire-and-forget task starts, or completes.

Typically this method is used like call():

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 i.someMethod()
 Promise<Void> p = async.execute();

Returns A Promise representing whether the fire-and-forget task was able to start.

138.9.2.4 public T mediate(T target,Class<T> iface)

Type Arguments <T>

target The service object to mediate.

iface The type that the mediated object should provide.

org.osgi.service.async.delegate Asynchronous Service Specification Version 1.0

Page 1064 OSGi Compendium Release 6

□ Create a mediator for the specified object. The mediator is a generated object that registers the
method calls made against it. The registered method calls can then be run asynchronously using ei-
ther the call(Object), call(), or execute() method.

The values returned by method calls made on a mediated object are opaque and should not be inter-
preted.

Normal usage:

 I s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A mediator for the service object.

Throws I l legalArgumentException– If the type represented by iface cannot be mediated.

138.9.2.5 public T mediate(ServiceReference<? extends T> target,Class<T> iface)

Type Arguments <T>

target The service reference to mediate.

iface The type that the mediated object should provide.

□ Create a mediator for the specified service. The mediator is a generated object that registers the
method calls made against it. The registered method calls can then be run asynchronously using ei-
ther the call(Object), call(), or execute() method.

The values returned by method calls made on a mediated object are opaque and should not be inter-
preted.

This method differs from mediate(Object, Class) in that it can track the availability of the specified
service. This is recommended as the preferred option for mediating OSGi services as asynchronous
tasks may not start executing until some time after they are requested. Tracking the validity of the
ServiceReference for the service ensures that these tasks do not proceed with an invalid object.

Normal usage:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A mediator for the service object.

Throws I l legalArgumentException– If the type represented by iface cannot be mediated.

138.10 org.osgi.service.async.delegate

Asynchronous Services Delegation Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package contains only interfaces that are implemented by consumers.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.async.delegate; vers ion="[1.0,2.0)"

138.10.1 Summary

• AsyncDelegate - This interface is used by services to allow them to optimize Asynchronous calls
where they are capable of executing more efficiently.

Asynchronous Service Specification Version 1.0 References

OSGi Compendium Release 6 Page 1065

138.10.2 public interface AsyncDelegate
This interface is used by services to allow them to optimize Asynchronous calls where they are ca-
pable of executing more efficiently.

This may mean that the service has access to its own thread pool, or that it can delegate work to a re-
mote node, or act in some other way to reduce the load on the Asynchronous Services implementa-
tion when making an asynchronous call.

138.10.2.1 public Promise<?> async(Method m,Object[] args) throws Exception

m The method to be asynchronously invoked.

args The arguments to be used to invoke the method.

□ Invoke the specified method as an asynchronous task with the specified arguments.

This method can be used by clients, or the Async Service, to optimize Asynchronous execution of
methods.

When called, this method should invoke the supplied method using the supplied arguments asyn-
chronously, returning a Promise that can be used to access the result.

If the method cannot be executed asynchronously by this method then nul l must be returned.

Returns A Promise representing the asynchronous result, or nul l if this method cannot be asynchronously
invoked.

Throws Exception– An exception should be thrown only if there was a serious error that prevented the asyn-
chronous task from starting. For example, the specified method does not exist on this object. Excep-
tions must not be thrown to indicate that the call does not support asynchronous invocation. In-
stead this method must return nul l . Exceptions must also not be thrown to indicate a failure from
the execution of the underlying method. This must be handled by failing the returned Promise.

138.10.2.2 public boolean execute(Method m,Object[] args) throws Exception

m The method to be asynchronously invoked.

args The arguments to be used to invoke the method.

□ Invoke the specified method as a "fire-and-forget" asynchronous task with the specified arguments.

This method can be used by clients, or the Async Service, to optimize Asynchronous execution of
methods.

When called, this method should invoke the specified method using the specified arguments asyn-
chronously. This method differs from async(Method, Object[]) in that it does not return a Promise.
This method therefore allows the implementation to perform more aggressive optimizations be-
cause the end result of the invocation does not need to be returned to the caller.

If the method cannot be executed asynchronously by this method then fa lse must be returned.

Returns true if the asynchronous execution request has been accepted, or fa lse if this method cannot be
asynchronously invoked by the AsyncDelegate.

Throws Exception– An exception should be thrown only if there was a serious error that prevented the asyn-
chronous task from starting. For example, the specified method does not exist on this object. Excep-
tions must not be thrown to indicate that the call does not support asynchronous invocation. In-
stead this method must return fa lse . Exceptions must also not be thrown to indicate a failure from
the execution of the underlying method.

138.11 References
[1] OSGi Core Release 6

References Asynchronous Service Specification Version 1.0

Page 1066 OSGi Compendium Release 6

http://www.osgi.org/Specifications/HomePage

Http Whiteboard Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1067

140 Http Whiteboard Specification

Version 1.0

140.1 Introduction
Servlets have become a popular and widely supported mechanism for providing dynamic con-
tent on the Internet. While servlets are defined in the [4] Java Servlet 3.1 Specification, the OSGi Http
Whiteboard Specification provides a light and convenient way of using servlets, servlet filters,
servlet listeners and web resources in an OSGi environment through the use of the [7] Whiteboard
Pattern.

The Http Whiteboard specification supports:

• Registering Servlets - Registering a servlet in the Service Registry makes it available to be bound to
an endpoint to serve content over the network.

• Registering Servlet Filters - Servlet filters support pre- and post-processing of servlet requests and
responses. Servlet filters can be registered in the Service Registry to include them in the handling
pipeline.

• Registering Resources - Resources such as HTML files, JavaScript, image files, and other static re-
sources can be made available over the network by registering resource services.

• Registering Servlet Listeners - The servlet specification defines a variety of listeners, which receive
callbacks when certain events take place.

Implementations of this specification can support the following versions of the HTTP protocol:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specifications RFCs 7230-7235
• [3] HTTP/2 Specifications

Alternatively, implementations of this service can support other protocols if these protocols can
conform to the semantics of the Java Servlet API.

Http Whiteboard implementations must support version 3.1 of the Java Servlet API.

140.1.1 Entities
This specification defines the following entities:

• Http Whiteboard service - An object registered in the Service Registry under one of the Whiteboard
service interfaces defined by this specification.

• Http Whiteboard implementation - An implementation that processes Http Whiteboard services.
• Http Service Runtime service - Service providing runtime introspection into the Http Whiteboard

implementation.
• Listener - Various listeners can be registered to receive notifications about servlet or Http Session

events.
• Resource Service - A service thats binds static resources.
• Servlet - Component that dynamically generates web pages or other resources provided over the

network.

The Servlet Context Http Whiteboard Specification Version 1.0

Page 1068 OSGi Compendium Release 6

• Servlet Context Helper - A service to control the behavior of the Servlet Context.
• Servlet Filter - Can be used to augment or transform web resources or for cross-cutting functional-

ity such as security, common widgets or otherwise.

Figure 140.1 Http Whiteboard Overview Diagram

ServletContextHelper

Servlet

Filter

Resources Service

Http Whiteboard
implementation

Listeners

Http Service Runtime

140.2 The Servlet Context
The servlet specification defines the ServletContext which is provided to servlets at runtime by the
container. Whiteboard services defined by this specification are also provided with a ServletCon-
text . The behavior of this Servlet Context can be influenced by providing a ServletContextHelper
service. A custom ServletContextHelper can provide resources, mime-types, handle security and
supports a number of methods from the ServletContext .

The Http Whiteboard implementation must create a separate ServletContext instance for each
ServletContextHelper service. Whiteboard services can be associated with the Servlet Context
Helper by using the osgi .http.whiteboard.context.select property. If this property is not set, the de-
fault Servlet Context Helper is used.

To achieve the required behavior for ServletContext.getClassLoader() each bundle must be provid-
ed with a separate Servlet Context instance to serve the classloader of the Whiteboard services for
that bundle. For more information see getClassLoader() in Table 140.2 on page 1071.

Some implementations of the ServletContextHelper may be implemented using a Service Factory,
for example to provide resources from the associated bundle, as the default implementation does.
Therefore the Whiteboard implementation must get the Servlet Context Helper using the Bundle
Context of the bundle that registered the Whiteboard service.

Some environments may use [8] Core Service Hooks to isolate ServletContextHelper service reg-
istrations. For example, Subsystem Service Specification on page 925. The Whiteboard implemen-
tation must check that the bundle registering the Whiteboard service has the ability to find the
ServletContextHelper service before allowing the Whiteboard service to bind to the Servlet Context
Helper. This can be done by calling one of the getServiceReferences methods on the Bundle Context
of bundle that registered the Whiteboard service.

Http Whiteboard Specification Version 1.0 The Servlet Context

OSGi Compendium Release 6 Page 1069

Table 140.1 Service registration properties for ServletContextHelper services.

Service Property Name Type Description
osgi .http.whiteboard.context.name Str ing

required

Name of the Servlet Context Helper. This name
can be referred to by Whiteboard services via the
osgi .http.whiteboard.context.select property. The syntax of the
name is the same as the syntax for a Bundle Symbolic Name. The
default Servlet Context Helper is named default . To override the
default, register a custom ServletContextHelper service with the
name default . If multiple Servlet Context Helper services are reg-
istered with the same name, the one with the highest Service
Ranking is used. In case of a tie, the service with the lowest ser-
vice ID wins. In other words, the normal OSGi service ranking
applies.

Registrations with an invalid or unspecified name
are not used and reflected in the failure DTOs. See
HTTP_WHITEBOARD_CONTEXT_NAME .

osgi .http.whiteboard.context.path Str ing

required

Additional prefix to the context path for servlets. This prop-
erty is mandatory. Valid characters are specified in IETF RFC
3986, section 3.3. The context path of the default Servlet Con-
text Helper is / . A custom default Servlet Context Helper may
use an alternative path. If the path is invalid or unspecified,
the service is not used and reflected in the failure DTOs. See
HTTP_WHITEBOARD_CONTEXT_PATH .

context. init .* Str ing

optional

Properties starting with this prefix are provided as init pa-
rameters through the ServletContext.getInitParameter()
and ServletContext.getInitParameterNames() methods. The
context. init . prefix is removed from the parameter name. See
HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX .

Multiple ServletContextHelper services can have identical or overlapping
osgi .http.whiteboard.context.path values. A matching servlet or resource is located as follows:

1. The Servlet Context Helper service with the longest matching path is matched first.
2. In the case of two Servlet Context Helpers with the same path, the service with the highest rank-

ing is searched first for a match. In the case of a tie, the lowest service ID is searched first.

For example, if two ServletContextHelper services are registered as follows

osgi.http.whiteboard.context.path = /foo
osgi.http.whiteboard.context.path = /foo/bar

Then a request for http:// localhost/foo/bar/someServlet is looked up in the following order:

1. /foo/bar context looking for a pattern to match /someServlet
2. /foo context looking for a pattern to match /bar/someServlet

Note that whole path segments must match. Therefore the following request can only be han-
dled by the Servlet Context Helper registered under the /foo path: http:// localhost/foo/bars/
someOtherServlet.

For details on the association process between servlet, servlet filter, resource and listener services
and the ServletContextHelper see Common Whiteboard Properties on page 1073.

If a Servlet Context Helper can not be used, for example because it is shadowed by another Servlet
Context Helper service with the same name, but with a higher ranking, this is reflected in the

The Servlet Context Http Whiteboard Specification Version 1.0

Page 1070 OSGi Compendium Release 6

Fai ledServletContextDTO . Similarly, if an alternative default Servlet Context Helper is provided,
the default Servlet Context Helper provided by the Http Whiteboard implementation is not used
and represented in a failure DTO.

An example Servlet Context Helper defined using Declarative Services annotations can be found be-
low, it prefixes the path with /myapp for any associated whiteboard service. Additionally, it serves
static resources from a non-standard location, a content delivery network. Other methods use the
default ServletContextHelper implementation.

@Component(service = ServletContextHelper.class,
 scope = ServiceScope.BUNDLE,
 property = {
 "osgi.http.whiteboard.context.name=my-context",
 "osgi.http.whiteboard.context.path=/myapp"})
public class CDNServletContextHelper extends ServletContextHelper {
 public URL getResource(String name) {
 try {
 return new URL("http://acmecdn.com/myapp/" + name);
 } catch (MalformedURLException e) {
 return null;
 }
 }
}

The following sections outline the methods a custom ServletContextHelper can override and the
behavior of the default implementation.

140.2.1 String getMimeType(String)
Called to provide the MIME type for a resource.

Default Behavior - Always returns nul l .

140.2.2 String getRealPath(String)
Called to support the ServletContext.getRealPath() method.

Default Behavior - Always returns nul l .

140.2.3 URL getResource(String)
Obtain a URL for a given resource request.

Default Behavior - Assumes the resources are in the bundle registering the Whiteboard service. Its
Bundle.getEntry() method is called to obtain a URL to the resource. The default Servlet Context
Helper implementation assumes the path to be relative to the bundle's root.

140.2.4 Set<String> getResourcePaths(String)
Called to support the ServletContext.getResourcePaths() method. Returns all the matching re-
sources for the path.

Default Behavior - Assumes the resources are in the bundle registering the Whiteboard service. Its
Bundle.f indEntr ies() method is called to obtain the listing.

140.2.5 boolean handleSecurity(HttpServletRequest, HttpServletResponse)
This method is invoked to handle implementation-defined security on the request. It is invoked be-
fore the request is sent to the filter-servlet pipeline.

Default Behavior - Always returns true .

Http Whiteboard Specification Version 1.0 The Servlet Context

OSGi Compendium Release 6 Page 1071

140.2.6 Behavior of the Servlet Context
The ServletContext provided to Whiteboard services is based on the associated ServletContex-
tHelper , Whiteboard service registration properties and the underlying servlet container.

Methods to programmatically add servlets, servlet filters and listeners are not supported on the
ServletContext . Such functionality is available by registering these entities as Whiteboard services.

Table 140.2 Behavior of ServletContext methods.

ServletContext method Since Description
addFi lter(. . .) 3.0 Throws UnsupportedOperationException .
addListener(. . .) 3.0 Throws UnsupportedOperationException .
addServlet(. . .) 3.0 Throws UnsupportedOperationException .
createFi l ter(Class) 3.0 Throws UnsupportedOperationException .
createListener(Class) 3.0 Throws UnsupportedOperationException .
createServlet(Class) 3.0 Throws UnsupportedOperationException .
declareRoles(Str ing . . .) 3.0 Throws UnsupportedOperationException .
getAttr ibute(Str ing) 2.0 Stored per ServletContextHelper . The Servlet

Context keeps a set of attributes per Servlet Con-
text Helper.

getAttr ibuteNames() 2.1 Stored per ServletContextHelper . The Servlet
Context keeps a set of attributes per Servlet Con-
text Helper.

getClassLoader() 3.0 Returns the class loader of the bundle that regis-
tered the Whiteboard service. An implementa-
tion of this specification can achieve this by re-
turning separate façades of the ServletContext
to each Whiteboard service. Each façade access-
es the Whiteboard service's Bundle Wiring to ob-
tain its classloader.

getContext(Str ing) 2.1 Backed by the Servlet Container.
getContextPath() 2.5 Return the web context path of the Servlet

Context. This takes into account the
osgi .http.whiteboard.context.path of the Servlet
Context Helper and the path of the Http runtime.

getDefaultSessionTrackingModes() 3.0 Backed by the Servlet Container.
getEffect iveMajorVersion() 3.0 Backed by the Servlet Container.
getEffect iveMinorVersion() 3.0 Backed by the Servlet Container.
getEffect iveSessionTracking-
Modes()

3.0 Backed by the Servlet Container.

getFi l terRegistrat ion(Str ing) 3.0 Backed by the Servlet Container.
getFi l terRegistrat ions() 3.0 Backed by the Servlet Container.
getInitParameter(Str ing) 2.2 From context. init .* service registration proper-

ties.
getInitParameterNames() 2.2 From context. init .* service registration proper-

ties.
getJspConfigDescr iptor() 3.0 Returns nul l .
getMajorVersion() 2.1 Backed by the Servlet Container.
getMimeType(Str ing) 2.1 Backed by the ServletContextHelper .
getMinorVersion() 2.1 Backed by the Servlet Container.

The Servlet Context Http Whiteboard Specification Version 1.0

Page 1072 OSGi Compendium Release 6

ServletContext method Since Description
getNamedDispatcher(Str ing) 2.2 Provides the Whiteboard servlet with the

specified name, provided through the
osgi .http.whiteboard.servlet .name property, if
associated with this Servlet Context Helper. If
multiple servlets have the same name and are as-
sociated with this Servlet Context Helper then
the highest ranked servlet is used. In the case of a
tie, the one with the lowest service ID is used.

getRealPath(Str ing) 2.0 Backed by the ServletContextHelper .
getResource(Str ing) 2.1 Backed by the ServletContextHelper .
getRequestDispatcher(Str ing) 2.1 If the argument matches a servlet associated with

this Servlet Context Helper, this will be returned.
getResourceAsStream(Str ing) 2.1 Backed by the ServletContextHelper .
getResourcePaths(Str ing) 2.3 Backed by the ServletContextHelper .
getServlet(Str ing) 2.0 Deprecated. Backed by the Servlet Container.
getServletContextName() 2.2 The name of the ServletContextHelper provided

via the osgi .http.whiteboard.context.name ser-
vice property.

getServletNames() 2.0 Deprecated. Backed by the Servlet Container.
getServletRegistrat ion(Str ing) 3.0 Backed by the Servlet Container.
getServletRegistrat ions() 3.0 Backed by the Servlet Container.
getServlets() 2.0 Deprecated. Backed by the Servlet Container.
getServerInfo() 2.0 Backed by the Servlet Container.
getSessionCookieConfig() 3.0 Returns a SessionCookieConfig object. This ob-

ject is read-only and all setters throw a I l legalSta-
teException .

getVirtualServerName() 3.1 Backed by the Servlet Container.
log(Str ing) 2.0 Backed by the Servlet Container.
log(Exception, Str ing) 2.0 Deprecated. Backed by the Servlet Container.
log(Str ing, Throwable) 2.1 Backed by the Servlet Container.
removeAttr ibute(Str ing) 2.1 Stored per ServletContextHelper . The Servlet

Context keeps a set of attributes per Servlet Con-
text Helper.

setAttr ibute(Str ing, Object) 2.1 Stored per ServletContextHelper . The Servlet
Context keeps a set of attributes per Servlet Con-
text Helper.

setInitParameter(Str ing, Str ing) 3.0 Throws I l legalStateException . The ServletCon-
text has already been initialized.

setSessionTrackingModes(Set) 3.0 Throws I l legalStateException . The ServletCon-
text has already been initialized.

140.2.7 Relation to the Servlet Container
Implementations of this specification will often be backed by existing servlet containers or a Java EE
application server. There may also exist implementations which bridge into a servlet container into
which the OSGi Framework has been deployed as a Web Application.

In bridged situations the Http Whiteboard implementation will live in one servlet context and
all Whiteboard services registered by this implementation will be backed by the same underlying
Servlet Context. However, to exhibit the behavior described in Table 140.2 on page 1071 different
Servlet Context objects may be required. Therefore an implementation of this specification may

Http Whiteboard Specification Version 1.0 Common Whiteboard Properties

OSGi Compendium Release 6 Page 1073

need to create additional ServletContext objects which delegate certain functionality to the Servlet-
ContextHelper and other functionality to the Servlet Context of the Web Application, yet further
functionality can be obtained otherwise. In such cases the relationship may look like the below fig-
ure.

Figure 140.2 Servlet Context entities and their relation

Application Server

WebApp

Http Whiteboard

Servlet Context

Servlet Context

Servlet Context Servlet Context

Servlet Context Helper

OSGi Bundle OSGi Bundle

Whiteboard
Service A

Whiteboard
Service B

Whiteboard
Service C

Servlet Context provided by
Application Server.

Servlet Context associated
with the Servlet Context Helper
to provide behavior as defined
in the table above.

Servlet Context per whiteboard
services bundle to provide
getClassLoader() API.

Where Table 140.2 on page 1071 states Backed by the Servlet Container and the Http Whiteboard im-
plementation is deployed in bridged mode, the API call can be forwarded to the top-level Servlet
Context. If the Http Whiteboard implementation is not deployed in bridged mode, it must provide
another means to handle these APIs.

In bridged deployments, the implementation needs to ensure the following:

1. That Whiteboard services are provided with the correct ServletContext keeping in mind that
each distinct ServletContextHelper should be associated with a separate ServletContext ob-
ject, which in turn may delegate certain requests to the underlying shared ServletContext as de-
scribed in the table above.

2. That Http Sessions are not shared amongst servlets registered with different ServletContex-
tHelpers. That is, HttpRequest.getSession() calls must provide different sessions per associated
ServletContextHelper . Http Sessions are defined in chapter 7 of the [4] Java Servlet 3.1 Specifica-
tion.

140.3 Common Whiteboard Properties
Whiteboard servlet, servlet filter, resource and listener services support common service registra-
tion properties to associate them with a ServletContextHelper and/or a Http Whiteboard imple-
mentation.

Registering Servlets Http Whiteboard Specification Version 1.0

Page 1074 OSGi Compendium Release 6

Table 140.3 Common properties

Service Property Name Type Description
osgi .http.whiteboard.context.select Str ing

optional

An LDAP-style filter to select the associated
ServletContextHelper service to use. Any service
property of the Servlet Context Helper can be fil-
tered on. If this property is missing the default
Servlet Context Helper is used.

For example, to select a Servlet Context Helper
with name myCTX provide the following value:

(osgi.http.whiteboard.context.name=myCTX)

To select all Servlet Context Helpers provide the
following value:

(osgi.http.whiteboard.context.name=*)

If no matching context exists this
is reflected in the failure DTOs. See
HTTP_WHITEBOARD_CONTEXT_SELECT .

osgi .http.whiteboard.target Str ing

optional

The value of this service property is an LDAP-
style filter expression to select the Http White-
board implementation(s) to handle this White-
board service. The LDAP filter is used to match
HttpServiceRuntime services. Each Http White-
board implementation exposes exactly one
HttpServiceRuntime service. This property is
used to associate the Whiteboard service with
the Http Whiteboard implementation that reg-
istered the HttpServiceRuntime service. If this
property is not specified, all Http Whiteboard
implementations can handle the service. See
HTTP_WHITEBOARD_TARGET .

If multiple Servlet Context Helper services match the osgi .http.whiteboard.context.select prop-
erty the servlet, filter, resource or listener will be registered with all these Servlet Context Helpers.
To avoid multiple in it() and destroy() calls on the same instance, servlets and filters should be regis-
tered as Prototype Service Factory.

140.4 Registering Servlets
Servlets can be registered with the Http Whiteboard implementation by registering them as White-
board services. This means that Servlet implementations are registered in the Service Registry under
the javax.servlet .Servlet interface.

Servlets are registered with one or more pattern through the osgi .http.whiteboard.servlet .pattern
service property. Each pattern defines the URL context that will trigger the servlet to handle the re-
quest. They are defined by the [4] Java Servlet 3.1 Specification in section 12.2, Specification of Mappings.
Note that these mapping rules are slightly different than those defined in the Http Service Specifica-
tion on page 45. The mapping rules are:

• A string beginning with a '/' character and ending with a "/*" suffix is used for path mapping.
• A string beginning with a "*." prefix is used as an extension mapping.

Http Whiteboard Specification Version 1.0 Registering Servlets

OSGi Compendium Release 6 Page 1075

• The empty string ("") is a special URL pattern that exactly maps to the application's context root.
That is, requests of the form http://host:port/<context-root>/. In this case the path info is "/" and
the servlet path and context path are the empty string ("").

• A string containing only the '/' character indicates the "default" servlet of the application. In this
case, the servlet path is the request URI minus the context path and the path info is null.

• All other strings are used for exact matches only.

Servlet and resource service registrations associated with a single Servlet Context share the same
namespace. In case of identical registration patterns, service ranking rules are used to select the ser-
vice handling a request. That is, Whiteboard servlets that have patterns shadowed by other White-
board services associated with the same Servlet Context are represented in the failure DTOs.

The above rules can cause servlets that are already bound becoming unbound if a better match ar-
rives. This ensures a predictable end result regardless of the order in which services are registered.

A servlet may be registered with the property osgi .http.whiteboard.servlet .name which can be used
by servlet filters to address this servlet. If the servlet service does not have this property, the servlet
name defaults to the fully qualified class name of the service object.

With implementations that both implement this specification as well as the Http Service Specification
on page 45, situations can arise where a servlet is registered for the same pattern with the Http Ser-
vice as well as with the Http Whiteboard. The Servlet Context of the Http Service is treated in the
same way as all contexts managed by the Whiteboard implementation. The highest ranking is asso-
ciated with the context of the Http Service. For a request, contexts are processed in the order as de-
scribed in section The Servlet Context on page 1068.

For example, if the Http Whiteboard implementation is listening on port 80 on the machine
www.acme.com and the Servlet object is registered with the pattern "/servlet" , then the Servlet
object's service() method is called when the following URL is used from a web browser:

http://www.acme.com/servlet

The following table describes the properties that can be used by Servlets registered as Whiteboard
services. Additionally, the common properties listed in Table 140.3 on page 1074 are supported.

Table 140.4 Service properties for Servlet Whiteboard services.

Service Property Name Type Description
osgi .http.whiteboard.servlet .«

 asyncSupported

Str ing

optional

Declares whether the servlet supports the asyn-
chronous operation mode. Allowed values are true
and fa lse independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED .

osgi .http.whiteboard.servlet .«

 errorPage

Str ing+

optional

Register the servlet as an error page for the error
code and/or exception specified; the value may be
a fully qualified exception type name or a three-
digit HTTP status code in the range 400-599 . Spe-
cial values 4xx and 5xx can be used to match value
ranges. Any value not being a three-digit number is as-
sumed to be a fully qualified exception class name. See
HTTP_WHITEBOARD_SERVLET_ERROR_PAGE .

osgi .http.whiteboard.servlet .«

 name

Str ing

optional

The name of the servlet. This
name is used as the value of the
javax.servlet .ServletConfig.getServletName()
method and defaults to the fully quali-
fied class name of the service object. See
HTTP_WHITEBOARD_SERVLET_NAME .

Registering Servlets Http Whiteboard Specification Version 1.0

Page 1076 OSGi Compendium Release 6

Service Property Name Type Description
osgi .http.whiteboard.servlet .«

 pattern

Str ing+

required

Registration pattern(s) for the servlet. See
HTTP_WHITEBOARD_SERVLET_PATTERN .

servlet . init .* Str ing

optional

Properties starting with this prefix are provided as
init parameters to the javax.servlet .Servlet . init()
method. The servlet . init . prefix is re-
moved from the parameter name. See
HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX .

Servlet objects are initialized by a Http Whiteboard implementation before they start serving re-
quests. The initialization is done by calling the Servlet object's Servlet . init(ServletConfig) method.
The ServletConfig parameter provides access to the initialization parameters specified when the
Servlet object was registered. Once the servlet is no longer used by the Http Whiteboard implemen-
tation the destroy() method is called. Failure during Servlet . init() will prevent the servlet from be-
ing used, which is reflected using a failure DTO. In such a case the system does not attempt to find an
alternative servlet which might be present in the system with a lower ranking.

If the service properties of the servlet Whiteboard service are modified, the destroy() method is
called. Subsequently the servlet is re-initialized. If a Prototype Service Factory is used for the servlet
this re-initialization is done on a new service object.

When multiple Http Whiteboard implementations are present all of them can potentially process
the Servlet . In such situations it can be useful to associate the servlet with a specific implemen-
tation by specifying the osgi .http.whiteboard.target property on the Servlet service to match its
HttpServiceRuntime service.

If more than one Http Service Runtime matches the osgi .http.whiteboard.target property or the
property is not set, the Servlet will be processed by all the matching implementations. A Servlet
service that is processed by more than one Http Whiteboard implementation will have its in it()
method called for each implementation that processes this Servlet . Similarly, the destroy() method
is called once when the Servlet is shut down once for each implementation that processed it. As
multiple in it() and destroy() calls on the same Servlet instance are generally not desirable, Servlet
implementations should be registered as Prototype Service Factories as defined in the OSGi Core
Release 6. This will ensure that each Http Whiteboard implementation processing the Servlet will
use a separate instance, ensuring that only one in it() and destroy() call is made per Servlet object.
Servlets not registered as a Prototype Service Factory may received in it() and destroy() calls multiple
times on the same service object.

The following example code uses Declarative Services annotations to register a servlet whiteboard
service.

@Component(service = Servlet.class,
 scope = ServiceScope.PROTOTYPE,
 property = {
 "osgi.http.whiteboard.servlet.pattern=/myservlet",
 "servlet.init.myname=value"})
public class MyServlet extends HttpServlet {
 private String name = "<not set>";

 public void init(ServletConfig config) {
 name = config.getInitParameter("myname");
 }

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/plain");

Http Whiteboard Specification Version 1.0 Registering Servlets

OSGi Compendium Release 6 Page 1077

 resp.getWriter().println("Servlet name: " + name);
 }
}

This example registers the servlet at: /myservlet . Requests for http://www.acme.com/myservlet
map to the servlet, whose service method is called to process the request.

To associate the above example servlet with the example ServletContextHelper in The Servlet Con-
text on page 1068, add the following service property:

osgi.http.whiteboard.context.select=(osgi.http.whiteboard.context.name=my-context)

This will cause the servlet to move to http://www.acme.com/myapp/myservlet as configured by the
custom Servlet Context Handler.

140.4.1 Error Pages
Servlets can be used to serve Error Pages. These are invoked when an exception is thrown during
processing or if a servlet uses the sendError() method with a status code between 400 and 599 .

For a servlet service to handle error situations the service property
osgi .http.whiteboard.servlet .errorPage must be set. This property can have multiple values, al-
lowing a single servlet to handle a variety of error situations. Possible values are 3-digit HTTP error
codes and fully qualified exception names.

Two special error code values are recognized. The special value 4xx means every error code in the
400-499 range. The special value 5xx means every error code in the 500-599 range. To override such
wildcard error page for a specific error, register an error page with the specific error code and a high-
er service ranking. Error pages shadowed by other error pages are reported via the failure DTOs. A
4xx/5xx wildcard error page is only reported in the failure DTOs if it is shadowed by another wild-
card page.

Matching exceptions follows the exception hierarchy. First the most specific exception class - the ac-
tual class of the exception - is looked up. If no matching error page for the most specific exception is
found, the error page for the super class of the exception is looked up and so on. The process ends by
looking up an error page for the java. lang.Throwable class.

While not being common practice, it is possible to combine the
osgi .http.whiteboard.servlet .errorPage and osgi .http.whiteboard.servlet .pattern properties. If a
single servlet registration has both these registration properties it is considered both an ordinary
servlet as well as an error page.

If an error or exception occurs for which an error page servlet can be matched, it is invoked to ren-
der the error page. If the error page servlet causes an error or exception while handling the request,
an implementation built-in error page is returned.

For example:

@Component(service = Servlet.class,
 scope = ServiceScope.PROTOTYPE,
 property = {
 "osgi.http.whiteboard.servlet.errorPage=java.io.IOException",
 "osgi.http.whiteboard.servlet.errorPage=500"})
public class MyErrorServlet extends HttpServlet {
 ...
}

The example servlet is invoked in case of a 500 error code, or if an IOException (or subclass) occurs.
If there is more than one error page registered for the same exception or error code, service ranking
rules are used to select the handling servlet.

Registering Servlet Filters Http Whiteboard Specification Version 1.0

Page 1078 OSGi Compendium Release 6

140.4.2 Asynchronous request handling
Servlets can use the asynchronous request handling feature, as defined by the servlet specification.

A servlet or servlet filter supporting the asynchronous mode must declare this with
the appropriate service property osgi .http.whiteboard.servlet .asyncSupported or
osgi .http.whiteboard.f i l ter.asyncSupported .

An example simple asynchronous servlet that handles the servlet requests in a thread from a cus-
tom thread pool rather than in the thread provided by the servlet container:

@Component(service = Servlet.class,
 scope = ServiceScope.PROTOTYPE,
 property = {
 "osgi.http.whiteboard.servlet.pattern=/as",
 "osgi.http.whiteboard.servlet.asyncSupported=true"})
public class AsyncServlet extends HttpServlet {
 ExecutorService executor = Executors.newCachedThreadPool(
 r -> new Thread(r, "Pooled Thread"));

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 doGetAsync(req.startAsync());
 }

 private void doGetAsync(AsyncContext asyncContext) {
 executor.submit(() -> {
 try {
 PrintWriter writer = asyncContext.getResponse().getWriter();
 writer.print("Servlet executed async in: " +
 Thread.currentThread()); // writes 'Pooled Thread'
 } finally {
 asyncContext.complete();
 }
 return null;
 });
 }
}

140.4.3 Annotations
Annotations defined in the Servlet API Specifications are ignored by an implementation of the Http
Whiteboard Specification. The OSGi service model is used instead by this specification.

Implementations of this specification may support these annotations through a proprietary opt-in
mechanism.

140.5 Registering Servlet Filters
Servlet filters provide a mechanism to intercept servlet invocations. They support modifying the
ServletRequest and ServletResponse objects and are often used to augment web pages generated by
servlets, for example with a common header or footer. Servlet filters can also be used to handle secu-
rity, do logging or transform the content produced by a servlet to a certain format.

Similar to servlets, servlet filters are registered as Whiteboard services, by registering a
javax.servlet .F i l ter instance in the Service Registry. The following table describes the supported ser-

Http Whiteboard Specification Version 1.0 Registering Servlet Filters

OSGi Compendium Release 6 Page 1079

vice properties. In addition the common properties as described in Table 140.3 on page 1074 are
supported.

Table 140.5 Service properties for Fi lter Whiteboard services.

Service Property Name Type Description
osgi .http.whiteboard.f i l ter.«

 asyncSupported

Str ing

optional

Declares whether the servlet filter supports asyn-
chronous operation mode. Allowed values are true
and fa lse independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED .

osgi .http.whiteboard.f i l ter.«

 dispatcher

Str ing+

optional

Select the dispatcher configuration when the
servlet filter should be called. Allowed string val-
ues are REQUEST , ASYNC , ERROR , INCLUDE , and
FORWARD . The default for a filter is REQUEST . See
HTTP_WHITEBOARD_FILTER_DISPATCHER .

osgi .http.whiteboard.f i l ter.name Str ing

optional

The name of a servlet filter. This name is used
as the value of the Fi l terConfig.getFi l terName()
method and defaults to the fully quali-
fied class name of the service object. See
HTTP_WHITEBOARD_FILTER_NAME .

osgi .http.whiteboard.f i l ter.pattern Str ing+

optional†

Apply this servlet filter to the specified URL
path patterns. The format of the patterns
is specified in the servlet specification. See
HTTP_WHITEBOARD_FILTER_PATTERN .

osgi .http.whiteboard.f i l ter. regex Str ing+

optional†

Apply this servlet filter to the specified
URL paths. The paths are specified as reg-
ular expressions following the syntax de-
fined in the java.ut i l . regex.Pattern class. See
HTTP_WHITEBOARD_FILTER_REGEX .

osgi .http.whiteboard.f i l ter.servlet Str ing+

optional†

Apply this servlet filter to the ref-
erenced servlet(s) by name. See
HTTP_WHITEBOARD_FILTER_SERVLET .

f i l ter. in it .* Str ing+

optional

Properties starting with this prefix
are passed as init parameters to the
Fi l ter. in it()method. The f i l ter. in it . prefix
is removed from the parameter name. See
HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX .

† Note that at least one of the following properties must be specified on Fi l ter Whiteboard services:

 osgi.http.whiteboard.filter.pattern
 osgi.http.whiteboard.filter.regex
 osgi.http.whiteboard.filter.servlet

Similar to servlets, Fi l ter objects are initialized by a Http Whiteboard implementation before they
start filtering requests. The initialization is done by calling the Fi l ter. in it(F i l terConfig) method.
The Fi l terConfig parameter provides access to f i l ter. in it .* properties on the servlet filter service
registration. Once the Fi l ter is no longer used by the Http Whiteboard implementation, the de-
stroy() method is called. When the service properties on the servlet filter are modified, the destroy()
method is called and the servlet filter is subsequently re-initialized, if it can still be associated with a
Http Whiteboard implementation after the modification. By default, a servlet filter can be used with
any Servlet Context Helper or Http Whiteboard implementation. To restrict a servlet filter to a sin-
gle implementation or a specific Servlet Context Helper, the Common Whiteboard Properties on page
1073 can be used.

Registering Resources Http Whiteboard Specification Version 1.0

Page 1080 OSGi Compendium Release 6

To deal with the dynamicity of the Whiteboard service lifecycle, it is recommended to implement
a servlet filter as Prototype Service Factory service. This will ensure that one single servlet filter in-
stance only receives one in it() and one destroy() call. Otherwise a single servlet filter instance can
receive multiple such calls. This is similar to the behavior recommended for Servlet Whiteboard ser-
vices.

Multiple servlet filters can process the same servlet request/response. If more than one Fi l ter match-
es, the order in which they are processed is governed by their service ranking. The servlet filter with
the highest ranking is processed first in the filter chain, while the servlet filter with the lowest rank-
ing is processed last, before the Servlet .service() method is called. In the case of a service ranking
tie, the servlet filter with the lowest service. id is processed first. After the servlet completes its ser-
vice() method the filter chain is unwound in reverse order.

Servlet filters are only applied to servlet requests if they are bound to the same Servlet Context
Helper and the same Http Whiteboard implementation.

The example Filter below adds some text before and after the content generated by a servlet:

@Component(scope = ServiceScope.PROTOTYPE,
 property = "osgi.http.whiteboard.filter.pattern=/*")
public class MyFilter implements Filter {
 public void init(FilterConfig filterConfig) throws ServletException {}

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {
 response.getWriter().write("before");
 chain.doFilter(request, response);
 response.getWriter().write("after");
 }

 public void destroy() {}
}

140.6 Registering Resources
A resource is a file containing images, static HTML pages, JavaScript, CSS, sounds, movies, etc. Re-
sources do not require any handling from the bundle. They are transferred directly from their source
- usually the JAR file that contains the code for the bundle - to the requester.

Resources can be served by registering a service of any type with a service registration property that
marks it as a resource service: osgi .http.whiteboard.resource.pattern . The actual service object reg-
istered is not used to serve resources, it is merely used to inform the Http Whiteboard implementa-
tion to serve resources from a certain source.

The following table describes the supported service properties. In addition the common properties
as described in Table 140.3 on page 1074 are supported.

Table 140.6 Service properties for resource services.

Service Property Name Type Description
osgi .http.whiteboard.resource.«

 pattern

Str ing+

required

The pattern(s) to be used to serve resources. As
defined by the [4] Java Servlet 3.1 Specification in
section 12.2, Specification of Mappings.

This property marks the service as a resource ser-
vice.

See HTTP_WHITEBOARD_RESOURCE_PATTERN .

Http Whiteboard Specification Version 1.0 Registering Listeners

OSGi Compendium Release 6 Page 1081

Service Property Name Type Description
osgi .http.whiteboard.resource.«

 prefix

Str ing

required

The prefix used to map a requested resource to
the bundle's entries. If the request's path info is
not null, it is appended to this prefix. The result-
ing string is passed to the getResource(Str ing)
method of the associated Servlet Context Helper.

See HTTP_WHITEBOARD_RESOURCE_PREFIX .

The examples below use Declarative Services annotations to register a resources service. Note that
this service is purely used to convey information to the Http Whiteboard implementation and is
never invoked.

@Component(service = MyResourceService.class,
 property = {
 "osgi.http.whiteboard.resource.pattern=/files/*",
 "osgi.http.whiteboard.resource.prefix=/www"})
public class MyResourceService {}

A Http Whiteboard implementation configured on port 80 will serve a request for http:// local-
host/fi les/cheese.html from the location /www/cheese.html .

The following example maps requests for /favicon. ico to serve the / logo.png resource. Note that the
pattern is not appended to the prefix as the path info in this case is null.

@Component(service = SomeResourceService.class,
 property = {
 "osgi.http.whiteboard.resource.pattern=/favicon.ico",
 "osgi.http.whiteboard.resource.prefix=/logo.png"})
public class SomeResourceService {}

The above examples use the default ServletContextHelper implementation, which loads these re-
sources from the bundle that registered the resource service. For more control around serving re-
sources, a resources service can be associated to a custom ServletContextHelper . For example, a cus-
tom Servlet Context Helper can serve resources from locations other than the current bundle.

140.6.1 Overlapping Resource and Servlet registrations
Resources and servlets registered with the same Servlet Context share a single URI namespace.
This means that the value specified in osgi .http.whiteboard.resource.pattern competes with the
osgi .http.whiteboard.servlet .pattern property specified on servlets. If these values overlap, the
rules as outlined in Registering Servlets on page 1074 are used to resolve conflicts, where resource
services are treated just like servlets. Shadowed resource patterns are reported as Fai ledResourceD-
TO .

140.7 Registering Listeners
The servlet specification defines listener interfaces that can be implemented to receive a variety of
servlet-related events. When using the Http Whiteboard implementation these listeners can be reg-
istered as Whiteboard services.

• ServletContextListener - Receive notifications when Servlet Contexts are initialized and de-
stroyed.

• ServletContextAttr ibuteListener - Receive notifications for Servlet Context attribute changes.
• ServletRequestListener - Receive notifications for servlet requests coming in and being de-

stroyed.

Lifecycle Http Whiteboard Specification Version 1.0

Page 1082 OSGi Compendium Release 6

• ServletRequestAttr ibuteListener - Receive notifications when servlet Request attributes change.
• HttpSessionListener - Receive notifications when Http Sessions are created or destroyed.
• HttpSessionAttr ibuteListener - Receive notifications when Http Session attributes change.
• HttpSessionIdListener - Receive notifications when Http Session ID changes.

Events are sent to listeners registered in the Service Registry with the osgi .http.whiteboard. l istener
service property set to true , independent of case. Listeners can be associated with a ServletContex-
tHelper as described in Common Whiteboard Properties on page 1073. Listeners not specifically as-
sociated with a Servlet Context Helper will receive events relating to the default Servlet Context
Helper.

Multiple listeners of the same type registered with a given Servlet Context Helper are invoked in se-
quence, service ranking rules are used to determine the order.

Table 140.7 Service properties for listener services.

Service Property Name Type Description
osgi .http.whiteboard. l istener Str ing

required

When set to true this listener service is han-
dled by the Http Whiteboard implementa-
tion. When not set or set to fa lse the service
is ignored. Any other value is invalid and will
be reflected in a Fai ledListenerDTO . Note
the property value is case independent. See
HTTP_WHITEBOARD_LISTENER .

An example listener that reports on client requests being initialized and destroyed is listed below:

@Component(property = "osgi.http.whiteboard.listener=true")
public class MyServletRequestListener implements ServletRequestListener {
 public void requestInitialized(ServletRequestEvent sre) {
 System.out.println("Request initialized for client: " +
 sre.getServletRequest().getRemoteAddr());
 }

 public void requestDestroyed(ServletRequestEvent sre) {
 System.out.println("Request destroyed for client: " +
 sre.getServletRequest().getRemoteAddr());
 }
}

For more details on the behavior of the listeners see the [4] Java Servlet 3.1 Specification.

140.8 Lifecycle
If a Whiteboard service is used by a Http Whiteboard implementation, the following order of ac-
tions are performed:

1. The service is obtained from the service registry.
2. For servlets and servlet filters, in it() is called.

When the service is not used anymore, these actions are performed:

3. For servlets and servlet filters, destroy() is called.
4. The service is released.

Note that some of the above actions may not be performed immediately, allowing an implementa-
tion to utilize lazy or asynchronous behavior.

Http Whiteboard Specification Version 1.0 The Http Service Runtime Service

OSGi Compendium Release 6 Page 1083

As servlets and servlet filters services might come and go as well as ServletContextHelper services
might come and go, use of the Whiteboard services can be very dynamic. Therefore servlet and
servlet filter services might transition between bound to a Http Whiteboard implementation to be-
ing unbound and back to be bound. For example, when a matching Servlet Context Helper with
the same name arrives with a higher ranking than the currently bound Servlet Context Helper, the
servlet will be destroyed and re-initialized, bound to this better matching Servlet Context Helper.
This is to ensure that timing issues cannot dictate the topology of the system.

As in it() and destroy() are called each time the service life cycle changes, the recommended way to
register services is to use the Prototype Service scope as defined in the OSGi Core Release 6. This en-
sures a new instance is created for each time such service is re-initialized. If the prototype scope is
not used, the service should be prepared that after a call to destroy() a new initialization through
in it() might follow.

140.8.1 Whiteboard Service Dynamics and Active Requests
When the Http Whiteboard implementation receives a network request it establishes the process-
ing pipeline based on the available Whiteboard services (servlets, servlet filters and resource ser-
vices) and executes this pipeline. Between establishing the pipeline and finishing the processing,
services used in this pipeline might become unregistered. It is up to the Http Whiteboard imple-
mentation whether it completes the active request or throws a Servlet Exception in this case.

140.9 The Http Service Runtime Service
The HttpServiceRuntime service represents the runtime state information of a Http Whiteboard im-
plementation. This information is provided through Data Transfer Objects (DTOs). The architecture
of OSGi DTOs is described in OSGi Core Release 6.

Each Http Whiteboard implementation registers exactly one HttpServiceRuntime service which
can be used to target Whiteboard services defined in this specification to a specific Http Whiteboard
implementation.

Implementations of this specification that also implement the Http Service Specification on page 45
can provide runtime information for servlets registered using the HttpService via the HttpSer-
viceRuntime as well. In this case the osgi .http.service. id service property must be set to associate
the HttpServiceRuntime service with the HttpService .

The HttpServiceRuntime provides service registration properties to declare its underlying Http
Whiteboard implementation. These service properties can include implementation-specific key-val-
ue pairs. They also include the following:

Table 140.8 Service properties for the HttpServiceRuntime service

Service Property Name Type Description
osgi .http.endpoint Str ing+ Endpoint(s) where this Http Whiteboard imple-

mentation is listening. Registered Whiteboard
services are made available here. Values could be
provided as URLs e.g. http://192.168.1.10:8080/
or relative paths, e.g. /myapp/ . Relative paths may
be used if the scheme and authority parts of the
URLs are not known such as in a bridged Http
Service implementation. If the Http Service is
serving the root context and scheme and author-
ity are not known, the value of the property is / .
Each entry must end with a slash.

See HTTP_SERVICE_ENDPOINT .

The Http Service Runtime Service Http Whiteboard Specification Version 1.0

Page 1084 OSGi Compendium Release 6

Service Property Name Type Description
osgi .http.service. id Col lect ion<Long> If this Http Whiteboard implementation also im-

plements the Http Service Specification on page 45,
this property is set to hold the service. id values of
all the HttpService services provided by this im-
plementation.

See HTTP_SERVICE_ID .

The Http Service Runtime service provides information on registered Whiteboard services through
the RuntimeDTO and RequestInfoDTO . The RuntimeDTO provides information on services that
have been successfully registered as well as information about the Whiteboard services that were
not successfully registered. Whiteboard services that have the required properties set but cannot
be processed, are reflected in the failure DTOs. Whiteboard services of interfaces described in this
specification that do not have the required properties set are ignored and not reflected in the failure
DTOs.

The Runtime DTO can be obtained using the getRuntimeDTO() method. The Runtime DTO provid-
ed has the following structure:

Figure 140.3 Runtime DTO Overview Diagram

Runtime DTO 0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

Servlet
Context DTO

Failed Servlet
Context DTO

Failed
Servlet DTO

Failed
Resource DTO

Failed
Filter DTO

Failed Error
Page DTO

Failed
Listener DTO

Servlet DTO

Resource DTO

Filter DTO

Error Page DTO

Listener DTO

Handlers for a given request path can be found with the calculateRequestInfoDTO(Str ing) method.
This method returns a RequestInfoDTO with the following structure:

Http Whiteboard Specification Version 1.0 Configuration Properties

OSGi Compendium Release 6 Page 1085

Figure 140.4 Request Info DTO Overview Diagram

Request Info DTO

Filter DTO

Servlet DTO

Resource DTO

0..n

Where servlets registered via the Http Service Specification on page 45 are returned via this service,
the Servlet DTO will report negative service IDs for these servlets to distinguish them from Servlet
Whiteboard services.

140.10 Configuration Properties
If the Http Whiteboard implementation does not have its port values configured through some oth-
er means, the implementation should use the following Framework properties to determine the
port values to listen on.

• org.osgi .service.http.port - This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure - This property specifies the port used for servlets and re-
sources accessible via HTTPS. The default value for this property is 443.

140.11 Capabilities

140.11.1 osgi.implementation Capability
The Http Whiteboard implementation bundle must provide the osgi . implementation capability
with name osgi .http . This capability can be used by provisioning tools and during resolution to en-
sure that a Http Whiteboard implementation is present to process the Whiteboard services defined
in this specification. The capability must also declare a uses constraint for the Servlet and OSGi Http
Whiteboard packages and provide the version of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.http";
 uses:="javax.servlet, javax.servlet.http,
 org.osgi.service.http.context, org.osgi.service.http.whiteboard";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.implementation Namespace on page 997.

140.11.2 osgi.contract Capability
The Http Whiteboard implementation must provide a capability in the osgi .contract namespace
with name JavaServlet if it exports the javax.servlet and javax.servlet .http packages. See [5] Portable
Java Contract Definitions.

Security Http Whiteboard Specification Version 1.0

Page 1086 OSGi Compendium Release 6

Providing the osgi .contract capability enables developer to build portable bundles for packages that
are not versioned under OSGi Semantic Versioning rules. For more details see osgi.contract Namespace
on page 995.

If the Servlet API is provided by another bundle, the Http Whiteboard implementation should be a
consumer of the API and require the contract.

140.11.3 osgi.service Capability
The bundle providing the HttpServiceRuntime service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service.http.runtime and org.osgi .service.http.runtime.dto packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.http.runtime.HttpServiceRuntime";
 uses:="org.osgi.service.http.runtime,org.osgi.service.http.runtime.dto"

This capability must follow the rules defined for the osgi.service Namespace on page 997.

140.12 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

140.12.1 Service Permissions
Bundles that need to register Http Whiteboard services must be granted
ServicePermission[interfaceName, REGISTER] where interface name is the Http Whiteboard ser-
vice interface name.

The Http Whiteboard implementation must be granted ServicePermission[interfaceName, GET] to
retrieve the Http Whiteboard services from the service registry.

140.12.2 Introspection
Bundles that need to introspect the state of the Http runtime will need
ServicePermission[org.osgi .service.http.runtime.HttpServiceRuntime, GET] to obtain the HttpSer-
viceRuntime service and access the DTO types.

140.12.3 Accessing Resources with the Default Servlet Context Helper Implementation
The Http Whiteboard implementation must be granted AdminPermission[*,RESOURCE]
so that bundles may use the default ServletContextHelper implementation. This is
necessary because the implementation of the default ServletContextHelper must call
Bundle.getEntry to access the resources of a bundle and this method requires the caller to have
AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation is
privileged. The resulting URL object may then be passed to the Http Whiteboard implementation as
the result of a ServletContextHelper.getResource call. No further permission checks are performed
when accessing bundle entry or resource URL objects, so the Http Whiteboard implementation does
not need to be granted any additional permissions.

140.12.4 Accessing Other Types of Resources
In order to access resources that were not returned from the default ServletContextHelper imple-
mentation, the Http Whiteboard implementation must be granted sufficient privileges to access

Http Whiteboard Specification Version 1.0 org.osgi.service.http.context

OSGi Compendium Release 6 Page 1087

these resources. For example, if the getResource method of a ServletContextHelper service returns
a file URL, the Http Whiteboard implementation requires the corresponding Fi lePermission to read
the file. Similarly, if the getResource method of a ServletContextHelper service returns an HTTP
URL, the Http Whiteboard implementation requires the corresponding SocketPermission to con-
nect to the resource.

Therefore, in most cases, the Http Whiteboard implementation should be a privileged service that
is granted sufficient permission to serve any bundle's resources, no matter where these resources
are located. Therefore, the Http Whiteboard implementation must capture the AccessControlCon-
text object of the bundle registering a ServletContextHelper service, and then use the captured Ac-
cessControlContext object when accessing resources returned by the ServletContextHelper service.
This situation prevents a bundle from supplying resources that it does not have permission to ac-
cess.

Therefore, the Http Whiteboard implementation should follow a scheme like the following exam-
ple. When using a ServletContextHelper service, it should capture the context.

ServiceReference<ServletContextHelper> servletContextHelperReference = ...
AccessControlContext acc = servletContextHelperReference.getBundle()
 .adapt(AccessControlContext.class);

When a URL returned by the getResource method of a ServletContextHelper service is used by the
Http Whiteboard implementation, the implementation must use the URL in a doPriv i leged con-
struct using the AccessControlContext object of the registering bundle:

AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 ...
 }
 }, acc);

This ensures the Http Whiteboard implementation can only use the URL if the bundle registering
the ServletContextHelper service that returned the URL also has permission to use the URL. The use
of a captured AccessControlContext only applies when accessing URL objects returned by the ge-
tResource method of the ServletContextHelper service.

140.12.5 Calling Http Whiteboard Services
This specification does not require that the Http Whiteboard implementation is granted All Permis-
sion or wraps calls to the Http Whiteboard services in a doPriv i leged block. Therefore, it is the re-
sponsibility of the Http Whiteboard service implementations to use a doPriv i leged block when per-
forming privileged operations.

140.13 org.osgi.service.http.context

Http Whiteboard Context Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.context; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

org.osgi.service.http.context Http Whiteboard Specification Version 1.0

Page 1088 OSGi Compendium Release 6

Import-Package: org.osgi .service.http.context; vers ion="[1.0,1.1)"

140.13.1 Summary

• ServletContextHelper - Helper service for a servlet context used by a Http Whiteboard imple-
mentation to serve HTTP requests.

140.13.2 public abstract class ServletContextHelper
Helper service for a servlet context used by a Http Whiteboard implementation to serve HTTP re-
quests.

This service defines methods that the Http Whiteboard implementation may call to get information
for a request when dealing with whiteboard services.

Each ServletContextHelper is registered with a "osgi.http.whiteboard.context.name" service proper-
ty containing a name to reference by servlets, servlet filters, resources, and listeners. If there is more
than one ServletContextHelper registered with the same context name, the one with the highest
service ranking is active, the others are inactive.

A context is registered with the "osgi.http.whiteboard.context.path" service property to define a
path under which all services registered with this context are reachable. If there is more than one
ServletContextHelper registered with the same path, each duplicate context path is searched by ser-
vice ranking order according to org.osgi.framework.ServiceReference.compareTo(Object) until a
matching servlet or resource is found.

Servlets, servlet filters, resources, and listeners services may be associated with a ServletContex-
tHelper service with the "osgi.http.whiteboard.context.select" service property. If the referenced
ServletContextHelper service does not exist or is currently not active, the whiteboard services for
that ServletContextHelper are not active either.

If no ServletContextHelper service is associated, that is no "osgi.http.whiteboard.context.select" ser-
vice property is configured for a whiteboard service, a default ServletContextHelper is used.

Those whiteboard services that are associated with the same ServletContextHelper object will share
the same ServletContext object.

The behavior of the methods on the default ServletContextHelper is defined as follows:

• getMimeType - Always returns nul l .
• handleSecurity - Always returns true .
• getResource - Assumes the named resource is in the bundle of the whiteboard service, ad-

dressed from the root. This method calls the whiteboard service bundle's Bundle.getEntry
method, and returns the appropriate URL to access the resource. On a Java runtime environ-
ment that supports permissions, the Http Whiteboard implementation needs to be granted
org.osgi .f ramework.AdminPermission[*,RESOURCE] .

• getResourcePaths - Assumes that the resources are in the bundle of the whiteboard service. This
method calls Bundle.f indEntr ies method, and returns the found entries. On a Java runtime envi-
ronment that supports permissions, the Http Whiteboard implementation needs to be granted
org.osgi .f ramework.AdminPermission[*,RESOURCE] .

• getRealPath - Always returns nul l .

See Also HttpWhiteboardConstants.HTTP_WHITEBOARD_CONTEXT_NAME,
HttpWhiteboardConstants.HTTP_WHITEBOARD_CONTEXT_PATH

Concurrency Thread-safe

140.13.2.1 public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"

HttpServletRequest attribute specifying the scheme used in authentication. The value of the at-
tribute can be retrieved by HttpServletRequest.getAuthType .

Http Whiteboard Specification Version 1.0 org.osgi.service.http.context

OSGi Compendium Release 6 Page 1089

140.13.2.2 public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"

HttpServletRequest attribute specifying the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest.getAttr ibute(ServletContextHelper.AUTHORIZATION) .

140.13.2.3 public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"

HttpServletRequest attribute specifying the name of the authenticated user. The value of the at-
tribute can be retrieved by HttpServletRequest.getRemoteUser .

140.13.2.4 public ServletContextHelper()

□ Construct a new context helper.

If needed, the subclass will have to handle the association with a specific bundle.

140.13.2.5 public ServletContextHelper(Bundle bundle)

bundle The bundle to be associated with this context helper.

□ Construct a new context helper associated with the specified bundle.

140.13.2.6 public String getMimeType(String name)

name The name for which to determine the MIME type.

□ Maps a name to a MIME type.

Called by the Http Whiteboard implementation to determine the MIME type for the specified
name. For whiteboard services, the Http Whiteboard implementation will call this method to sup-
port the ServletContext method getMimeType . For resource servlets, the Http Whiteboard imple-
mentation will call this method to determine the MIME type for the Content-Type header in the re-
sponse.

Returns The MIME type (e.g. text/html) of the specified name or nul l to indicate that the Http Whiteboard
implementation should determine the MIME type itself.

140.13.2.7 public String getRealPath(String path)

path The virtual path to be translated to a real path.

□ Gets the real path corresponding to the given virtual path.

Called by the Http Whiteboard implementation to support the ServletContext method getRealPath
for whiteboard services.

Returns The real path, or nul l if the translation cannot be performed.

140.13.2.8 public URL getResource(String name)

name The name of the requested resource.

□ Maps a resource name to a URL.

Called by the Http Whiteboard implementation to map the specified resource name to a URL. For
servlets, the Http Whiteboard implementation will call this method to support the ServletContext
methods getResource and getResourceAsStream . For resources, the Http Whiteboard implementa-
tion will call this method to locate the named resource.

The context can control from where resources come. For example, the resource can be mapped to a
file in the bundle's persistent storage area via BundleContext.getDataFi le(name).toURI() .toURL() or
to a resource in the context's bundle via getClass() .getResource(name)

Returns A URL that a Http Whiteboard implementation can use to read the resource or nul l if the resource
does not exist.

org.osgi.service.http.runtime Http Whiteboard Specification Version 1.0

Page 1090 OSGi Compendium Release 6

140.13.2.9 public Set<String> getResourcePaths(String path)

path The partial path used to match the resources, which must start with a /.

□ Returns a directory-like listing of all the paths to resources within the web application whose
longest sub-path matches the supplied path argument.

Called by the Http Whiteboard implementation to support the ServletContext method getResour-
cePaths for whiteboard services.

Returns A Set containing the directory listing, or nul l if there are no resources in the web application whose
path begins with the supplied path.

140.13.2.10 public boolean handleSecurity(HttpServletRequest request,HttpServletResponse response) throws
IOException

request The HTTP request.

response The HTTP response.

□ Handles security for the specified request.

The Http Whiteboard implementation calls this method prior to servicing the specified request.
This method controls whether the request is processed in the normal manner or an error is re-
turned.

If the request requires authentication and the Authorizat ion header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication [http://www.ietf.org/rfc/rfc2617.txt].

If the request requires a secure connection and the getScheme method in the request does not re-
turn 'https' or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return fa lse .

When this method returns fa lse , the Http Whiteboard implementation will send the response back
to the client, thereby completing the request. When this method returns true , the Http Whiteboard
implementation will proceed with servicing the request.

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must
set the AUTHORIZATION request attribute to the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, fa lse if the request should not be serviced and Http White-
board implementation will send the response back to the client.

Throws IOException– May be thrown by this method. If this occurs, the Http Whiteboard implementation
will terminate the request and close the socket.

140.14 org.osgi.service.http.runtime

Http Runtime Package Version 1.0.

http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt

Http Whiteboard Specification Version 1.0 org.osgi.service.http.runtime

OSGi Compendium Release 6 Page 1091

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.runtime; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.runtime; vers ion="[1.0,1.1)"

140.14.1 Summary

• HttpServiceRuntime - The HttpServiceRuntime service represents the runtime information of
an Http Whiteboard implementation.

• HttpServiceRuntimeConstants - Defines standard names for Http Runtime Service constants.

140.14.2 public interface HttpServiceRuntime
The HttpServiceRuntime service represents the runtime information of an Http Whiteboard imple-
mentation.

It provides access to DTOs representing the current state of the service.

The HttpServiceRuntime service must be registered with the
HttpServiceRuntimeConstants.HTTP_SERVICE_ENDPOINT service property.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

140.14.2.1 public RequestInfoDTO calculateRequestInfoDTO(String path)

path The request path, relative to the root of the Http Whiteboard implementation.

□ Return a request info DTO containing the services involved with processing a request for the speci-
fied path.

Returns The request info DTO for the specified path.

140.14.2.2 public RuntimeDTO getRuntimeDTO()

□ Return the runtime DTO representing the current state.

Returns The runtime DTO.

140.14.3 public final class HttpServiceRuntimeConstants
Defines standard names for Http Runtime Service constants.

140.14.3.1 public static final String HTTP_SERVICE_ENDPOINT = "osgi.http.endpoint"

Http Runtime Service service property specifying the endpoints upon which the Http Whiteboard
implementation is listening.

An endpoint value is a URL or a relative path, to which the Http Whiteboard implementation is
listening. For example, http://192.168.1.10:8080/ or /myapp/ . A relative path may be used if the
scheme and authority parts of the URL are not known, e.g. in a bridged Http Whiteboard implemen-
tation. If the Http Whiteboard implementation is serving the root context and neither scheme nor
authority is known, the value of the property is "/". Both, a URL and a relative path, must end with a
slash.

An Http Whiteboard implementation can be listening on multiple endpoints.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.0

Page 1092 OSGi Compendium Release 6

140.14.3.2 public static final String HTTP_SERVICE_ID = "osgi.http.service.id"

Http Runtime Service service property to associate the Http Runtime Service with one or more
HttpService services.

If this Http Whiteboard implementation also implements the Http Service Specification, this ser-
vice property is set to a collection of service. id for the HttpService services registered by this imple-
mentation.

The value of this service property must be of type Collect ion<Long> .

140.15 org.osgi.service.http.runtime.dto

Http Runtime DTO Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.runtime.dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.runtime.dto; vers ion="[1.0,1.1)"

140.15.1 Summary

• BaseServletDTO - Represents common information about a javax.servlet .Servlet service.
• DTOConstants - Defines standard constants for the DTOs.
• ErrorPageDTO - Represents a javax.servlet .Servlet for handling errors and currently being used

by a servlet context.
• Fai ledErrorPageDTO - Represents a javax.servlet .Servlet service registered as an error page but

currently not being used by a servlet context due to a problem.
• Fai ledFi lterDTO - Represents a servlet Fi l ter service which is currently not being used by a

servlet context due to a problem.
• Fai ledListenerDTO - Represents a listener service which is currently not being used by a servlet

context due to a problem.
• Fai ledResourceDTO - Represents a resource definition which is currently not being used by a

servlet context due to a problem.
• Fai ledServletContextDTO - Represents a servlet context that is currently not used due to some

problem.
• Fai ledServletDTO - Represents a javax.servlet .Servlet service which is currently not being used

by a servlet context due to a problem.
• Fi l terDTO - Represents a servlet javax.servlet .F i l ter service currently being used for by a servlet

context.
• ListenerDTO - Represents a listener currently being used by a servlet context.
• RequestInfoDTO - Represents the services used to process a specific request.
• ResourceDTO - Represents a resource definition currently being used by a servlet context.
• RuntimeDTO - Represents the state of a Http Service Runtime.
• ServletContextDTO - Represents a javax.servlet .ServletContext created for servlets, resources,

servlet Filters, and listeners associated with that servlet context.
• ServletDTO - Represents a javax.servlet .Servlet currently being used by a servlet context.

Http Whiteboard Specification Version 1.0 org.osgi.service.http.runtime.dto

OSGi Compendium Release 6 Page 1093

140.15.2 public abstract class BaseServletDTO
extends DTO
Represents common information about a javax.servlet .Servlet service.

Concurrency Not Thread-safe

140.15.2.1 public boolean asyncSupported

Specifies whether the servlet supports asynchronous processing.

140.15.2.2 public Map<String,String> initParams

The servlet initialization parameters as provided during registration of the servlet. Additional para-
meters like the Http Service Runtime attributes are not included. If the service has no initialization
parameters, the map is empty.

140.15.2.3 public String name

The name of the servlet. This value is never nul l .

140.15.2.4 public long serviceId

Service property identifying the servlet. In the case of a servlet registered in the service registry and
picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to the
service id in the registry. If the servlet has not been registered in the service registry, the value is neg-
ative and a unique negative value is generated by the Http Service Runtime in this case.

140.15.2.5 public long servletContextId

The service id of the servlet context for the servlet represented by this DTO.

140.15.2.6 public String servletInfo

The information string from the servlet.

This is the value returned by the Servlet .getServlet Info() method.

140.15.2.7 public BaseServletDTO()

140.15.3 public final class DTOConstants
Defines standard constants for the DTOs.

140.15.3.1 public static final int FAILURE_REASON_EXCEPTION_ON_INIT = 4

An exception occurred during initializing of the service.

This reason can only happen for servlets and servlet filters.

140.15.3.2 public static final int FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING = 1

No matching ServletContextHelper .

140.15.3.3 public static final int FAILURE_REASON_SERVICE_IN_USE = 7

The service is not registered as a prototype scoped service and is already in use with a servlet context
and therefore can't be used with another servlet context.

140.15.3.4 public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 5

The service is registered in the service registry but getting the service fails as it returns nul l .

140.15.3.5 public static final int FAILURE_REASON_SERVLET_CONTEXT_FAILURE = 2

Matching ServletContextHelper , but the context is not used due to a problem with the context.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.0

Page 1094 OSGi Compendium Release 6

140.15.3.6 public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 3

Service is shadowed by another service.

For example, a service with the same service properties but a higher service ranking.

140.15.3.7 public static final int FAILURE_REASON_UNKNOWN = 0

Failure reason is unknown.

140.15.3.8 public static final int FAILURE_REASON_VALIDATION_FAILED = 6

The service is registered in the service registry but the service properties are invalid.

140.15.4 public class ErrorPageDTO
extends BaseServletDTO
Represents a javax.servlet .Servlet for handling errors and currently being used by a servlet context.

Concurrency Not Thread-safe

140.15.4.1 public long[] errorCodes

The error codes the error page is used for. This array might be empty.

140.15.4.2 public String[] exceptions

The exceptions the error page is used for. This array might be empty.

140.15.4.3 public ErrorPageDTO()

140.15.5 public class FailedErrorPageDTO
extends ErrorPageDTO
Represents a javax.servlet .Servlet service registered as an error page but currently not being used by
a servlet context due to a problem.

As the servlet represented by this DTO is not used due to a failure, the field
FailedErrorPageDTO.servletContextId always returns 0 and does not point to an existing Servlet-
ContextHelper .

Concurrency Not Thread-safe

140.15.5.1 public int failureReason

The reason why the servlet represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.15.5.2 public FailedErrorPageDTO()

140.15.6 public class FailedFilterDTO
extends FilterDTO
Represents a servlet Fi l ter service which is currently not being used by a servlet context due to a
problem.

Http Whiteboard Specification Version 1.0 org.osgi.service.http.runtime.dto

OSGi Compendium Release 6 Page 1095

As the service represented by this DTO is not used due to a failure, the field
FailedFilterDTO.servletContextId always returns 0 and does not point to an existing servlet context.

Concurrency Not Thread-safe

140.15.6.1 public int failureReason

The reason why the servlet filter represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.15.6.2 public FailedFilterDTO()

140.15.7 public class FailedListenerDTO
extends ListenerDTO
Represents a listener service which is currently not being used by a servlet context due to a problem.

As the listener represented by this DTO is not used due to a failure, the field
FailedErrorPageDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.15.7.1 public int failureReason

The reason why the listener represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.15.7.2 public FailedListenerDTO()

140.15.8 public class FailedResourceDTO
extends ResourceDTO
Represents a resource definition which is currently not being used by a servlet context due to a
problem.

As the resource represented by this DTO is not used due to a failure, the field
FailedResourceDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.15.8.1 public int failureReason

The reason why the resource represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.0

Page 1096 OSGi Compendium Release 6

DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.15.8.2 public FailedResourceDTO()

140.15.9 public class FailedServletContextDTO
extends ServletContextDTO
Represents a servlet context that is currently not used due to some problem. The following fields re-
turn an empty array for a Fai ledServletContextDTO :

• ServletContextDTO.servletDTOs
• ServletContextDTO.resourceDTOs
• ServletContextDTO.filterDTOs
• ServletContextDTO.errorPageDTOs
• ServletContextDTO.listenerDTOs

The method ServletContextDTO.attributes returns an empty map for a Fai ledServletContextDTO .

Concurrency Not Thread-safe

140.15.9.1 public int failureReason

The reason why the servlet context represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.15.9.2 public FailedServletContextDTO()

140.15.10 public class FailedServletDTO
extends ServletDTO
Represents a javax.servlet .Servlet service which is currently not being used by a servlet context due
to a problem.

As the servlet represented by this DTO is not used due to a failure, the field
FailedErrorPageDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.15.10.1 public int failureReason

The reason why the servlet represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.15.10.2 public FailedServletDTO()

Http Whiteboard Specification Version 1.0 org.osgi.service.http.runtime.dto

OSGi Compendium Release 6 Page 1097

140.15.11 public class FilterDTO
extends DTO
Represents a servlet javax.servlet .F i l ter service currently being used for by a servlet context.

Concurrency Not Thread-safe

140.15.11.1 public boolean asyncSupported

Specifies whether the servlet filter supports asynchronous processing.

140.15.11.2 public String[] dispatcher

The dispatcher associations for the servlet filter.

The specified names are used to determine in what occasions the servlet filter is called. This array is
never nul l .

140.15.11.3 public Map<String,String> initParams

The servlet filter initialization parameters as provided during registration of the servlet filter. Addi-
tional parameters like the Http Service Runtime attributes are not included. If the servlet filter has
not initialization parameters, this map is empty.

140.15.11.4 public String name

The name of the servlet filter. This field is never nul l .

140.15.11.5 public String[] patterns

The request mappings for the servlet filter.

The specified patterns are used to determine whether a request is mapped to the servlet filter. This
array might be empty.

140.15.11.6 public String[] regexs

The request mappings for the servlet filter.

The specified regular expressions are used to determine whether a request is mapped to the servlet
filter. This array might be empty.

140.15.11.7 public long serviceId

Service property identifying the servlet filter. In the case of a servlet filter registered in the service
registry and picked up by a Http Whiteboard Implementation, this value is not negative and corre-
sponds to the service id in the registry. If the servlet filter has not been registered in the service reg-
istry, the value is negative and a unique negative value is generated by the Http Service Runtime in
this case.

140.15.11.8 public long servletContextId

The service id of the servlet context for the servlet filter represented by this DTO.

140.15.11.9 public String[] servletNames

The servlet names for the servlet filter.

The specified names are used to determine the servlets whose requests are mapped to the servlet fil-
ter. This array might be empty.

140.15.11.10 public FilterDTO()

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.0

Page 1098 OSGi Compendium Release 6

140.15.12 public class ListenerDTO
extends DTO
Represents a listener currently being used by a servlet context.

Concurrency Not Thread-safe

140.15.12.1 public long serviceId

Service property identifying the listener. In the case of a Listener registered in the service registry
and picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to
the service id in the registry. If the listener has not been registered in the service registry, the value is
negative and a unique negative value is generated by the Http Service Runtime in this case.

140.15.12.2 public long servletContextId

The service id of the servlet context for the listener represented by this DTO.

140.15.12.3 public String[] types

The fully qualified type names the listener. This array is never empty.

140.15.12.4 public ListenerDTO()

140.15.13 public class RequestInfoDTO
extends DTO
Represents the services used to process a specific request.

Concurrency Not Thread-safe

140.15.13.1 public FilterDTO[] filterDTOs

The servlet filters processing this request. If no servlet filters are called for processing this request,
an empty array is returned.

140.15.13.2 public String path

The path of the request relative to the root.

140.15.13.3 public ResourceDTO resourceDTO

The resource processing this request. If the request is processed by a resource, this field points to
the DTO of the resource. If the request is processed by another type of component like a servlet, this
field is nul l .

140.15.13.4 public long servletContextId

The service id of the servlet context processing the request represented by this DTO.

140.15.13.5 public ServletDTO servletDTO

The servlet processing this request. If the request is processed by a servlet, this field points to the
DTO of the servlet. If the request is processed by another type of component like a resource, this
field is nul l .

140.15.13.6 public RequestInfoDTO()

140.15.14 public class ResourceDTO
extends DTO
Represents a resource definition currently being used by a servlet context.

Concurrency Not Thread-safe

Http Whiteboard Specification Version 1.0 org.osgi.service.http.runtime.dto

OSGi Compendium Release 6 Page 1099

140.15.14.1 public String[] patterns

The request mappings for the resource.

The specified patterns are used to determine whether a request is mapped to the resource. This val-
ue is never nul l .

140.15.14.2 public String prefix

The prefix of the resource.

140.15.14.3 public long serviceId

Service property identifying the resource. In the case of a resource registered in the service registry
and picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to
the service id in the registry. If the resource has not been registered in the service registry, the value
is negative and a unique negative value is generated by the Http Service Runtime in this case.

140.15.14.4 public long servletContextId

The service id of the servlet context for the resource represented by this DTO.

140.15.14.5 public ResourceDTO()

140.15.15 public class RuntimeDTO
extends DTO
Represents the state of a Http Service Runtime.

Concurrency Not Thread-safe

140.15.15.1 public FailedErrorPageDTO[] failedErrorPageDTOs

Returns the representations of the error page javax.servlet .Servlet services associated with this run-
time but currently not used due to some problem. The returned array may be empty.

140.15.15.2 public FailedFilterDTO[] failedFilterDTOs

Returns the representations of the servlet javax.servlet .F i l ter services associated with this runtime
but currently not used due to some problem. The returned array may be empty.

140.15.15.3 public FailedListenerDTO[] failedListenerDTOs

Returns the representations of the listeners associated with this runtime but currently not used due
to some problem. The returned array may be empty.

140.15.15.4 public FailedResourceDTO[] failedResourceDTOs

Returns the representations of the resources associated with this runtime but currently not used
due to some problem. The returned array may be empty.

140.15.15.5 public FailedServletContextDTO[] failedServletContextDTOs

Returns the representations of the javax.servlet .ServletContext objects currently not used by the
Http service runtime due to some problem. The returned array may be empty.

140.15.15.6 public FailedServletDTO[] failedServletDTOs

Returns the representations of the javax.servlet .Servlet services associated with this runtime but
currently not used due to some problem. The returned array may be empty.

140.15.15.7 public ServiceReferenceDTO serviceDTO

The DTO for the corresponding org.osgi .service.http.runtime.HttpServiceRuntime . This value is
never nul l .

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.0

Page 1100 OSGi Compendium Release 6

140.15.15.8 public ServletContextDTO[] servletContextDTOs

Returns the representations of the javax.servlet .ServletContext objects used by the Http Service
Runtime. The returned array may be empty if the Http Service Runtime is currently not using any
javax.servlet .ServletContext objects.

140.15.15.9 public RuntimeDTO()

140.15.16 public class ServletContextDTO
extends DTO
Represents a javax.servlet .ServletContext created for servlets, resources, servlet Filters, and
listeners associated with that servlet context. The Servlet Context is usually backed by a
org.osgi.service.http.context.ServletContextHelper service.

Concurrency Not Thread-safe

140.15.16.1 public Map<String,Object> attributes

The servlet context attributes.

The value type must be a numerical type, Boolean , Str ing , DTO or an array of any of the former.
Therefore this method will only return the attributes of the servlet context conforming to this con-
straint. Other attributes are omitted. If there are no attributes conforming to the constraint, an emp-
ty map is returned.

140.15.16.2 public String contextPath

The servlet context path. This is the value returned by the ServletContext.getContextPath()
method.

140.15.16.3 public ErrorPageDTO[] errorPageDTOs

Returns the representations of the error page Servlet services associated with this context. The rep-
resentations of the error page Servlet services associated with this context. The returned array may
be empty if this context is currently not associated with any error pages.

140.15.16.4 public FilterDTO[] filterDTOs

Returns the representations of the servlet Fi l ter services associated with this context. The represen-
tations of the servlet Fi l ter services associated with this context. The returned array may be empty if
this context is currently not associated with any servlet Fi l ter services.

140.15.16.5 public Map<String,String> initParams

The servlet context initialization parameters. This is the set of parameters provided when register-
ing this context. Additional parameters like the Http Service Runtime attributes are not included. If
the context has no initialization parameters, this map is empty.

140.15.16.6 public ListenerDTO[] listenerDTOs

Returns the representations of the listener services associated with this context. The representations
of the listener services associated with this context. The returned array may be empty if this context
is currently not associated with any listener services.

140.15.16.7 public String name

The name of the servlet context. The name of the corresponding
org.osgi.service.http.context.ServletContextHelper.

This is the value returned by the ServletContext.getServletContextName() method.

Http Whiteboard Specification Version 1.0 org.osgi.service.http.whiteboard

OSGi Compendium Release 6 Page 1101

140.15.16.8 public ResourceDTO[] resourceDTOs

Returns the representations of the resource services associated with this context. The representa-
tions of the resource services associated with this context. The returned array may be empty if this
context is currently not associated with any resource services.

140.15.16.9 public long serviceId

Service property identifying the servlet context. In the case of a servlet context backed by a Servlet-
ContextHelper registered in the service registry and picked up by a Http Whiteboard Implementa-
tion, this value is not negative and corresponds to the service id in the registry. If the servlet context
is not backed by a service registered in the service registry, the value is negative and a unique nega-
tive value is generated by the Http Service Runtime in this case.

140.15.16.10 public ServletDTO[] servletDTOs

Returns the representations of the Servlet services associated with this context. The representations
of the Servlet services associated with this context. The returned array may be empty if this context
is currently not associated with any Servlet services.

140.15.16.11 public ServletContextDTO()

140.15.17 public class ServletDTO
extends BaseServletDTO
Represents a javax.servlet .Servlet currently being used by a servlet context.

Concurrency Not Thread-safe

140.15.17.1 public String[] patterns

The request mappings for the servlet.

The specified patterns are used to determine whether a request is mapped to the servlet. This array
is never empty.

140.15.17.2 public ServletDTO()

140.16 org.osgi.service.http.whiteboard

Http Whiteboard Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.whiteboard; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.whiteboard; vers ion="[1.0,1.1)"

140.16.1 Summary

• HttpWhiteboardConstants - Defines standard constants for the Http Whiteboard services.

140.16.2 public final class HttpWhiteboardConstants
Defines standard constants for the Http Whiteboard services.

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.0

Page 1102 OSGi Compendium Release 6

140.16.2.1 public static final String DISPATCHER_ASYNC = "ASYNC"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied in the asynchronous context.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.16.2.2 public static final String DISPATCHER_ERROR = "ERROR"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied when an error page is called.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.16.2.3 public static final String DISPATCHER_FORWARD = "FORWARD"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to forward calls to the dispatcher.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.16.2.4 public static final String DISPATCHER_INCLUDE = "INCLUDE"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to include calls to the dispatcher.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.16.2.5 public static final String DISPATCHER_REQUEST = "REQUEST"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to client requests.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.16.2.6 public static final String HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX = "context.init."

Service property prefix referencing a ServletContextHelper service.

For ServletContextHelper services this prefix can be used for service properties to mark them as ini-
tialization parameters which can be retrieved from the associated servlet context. The prefix is re-
moved from the service property name to build the initialization parameter name.

For ServletContextHelper services, the value of each initialization parameter service property must
be of type Str ing .

140.16.2.7 public static final String HTTP_WHITEBOARD_CONTEXT_NAME = "osgi.http.whiteboard.context.name"

Service property specifying the name of an ServletContextHelper service.

For ServletContextHelper services, this service property must be specified. Context services without
this service property are ignored.

Servlet, listener, servlet filter, and resource services might refer to a specific ServletContextHelper
service referencing the name with the HTTP_WHITEBOARD_CONTEXT_SELECT property.

For ServletContextHelper services, the value of this service property must be of type Str ing . The val-
ue must follow the "symbolic-name" specification from Section 1.3.2 of the OSGi Core Specification.

See Also HTTP_WHITEBOARD_CONTEXT_PATH, HTTP_WHITEBOARD_CONTEXT_SELECT,
HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME

140.16.2.8 public static final String HTTP_WHITEBOARD_CONTEXT_PATH = "osgi.http.whiteboard.context.path"

Service property specifying the path of an ServletContextHelper service.

For ServletContextHelper services this service property is required. Context services without this
service property are ignored.

Http Whiteboard Specification Version 1.0 org.osgi.service.http.whiteboard

OSGi Compendium Release 6 Page 1103

This property defines a context path under which all whiteboard services associated with this con-
text are registered. Having different contexts with different paths allows to separate the URL space.

For ServletContextHelper services, the value of this service property must be of type Str ing . The val-
ue is either a slash for the root or it must start with a slash but not end with a slash. Valid characters
are defined in rfc3986#section-3.3. Contexts with an invalid path are ignored.

See Also HTTP_WHITEBOARD_CONTEXT_NAME, HTTP_WHITEBOARD_CONTEXT_SELECT

140.16.2.9 public static final String HTTP_WHITEBOARD_CONTEXT_SELECT = "osgi.http.whiteboard.context.select"

Service property referencing a ServletContextHelper service.

For servlet, listener, servlet filter, or resource services, this service property refers to the associated
ServletContextHelper service. The value of this property is a filter expression which is matched
against the service registration properties of the ServletContextHelper service. If this service prop-
erty is not specified, the default context is used. If there is no context service matching, the servlet,
listener, servlet filter, or resource service is ignored.

For example, if a whiteboard service wants to select a servlet context helper with the name "Admin"
the expression would be "(osgi.http.whiteboard.context.name=Admin)". Selecting all contexts could
be done with "(osgi.http.whiteboard.context.name=*)".

For servlet, listener, servlet filter, or resource services, the value of this service property must be of
type Str ing .

See Also HTTP_WHITEBOARD_CONTEXT_NAME, HTTP_WHITEBOARD_CONTEXT_PATH

140.16.2.10 public static final String HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME = "default"

The name of the default ServletContextHelper. If a service is registered with this property, it is over-
riding the default context with a custom provided context.

See Also HTTP_WHITEBOARD_CONTEXT_NAME

140.16.2.11 public static final String HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED =
"osgi.http.whiteboard.filter.asyncSupported"

Service property specifying whether a servlet Fi l ter service supports asynchronous processing.

By default servlet filters services do not support asynchronous processing.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 2.3.3.3 Asynchronous Processing

140.16.2.12 public static final String HTTP_WHITEBOARD_FILTER_DISPATCHER = "osgi.http.whiteboard.filter.dispatcher"

Service property specifying the dispatcher handling of a servlet Fi l ter .

By default servlet filter services are associated with client requests only (see value
DISPATCHER_REQUEST).

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> . Al-
lowed values are DISPATCHER_ASYNC, DISPATCHER_ERROR, DISPATCHER_FORWARD,
DISPATCHER_INCLUDE, DISPATCHER_REQUEST.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.16.2.13 public static final String HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX = "filter.init."

Service property prefix referencing a Filter service.

For Filter services this prefix can be used for service properties to mark them as initialization para-
meters which can be retrieved from the associated filter config. The prefix is removed from the ser-
vice property name to build the initialization parameter name.

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.0

Page 1104 OSGi Compendium Release 6

For Filter services, the value of each initialization parameter service property must be of type Str ing .

140.16.2.14 public static final String HTTP_WHITEBOARD_FILTER_NAME = "osgi.http.whiteboard.filter.name"

Service property specifying the servlet filter name of a Fi l ter service.

This name is used as the value for the Fi l terConfig.getFi l terName() method. If this service property
is not specified, the fully qualified name of the service object's class is used as the servlet filter name.

Servlet filter names should be unique among all servlet filter services associated with a single
ServletContextHelper.

The value of this service property must be of type Str ing .

140.16.2.15 public static final String HTTP_WHITEBOARD_FILTER_PATTERN = "osgi.http.whiteboard.filter.pattern"

Service property specifying the request mappings for a Fi l ter service.

The specified patterns are used to determine whether a request should be mapped to the servlet fil-
ter. Filter services without this service property or the HTTP_WHITEBOARD_FILTER_SERVLET or
the HTTP_WHITEBOARD_FILTER_REGEX service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings

140.16.2.16 public static final String HTTP_WHITEBOARD_FILTER_REGEX = "osgi.http.whiteboard.filter.regex"

Service property specifying the request mappings for a servlet Fi l ter service.

The specified regular expressions are used to determine whether a request should be mapped to
the servlet filter. The regular expressions must follow the syntax defined in java.ut i l . regex.Pattern .
Servlet filter services without this service property or the HTTP_WHITEBOARD_FILTER_SERVLET
or the HTTP_WHITEBOARD_FILTER_PATTERN service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also java.ut i l . regex.Pattern

140.16.2.17 public static final String HTTP_WHITEBOARD_FILTER_SERVLET = "osgi.http.whiteboard.filter.servlet"

Service property specifying the servlet names for a servlet Fi l ter service.

The specified names are used to determine the servlets whose requests should be
mapped to the servlet filter. Servlet filter services without this service property or the
HTTP_WHITEBOARD_FILTER_PATTERN or the HTTP_WHITEBOARD_FILTER_REGEX service
property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

140.16.2.18 public static final String HTTP_WHITEBOARD_LISTENER = "osgi.http.whiteboard.listener"

Service property to mark a Listener service as a Whiteboard service. Listener services with this prop-
erty set to the string value "true" will be treated as Whiteboard services opting in to being handled
by the Http Whiteboard implementation. If the value "false" is specified, the service is opting out
and this case is treated exactly the same as if this property is missing. If an invalid value is specified
this is treated as a failure.

The value of this service property must be of type Str ing . Valid values are "true" and "false" ignoring
case.

140.16.2.19 public static final String HTTP_WHITEBOARD_RESOURCE_PATTERN =
"osgi.http.whiteboard.resource.pattern"

Service property specifying the request mappings for resources.

Http Whiteboard Specification Version 1.0 org.osgi.service.http.whiteboard

OSGi Compendium Release 6 Page 1105

The specified patterns are used to determine whether a request should be mapped to resources. Re-
source services without this service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings ,
HTTP_WHITEBOARD_RESOURCE_PREFIX

140.16.2.20 public static final String HTTP_WHITEBOARD_RESOURCE_PREFIX = "osgi.http.whiteboard.resource.prefix"

Service property specifying the resource entry prefix for a resource service.

If a resource service is registered with this property, requests are served with bundle resources.

This prefix is used to map a requested resource to the bundle's entries. The value must not end with
slash ("/") with the exception that a name of the form "/" is used to denote the root of the bundle. See
the specification text for details on how HTTP requests are mapped.

The value of this service property must be of type Str ing .

See Also HTTP_WHITEBOARD_RESOURCE_PATTERN

140.16.2.21 public static final String HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED =
"osgi.http.whiteboard.servlet.asyncSupported"

Service property specifying whether a Servlet service supports asynchronous processing.

By default servlet services do not support asynchronous processing.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 2.3.3.3 Asynchronous Processing

140.16.2.22 public static final String HTTP_WHITEBOARD_SERVLET_ERROR_PAGE =
"osgi.http.whiteboard.servlet.errorPage"

Service property specifying whether a Servlet service acts as an error page.

The service property values may be the name of a fully qualified exception class, a three digit HTTP
status code, the value "4xx" for all error codes in the 400 range, or the value "5xx" for all error codes
in the 500 range. Any value that is not a three digit number, or one of the two special values is con-
sidered to be the name of a fully qualified exception class.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

140.16.2.23 public static final String HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX = "servlet.init."

Service property prefix referencing a Servlet service.

For Servlet services this prefix can be used for service properties to mark them as initialization para-
meters which can be retrieved from the associated servlet config. The prefix is removed from the ser-
vice property name to build the initialization parameter name.

For Servlet services, the value of each initialization parameter service property must be of type
Str ing .

140.16.2.24 public static final String HTTP_WHITEBOARD_SERVLET_NAME = "osgi.http.whiteboard.servlet.name"

Service property specifying the servlet name of a Servlet service.

This name is used as the value for the ServletConfig.getServletName() method. If this service prop-
erty is not specified, the fully qualified name of the service object's class is used as the servlet name.
Filter services may refer to servlets by this name in their HTTP_WHITEBOARD_FILTER_SERVLET
service property to apply the filter to the servlet.

Servlet names should be unique among all servlet services associated with a single ServletContex-
tHelper.

References Http Whiteboard Specification Version 1.0

Page 1106 OSGi Compendium Release 6

The value of this service property must be of type Str ing .

140.16.2.25 public static final String HTTP_WHITEBOARD_SERVLET_PATTERN = "osgi.http.whiteboard.servlet.pattern"

Service property specifying the request mappings for a Servlet service.

The specified patterns are used to determine whether a request should be mapped to the servlet.
Servlet services without this service property or HTTP_WHITEBOARD_SERVLET_ERROR_PAGE are
ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings

140.16.2.26 public static final String HTTP_WHITEBOARD_TARGET = "osgi.http.whiteboard.target"

Service property specifying the target filter to select the Http Whiteboard implementation to
process the service.

An Http Whiteboard implementation can define any number of service properties which can be ref-
erenced by the target filter. The service properties should always include the osgi.http.endpoint ser-
vice property if the endpoint information is known.

If this service property is not specified, then all Http Whiteboard implementations can process the
service.

The value of this service property must be of type Str ing and be a valid filter string.

140.17 References

[1] HTTP 1.0 Specification RFC-1945
http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specifications RFCs 7230-7235
https://tools.ietf.org/html/rfc7230, https://tools.ietf.org/html/rfc7231, https://tools.ietf.org/html/
rfc7232, https://tools.ietf.org/html/rfc7233, https://tools.ietf.org/html/rfc7234, https://tools.ietf.org/
html/rfc7235

[3] HTTP/2 Specifications
https://http2.github.io

[4] Java Servlet 3.1 Specification
https://jcp.org/aboutJava/communityprocess/final/jsr340/

[5] Portable Java Contract Definitions
http://www.osgi.org/Specifications/ReferenceContract

[6] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt

[7] Whiteboard Pattern
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf

[8] Core Service Hooks
OSGi Core, Chapter 55 Service Hook Service Specification

XML Parser Service Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1107

702 XML Parser Service Specification

Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of describing data. As more
bundles use XML to describe their data, a common XML Parser becomes necessary in an embedded
environment in order to reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [4] JAXP for Java 2 Standard Edi-
tion and Enterprise Edition. This specification addresses how the classes defined in JAXP can be used
in an OSGi framework. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials

• Standards - Leverage existing standards in Java based XML parsing: JAXP, SAX and DOM
• Unmodified JAXP code - Run unmodified JAXP code
• Simple - It should be easy to provide a SAX or DOM parser as well as easy to find a matching pars-

er
• Multiple - It should be possible to have multiple implementations of parsers available
• Extendable - It is likely that parsers will be extended in the future with more functionality

702.1.2 Entities

• XMLParserActivator - A utility class that registers a parser factory from declarative information in
the Manifest file.

• SAXParserFactory - A class that can create an instance of a SAXParser class.
• DocumentBuilderFactory - A class that can create an instance of a DocumentBui lder class.
• SAXParser - A parser, instantiated by a SaxParserFactory object, that parses according to the SAX

specifications.
• DocumentBuilder - A parser, instantiated by a DocumentBui lderFactory , that parses according to

the DOM specifications.

JAXP XML Parser Service Specification Version 1.0

Page 1108 OSGi Compendium Release 6

Figure 702.1 XML Parsing diagram

SAXParser
Factory

Document
Builder Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..*0..*

0..*0..*

0..*0..*

0..*0..*

0,1 0,1

0,10,1

0..*10..* 1

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a SAXParserFactory and/
or a DocumentBui lderFactory service object with the Framework. Service registration properties de-
scribe the features of the parsers to other bundles. A bundle that needs an XML parser will get a SAX-
ParserFactory or DocumentBui lderFactory service object from the Framework service registry. This
object is then used to instantiate the requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the interchange of complex in-
formation between different parties. Though only a single XML standard exists, there are multiple
APIs to XML parsers, primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by different vendors.

A given XML Parser implementation may support either or both of these parser types by imple-
menting the org.w3c.dom and/or org.xml.sax packages. In addition, parsers have characteristics
such as whether they are validating or non-validating parsers and whether or not they are name-
space aware.

An application which uses a specific XML Parser must code to that specific parser and become cou-
pled to that specific implementation. If the parser has implemented [4] JAXP, however, the applica-
tion developer can code against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts the creation of another
object. JAXP defines a DocumentBui lderFactory and a SAXParserFactory class for this purpose.

XML Parser Service Specification Version 1.0 XML Parser service

OSGi Compendium Release 6 Page 1109

JAXP is implemented in the javax.xml.parsers package and provides an abstraction layer between
an application and a specific XML Parser implementation. Using JAXP, applications can choose to
use any JAXP compliant parser without changing any code, simply by changing a System property
which specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the SAXParserFactory or Document-
Bui lderFactory class. This method will inspect the associated System property and create a new in-
stance of that class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each type of parser factories
can be registered. This specification specifies how multiple SAXParserFactory objects and Docu-
mentBui lderFactory objects can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi service registry under the
factory class name. Service properties are used to describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for parsers supporting the spe-
cific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the service. In this specification,
the following properties are specified:

• PARSER_NAMESPACEAWARE - The registered parser is aware of name-spaces. Name-spaces allow
an XML document to consist of independently developed DTDs. In an XML document, they are
recognized by the xmlns attribute and names prefixed with an abbreviated name-space identifi-
er, like: <xsl : i f . . .> . The type is a Boolean object that must be true when the parser supports name-
spaces. All other values, or the absence of the property, indicate that the parser does not imple-
ment name-spaces.

• PARSER_VALIDATING - The registered parser can read the DTD and can validate the XML accord-
ingly. The type is a Boolean object that must true when the parser is validating. All other values,
or the absence of the property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory from the service registry. In
a simple case in which a non-validating, non-name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBuilder getParser(BundleContext context)
 throws Exception {
 ServiceReference ref = context.getServiceReference(
 DocumentBuilderFactory.class.getName());
 if (ref == null)
 return null;

Adapting a JAXP Parser to OSGi XML Parser Service Specification Version 1.0

Page 1110 OSGi Compendium Release 6

 DocumentBuilderFactory factory =
 (DocumentBuilderFactory) context.getService(ref);
 return factory.newDocumentBuilder();
}

In a more demanding case, the filtered version allows the bundle to select a parser that is validating
and name-space aware:

SAXParser getParser(BundleContext context)
 throws Exception {
 ServiceReference refs[] = context.getServiceReferences(
 SAXParserFactory.class.getName(),
 "(&(parser.namespaceAware=true)"
 + "(parser.validating=true))");
 if (refs == null)
 return null;
 SAXParserFactory factory =
 (SAXParserFactory) context.getService(refs[O]);
 return factory.newSAXParser();
}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware bundle
by adding a BundleActivator class which registers an XML Parser Service. The utility
org.osgi .ut i l .xml.XMLParserActivator class provides this function and can be added (copied, not ref-
erenced) to any XML Parser bundle, or it can be extended and customized if desired.

702.6.1 JAR Based Services
Its functionality is based on the definition of the [5] JAR File specification, services directory. This spec-
ification defines a concept for service providers. A JAR file can contain an implementation of an ab-
stractly defined service. The class (or classes) implementing the service are designated from a file in
the META-INF/services directory. The name of this file is the same as the abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by new lines. White space is
ignored and the number sign ('# ' \u0023) is the comment character.

JAXP uses this service provider mechanism. It is therefore likely that vendors will place these ser-
vice files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class that should be normally
delivered with the OSGi framework implementation. This class is a Bundle Activator and must start
when the bundle is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleActivator class will look in the META-INF/services service
provider directory for the files javax.xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax.xml.parsers.DocumentBui lderFactory (DOMFACTORYNAME). The full path name is specified
in the constants SAXCLASSFILE and DOMCLASSFILE respectively.

If either of these files exist, the utility BundleActivator class will parse the contents according to the
specification. A service provider file can contain multiple class names. Each name is read and a new
instance is created. The following example shows the possible content of such a file:

ACME example SAXParserFactory file

XML Parser Service Specification Version 1.0 Usage of JAXP

OSGi Compendium Release 6 Page 1111

com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates

Both the javax.xml.parsers.SAXParserFactory and the javax.xml.parsers.DocumentBui lderFactory
provide methods that describe the features of the parsers they can create. The XMLParserActivator
activator will use these methods to set the values of the properties, as defined in Properties on page
1109, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
To incorporate this bundle activator into a XML Parser Bundle, do the following:

• If SAX parsing is supported, create a /META-INF/services/ javax.xml.parsers.SAXParserFactory re-
source file containing the class names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/ser-
vices/ javax.xml.parsers.DocumentBui lderFactory file containing the fully qualified class names
of the DocumentBui lderFactory classes.

• Create manifest file which imports the packages org.w3c.dom , org.xml.sax , and
javax.xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the XMLParserActivator , the sub-class
that was created, or a fully custom one.

• If the parsers support attributes, properties, or features that should be registered
as properties so they can be searched, extend the XMLParserActivator class and
override setSAXPropert ies(javax.xml.parsers.SAXParserFactory,Hashtable) and
setDOMPropert ies(javax.xml.parsers.DocumentBui lderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP does not provide a way for
XMLParserActivator to query the parser to find out what properties were added.

• Bundles that extend the XMLParserActivator class must call the original methods via super to
correctly initialize the XML Parser Service properties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org.osgi .ut i l .xml.XMLParserActivator class is contained in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of contained packages
must be appropriately labeled. JAXP 1.1 or later is required which references SAX 2 and DOM 2. See
[4] JAXP for the exact version dependencies.

This specification is related to related packages as defined in the JAXP 1.1 document. The following
table contains the expected minimum versions.

Table 702.1 JAXP 1.1 minimum package versions

Package Minimum Version
javax.xml.parsers 1.1
org.xml.sax 2.0
org.xml.sax.helpers 2.0
org.xsml.sax.ext 1.0
org.w3c.dom 2.0

The Xerces project from the Apache group, [6] Xerces 2 Java Parser, contains a number libraries that
implement the necessary APIs. These libraries can be wrapped in a bundle to provide the relevant
packages.

Security XML Parser Service Specification Version 1.0

Page 1112 OSGi Compendium Release 6

702.8 Security
A centralized XML parser is likely to see sensitive information from other bundles. Provi-
sioning an XML parser should therefore be limited to trusted bundles. This security can be
achieved by providing ServicePermission[javax.xml.parsers.DocumentBui lderFactory |
javax.xml.parsers.SAXFactory,REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermission[javax.xml.parsers.DOMParserFactory | javax.xml.parsers.SAXFactory, GET]
should not be restricted.

The XML parser bundle will need Fi lePermission[<<ALL FILES>>,READ] for parsing of files because
it is not known beforehand where those files will be located. This requirement further implies that
the XML parser is a system bundle that must be fully trusted.

702.9 org.osgi.util.xml

XML Parser Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .xml; vers ion="[1.0,2.0)"

702.9.1 Summary

• XMLParserActivator - A BundleActivator class that allows any JAXP compliant XML Parser to
register itself as an OSGi parser service.

702.9.2 public class XMLParserActivator
implements BundleActivator, ServiceFactory
A BundleActivator class that allows any JAXP compliant XML Parser to register itself as an OSGi
parser service. Multiple JAXP compliant parsers can concurrently register by using this Bundle-
Activator class. Bundles who wish to use an XML parser can then use the framework's service reg-
istry to locate available XML Parsers with the desired characteristics such as validating and name-
space-aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME)
• javax.xml.parsers.DocumentBui lderFactory(DOMFACTORYNAME)

The algorithm to find the implementations of the abstract parsers is derived from the JAR file speci-
fications, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the factory classes in the fol-
lowing files:

• /META-INF/services/ javax.xml.parsers.SAXParserFactory is a file contained in a jar available to
the runtime which contains the implementation class name(s) of the SAXParserFactory.

• /META-INF/services/ javax.xml.parsers.DocumentBui lderFactory is a file contained in a jar avail-
able to the runtime which contains the implementation class name(s) of the DocumentBui lder-
Factory

XML Parser Service Specification Version 1.0 org.osgi.util.xml

OSGi Compendium Release 6 Page 1113

If either of the files does not exist, XMLParserActivator assumes that the parser does not support that
parser type.

XMLParserActivator attempts to instantiate both the SAXParserFactory and the DocumentBui lder-
Factory . It registers each factory with the framework along with service properties:

• PARSER_VALIDATING- indicates if this factory supports validating parsers. It's value is a
Boolean .

• PARSER_NAMESPACEAWARE- indicates if this factory supports namespace aware parsers It's
value is a Boolean .

Individual parser implementations may have additional features, properties, or attributes which
could be used to select a parser with a filter. These can be added by extending this class and overrid-
ing the setSAXPropert ies and setDOMPropert ies methods.

Concurrency Thread-safe

702.9.2.1 public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"

Fully qualified path name of DOM Parser Factory Class Name file

702.9.2.2 public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"

Filename containing the DOM Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.3 public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"

Service property specifying if factory is configured to support namespace aware parsers. The value is
of type Boolean .

702.9.2.4 public static final String PARSER_VALIDATING = "parser.validating"

Service property specifying if factory is configured to support validating parsers. The value is of type
Boolean .

702.9.2.5 public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"

Fully qualified path name of SAX Parser Factory Class Name file

702.9.2.6 public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"

Filename containing the SAX Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.7 public XMLParserActivator()

702.9.2.8 public Object getService(Bundle bundle,ServiceRegistration registration)

bundle The bundle using the service.

registration The ServiceRegistrat ion object for the service.

□ Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating and namespace aware sup-
port as specified in the service properties of the specified ServiceRegistration object. This method
can be overridden to configure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error was encountered

702.9.2.9 public void setDOMProperties(DocumentBuilderFactory factory,Hashtable props)

factory - the DocumentBuilderFactory object

org.osgi.util.xml XML Parser Service Specification Version 1.0

Page 1114 OSGi Compendium Release 6

props - Hashtable of service properties.

Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
props object.

This method can be overridden to add additional DOM2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.10 public void setSAXProperties(SAXParserFactory factory,Hashtable properties)

factory - the SAXParserFactory object

properties - the properties object for the service

Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
properties object.

This method can be overridden to add additional SAX2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

□ Called when this bundle is started so the Framework can perform the bundle-specific activities nec-
essary to start this bundle. This method can be used to register services or to allocate any resources
that this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Framework's service registry.

Throws Exception– If this method throws an exception, this bundle is marked as stopped and the Frame-
work will remove this bundle's listeners, unregister all services registered by this bundle, and re-
lease all services used by this bundle.

702.9.2.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

□ This method has nothing to do as all active service registrations will automatically get unregistered
when the bundle stops.

Throws Exception– If this method throws an exception, the bundle is still marked as stopped, and the
Framework will remove the bundle's listeners, unregister all services registered by the bundle, and
release all services used by the bundle.

702.9.2.13 public void ungetService(Bundle bundle,ServiceRegistration registration,Object service)

bundle The bundle releasing the service.

registration The ServiceRegistrat ion object for the service.

service The XML Parser Factory object returned by a previous call to the getService method.

□ Releases a XML Parser Factory object.

XML Parser Service Specification Version 1.0 References

OSGi Compendium Release 6 Page 1115

702.10 References

[1] XML
http://www.w3.org/XML

[2] SAX
http://www.saxproject.org/

[3] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[4] JAXP
http://jaxp.java.net/

[5] JAR File specification, services directory
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html

[6] Xerces 2 Java Parser
http://xerces.apache.org/xerces2-j/

References XML Parser Service Specification Version 1.0

Page 1116 OSGi Compendium Release 6

Position Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1117

703 Position Specification

Version 1.0

703.1 Introduction
The Posit ion class is a utility providing bundle developers with a consistent way of handling geo-
graphic positions in OSGi applications. The Posit ion class is intended to be used with the Wire Ad-
min service but has wider applicability.

The Posit ion class is designed to be compatible with the Global Positioning System (GPS). This spec-
ification will not define or explain the complexities of positioning information. It is assumed that
the reader has the appropriate background to understand this information.

703.1.1 Essentials

• Position - Provide an information object that has well defined semantics for a position.
• WGS-84 - Use the World Geodetic System 84 as the datum.
• Speed - Provide speed and track information.
• Errors - Position information always has certain errors or cannot be measured at all. This infor-

mation must be available to the users of the information.
• Units - Use SI units for all measurements.
• Wire Admin - This specification must work within the Wire Admin service.

703.1.2 Entities

• Position - An object containing the different aspects of a position.
• Measurement - Contains a typed measurement made at a certain time and with a specified error.

Figure 703.1 Class Diagram, org.osgi.util.position

latitude

Position Measurement

longitude

altitude

track

speed

1 1
1

1

1

11
1

1

1

703.2 Positioning
The Posit ion class is used to give information about the position and movement of a vehicle with a
specified amount of uncertainty. The position is based on WGS-84.

The Position class offers the following information:

• getLatitude() - The WGS-84 latitude of the current position. The unit of a latitude must be rad
(radians).

Units Position Specification Version 1.0

Page 1118 OSGi Compendium Release 6

• getLongitude() - The WGS-84 longitude of the current position. The unit of a longitude must be
rad (radians).

• getAlt itude() - Altitude is expressed as height in meters above the WGS-84 ellipsoid. This value
can differ from the actual height above mean sea level depending on the place on earth where
the measurement is taken place. This value is not corrected for the geoid.

• getTrack() - The true north course of the vehicle in radians.
• getSpeed() - The ground speed. This speed must not include vertical speed.

703.3 Units
Longitude and latitude are represented in radians, not degrees. This is consistent with the use of the
Measurement object. Radians can be converted to degrees with the following formula, when lonlat
is the longitude or latitude:

degrees = (lonlat / π) * 180

Calculation errors are significantly reduced when all calculations are done with a single unit sys-
tem. This approach increases the complexity of presentation, but presentations are usually lo-
calized and require conversion anyway. Also, the radians are the units in the SI system and the
java.lang.Math class uses only radians for angles.

703.4 Optimizations
A Posit ion object must be immutable. It must remain its original values after it is created.

The Posit ion class is not final. This approach implies that developers are allowed to sub-class it and
provide optimized implementations. For example, it is possible that the Measurement objects are
only constructed when actually requested.

703.5 Errors
Positioning information is never exact. Even large errors can exist in certain conditions. For this rea-
son, the Posit ion class returns all its measurements as Measurement objects. The Measurement class
maintains an error value for each measurement.

In certain cases it is not possible to supply a value; in those cases, the method should return a NaN as
specified in the Measurement class.

703.6 Using Position With Wire Admin
The primary reason the Position is specified, is to use it with the Wire Admin Service Specification on
page 199. A bundle that needs position information should register a Consumer service and the con-
figuration should connect this service to an appropriate Producer service.

Position Specification Version 1.0 Related Standards

OSGi Compendium Release 6 Page 1119

703.7 Related Standards

703.7.1 JSR 179
In JCP, started [2] Location API for J2ME. This API is targeted at embedded systems and is likely to not
contain some of the features found in this API. This API is targeted to be reviewed at Q4 of 2002.
This API should be considered in a following release.

703.8 Security
The security aspects of the Posit ion class are delegated to the security aspects of the Wire Admin
service. The Posit ion object only carries the information. The Wire Admin service will define what
Consumer services will receive position information from what Producer services. It is therefore up
to the administrator of the Wire Admin service to assure that only trusted bundles receive this infor-
mation, or can supply it.

703.9 org.osgi.util.position

Position Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .posit ion; vers ion="[1.0,2.0)"

703.9.1 Summary

• Posit ion - Position represents a geographic location, based on the WGS84 System (World Geo-
detic System 1984).

703.9.2 public class Position
Position represents a geographic location, based on the WGS84 System (World Geodetic System
1984).

The org.osgi .ut i l .measurement.Measurement class is used to represent the values that make up a
position.

A given position object may lack any of it's components, i.e. the altitude may not be known. Such
missing values will be represented by null.

Position does not override the implementation of either equals() or hashCode() because it is not
clear how missing values should be handled. It is up to the user of a position to determine how best
to compare two position objects. A Posit ion object is immutable.

Concurrency Immutable

703.9.2.1 public Position(Measurement lat,Measurement lon,Measurement alt,Measurement speed,Measurement
track)

lat a Measurement object specifying the latitude in radians, or null

lon a Measurement object specifying the longitude in radians, or null

References Position Specification Version 1.0

Page 1120 OSGi Compendium Release 6

alt a Measurement object specifying the altitude in meters, or null

speed a Measurement object specifying the speed in meters per second, or null

track a Measurement object specifying the track in radians, or null

□ Constructs a Posit ion object with the given values.

703.9.2.2 public Measurement getAltitude()

□ Returns the altitude of this position in meters.

Returns a Measurement object in Unit .m representing the altitude in meters above the ellipsoid nul l if the al-
titude is not known.

703.9.2.3 public Measurement getLatitude()

□ Returns the latitude of this position in radians.

Returns a Measurement object in Unit .rad representing the latitude, or nul l if the latitude is not known..

703.9.2.4 public Measurement getLongitude()

□ Returns the longitude of this position in radians.

Returns a Measurement object in Unit .rad representing the longitude, or nul l if the longitude is not known.

703.9.2.5 public Measurement getSpeed()

□ Returns the ground speed of this position in meters per second.

Returns a Measurement object in Unit .m_s representing the speed, or nul l if the speed is not known..

703.9.2.6 public Measurement getTrack()

□ Returns the track of this position in radians as a compass heading. The track is the extrapolation of
previous previously measured positions to a future position.

Returns a Measurement object in Unit .rad representing the track, or nul l if the track is not known..

703.10 References

[1] World Geodetic System 84 (WGS-84)
http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.html

[2] Location API for J2ME
http://www.jcp.org/jsr/detail/179.jsp

Measurement and State Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1121

704 Measurement and State
Specification

Version 1.0

704.1 Introduction
The Measurement class is a utility that provides a consistent way of handling a diverse range of
measurements for bundle developers. Its purpose is to simplify the correct handling of measure-
ments in OSGi Frameworks.

OSGi bundle developers from all over the world have different preferences for measurement units,
such as feet versus meters. In an OSGi environment, bundles developed in different parts of the
world can and will exchange measurements when collaborating.

Distributing a measurement such as a simple floating point number requires the correct and equal
understanding of the measurement's semantic by both the sender and the receiver. Numerous acci-
dents have occurred due to misunderstandings between the sender and receiver because there are so
many different ways to represent the same value. For example, on September 23, 1999, the Mars Po-
lar Lander was lost because calculations used to program the craft's trajectory were input with Eng-
lish units while the operation documents specified metric units. See [5] Mars Polar Lander failure for
more information.

This Measurement and State Specification defines the norm that should be used by all applications
that execute in an OSGi Framework. This specification also provides utility classes.

704.1.1 Measurement Essentials

• Numerical error - All floating point measurements should be able to have a numerical error.
• Numerical error calculations simplification - Support should be provided to simplify measurements

calculations.
• Unit conflict resolution - It must not be possible to perform addition or subtraction with different

units when they are not compatible. For example, it must not be possible to add meters to am-
peres or watts to pascals.

• Unit coercion - Multiplication and division operations involving more than one type of measure-
ment must result in a different unit. For example, if meters are divided by seconds, the result
must be a new unit that represents m/s .

• Time-stamp - Measurements should contain a time-stamp so that bundles can determine the age
of a particular measurement.

• Support for floating and discrete values - Both floating point values (64 bit Java double floats) and
discrete measurements (32 bit Java int) should be supported.

• Consistency - The method of error calculation and handling of unit types should be consistent.
• Presentation - The format of measurements and specified units should be easy to read and under-

stand.

Measurement Object Measurement and State Specification Version 1.0

Page 1122 OSGi Compendium Release 6

704.1.2 Measurement Entities

• Measurement object - A Measurement object contains a double value, a double error, and a long
time-stamp. It is associated with a Unit object that represents its type.

• State object - A State object contains a discrete measurement (int) with a time-stamp and a name.
• Unit object - A Unit object represents a unit such as meter, second, mol, or Pascal. A number of Unit

objects are predefined and have common names. Other Unit objects are created as needed from
the 7 basic Système International d'Unité (SI) units. Different units are not used when a conver-
sion is sufficient. For example, the unit of a Measurement object for length is always meters. If
the length is needed in feet, then the number of feet is calculated by multiplying the value of the
Measurement object in meters with the necessary conversion factor.

• Error - When a measurement is taken, it is never accurate. This specification defines the error as
the value that is added and subtracted to the value to produce an interval, where the probability
is 95% that the actual value falls within this interval.

• Unit - A unit is the type of a measurement: meter, feet, liter, gallon etc.
• Base Unit - One of the 7 base units defined in the SI.
• Derived SI unit - A unit is a derived SI unit when it is a combination of exponentiated base units.

For example, a volt (V) is a derived unit because it can be expressed as (m2 × kg) / (s3 × A), where
m , kg , s and A are all base units.

• Quantitative derivation - A unit is quantitatively derived when it is converted to one of the base
units or derived units using a conversion formula. For example, kilometers (km) can be convert-
ed to meters (m), gallons can be converted to liters, or horsepower can be converted to watts.

Figure 704.1 Class Diagram, org.osgi.util.measurement

is of unit UnitMeasurement

State

0..* 1

704.2 Measurement Object
A Measurement object contains a value, an error, and a time-stamp It is linked to a Unit object that
describes the measurement unit in an SI Base Unit or Derived SI Unit.

704.2.1 Value
The value of the Measurement object is the measured value. It is set in a constructor. The type of the
value is double .

704.2.2 Error
The Measurement object can contain a numerical error. This error specifies an interval by adding
and subtracting the error value from the measured value. The type of the error is double . A valid er-
ror value indicates that the actual measured value has a 95% chance of falling within this interval
(see Figure 704.2). If the error is not known it should be represented as a Double.NaN .

Measurement and State Specification Version 1.0 Error Calculations

OSGi Compendium Release 6 Page 1123

Figure 704.2 The Error Interval

measurement

|error||error|

95% chance that the actual value is in this range

+–

704.2.3 Time-stamp
When a Measurement object is created, the time-stamp can be set. A time-stamp is a long value rep-
resenting the number of milliseconds since the epoch midnight of January 1, 1970, UTC (this is the
value from System.currentTimeMil l is() method).

By default, a time-stamp is not set because the call to System.currentTimeMil l is() incurs overhead.
If the time-stamp is not set when the Measurement object is created, then its default value is zero. If
the time-stamp is set, the creator of the Measurement object must give the time as an argument to
the constructor. For example:

Measurement m = new Measurement(
 v, e, null, System.currentTimeMillis());

704.3 Error Calculations
Once a measurement is taken, it often is used in calculations. The error value assigned to the result
of a calculation depends largely on the error values of the operands. Therefore, the Measurement
class offers addition, subtraction, multiplication, and division functions for measurements and con-
stants. These functions take the error into account when performing the specific operation.

The Measurement class uses absolute errors and has methods to calculate a new absolute error
when multiplication, division, addition, or subtraction is performed. Error calculations must there-
fore adhere to the rules listed in the following table. In this table, Δa is the absolute positive error in
a value a and Δ b is the absolute positive error in a value b. c is a constant floating point value with-
out an error.

Table 704.1 Error Calculation Rules

Calculation Function Error
a × b mul(Measurement) | Δa × b | + | a × Δb |
a / b div(Measurement) (| Δa × b | + | a × Δb |) / b2

a + b add(Measurement) Δa + Δb
a - b sub(Measurement) Δa + Δb
a × c mul(double) | Δa × c |
a / c div(double) | Δa / c |
a + c add(double) Δa
a - c sub(double) Δa

704.4 Constructing and Comparing Measurements
Measurement objects have a value and an error range, making comparing and constructing these
objects more complicated than normal scalars.

Unit Object Measurement and State Specification Version 1.0

Page 1124 OSGi Compendium Release 6

704.4.1 Constructors
The Measurements object has the following constructors that the value, error, unit and timestamp:

• Measurement(double,double,Unit , long)
• Measurement(double,double,Unit)
• Measurement(double,Unit)
• Measurement(double)

704.4.2 Identity and Equality
Both equals(Object) and hashCode() methods are overridden to provide value-based equality. Two
Measurement objects are equal when the unit, error, and value are the same. The time-stamp is not
relevant for equality or the hash code.

704.4.3 Comparing Measurement Objects
The Measurement class implements the java. lang.Comparable interface and thus implements the
compareTo(Object) method. Comparing two Measurement objects is not straightforward, however,
due to the associated error. The error effectively creates a range, so comparing two Measurement ob-
jects is actually comparing intervals.

Two Measurement objects are considered to be equal when their intervals overlap. In all other cases,
the value is used in the comparison.

Figure 704.3 Comparing Measurement Objects

+–

+–

all these ranges are comparing equal
because they overlap with a

> a

a

< a

a

This comparison implies that the equals(Object) method may return fa lse while the
compareTo(Object) method returns 0 for the same Measurement object.

704.5 Unit Object
Each Measurement object is related to a Unit object. The Unit object defines the unit of the measure-
ment value and error. For example, the Unit object might define the unit of the measurement val-
ue and the error as meters (m). For convenience, the Unit class defines a number of standard units as
constants. Measurement objects are given a specific Unit with the constructor. The following exam-
ple shows how a measurement can be associated with meters (m):

Measurement length = new Measurement(v, 0.01,Unit.m);

Units are based on the Système International d'Unité (SI), developed after the French Revolution.
The SI consists of 7 different units that can be combined in many ways to form a large series of de-
rived units. The basic 7 units are listed in the following table. For more information, see [2] General
SI index.

Measurement and State Specification Version 1.0 Unit Object

OSGi Compendium Release 6 Page 1125

Table 704.2 Basic SI units.

Description Unit name Symbol
length meter m
mass ki logram kg
time second s
electr ic current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

Additional units are derived in the following ways:

Derived units can be a combination of exponentiated base units. For example, Hz (Hertz) is the unit
for frequencies and is actually derived from the calculation of 1/s . A more complicated derived unit
is volt (V). A volt is actually:

 (m2 × kg) / (s3 × A)

The SI defines various derived units with their own name, for example pascal (Pa), watt (W), volt (V),
and many more.

The Measurement class must maintain its unit by keeping track of the exponents of the 7 basic SI
units.

If different units are used in addition or subtraction of Measurement objects, an ArithmeticExcep-
t ion must be thrown.

Measurement length = new Measurement(v1,0.01, Unit.m);
Measurement duration = new Measurement(v2, 0, Unit.s);
try {
 Measurement r = length.add(duration);
}
catch(ArithmeticException e) {
 // This must be thrown
}

When two Measurement objects are multiplied, the Unit object of the result contains the sum of the
exponents. When two Measurement objects are divided, the exponents of the Unit object of the re-
sult are calculated by subtraction of the exponents.

The Measurement class must support exponents of -64 to +63. Overflow must not be reported but
must result in an invalid Unit object. All calculations with an invalid Unit object should result in an
invalid Unit object. Typical computations generate exponents for units between +/- 4.

704.5.1 Quantitative Differences
The base and derived units can be converted to other units that are of the same quality, but require a
conversion because their scales and offsets may differ. For example, degrees Fahrenheit, kelvin, and
Celsius are all temperatures and, therefore, only differ in their quantity. Kelvin and Celsius are the
same scale and differ only in their starting points. Fahrenheit differs from kelvin in that both scale
and starting point differ.

Using different Unit objects for the units that differ only in quantity can easily introduce serious
software bugs. Therefore, the Unit class utilizes the SI units. Any exchange of measurements should
be done using SI units to prevent these errors. When a measurement needs to be displayed, the pre-
sentation logic should perform the necessary conversions to present it in a localized form. For exam-

State Object Measurement and State Specification Version 1.0

Page 1126 OSGi Compendium Release 6

ple, when speed is presented in a car purchased in the United States, it should be presented as miles
instead of meters.

704.5.2 Why Use SI Units
The adoption of the SI in the United States and the United Kingdom has met with resistance. This is-
sue raises the question why the SI system has to be the preferred measurement system in the OSGi
Specifications.

The SI system is utilized because it is the only measurement system that has a consistent set of base
units. The base units can be combined to create a large number of derived units without requiring a
large number of complicated conversion formulas. For example, a watt is simply a combination of
meters, kilograms, and seconds (m2×kg / s3). In contrast, horsepower is not easily related to inches,
feet, fathoms, yards, furlongs, ounces, pounds, stones, or miles. This difficulty is the reason that sci-
ence has utilized the SI for a long time. It is also the reason that the SI has been chosen as the system
used for the Measurement class.

The purpose of the Measurement class is internal, however, and should not restrict the usability of
the OSGi environment. Users should be able to use the local measurement units when data is input
or displayed. This choice is the responsibility of the application developer.

704.6 State Object
The State object is used to represent discrete states. It contains a time-stamp but does not contain an
error or Unit object. The Measurement object is not suitable to maintain discrete states. For example,
a car door can be LOCKED , UNLOCKED , or CHILDLOCKED . Measuring and operating with these val-
ues does not require error calculations, nor does it require SI units. Therefore, the State object is a
simple, named object that holds an integer value.

704.7 Related Standards

704.7.1 GNU Math Library in Kawa
The open source project Kawa, a scheme-based Java environment, has included a gnu.math library
that contains unit handling similar to this specification. It can be found at [4] A Math Library contain-
ing unit handling in Kawa.

The library seems considerably more complex without offering much more functionality than this
specification. It also does not strictly separate basic SI units such as meter from quantitatively de-
rived units such as pica.

704.8 Security Considerations
The Measurement , Unit and State classes have been made immutable. Instances of these classes can
be freely handed out to other bundles because they cannot be extended, nor can the value, error, or
time-stamp be altered after the object is created.

704.9 org.osgi.util.measurement

Measurement Package Version 1.0.

Measurement and State Specification Version 1.0 org.osgi.util.measurement

OSGi Compendium Release 6 Page 1127

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .measurement; vers ion="[1.0,2.0)"

704.9.1 Summary

• Measurement - Represents a value with an error, a unit and a time-stamp.
• State - Groups a state name, value and timestamp.
• Unit - A unit system for measurements.

704.9.2 public class Measurement
implements Comparable
Represents a value with an error, a unit and a time-stamp.

A Measurement object is used for maintaining the tuple of value, error, unit and time-stamp. The
value and error are represented as doubles and the time is measured in milliseconds since midnight,
January 1, 1970 UTC.

Mathematic methods are provided that correctly calculate taking the error into account. A runtime
error will occur when two measurements are used in an incompatible way. E.g., when a speed (m/s)
is added to a distance (m). The measurement class will correctly track changes in unit during multi-
plication and division, always coercing the result to the most simple form. See Unit for more infor-
mation on the supported units.

Errors in the measurement class are absolute errors. Measurement errors should use the P95 rule.
Actual values must fall in the range value +/- error 95% or more of the time.

A Measurement object is immutable in order to be easily shared.

Note: This class has a natural ordering that is inconsistent with equals. See compareTo(Object).

Concurrency Immutable

704.9.2.1 public Measurement(double value,double error,Unit unit,long time)

value The value of the Measurement .

error The error of the Measurement .

unit The Unit object in which the value is measured. If this argument is nul l , then the unit will be set to
Unit.unity.

time The time measured in milliseconds since midnight, January 1, 1970 UTC.

□ Create a new Measurement object.

704.9.2.2 public Measurement(double value,double error,Unit unit)

value The value of the Measurement .

error The error of the Measurement .

unit The Unit object in which the value is measured. If this argument is nul l , then the unit will be set to
Unit.unity.

□ Create a new Measurement object with a time of zero.

704.9.2.3 public Measurement(double value,Unit unit)

value The value of the Measurement .

org.osgi.util.measurement Measurement and State Specification Version 1.0

Page 1128 OSGi Compendium Release 6

unit The Unit in which the value is measured. If this argument is nul l , then the unit will be set to
Unit.unity.

□ Create a new Measurement object with an error of 0.0 and a time of zero.

704.9.2.4 public Measurement(double value)

value The value of the Measurement .

□ Create a new Measurement object with an error of 0.0, a unit of Unit.unity and a time of zero.

704.9.2.5 public Measurement add(Measurement m)

m The Measurement object that will be added with this object.

□ Returns a new Measurement object that is the sum of this object added to the specified object. The
error and unit of the new object are computed. The time of the new object is set to the time of this
object.

Returns A new Measurement object that is the sum of this and m.

Throws ArithmeticException– If the Unit objects of this object and the specified object cannot be added.

See Also Unit

704.9.2.6 public Measurement add(double d,Unit u)

d The value that will be added with this object.

u The Unit object of the specified value.

□ Returns a new Measurement object that is the sum of this object added to the specified value.

Returns A new Measurement object that is the sum of this object added to the specified value. The unit of
the new object is computed. The error and time of the new object is set to the error and time of this
object.

Throws ArithmeticException– If the Unit objects of this object and the specified value cannot be added.

See Also Unit

704.9.2.7 public Measurement add(double d)

d The value that will be added with this object.

□ Returns a new Measurement object that is the sum of this object added to the specified value.

Returns A new Measurement object that is the sum of this object added to the specified value. The error,
unit, and time of the new object is set to the error, Unit and time of this object.

704.9.2.8 public int compareTo(Object obj)

obj The object to be compared.

□ Compares this object with the specified object for order. Returns a negative integer, zero, or a posi-
tive integer if this object is less than, equal to, or greater than the specified object.

Note: This class has a natural ordering that is inconsistent with equals. For this method, another
Measurement object is considered equal if there is some x such that

 getValue() - getError() <= x <= getValue() + getError()

for both Measurement objects being compared.

Returns A negative integer, zero, or a positive integer if this object is less than, equal to, or greater than the
specified object.

Throws ClassCastException– If the specified object is not of type Measurement .

Measurement and State Specification Version 1.0 org.osgi.util.measurement

OSGi Compendium Release 6 Page 1129

ArithmeticException– If the unit of the specified Measurement object is not equal to the Unit object
of this object.

704.9.2.9 public Measurement div(Measurement m)

m The Measurement object that will be the divisor of this object.

□ Returns a new Measurement object that is the quotient of this object divided by the specified object.

Returns A new Measurement object that is the quotient of this object divided by the specified object. The er-
ror and unit of the new object are computed. The time of the new object is set to the time of this ob-
ject.

Throws ArithmeticException– If the Unit objects of this object and the specified object cannot be divided.

See Also Unit

704.9.2.10 public Measurement div(double d,Unit u)

d The value that will be the divisor of this object.

u The Unit object of the specified value.

□ Returns a new Measurement object that is the quotient of this object divided by the specified value.

Returns A new Measurement that is the quotient of this object divided by the specified value. The error and
unit of the new object are computed. The time of the new object is set to the time of this object.

Throws ArithmeticException– If the Unit objects of this object and the specified object cannot be divided.

See Also Unit

704.9.2.11 public Measurement div(double d)

d The value that will be the divisor of this object.

□ Returns a new Measurement object that is the quotient of this object divided by the specified value.

Returns A new Measurement object that is the quotient of this object divided by the specified value. The er-
ror of the new object is computed. The unit and time of the new object is set to the Unit and time of
this object.

704.9.2.12 public boolean equals(Object obj)

obj The object to compare with this object.

□ Returns whether the specified object is equal to this object. Two Measurement objects are equal if
they have same value, error and Unit .

Note: This class has a natural ordering that is inconsistent with equals. See compareTo(Object).

Returns true if this object is equal to the specified object; fa lse otherwise.

704.9.2.13 public final double getError()

□ Returns the error of this Measurement object. The error is always a positive value.

Returns The error of this Measurement as a double.

704.9.2.14 public final long getTime()

□ Returns the time at which this Measurement object was taken. The time is measured in millisec-
onds since midnight, January 1, 1970 UTC, or zero when not defined.

Returns The time at which this Measurement object was taken or zero.

704.9.2.15 public final Unit getUnit()

□ Returns the Unit object of this Measurement object.

org.osgi.util.measurement Measurement and State Specification Version 1.0

Page 1130 OSGi Compendium Release 6

Returns The Unit object of this Measurement object.

See Also Unit

704.9.2.16 public final double getValue()

□ Returns the value of this Measurement object.

Returns The value of this Measurement object as a double.

704.9.2.17 public int hashCode()

□ Returns a hash code value for this object.

Returns A hash code value for this object.

704.9.2.18 public Measurement mul(Measurement m)

m The Measurement object that will be multiplied with this object.

□ Returns a new Measurement object that is the product of this object multiplied by the specified ob-
ject.

Returns A new Measurement that is the product of this object multiplied by the specified object. The error
and unit of the new object are computed. The time of the new object is set to the time of this object.

Throws ArithmeticException– If the Unit objects of this object and the specified object cannot be multiplied.

See Also Unit

704.9.2.19 public Measurement mul(double d,Unit u)

d The value that will be multiplied with this object.

u The Unit of the specified value.

□ Returns a new Measurement object that is the product of this object multiplied by the specified val-
ue.

Returns A new Measurement object that is the product of this object multiplied by the specified value. The
error and unit of the new object are computed. The time of the new object is set to the time of this
object.

Throws ArithmeticException– If the units of this object and the specified value cannot be multiplied.

See Also Unit

704.9.2.20 public Measurement mul(double d)

d The value that will be multiplied with this object.

□ Returns a new Measurement object that is the product of this object multiplied by the specified val-
ue.

Returns A new Measurement object that is the product of this object multiplied by the specified value. The
error of the new object is computed. The unit and time of the new object is set to the unit and time
of this object.

704.9.2.21 public Measurement sub(Measurement m)

m The Measurement object that will be subtracted from this object.

□ Returns a new Measurement object that is the subtraction of the specified object from this object.

Returns A new Measurement object that is the subtraction of the specified object from this object. The error
and unit of the new object are computed. The time of the new object is set to the time of this object.

Throws ArithmeticException– If the Unit objects of this object and the specified object cannot be subtracted.

Measurement and State Specification Version 1.0 org.osgi.util.measurement

OSGi Compendium Release 6 Page 1131

See Also Unit

704.9.2.22 public Measurement sub(double d,Unit u)

d The value that will be subtracted from this object.

u The Unit object of the specified value.

□ Returns a new Measurement object that is the subtraction of the specified value from this object.

Returns A new Measurement object that is the subtraction of the specified value from this object. The unit of
the new object is computed. The error and time of the new object is set to the error and time of this
object.

Throws ArithmeticException– If the Unit objects of this object and the specified object cannot be subtracted.

See Also Unit

704.9.2.23 public Measurement sub(double d)

d The value that will be subtracted from this object.

□ Returns a new Measurement object that is the subtraction of the specified value from this object.

Returns A new Measurement object that is the subtraction of the specified value from this object. The error,
unit and time of the new object is set to the error, Unit object and time of this object.

704.9.2.24 public String toString()

□ Returns a Str ing object representing this Measurement object.

Returns a Str ing object representing this Measurement object.

704.9.3 public class State
Groups a state name, value and timestamp.

The state itself is represented as an integer and the time is measured in milliseconds since midnight,
January 1, 1970 UTC.

A State object is immutable so that it may be easily shared.

Concurrency Immutable

704.9.3.1 public State(int value,String name,long time)

value The value of the state.

name The name of the state.

time The time measured in milliseconds since midnight, January 1, 1970 UTC.

□ Create a new State object.

704.9.3.2 public State(int value,String name)

value The value of the state.

name The name of the state.

□ Create a new State object with a time of 0.

704.9.3.3 public boolean equals(Object obj)

obj The object to compare with this object.

□ Return whether the specified object is equal to this object. Two State objects are equal if they have
same value and name.

Returns true if this object is equal to the specified object; fa lse otherwise.

org.osgi.util.measurement Measurement and State Specification Version 1.0

Page 1132 OSGi Compendium Release 6

704.9.3.4 public final String getName()

□ Returns the name of this State .

Returns The name of this State object.

704.9.3.5 public final long getTime()

□ Returns the time with which this State was created.

Returns The time with which this State was created. The time is measured in milliseconds since midnight,
January 1, 1970 UTC.

704.9.3.6 public final int getValue()

□ Returns the value of this State .

Returns The value of this State object.

704.9.3.7 public int hashCode()

□ Returns a hash code value for this object.

Returns A hash code value for this object.

704.9.3.8 public String toString()

□ Returns a Str ing object representing this object.

Returns a Str ing object representing this object.

704.9.4 public class Unit
A unit system for measurements. This class contains definitions of the most common SI units.

This class only support exponents for the base SI units in the range -64 to +63. Any operation which
produces an exponent outside of this range will result in a Unit object with undefined exponents.

Concurrency Immutable

704.9.4.1 public static final Unit A

The electric current unit ampere (A)

704.9.4.2 public static final Unit C

The electric charge unit coulomb (C).

coulomb is expressed in SI units as s·A

704.9.4.3 public static final Unit cd

The luminous intensity unit candela (cd)

704.9.4.4 public static final Unit F

The capacitance unit farad (F).

farad is equal to C/V or is expressed in SI units as s4·A2/m2·kg

704.9.4.5 public static final Unit Gy

The absorbed dose unit gray (Gy).

Gy is equal to J/kg or is expressed in SI units as m2/s2

704.9.4.6 public static final Unit Hz

The frequency unit hertz (Hz).

Measurement and State Specification Version 1.0 org.osgi.util.measurement

OSGi Compendium Release 6 Page 1133

hertz is expressed in SI units as 1/s

704.9.4.7 public static final Unit J

The energy unit joule (J).

joule is equal to N·m or is expressed in SI units as m2·kg/s2

704.9.4.8 public static final Unit K

The temperature unit kelvin (K)

704.9.4.9 public static final Unit kat

The catalytic activity unit katal (kat).

katal is expressed in SI units as mol/s

704.9.4.10 public static final Unit kg

The mass unit kilogram (kg)

704.9.4.11 public static final Unit lx

The illuminance unit lux (lx).

lux is expressed in SI units as cd/m2

704.9.4.12 public static final Unit m

The length unit meter (m)

704.9.4.13 public static final Unit m2

The area unit square meter (m2)

704.9.4.14 public static final Unit m3

The volume unit cubic meter (m3)

704.9.4.15 public static final Unit m_s

The speed unit meter per second (m/s)

704.9.4.16 public static final Unit m_s2

The acceleration unit meter per second squared (m/s2)

704.9.4.17 public static final Unit mol

The amount of substance unit mole (mol)

704.9.4.18 public static final Unit N

The force unit newton (N).

N is expressed in SI units as m·kg/s2

704.9.4.19 public static final Unit Ohm

The electric resistance unit ohm.

ohm is equal to V/A or is expressed in SI units as m2·kg/s3·A2

704.9.4.20 public static final Unit Pa

The pressure unit pascal (Pa).

Pa is equal to N/m2 or is expressed in SI units as kg/m·s2

References Measurement and State Specification Version 1.0

Page 1134 OSGi Compendium Release 6

704.9.4.21 public static final Unit rad

The angle unit radians (rad)

704.9.4.22 public static final Unit s

The time unit second (s)

704.9.4.23 public static final Unit S

The electric conductance unit siemens (S).

siemens is equal to A/V or is expressed in SI units as s3·A2/m2·kg

704.9.4.24 public static final Unit T

The magnetic flux density unit tesla (T).

tesla is equal to Wb/m2 or is expressed in SI units as kg/s2·A

704.9.4.25 public static final Unit unity

No Unit (Unity)

704.9.4.26 public static final Unit V

The electric potential difference unit volt (V).

volt is equal to W/A or is expressed in SI units as m2·kg/s3·A

704.9.4.27 public static final Unit W

The power unit watt (W).

watt is equal to J/s or is expressed in SI units as m2·kg/s3

704.9.4.28 public static final Unit Wb

The magnetic flux unit weber (Wb).

weber is equal to V·s or is expressed in SI units as m2·kg/s2·A

704.9.4.29 public boolean equals(Object obj)

obj the Unit object that should be checked for equality

□ Checks whether this Unit object is equal to the specified Unit object. The Unit objects are considered
equal if their exponents are equal.

Returns true if the specified Unit object is equal to this Unit object.

704.9.4.30 public int hashCode()

□ Returns the hash code for this object.

Returns This object's hash code.

704.9.4.31 public String toString()

□ Returns a Str ing object representing the Unit

Returns A Str ing object representing the Unit

704.10 References

[1] SI Units information

Measurement and State Specification Version 1.0 References

OSGi Compendium Release 6 Page 1135

http://physics.nist.gov/cuu/Units

[2] General SI index
http://en.wikipedia.org/wiki/SI

[3] JSR 108 Units Specification
http://www.jcp.org/jsr/detail/108.jsp

[4] A Math Library containing unit handling in Kawa
http://www.gnu.org/software/kawa

[5] Mars Polar Lander failure
http://mars.jpl.nasa.gov/msp98/news/mco990930.html

References Measurement and State Specification Version 1.0

Page 1136 OSGi Compendium Release 6

Promises Specification Version 1.0 Introduction

OSGi Compendium Release 6 Page 1137

705 Promises Specification

Version 1.0

705.1 Introduction
One of the fundamental pieces of an asynchronous programming model is the mechanism
by which clients retrieve the result of the asynchronous task. Since Java 5, there has been a
java.ut i l .concurrent.Future interface available in the Java class libraries, which means that it is
the de facto API in Java for handling the result of an asynchronous task. Futures have some limita-
tions however in that they have no mechanism for registering callbacks. Java 8 introduces the class
java.ut i l .concurrent.CompletableFuture which addresses this but the requirement of Java 8 is un-
suitable for many OSGi users at this time.

This specification defines a Promises API which can be used on many versions of Java including Java
5 and Java ME CDC/Foundation. The Promises API defined by this specification is independent of all
other OSGi specifications including the OSGi Framework and thus can be easily used outside of the
OSGi environment.

A Promise object holds the result of a potentially asynchronous task. The receiver of a Promise ob-
ject can register callbacks on the Promise to be notified when the result is available or can block on
the result becoming available. Promises can be chained together in powerful ways to handle asyn-
chronous work flows and recovery.

Promises capture the effects of latency and errors by making these explicit in the API signatures. La-
tency is represented by callbacks which will eventually be called. Errors are represented by the fail-
ure member. In essence, this is what sets Promises apart from things such as RPC calls where such
effects are not explicitly captured but rather attempted to be transparently handled.

705.1.1 Essentials

• Common concepts - The API is inspired by the Promises work in JavaScript and uses the same basic
concepts. See [2] JavaScript Promises.

• Independent - The design is independent of all other OSGi specifications and can be used outside
of an OSGi environment.

• Asynchronous - The design supports asynchronous tasks.
• Small - The API and implementation are very compact.
• Complete - The design provides a very complete set of operations for Promise which are primi-

tives that can be used to address most use cases.
• Monad - The design supports monadic programming. See [4] Monad.
• Resolution - A Promise can be resolved successfully with a value or unsuccessfully with an excep-

tion.
• Generified - Generics are used to promote type safety.

705.1.2 Entities

• Promise - A Promise object holds the eventual result of a potentially asynchronous task.
• Callback - The receiver of a Promise can register callbacks on the Promise to be notified when the

task is completed.

Promise Promises Specification Version 1.0

Page 1138 OSGi Compendium Release 6

• Deferred - A Deferred object represents the potentially asynchronous task and is used to resolve
the Promise.

Figure 705.1 Class diagram of org.osgi.util.promise

<<class>>
Deferred resolves

<<interface>>
Promise1

<<class>>
Promises <<interface>>

Failure
<<interface>>
Success

<<interface>>
Runnable

0..n0..n 0..n

calls callscalls

705.2 Promise
A Promise object holds the eventual result of a potentially asynchronous task. A Promise is either
unresolved or resolved. An unresolved Promise does not have the result of the associated task avail-
able while a resolved Promise has the result of the associated task available. The isDone() method
must return true if the Promise is resolved and fa lse if the Promise is unresolved. A Promise must
only be resolved once.

A resolved Promise can be either resolved with a value, which means the associated task completed
successfully and supplied a result, or resolved with a failure, which means the associated task com-
pleted unsuccessfully and supplied an exception. The getFai lure() method can be called to determine
if the resolved Promise completed successfully with a value or unsuccessfully with a failure. If the
getFai lure() method returns a Throwable , the Promise resolved unsuccessfully with a failure. If the
getFai lure() method returns nul l , the Promise resolved successfully with a value that can be ob-
tained from getValue() .

If the Promise is unresolved, then calling getFai lure() or getValue() must block until the Promise is
resolved. In general, these two methods should not be used outside of a callback. Use callbacks to be
notified when the Promise is resolved. See Callbacks on page 1139.

705.3 Deferred
Promise is an interface which can allow for many Promise implementations. This API contains the
Deferred class which provides a standard Promise implementation. A Deferred object can be creat-
ed with the Deferred() constructor and the Promise associated with the new Deferred object can be
obtained using getPromise() . This Promise can then be supplied to other parties who can use it to be
notified of and obtain the eventual result.

public Promise<String> getTimeConsumingAnswer() {
 Deferred<String> deferred = new Deferred<String>();
 asynchronously(() -> doTask(deferred));
 return deferred.getPromise();
}

A Deferred object can later be used to resolve the associated Promise successfully by calling
resolve(T) or unsuccessfully by calling fa i l (Throwable) .

private void doTask(Deferred<String> deferred) {
 try {
 String answer = computeTimeConsumingAnswer();

Promises Specification Version 1.0 Callbacks

OSGi Compendium Release 6 Page 1139

 deferred.resolve(answer); // successfully resolve with value
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

A Deferred object can also be used to resolve the associated Promise with the eventual result of an-
other Promise by calling resolveWith(Promise) .

private void doTask(Deferred<String> deferred) {
 try {
 Promise<String> answer = getPromiseWithTheAnswer();
 deferred.resolveWith(answer); // resolve with another Promise
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

If resolve(T) or fa i l (Throwable) is called when the Promise associated with the Deferred is already
resolved, then an Illegal State Exception must be thrown.

Care must be taken in sharing a Deferred object with other parties since the other parties can re-
solve the associated Promise. A Deferred object should be made available only to the party that will
responsible for resolving the associated Promise.

705.4 Callbacks
To be notified when a Promise has been resolved, callbacks are used. The Promise API provides two
forms of callbacks: the basic Runnable callback and the more specialized Success and Fai lure call-
backs.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
callback is called.

Resolving a Promise happens-before any registered callback is called. That is, for the resolved Promise,
in a registered callback isDone() must return true and getValue() and getFai lure() must not block.

Callbacks may be registered at any time including before and after a Promise has been resolved. If
a callback is registered before the Promise is resolved, it will be called later when the Promise is re-
solved. If a callback is registered on an already resolved Promise, it will be called right away.

705.4.1 Runnable
The onResolve(Runnable) method is used to register a Runnable with the Promise which must be
called when the Promise is resolved either successfully with a value or unsuccessfully with a failure.
The resolved Promise is not passed to the Runnable, so if the Runnable implementation needs access
to the resolved Promise, it must take care to ensure it has access.

final Promise<String> answer = getTimeConsumingAnswer();
answer.onResolve(new Runnable() {
 public void run() {
 doSomethingWithAnswer(answer);
 }
});

The onResolve(Runnable) method returns the Promise object upon which it is called.

Chaining Promises Promises Specification Version 1.0

Page 1140 OSGi Compendium Release 6

705.4.2 Success and Failure
The then(Success) and then(Success,Fai lure) methods can be used to register the more specialized
Success and Fai lure callbacks. The Success callback is only called if the Promise is successfully re-
solved with a value. The Fai lure callback is only called if the Promise is unsuccessfully resolved with
a failure.

Promise<String> answer = getTimeConsumingAnswer();
answer.then(p -> processResult(p.getValue()), p -> handleFailure(p.getFailure()));

The then methods return a new Promise which can be used to chain Promises together.

705.5 Chaining Promises
The then(Success) and then(Success,Fai lure) methods also provide a means to chain Promises
together. The then methods return a new Promise which is chained to the original Promise up-
on which the then method was called. The returned Promise must be resolved when the original
Promise is resolved after the specified Success or Failure callback is executed. The result of the exe-
cuted callback must be used to resolve the returned Promise. A sequence of calls to the then meth-
ods can be used to create a chain of promises which are resolved in sequence.

If the original Promise is successfully resolved, the Success callback is executed and the Promise re-
turned by the Success callback, if any, or thrown exception is used to resolve the Promise returned
from the then method. If the original Promise is resolved with a failure, the Failure callback is exe-
cuted and the Promise returned from the then method is resolved with a failure.

In the following example, a Promise which will supply the name of the file to download is chained
to a Promise which will return a mirror URL to use to download the file which is then further
chained to a Promise which will return an Input Stream from which to read the download file.

Promise<String> name = getDownloadName();
Promise<URL> mirror = name.then(p -> getMirror(p.getValue()));
Promise<InputStream> in = mirror.then(p -> getStream(p.getValue()));

Since we probably do not need the intermediate Promises, we can collapse the chain into a single
statement.

Promise<InputStream> in = getDownloadName().then(p -> getMirror(p.getValue()))
 .then(p -> getStream(p.getValue()));

The chain of Promises will also propagate any exceptions that occur to resolve the last Promise in
the chain which means we do not need to do any exception handling in the intermediate tasks.

705.6 Monad
The Promise API supports monadic programming. See [4] Monad. The Promise interface defines a
number of interesting methods including map , f latMap and f i l ter .

• f i l ter(Predicate) - Filter the value of the Promise.

If the Promise is successfully resolved, the predicate argument is called with the value of the
Promise. If the predicate accepts the value, then the value is used to successfully resolve the
Promise returned by the filter method. If the predicate does not accept the value, the Promise re-
turned by the filter method is unsuccessfully resolved with a No Such Element Exception. If the
predicate throws an exception, the Promise returned by the filter method is unsuccessfully re-
solved with that exception.

Promises Specification Version 1.0 Monad

OSGi Compendium Release 6 Page 1141

If the Promise is unsuccessfully resolved, the predicate argument is not called and the Promise
returned by the filter method is unsuccessfully resolved with the failure of the Promise.

• map(Function) - Map the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The value returned by the function is used to successfully resolve the Promise returned
by the map method. If the function throws an exception, the Promise returned by the map
method is unsuccessfully resolved with that exception.

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the map method is unsuccessfully resolved with the failure of the Promise.

• f latMap(Function) - FlatMap the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The Promise returned by the function is used to resolve the Promise returned by the
flatMap method. If the function throws an exception, the Promise returned by the flatMap
method is unsuccessfully resolved with that exception.

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the flatMap method is unsuccessfully resolved with the failure of the Promise.

• recover(Function) - Recover from the unsuccessful resolution of the Promise with a recovery val-
ue.

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery value. If the recovery value is not nul l , the Promise returned by the recover
method is successfully resolved with the recovery value. If the recovery value is nul l , the Promise
returned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• recoverWith(Function) - Recover from the unsuccessful resolution of the Promise with a recov-
ery Promise.

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery Promise. If the recovery Promise is not nul l , the Promise returned by the recov-
er method is resolved with the recovery Promise. If the recovery Promise is nul l , the Promise re-
turned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• fa l lbackTo(Promise) - Fall back to the value of the Promise argument if the Promise unsuccessful-
ly resolves.

If the Promise is successfully resolved, the Promise argument is not used and the Promise re-
turned by the fallbackTo method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the Promise argument is used to provide a fallback
value when it becomes resolved. If the Promise argument is successfully resolved, the Promise
returned by the fallbackTo method is resolved with the value of the Promise argument. If the
Promise argument is unsuccessfully resolved, the Promise returned by the fallbackTo method is
unsuccessfully resolved with the failure of the Promise.

These functions can be used to build pipelines of chained Promises that are processed in sequence.
For example, in the following chain, the value of the original promise, once resolved, is filtered for

Functional Interfaces Promises Specification Version 1.0

Page 1142 OSGi Compendium Release 6

acceptable values. If the filter says the value is not acceptable, the recover method will be used to re-
place it with a default value.

return promise.filter(v -> isValueOk(v)).recover(p -> getDefaultValue())

With these chains, one can write powerful programs without the need to resort to complex if/else
and try/catch logic.

705.7 Functional Interfaces
In Java 8, the concept of Functional Interfaces is introduced. See [5] Function Interfaces. Functional
interfaces are interfaces with a single abstract method. Instances of functional interfaces can be
created with lambda expressions, method references, or constructor references. Many methods on
Promise take functional interface arguments and so are suitable for use with lambda expressions
and method references in Java 8.

Two of these functional interfaces are Function and Predicate . These are equivalent to functional in-
terfaces which are part of the java.ut i l .function package introduced in Java 8. Since OSGi intends the
Promise API to be usable on versions of Java prior to Java 8, we define our own interfaces. In the fu-
ture, if Java 8 or later, becomes the base supported Java level for this specification, OSGi can update
the Promise interface to add default methods which accept the java.ut i l .function versions of these
functional interfaces.

705.8 Promises Class
The Promises class provides several useful static methods when working with Promises.

Often, you may need to create an already resolved Promise to return or chain with another Promise.
The resolved(T) method can be used to create a new Promise already successfully resolved with the
specified value. The fa i led(Throwable) method can be used to create a new Promise already unsuc-
cessfully resolved with the specified exception.

 return getTimeConsumingAnswer().fallbackTo(Promises.resolved("Fallback Value"));

The Promises class also provides the al l (Promise. . .) and al l (Col lect ion) methods which return a new
Promise that is a latch on the specified Promises. The returned Promise must resolve only when all
of the specified Promises have resolved.

705.9 Security
The Promise API does not define any OSGi services nor does the API perform any privileged actions.
Therefore, it has no security considerations.

705.10 org.osgi.util.promise

Promise Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Compendium Release 6 Page 1143

Import-Package: org.osgi .ut i l .promise; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .promise; vers ion="[1.0,1.1)"

705.10.1 Summary

• Deferred - A Deferred Promise resolution.
• Fai ledPromisesException - Promise failure exception for a collection of failed Promises.
• Fai lure - Failure callback for a Promise.
• Promise - A Promise of a value.
• Promises - Static helper methods for Promises.
• Success - Success callback for a Promise.

705.10.2 public class Deferred<T>
<T> The value type associated with the created Promise.

A Deferred Promise resolution.

Instances of this class can be used to create a Promise that can be resolved in the future. The
associated Promise can be successfully resolved with resolve(Object) or resolved with a fail-
ure with fail(Throwable). It can also be resolved with the resolution of another promise using
resolveWith(Promise).

The associated Promise can be provided to any one, but the Deferred object should be made avail-
able only to the party that will responsible for resolving the Promise.

Concurrency Immutable

705.10.2.1 public Deferred()

□ Create a new Deferred with an associated Promise.

705.10.2.2 public void fail(Throwable failure)

failure The failure of the resolved Promise. Must not be nul l .

□ Fail the Promise associated with this Deferred.

After the associated Promise is resolved with the specified failure, all registered callbacks are called
and any chained Promises are resolved.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

705.10.2.3 public Promise<T> getPromise()

□ Returns the Promise associated with this Deferred.

Returns The Promise associated with this Deferred.

705.10.2.4 public void resolve(T value)

value The value of the resolved Promise.

□ Successfully resolve the Promise associated with this Deferred.

After the associated Promise is resolved with the specified value, all registered callbacks are called
and any chained Promises are resolved.

org.osgi.util.promise Promises Specification Version 1.0

Page 1144 OSGi Compendium Release 6

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

705.10.2.5 public Promise<Void> resolveWith(Promise<? extends T> with)

with A Promise whose value or failure must be used to resolve the associated Promise. Must not be nul l .

□ Resolve the Promise associated with this Deferred with the specified Promise.

If the specified Promise is successfully resolved, the associated Promise is resolved with the value of
the specified Promise. If the specified Promise is resolved with a failure, the associated Promise is re-
solved with the failure of the specified Promise.

After the associated Promise is resolved with the specified Promise, all registered callbacks are called
and any chained Promises are resolved.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Returns A Promise that is resolved only when the associated Promise is resolved by the specified Promise.
The returned Promise must be successfully resolved with the value nul l , if the associated Promise
was resolved by the specified Promise. The returned Promise must be resolved with a failure of Ille-
galStateException, if the associated Promise was already resolved when the specified Promise was
resolved.

705.10.3 public class FailedPromisesException
extends RuntimeException
Promise failure exception for a collection of failed Promises.

705.10.3.1 public FailedPromisesException(Collection<Promise<?>> failed,Throwable cause)

failed A collection of Promises that have been resolved with a failure. Must not be nul l , must not be empty
and all of the elements in the collection must not be nul l .

cause The cause of this exception. This is typically the failure of the first Promise in the specified collec-
tion.

□ Create a new FailedPromisesException with the specified Promises.

705.10.3.2 public Collection<Promise<?>> getFailedPromises()

□ Returns the collection of Promises that have been resolved with a failure.

Returns The collection of Promises that have been resolved with a failure. The returned collection is unmod-
ifiable.

705.10.4 public interface Failure
Failure callback for a Promise.

A Failure callback is registered with a Promise using the Promise.then(Success, Failure) method and
is called if the Promise is resolved with a failure.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.10.4.1 public void fail(Promise<?> resolved) throws Exception

resolved The failed resolved Promise.

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Compendium Release 6 Page 1145

□ Failure callback for a Promise.

This method is called if the Promise with which it is registered resolves with a failure.

In the remainder of this description we will refer to the Promise returned by Promise.then(Success,
Failure) when this Failure callback was registered as the chained Promise.

If this methods completes normally, the chained Promise must be failed with the same exception
which failed the resolved Promise. If this method throws an exception, the chained Promise must be
failed with the thrown exception.

Throws Exception– The chained Promise must be failed with the thrown exception.

705.10.5 public interface Promise<T>
<T> The value type associated with this Promise.

A Promise of a value.

A Promise represents a future value. It handles the interactions for asynchronous processing. A De-
ferred object can be used to create a Promise and later resolve the Promise. A Promise is used by the
caller of an asynchronous function to get the result or handle the error. The caller can either get a
callback when the Promise is resolved with a value or an error, or the Promise can be used in chain-
ing. In chaining, callbacks are provided that receive the resolved Promise, and a new Promise is gen-
erated that resolves based upon the result of a callback.

Both callbacks and chaining can be repeated any number of times, even after the Promise has been
resolved.

Example callback usage:

 final Promise<String> foo = foo();
 foo.onResolve(new Runnable() {
 public void run() {
 System.out.println(foo.getValue());
 }
 });

Example chaining usage;

 Success<String,String> doubler = new Success<String,String>() {
 public Promise<String> call(Promise<String> p) throws Exception {
 return Promises.resolved(p.getValue()+p.getValue());
 }
 };
 final Promise<String> foo = foo().then(doubler).then(doubler);
 foo.onResolve(new Runnable() {
 public void run() {
 System.out.println(foo.getValue());
 }
 });

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

705.10.5.1 public Promise<T> fallbackTo(Promise<? extends T> fallback)

fallback The Promise whose value must be used to resolve the returned Promise if this Promise resolves with
a failure. Must not be nul l .

□ Fall back to the value of the specified Promise if this Promise fails.

org.osgi.util.promise Promises Specification Version 1.0

Page 1146 OSGi Compendium Release 6

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the successful result of the specified Promise is used to re-
solve the returned Promise. If the specified Promise is resolved with a failure, the returned Promise
must be failed with the failure of this Promise rather than the failure of the specified Promise.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise or falls back to the value of the specified Promise.

705.10.5.2 public Promise<T> filter(Predicate<?> predicate)

predicate The Predicate to evaluate the value of this Promise. Must not be nul l .

□ Filter the value of this Promise.

If this Promise is successfully resolved, the returned Promise must either be resolved with the value
of this Promise, if the specified Predicate accepts that value, or failed with a NoSuchElementExcep-
t ion , if the specified Predicate does not accept that value. If the specified Predicate throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that filters the value of this Promise.

705.10.5.3 public Promise<R> flatMap(Function<?,Promise<? extends R>> mapper)

Type Arguments <R>

<R> The value type associated with the returned Promise.

mapper The Function that must flatMap the value of this Promise to a Promise that must be used to resolve
the returned Promise. Must not be nul l .

□ FlatMap the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the Promise
from the specified Function as applied to the value of this Promise. If the specified Function throws
an exception, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

705.10.5.4 public Throwable getFailure() throws InterruptedException

□ Returns the failure of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

If this Promise was resolved with a failure, this method returns with the failure of this Promise. If
this Promise was successfully resolved, this method must return nul l .

Returns The failure of this resolved Promise or nul l if this Promise was successfully resolved.

Throws InterruptedException– If the current thread was interrupted while waiting.

705.10.5.5 public T getValue() throws InvocationTargetException, InterruptedException

□ Returns the value of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Compendium Release 6 Page 1147

If this Promise was successfully resolved, this method returns with the value of this Promise. If this
Promise was resolved with a failure, this method must throw an InvocationTargetException with
the failure exception as the cause.

Returns The value of this resolved Promise.

Throws InvocationTargetException– If this Promise was resolved with a failure. The cause of the Invoca-
t ionTargetException is the failure exception.

InterruptedException– If the current thread was interrupted while waiting.

705.10.5.6 public boolean isDone()

□ Returns whether this Promise has been resolved.

This Promise may be successfully resolved or resolved with a failure.

Returns true if this Promise was resolved either successfully or with a failure; fa lse if this Promise is unre-
solved.

705.10.5.7 public Promise<R> map(Function<?,? extends R> mapper)

Type Arguments <R>

<R> The value type associated with the returned Promise.

mapper The Function that must map the value of this Promise to the value that must be used to resolve the
returned Promise. Must not be nul l .

□ Map the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of
specified Function as applied to the value of this Promise. If the specified Function throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

705.10.5.8 public Promise<T> onResolve(Runnable callback)

callback A callback to be called when this Promise is resolved. Must not be nul l .

□ Register a callback to be called when this Promise is resolved.

The specified callback is called when this Promise is resolved either successfully or with a failure.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

705.10.5.9 public Promise<T> recover(Function<Promise<?>,? extends T> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery value to
be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery value.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

org.osgi.util.promise Promises Specification Version 1.0

Page 1148 OSGi Compendium Release 6

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery value.

• If the recovery value is not nul l , the returned Promise must be resolved with the recovery value.
• If the recovery value is nul l , the returned Promise must be failed with the failure of this Promise.
• If the specified Function throws an exception, the returned Promise must be failed with that ex-

ception.

To recover from a failure of this Promise with a recovery value of nul l , the recoverWith(Function)
method must be used. The specified Function for recoverWith(Function) can return
Promises.resolved(nul l) to supply the desired nul l value.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.10.5.10 public Promise<T> recoverWith(Function<Promise<?>,Promise<? extends T>> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery Promise
to be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery Promise.

• If the recovery Promise is not nul l , the returned Promise must be resolved with the recovery
Promise.

• If the recovery Promise is nul l , the returned Promise must be failed with the failure of this
Promise.

• If the specified Function throws an exception, the returned Promise must be failed with that ex-
ception.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.10.5.11 public Promise<R> then(Success<?,? extends R> success,Failure failure)

Type Arguments <R>

<R> The value type associated with the returned Promise.

success A Success callback to be called when this Promise is successfully resolved. May be nul l if no Success
callback is required. In this case, the returned Promise must be resolved with the value nul l when
this Promise is successfully resolved.

failure A Failure callback to be called when this Promise is resolved with a failure. May be nul l if no Failure
callback is required.

□ Chain a new Promise to this Promise with Success and Failure callbacks.

The specified Success callback is called when this Promise is successfully resolved and the specified
Failure callback is called when this Promise is resolved with a failure.

This method returns a new Promise which is chained to this Promise. The returned Promise must
be resolved when this Promise is resolved after the specified Success or Failure callback is executed.
The result of the executed callback must be used to resolve the returned Promise. Multiple calls to
this method can be used to create a chain of promises which are resolved in sequence.

Promises Specification Version 1.0 org.osgi.util.promise

OSGi Compendium Release 6 Page 1149

If this Promise is successfully resolved, the Success callback is executed and the result Promise, if
any, or thrown exception is used to resolve the returned Promise from this method. If this Promise is
resolved with a failure, the Failure callback is executed and the returned Promise from this method
is failed.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success or Failure callback, if any, is executed.

705.10.5.12 public Promise<R> then(Success<?,? extends R> success)

Type Arguments <R>

<R> The value type associated with the returned Promise.

success A Success callback to be called when this Promise is successfully resolved. May be nul l if no Success
callback is required. In this case, the returned Promise must be resolved with the value nul l when
this Promise is successfully resolved.

□ Chain a new Promise to this Promise with a Success callback.

This method performs the same function as calling then(Success, Failure) with the specified Success
callback and nul l for the Failure callback.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success, if any, is executed.

See Also then(Success, Failure)

705.10.6 public class Promises
Static helper methods for Promises.

Concurrency Thread-safe

705.10.6.1 public static Promise<List<T>> all(Collection<Promise<S>> promises)

Type Arguments <T,S extends T>

<T> The value type of the List value associated with the returned Promise.

<S> A subtype of the value type of the List value associated with the returned Promise.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the elements in the collection must not be nul l .

□ Create a new Promise that is a latch on the resolution of the specified Promises.

The new Promise acts as a gate and must be resolved after all of the specified Promises are resolved.

Returns A Promise that is resolved only when all the specified Promises are resolved. The returned Promise
must be successfully resolved with a List of the values in the order of the specified Promises if all the
specified Promises are successfully resolved. The List in the returned Promise is the property of the
caller and is modifiable. The returned Promise must be resolved with a failure of FailedPromisesEx-
ception if any of the specified Promises are resolved with a failure. The failure FailedPromisesExcep-
tion must contain all of the specified Promises which resolved with a failure.

org.osgi.util.promise Promises Specification Version 1.0

Page 1150 OSGi Compendium Release 6

705.10.6.2 public static Promise<List<T>> all(Promise<? extends T> ... promises)

Type Arguments <T>

<T> The value type associated with the specified Promises.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the arguments must not be nul l .

□ Create a new Promise that is a latch on the resolution of the specified Promises.

The new Promise acts as a gate and must be resolved after all of the specified Promises are resolved.

Returns A Promise that is resolved only when all the specified Promises are resolved. The returned Promise
must be successfully resolved with a List of the values in the order of the specified Promises if all the
specified Promises are successfully resolved. The List in the returned Promise is the property of the
caller and is modifiable. The returned Promise must be resolved with a failure of FailedPromisesEx-
ception if any of the specified Promises are resolved with a failure. The failure FailedPromisesExcep-
tion must contain all of the specified Promises which resolved with a failure.

705.10.6.3 public static Promise<T> failed(Throwable failure)

Type Arguments <T>

<T> The value type associated with the returned Promise.

failure The failure of the resolved Promise. Must not be nul l .

□ Create a new Promise that has been resolved with the specified failure.

Returns A new Promise that has been resolved with the specified failure.

705.10.6.4 public static Promise<T> resolved(T value)

Type Arguments <T>

<T> The value type associated with the returned Promise.

value The value of the resolved Promise.

□ Create a new Promise that has been resolved with the specified value.

Returns A new Promise that has been resolved with the specified value.

705.10.7 public interface Success<T,R>
<T> The value type of the resolved Promise passed as input to this callback.

<R> The value type of the returned Promise from this callback.

Success callback for a Promise.

A Success callback is registered with a Promise using the Promise.then(Success) method and is
called if the Promise is resolved successfully.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.10.7.1 public Promise<R> call(Promise<T> resolved) throws Exception

resolved The successfully resolved Promise.

□ Success callback for a Promise.

This method is called if the Promise with which it is registered resolves successfully.

Promises Specification Version 1.0 org.osgi.util.function

OSGi Compendium Release 6 Page 1151

In the remainder of this description we will refer to the Promise returned by this method as the re-
turned Promise and the Promise returned by Promise.then(Success) when this Success callback was
registered as the chained Promise.

If the returned Promise is nul l then the chained Promise must resolve immediately with a success-
ful value of nul l . If the returned Promise is not nul l then the chained Promise must be resolved when
the returned Promise is resolved.

Returns The Promise to use to resolve the chained Promise, or nul l if the chained Promise is to be resolved
immediately with the value nul l .

Throws Exception– The chained Promise must be failed with the thrown exception.

705.11 org.osgi.util.function

Function Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.0,1.1)"

705.11.1 Summary

• Function - A function that accepts a single argument and produces a result.
• Predicate - A predicate that accepts a single argument and produces a boolean result.

705.11.2 public interface Function<T,R>
<T> The type of the function input.

<R> The type of the function output.

A function that accepts a single argument and produces a result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.11.2.1 public R apply(T t)

t The input to this function.

□ Applies this function to the specified argument.

Returns The output of this function.

705.11.3 public interface Predicate<T>
<T> The type of the predicate input.

A predicate that accepts a single argument and produces a boolean result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

References Promises Specification Version 1.0

Page 1152 OSGi Compendium Release 6

705.11.3.1 public boolean test(T t)

t The input to this predicate.

□ Evaluates this predicate on the specified argument.

Returns true if the specified argument is accepted by this predicate; fa lse otherwise.

705.12 References

[1] JavaScript Promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

[2] JavaScript Promises
http://www.html5rocks.com/en/tutorials/es6/promises/

[3] ECMAScript 6 drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts

[4] Monad
https://en.wikipedia.org/wiki/Monad_%28functional_programming%29

[5] Function Interfaces
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.8

Execution Environment Specification Version 1.3 Introduction

OSGi Compendium Release 6 Page 1153

999 Execution Environment
Specification

Version 1.3

999.1 Introduction
This specification defines two different execution environments for OSGi Server Platform Servers.
One is based on a minimal environment that supports OSGi Framework and basic services imple-
mentations. The other is derived from [6] Foundation Profile. Care has been taken to make the mini-
mum requirements a proper subset of Foundation Profile.

This chapter contains a detailed listing of the Execution Environments. This list is the actual speci-
fication and is normative. However, this list is not suited for tools. Therefore, the OSGi web site pro-
vides the JAR files that contain all the signatures of the Execution Environments on the OSGi web
site, see [2] Downloadable Execution Environments.

Please note that the OSGi Minimum Execution Requirements do not constitute a specification for
a Java technology profile or platform under the Java Community Process, but rather are a list of de-
pendencies on certain elements of the presumed underlying Java profile(s) or platform(s).

999.1.1 Essentials

• Bundle Environment - A well defined format with handling rules for defining the classes and meth-
ods that a bundle can rely on.

• Machine Processable - It should be easy to process the specification with tools to verify bundles
and Frameworks.

• Standards - It should be based on standards as much as possible. It must be compatible with [3]
J2ME, Java 2 Micro Edition.

999.1.2 Entities

• Execution Environment - A collection of classes.
• Class - Contains a set of qualifiers and a set of signature for each method and field in that class.
• Signature - A unique identifier for the type associated with a field or the return type and argu-

ment types of a function.
• Qualifiers - A set of attributes that further define a signature.
• Profile - A SUN/JCP defined set of classes, based on a configuration.
• Configuration - A SUN/JCP defined set of classes and VM specification.

About Execution Environments Execution Environment Specification Version 1.3

Page 1154 OSGi Compendium Release 6

Figure 999.1 Entities involved in an Execution Environment

Bundle based on the
intersection

Execution
Environment

Class or
Interface

Signature

Qualifier

Framework provides the
union

0..*

0..*

0..*

contains

contains

qualified by

qualified by

0..*

0..*

1

1

1

0..*

0..*

1

0..*

999.2 About Execution Environments

999.2.1 Signatures
An Execution Environment consists of a set of public and protected signatures. A signature is defined
to be a unique identifier for a field or method with class and type information. For example, the sig-
nature of the wait(long) method in Object would be:

java/lang/Object.wait(J)V

The encoding of the signature is defined in [1] The Java Virtual Machine Specification.

For this specification, each signature includes a set of qualifiers that further qualify the field or
method. These are the access qualifiers (like publ ic , private , and protected), and informational qual-
ifiers like synchronized , volat i le , str ictfp , interface , native , and abstract . These informational quali-
fiers are not included in the EE listings.

An Execution Environment consists of a set of classes and interfaces with their access qualifiers.
Each class consist of a set of signatures.

999.2.2 Semantics
An Execution environment is solely based on the signatures of the methods and fields. An OSGi Ex-
ecution Environment relies on the appropriate SUN Java documents to define the semantics of a
methods or fields.

999.3 OSGi Defined Execution Environments
This specification contains two Execution Environments. They are listed in the following sections.
Each signature is printed in the normal Java format except that publ ic modifiers are not shown to
save space (all fields or methods must be publ ic or protected to be included in this list).

Before each signature there are two columns.

1. OSGi/Minimum-1.2 execution requirements
2. CDC-1.1/Foundation-1.1 execution environment.

If the column contains a ■, it means that the signature has been included in that Execution Environ-
ment. A □ indicates that the signature is missing from the EE.

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1155

The information is included here for completeness. However, it is likely that tools will be developed
by vendors that validate the compliance of Frameworks and bundles in relation to an Execution En-
vironment. For that reason, it is possible to download a JAR file containing all the signatures as Java
class files from the OSGi web site, see [2] Downloadable Execution Environments.

999.3.1 java.io

■ ■ package java.io
■ ■ class BufferedInputStream extends FilterInputStream
■ ■ BufferedInputStream(InputStream)
■ ■ BufferedInputStream(InputStream,int)
■ ■ protected byte[] buf
■ ■ protected int count

■ ■ protected int marklimit
■ ■ protected int markpos
■ ■ protected int pos

■ ■ class BufferedOutputStream extends FilterOutputStream
■ ■ BufferedOutputStream(OutputStream)
■ ■ BufferedOutputStream(OutputStream,int)

■ ■ protected byte[] buf
■ ■ protected int count

■ ■ class BufferedReader extends Reader
■ ■ BufferedReader(Reader)
■ ■ BufferedReader(Reader,int)
■ ■ void close() throws IOException

■ ■ int read(char[],int,int) throws IOException
■ ■ String readLine() throws IOException

■ ■ class BufferedWriter extends Writer
■ ■ BufferedWriter(Writer)
■ ■ BufferedWriter(Writer,int)
■ ■ void close() throws IOException

■ ■ void flush() throws IOException
■ ■ void newLine() throws IOException
■ ■ void write(char[],int,int) throws IOException

■ ■ class ByteArrayInputStream extends InputStream
■ ■ ByteArrayInputStream(byte[])
■ ■ ByteArrayInputStream(byte[],int,int)
■ ■ int available()
■ ■ protected byte[] buf
■ ■ protected int count
■ ■ protected int mark

■ ■ protected int pos
■ ■ int read()
■ ■ int read(byte[],int,int)
■ ■ void reset()
■ ■ long skip(long)

■ ■ class ByteArrayOutputStream extends OutputStream
■ ■ ByteArrayOutputStream()
■ ■ ByteArrayOutputStream(int)
■ ■ protected byte[] buf
■ ■ protected int count
■ ■ void reset()
■ ■ int size()

■ ■ byte[] toByteArray()
■ ■ String toString(String) throws UnsupportedEncodingException
■ ■ void write(byte[],int,int)
■ ■ void write(int)
■ ■ void writeTo(OutputStream) throws IOException

■ ■ class CharArrayReader extends Reader
■ ■ CharArrayReader(char[])
■ ■ CharArrayReader(char[],int,int)
■ ■ protected char[] buf
■ ■ void close()

■ ■ protected int count
■ ■ protected int markedPos
■ ■ protected int pos
■ ■ int read(char[],int,int) throws IOException

■ ■ class CharArrayWriter extends Writer
■ ■ CharArrayWriter()
■ ■ CharArrayWriter(int)
■ ■ protected char[] buf
■ ■ void close()
■ ■ protected int count
■ ■ void flush()
■ ■ void reset()

■ ■ int size()
■ ■ char[] toCharArray()
■ ■ void write(char[],int,int)
■ ■ void write(int)
■ ■ void write(String,int,int)
■ ■ void writeTo(Writer) throws IOException

■ ■ class CharConversionException extends IOException
■ ■ CharConversionException() ■ ■ CharConversionException(String)

■ ■ interface DataInput
■ ■ abstract boolean readBoolean() throws IOException
■ ■ abstract byte readByte() throws IOException
■ ■ abstract char readChar() throws IOException
■ ■ abstract double readDouble() throws IOException
■ ■ abstract float readFloat() throws IOException
■ ■ abstract void readFully(byte[]) throws IOException
■ ■ abstract void readFully(byte[],int,int) throws IOException
■ ■ abstract int readInt() throws IOException

■ ■ abstract String readLine() throws IOException
■ ■ abstract long readLong() throws IOException
■ ■ abstract short readShort() throws IOException
■ ■ abstract int readUnsignedByte() throws IOException
■ ■ abstract int readUnsignedShort() throws IOException
■ ■ abstract String readUTF() throws IOException
■ ■ abstract int skipBytes(int) throws IOException

■ ■ class DataInputStream extends FilterInputStream implements DataInput

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1156 OSGi Compendium Release 6

■ ■ DataInputStream(InputStream)
■ ■ final int read(byte[]) throws IOException
■ ■ final int read(byte[],int,int) throws IOException
■ ■ final boolean readBoolean() throws IOException
■ ■ final byte readByte() throws IOException
■ ■ final char readChar() throws IOException
■ ■ final double readDouble() throws IOException
■ ■ final float readFloat() throws IOException
■ ■ final void readFully(byte[]) throws IOException
■ ■ final void readFully(byte[],int,int) throws IOException

■ ■ final int readInt() throws IOException
■ ■ final String readLine() throws IOException
■ ■ final long readLong() throws IOException
■ ■ final short readShort() throws IOException
■ ■ final int readUnsignedByte() throws IOException
■ ■ final int readUnsignedShort() throws IOException
■ ■ final String readUTF() throws IOException
■ ■ final static String readUTF(DataInput) throws IOException
■ ■ final int skipBytes(int) throws IOException

■ ■ interface DataOutput
■ ■ abstract void write(byte[]) throws IOException
■ ■ abstract void write(byte[],int,int) throws IOException
■ ■ abstract void write(int) throws IOException
■ ■ abstract void writeBoolean(boolean) throws IOException
■ ■ abstract void writeByte(int) throws IOException
■ ■ abstract void writeBytes(String) throws IOException
■ ■ abstract void writeChar(int) throws IOException

■ ■ abstract void writeChars(String) throws IOException
■ ■ abstract void writeDouble(double) throws IOException
■ ■ abstract void writeFloat(float) throws IOException
■ ■ abstract void writeInt(int) throws IOException
■ ■ abstract void writeLong(long) throws IOException
■ ■ abstract void writeShort(int) throws IOException
■ ■ abstract void writeUTF(String) throws IOException

■ ■ class DataOutputStream extends FilterOutputStream implements DataOutput
■ ■ DataOutputStream(OutputStream)
■ ■ final int size()
■ ■ final void writeBoolean(boolean) throws IOException
■ ■ final void writeByte(int) throws IOException
■ ■ final void writeBytes(String) throws IOException
■ ■ final void writeChar(int) throws IOException
■ ■ final void writeChars(String) throws IOException

■ ■ final void writeDouble(double) throws IOException
■ ■ final void writeFloat(float) throws IOException
■ ■ final void writeInt(int) throws IOException
■ ■ final void writeLong(long) throws IOException
■ ■ final void writeShort(int) throws IOException
■ ■ final void writeUTF(String) throws IOException
■ ■ protected int written

■ ■ class EOFException extends IOException
■ ■ EOFException() ■ ■ EOFException(String)

■ ■ interface Externalizable extends Serializable
■ ■ abstract void readExternal(ObjectInput) throws IOException,
 ClassNotFoundException

■ ■ abstract void writeExternal(ObjectOutput) throws IOException

■ ■ class File implements Serializable , Comparable
■ ■ File(File,String)
■ ■ File(String)
■ ■ File(String,String)
■ ■ File(java.net.URI)
■ ■ boolean canRead()
■ ■ boolean canWrite()
■ ■ int compareTo(File)
■ ■ int compareTo(Object)
■ ■ boolean createNewFile() throws IOException
■ ■ static File createTempFile(String,String) throws IOException
■ ■ static File createTempFile(String,String,File) throws IOException
■ ■ boolean delete()
■ ■ void deleteOnExit()
■ ■ boolean exists()
■ ■ File getAbsoluteFile()
■ ■ String getAbsolutePath()
■ ■ File getCanonicalFile() throws IOException
■ ■ String getCanonicalPath() throws IOException
■ ■ String getName()
■ ■ String getParent()
■ ■ File getParentFile()
■ ■ String getPath()
■ ■ boolean isAbsolute()

■ ■ boolean isDirectory()
■ ■ boolean isFile()
■ ■ boolean isHidden()
■ ■ long lastModified()
■ ■ long length()
■ ■ String[] list()
■ ■ String[] list(FilenameFilter)
■ ■ File[] listFiles()
■ ■ File[] listFiles(FileFilter)
■ ■ File[] listFiles(FilenameFilter)
■ ■ static File[] listRoots()
■ ■ boolean mkdir()
■ ■ boolean mkdirs()
■ ■ final static String pathSeparator
■ ■ final static char pathSeparatorChar
■ ■ boolean renameTo(File)
■ ■ final static String separator
■ ■ final static char separatorChar
■ ■ boolean setLastModified(long)
■ ■ boolean setReadOnly()
■ ■ java.net.URI toURI()
■ ■ java.net.URL toURL() throws java.net.MalformedURLException

■ ■ final class FileDescriptor
■ ■ FileDescriptor()
■ ■ final static FileDescriptor err
■ ■ final static FileDescriptor in

■ ■ final static FileDescriptor out
■ ■ void sync() throws SyncFailedException
■ ■ boolean valid()

■ ■ interface FileFilter
■ ■ abstract boolean accept(File)

■ ■ class FileInputStream extends InputStream
■ ■ FileInputStream(File) throws FileNotFoundException
■ ■ FileInputStream(FileDescriptor)
■ ■ FileInputStream(String) throws FileNotFoundException

■ ■ protected void finalize() throws IOException
■ ■ final FileDescriptor getFD() throws IOException
■ ■ int read() throws IOException

■ ■ interface FilenameFilter
■ ■ abstract boolean accept(File,String)

■ ■ class FileNotFoundException extends IOException
■ ■ FileNotFoundException() ■ ■ FileNotFoundException(String)

■ ■ class FileOutputStream extends OutputStream

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1157

■ ■ FileOutputStream(File) throws FileNotFoundException
■ ■ FileOutputStream(File,boolean) throws FileNotFoundException
■ ■ FileOutputStream(FileDescriptor)
■ ■ FileOutputStream(String) throws FileNotFoundException

■ ■ FileOutputStream(String,boolean) throws FileNotFoundException
■ ■ protected void finalize() throws IOException
■ ■ final FileDescriptor getFD() throws IOException
■ ■ void write(int) throws IOException

■ ■ final class FilePermission extends java.security.Permission implements Serializable
■ ■ FilePermission(String,String)
■ ■ boolean equals(Object)
■ ■ String getActions()

■ ■ int hashCode()
■ ■ boolean implies(java.security.Permission)

■ ■ class FileReader extends InputStreamReader
■ ■ FileReader(File) throws FileNotFoundException
■ ■ FileReader(FileDescriptor)

■ ■ FileReader(String) throws FileNotFoundException

■ ■ class FileWriter extends OutputStreamWriter
■ ■ FileWriter(File) throws IOException
■ ■ FileWriter(File,boolean) throws IOException
■ ■ FileWriter(FileDescriptor)

■ ■ FileWriter(String) throws IOException
■ ■ FileWriter(String,boolean) throws IOException

■ ■ class FilterInputStream extends InputStream
■ ■ protected FilterInputStream(InputStream)
■ ■ protected InputStream in

■ ■ int read() throws IOException

■ ■ class FilterOutputStream extends OutputStream
■ ■ FilterOutputStream(OutputStream)
■ ■ protected OutputStream out

■ ■ void write(int) throws IOException

■ ■ abstract class FilterReader extends Reader
■ ■ protected FilterReader(Reader)
■ ■ void close() throws IOException

■ ■ protected Reader in
■ ■ int read(char[],int,int) throws IOException

■ ■ abstract class FilterWriter extends Writer
■ ■ protected FilterWriter(Writer)
■ ■ void close() throws IOException
■ ■ void flush() throws IOException

■ ■ protected Writer out
■ ■ void write(char[],int,int) throws IOException

■ ■ abstract class InputStream
■ ■ InputStream()
■ ■ int available() throws IOException
■ ■ void close() throws IOException
■ ■ void mark(int)
■ ■ boolean markSupported()

■ ■ abstract int read() throws IOException
■ ■ int read(byte[]) throws IOException
■ ■ int read(byte[],int,int) throws IOException
■ ■ void reset() throws IOException
■ ■ long skip(long) throws IOException

■ ■ class InputStreamReader extends Reader
■ ■ InputStreamReader(InputStream)
■ ■ InputStreamReader(InputStream,String)
throws UnsupportedEncodingException
■ ■ void close() throws IOException

■ ■ String getEncoding()
■ ■ int read(char[],int,int) throws IOException

■ ■ class InterruptedIOException extends IOException
■ ■ InterruptedIOException()
■ ■ InterruptedIOException(String)

■ ■ int bytesTransferred

■ ■ class InvalidClassException extends ObjectStreamException
■ ■ InvalidClassException(String)
■ ■ InvalidClassException(String,String)

■ ■ String classname

■ ■ class InvalidObjectException extends ObjectStreamException
■ ■ InvalidObjectException(String)

■ ■ class IOException extends Exception
■ ■ IOException() ■ ■ IOException(String)

■ ■ class LineNumberReader extends BufferedReader
■ ■ LineNumberReader(Reader)
■ ■ LineNumberReader(Reader,int)

■ ■ int getLineNumber()
■ ■ void setLineNumber(int)

■ ■ class NotActiveException extends ObjectStreamException
■ ■ NotActiveException() ■ ■ NotActiveException(String)

■ ■ class NotSerializableException extends ObjectStreamException
■ ■ NotSerializableException() ■ ■ NotSerializableException(String)

■ ■ interface ObjectInput extends DataInput
■ ■ abstract int available() throws IOException
■ ■ abstract void close() throws IOException
■ ■ abstract int read() throws IOException
■ ■ abstract int read(byte[]) throws IOException

■ ■ abstract int read(byte[],int,int) throws IOException
■ ■ abstract Object readObject() throws IOException,
 ClassNotFoundException
■ ■ abstract long skip(long) throws IOException

■ ■ class ObjectInputStream extends InputStream implements ObjectInput , ObjectStreamConstants

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1158 OSGi Compendium Release 6

■ ■ protected ObjectInputStream() throws IOException
■ ■ ObjectInputStream(InputStream) throws IOException
■ ■ void defaultReadObject() throws IOException,
 ClassNotFoundException
■ ■ protected boolean enableResolveObject(boolean)
■ ■ int read() throws IOException
■ ■ boolean readBoolean() throws IOException
■ ■ byte readByte() throws IOException
■ ■ char readChar() throws IOException
■ ■ protected ObjectStreamClass readClassDescriptor()
throws IOException, ClassNotFoundException
■ ■ double readDouble() throws IOException
■ ■ ObjectInputStream.GetField readFields() throws IOException,
 ClassNotFoundException
■ ■ float readFloat() throws IOException
■ ■ void readFully(byte[]) throws IOException
■ ■ void readFully(byte[],int,int) throws IOException
■ ■ int readInt() throws IOException

■ ■ String readLine() throws IOException
■ ■ long readLong() throws IOException
■ ■ final Object readObject() throws IOException,
 ClassNotFoundException
■ ■ protected Object readObjectOverride() throws IOException,
 ClassNotFoundException
■ ■ short readShort() throws IOException
■ ■ protected void readStreamHeader() throws IOException
■ ■ Object readUnshared() throws IOException, ClassNotFoundException
■ ■ int readUnsignedByte() throws IOException
■ ■ int readUnsignedShort() throws IOException
■ ■ String readUTF() throws IOException
■ ■ void registerValidation(ObjectInputValidation,int)
throws InvalidObjectException, NotActiveException
■ ■ protected Class resolveClass(ObjectStreamClass) throws IOException,
 ClassNotFoundException
■ ■ protected Object resolveObject(Object) throws IOException
■ ■ protected Class resolveProxyClass(String[]) throws IOException,
 ClassNotFoundException
■ ■ int skipBytes(int) throws IOException

■ ■ abstract class ObjectInputStream.GetField
■ ■ ObjectInputStream.GetField()
■ ■ abstract boolean defaulted(String) throws IOException
■ ■ abstract byte get(String,byte) throws IOException
■ ■ abstract char get(String,char) throws IOException
■ ■ abstract double get(String,double) throws IOException
■ ■ abstract float get(String,float) throws IOException

■ ■ abstract int get(String,int) throws IOException
■ ■ abstract long get(String,long) throws IOException
■ ■ abstract Object get(String,Object) throws IOException
■ ■ abstract short get(String,short) throws IOException
■ ■ abstract boolean get(String,boolean) throws IOException
■ ■ abstract ObjectStreamClass getObjectStreamClass()

■ ■ interface ObjectInputValidation
■ ■ abstract void validateObject() throws InvalidObjectException

■ ■ interface ObjectOutput extends DataOutput
■ ■ abstract void close() throws IOException
■ ■ abstract void flush() throws IOException

■ ■ abstract void writeObject(Object) throws IOException

■ ■ class ObjectOutputStream extends OutputStream implements ObjectOutput , ObjectStreamConstants
■ ■ protected ObjectOutputStream() throws IOException
■ ■ ObjectOutputStream(OutputStream) throws IOException
■ ■ protected void annotateClass(Class) throws IOException
■ ■ protected void annotateProxyClass(Class) throws IOException
■ ■ void defaultWriteObject() throws IOException
■ ■ protected void drain() throws IOException
■ ■ protected boolean enableReplaceObject(boolean)
■ ■ ObjectOutputStream.PutField putFields() throws IOException
■ ■ protected Object replaceObject(Object) throws IOException
■ ■ void reset() throws IOException
■ ■ void useProtocolVersion(int) throws IOException
■ ■ void write(int) throws IOException
■ ■ void writeBoolean(boolean) throws IOException
■ ■ void writeByte(int) throws IOException
■ ■ void writeBytes(String) throws IOException

■ ■ void writeChar(int) throws IOException
■ ■ void writeChars(String) throws IOException
■ ■ protected void writeClassDescriptor(ObjectStreamClass)
throws IOException
■ ■ void writeDouble(double) throws IOException
■ ■ void writeFields() throws IOException
■ ■ void writeFloat(float) throws IOException
■ ■ void writeInt(int) throws IOException
■ ■ void writeLong(long) throws IOException
■ ■ final void writeObject(Object) throws IOException
■ ■ protected void writeObjectOverride(Object) throws IOException
■ ■ void writeShort(int) throws IOException
■ ■ protected void writeStreamHeader() throws IOException
■ ■ void writeUnshared(Object) throws IOException
■ ■ void writeUTF(String) throws IOException

■ ■ abstract class ObjectOutputStream.PutField
■ ■ ObjectOutputStream.PutField()
■ ■ abstract void put(String,byte)
■ ■ abstract void put(String,char)
■ ■ abstract void put(String,double)
■ ■ abstract void put(String,float)
■ ■ abstract void put(String,int)

■ ■ abstract void put(String,long)
■ ■ abstract void put(String,Object)
■ ■ abstract void put(String,short)
■ ■ abstract void put(String,boolean)
■ ■ abstract void write(ObjectOutput) throws IOException

■ ■ class ObjectStreamClass implements Serializable
■ ■ Class forClass()
■ ■ ObjectStreamField getField(String)
■ ■ ObjectStreamField[] getFields()
■ ■ String getName()

■ ■ long getSerialVersionUID()
■ ■ static ObjectStreamClass lookup(Class)
■ ■ final static ObjectStreamField[] NO_FIELDS

■ ■ interface ObjectStreamConstants

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1159

■ ■ final static int baseWireHandle
■ ■ final static int PROTOCOL_VERSION_1
■ ■ final static int PROTOCOL_VERSION_2
■ ■ final static byte SC_BLOCK_DATA
■ ■ final static byte SC_EXTERNALIZABLE
■ ■ final static byte SC_SERIALIZABLE
■ ■ final static byte SC_WRITE_METHOD
■ ■ final static short STREAM_MAGIC
■ ■ final static short STREAM_VERSION
■ ■ final static SerializablePermission
SUBCLASS_IMPLEMENTATION_PERMISSION
■ ■ final static SerializablePermission SUBSTITUTION_PERMISSION
■ ■ final static byte TC_ARRAY
■ ■ final static byte TC_BASE
■ ■ final static byte TC_BLOCKDATA

■ ■ final static byte TC_BLOCKDATALONG
■ ■ final static byte TC_CLASS
■ ■ final static byte TC_CLASSDESC
■ ■ final static byte TC_ENDBLOCKDATA
■ ■ final static byte TC_EXCEPTION
■ ■ final static byte TC_LONGSTRING
■ ■ final static byte TC_MAX
■ ■ final static byte TC_NULL
■ ■ final static byte TC_OBJECT
■ ■ final static byte TC_PROXYCLASSDESC
■ ■ final static byte TC_REFERENCE
■ ■ final static byte TC_RESET
■ ■ final static byte TC_STRING

■ ■ abstract class ObjectStreamException extends IOException
■ ■ protected ObjectStreamException() ■ ■ protected ObjectStreamException(String)

■ ■ class ObjectStreamField implements Comparable
■ ■ ObjectStreamField(String,Class)
■ ■ ObjectStreamField(String,Class,boolean)
■ ■ int compareTo(Object)
■ ■ String getName()
■ ■ int getOffset()

■ ■ Class getType()
■ ■ char getTypeCode()
■ ■ String getTypeString()
■ ■ boolean isPrimitive()
■ ■ protected void setOffset(int)

■ ■ class OptionalDataException extends ObjectStreamException
■ ■ boolean eof ■ ■ int length

■ ■ abstract class OutputStream
■ ■ OutputStream()
■ ■ void close() throws IOException
■ ■ void flush() throws IOException

■ ■ void write(byte[]) throws IOException
■ ■ void write(byte[],int,int) throws IOException
■ ■ abstract void write(int) throws IOException

■ ■ class OutputStreamWriter extends Writer
■ ■ OutputStreamWriter(OutputStream)
■ ■ OutputStreamWriter(OutputStream,String)
throws UnsupportedEncodingException
■ ■ void close() throws IOException

■ ■ void flush() throws IOException
■ ■ String getEncoding()
■ ■ void write(char[],int,int) throws IOException

■ ■ class PipedInputStream extends InputStream
■ ■ PipedInputStream()
■ ■ PipedInputStream(PipedOutputStream) throws IOException
■ ■ protected byte[] buffer
■ ■ void connect(PipedOutputStream) throws IOException
■ ■ protected int in

■ ■ protected int out
■ ■ final protected static int PIPE_SIZE
■ ■ int read() throws IOException
■ ■ protected void receive(int) throws IOException

■ ■ class PipedOutputStream extends OutputStream
■ ■ PipedOutputStream()
■ ■ PipedOutputStream(PipedInputStream) throws IOException

■ ■ void connect(PipedInputStream) throws IOException
■ ■ void write(int) throws IOException

■ ■ class PipedReader extends Reader
■ ■ PipedReader()
■ ■ PipedReader(PipedWriter) throws IOException
■ ■ void close() throws IOException

■ ■ void connect(PipedWriter) throws IOException
■ ■ int read(char[],int,int) throws IOException

■ ■ class PipedWriter extends Writer
■ ■ PipedWriter()
■ ■ PipedWriter(PipedReader) throws IOException
■ ■ void close() throws IOException

■ ■ void connect(PipedReader) throws IOException
■ ■ void flush() throws IOException
■ ■ void write(char[],int,int) throws IOException

■ ■ class PrintStream extends FilterOutputStream
■ ■ PrintStream(OutputStream)
■ ■ PrintStream(OutputStream,boolean)
■ ■ PrintStream(OutputStream,boolean,String)
throws UnsupportedEncodingException
■ ■ boolean checkError()
■ ■ void close()
■ ■ void flush()
■ ■ void print(char[])
■ ■ void print(char)
■ ■ void print(double)
■ ■ void print(float)
■ ■ void print(int)
■ ■ void print(long)
■ ■ void print(Object)
■ ■ void print(String)

■ ■ void print(boolean)
■ ■ void println()
■ ■ void println(char[])
■ ■ void println(char)
■ ■ void println(double)
■ ■ void println(float)
■ ■ void println(int)
■ ■ void println(long)
■ ■ void println(Object)
■ ■ void println(String)
■ ■ void println(boolean)
■ ■ protected void setError()
■ ■ void write(byte[],int,int)
■ ■ void write(int)

■ ■ class PrintWriter extends Writer

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1160 OSGi Compendium Release 6

■ ■ PrintWriter(OutputStream)
■ ■ PrintWriter(OutputStream,boolean)
■ ■ PrintWriter(Writer)
■ ■ PrintWriter(Writer,boolean)
■ ■ boolean checkError()
■ ■ void close()
■ ■ void flush()
■ ■ protected Writer out
■ ■ void print(char[])
■ ■ void print(char)
■ ■ void print(double)
■ ■ void print(float)
■ ■ void print(int)
■ ■ void print(long)
■ ■ void print(Object)
■ ■ void print(String)
■ ■ void print(boolean)

■ ■ void println()
■ ■ void println(char[])
■ ■ void println(char)
■ ■ void println(double)
■ ■ void println(float)
■ ■ void println(int)
■ ■ void println(long)
■ ■ void println(Object)
■ ■ void println(String)
■ ■ void println(boolean)
■ ■ protected void setError()
■ ■ void write(char[])
■ ■ void write(char[],int,int)
■ ■ void write(int)
■ ■ void write(String)
■ ■ void write(String,int,int)

■ ■ class PushbackInputStream extends FilterInputStream
■ ■ PushbackInputStream(InputStream)
■ ■ PushbackInputStream(InputStream,int)
■ ■ protected byte[] buf
■ ■ protected int pos

■ ■ void unread(byte[]) throws IOException
■ ■ void unread(byte[],int,int) throws IOException
■ ■ void unread(int) throws IOException

■ ■ class PushbackReader extends FilterReader
■ ■ PushbackReader(Reader)
■ ■ PushbackReader(Reader,int)
■ ■ void unread(char[]) throws IOException

■ ■ void unread(char[],int,int) throws IOException
■ ■ void unread(int) throws IOException

■ ■ class RandomAccessFile implements DataInput , DataOutput
■ ■ RandomAccessFile(File,String) throws FileNotFoundException
■ ■ RandomAccessFile(String,String) throws FileNotFoundException
■ ■ void close() throws IOException
■ ■ final FileDescriptor getFD() throws IOException
■ ■ long getFilePointer() throws IOException
■ ■ long length() throws IOException
■ ■ int read() throws IOException
■ ■ int read(byte[]) throws IOException
■ ■ int read(byte[],int,int) throws IOException
■ ■ final boolean readBoolean() throws IOException
■ ■ final byte readByte() throws IOException
■ ■ final char readChar() throws IOException
■ ■ final double readDouble() throws IOException
■ ■ final float readFloat() throws IOException
■ ■ final void readFully(byte[]) throws IOException
■ ■ final void readFully(byte[],int,int) throws IOException
■ ■ final int readInt() throws IOException
■ ■ final String readLine() throws IOException
■ ■ final long readLong() throws IOException
■ ■ final short readShort() throws IOException

■ ■ final int readUnsignedByte() throws IOException
■ ■ final int readUnsignedShort() throws IOException
■ ■ final String readUTF() throws IOException
■ ■ void seek(long) throws IOException
■ ■ void setLength(long) throws IOException
■ ■ int skipBytes(int) throws IOException
■ ■ void write(byte[]) throws IOException
■ ■ void write(byte[],int,int) throws IOException
■ ■ void write(int) throws IOException
■ ■ final void writeBoolean(boolean) throws IOException
■ ■ final void writeByte(int) throws IOException
■ ■ final void writeBytes(String) throws IOException
■ ■ final void writeChar(int) throws IOException
■ ■ final void writeChars(String) throws IOException
■ ■ final void writeDouble(double) throws IOException
■ ■ final void writeFloat(float) throws IOException
■ ■ final void writeInt(int) throws IOException
■ ■ final void writeLong(long) throws IOException
■ ■ final void writeShort(int) throws IOException
■ ■ final void writeUTF(String) throws IOException

■ ■ abstract class Reader
■ ■ protected Reader()
■ ■ protected Reader(Object)
■ ■ abstract void close() throws IOException
■ ■ protected Object lock
■ ■ void mark(int) throws IOException
■ ■ boolean markSupported()

■ ■ int read() throws IOException
■ ■ int read(char[]) throws IOException
■ ■ abstract int read(char[],int,int) throws IOException
■ ■ boolean ready() throws IOException
■ ■ void reset() throws IOException
■ ■ long skip(long) throws IOException

■ ■ class SequenceInputStream extends InputStream
■ ■ SequenceInputStream(InputStream,InputStream)
■ ■ SequenceInputStream(java.util.Enumeration)

■ ■ int read() throws IOException

■ ■ interface Serializable

■ ■ final class SerializablePermission extends java.security.BasicPermission
■ ■ SerializablePermission(String) ■ ■ SerializablePermission(String,String)

■ ■ class StreamCorruptedException extends ObjectStreamException
■ ■ StreamCorruptedException() ■ ■ StreamCorruptedException(String)

■ ■ class StreamTokenizer

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1161

■ ■ StreamTokenizer(Reader)
■ ■ void commentChar(int)
■ ■ void eolIsSignificant(boolean)
■ ■ int lineno()
■ ■ void lowerCaseMode(boolean)
■ ■ int nextToken() throws IOException
■ ■ double nval
■ ■ void ordinaryChar(int)
■ ■ void ordinaryChars(int,int)
■ ■ void parseNumbers()
■ ■ void pushBack()
■ ■ void quoteChar(int)

■ ■ void resetSyntax()
■ ■ void slashSlashComments(boolean)
■ ■ void slashStarComments(boolean)
■ ■ String sval
■ ■ final static int TT_EOF
■ ■ final static int TT_EOL
■ ■ final static int TT_NUMBER
■ ■ final static int TT_WORD
■ ■ int ttype
■ ■ void whitespaceChars(int,int)
■ ■ void wordChars(int,int)

■ ■ class StringReader extends Reader
■ ■ StringReader(String)
■ ■ void close()

■ ■ int read(char[],int,int) throws IOException

■ ■ class StringWriter extends Writer
■ ■ StringWriter()
■ ■ StringWriter(int)
■ ■ void close() throws IOException
■ ■ void flush()
■ ■ StringBuffer getBuffer()

■ ■ void write(char[],int,int)
■ ■ void write(int)
■ ■ void write(String)
■ ■ void write(String,int,int)

■ ■ class SyncFailedException extends IOException
■ ■ SyncFailedException(String)

■ ■ class UnsupportedEncodingException extends IOException
■ ■ UnsupportedEncodingException() ■ ■ UnsupportedEncodingException(String)

■ ■ class UTFDataFormatException extends IOException
■ ■ UTFDataFormatException() ■ ■ UTFDataFormatException(String)

■ ■ class WriteAbortedException extends ObjectStreamException
■ ■ WriteAbortedException(String,Exception) ■ ■ Exception detail

■ ■ abstract class Writer
■ ■ protected Writer()
■ ■ protected Writer(Object)
■ ■ abstract void close() throws IOException
■ ■ abstract void flush() throws IOException
■ ■ protected Object lock

■ ■ void write(char[]) throws IOException
■ ■ abstract void write(char[],int,int) throws IOException
■ ■ void write(int) throws IOException
■ ■ void write(String) throws IOException
■ ■ void write(String,int,int) throws IOException

999.3.2 java.lang

■ ■ package java.lang
■ ■ class AbstractMethodError extends IncompatibleClassChangeError
■ ■ AbstractMethodError() ■ ■ AbstractMethodError(String)

■ ■ class ArithmeticException extends RuntimeException
■ ■ ArithmeticException() ■ ■ ArithmeticException(String)

■ ■ class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException
■ ■ ArrayIndexOutOfBoundsException()
■ ■ ArrayIndexOutOfBoundsException(int)

■ ■ ArrayIndexOutOfBoundsException(String)

■ ■ class ArrayStoreException extends RuntimeException
■ ■ ArrayStoreException() ■ ■ ArrayStoreException(String)

■ ■ class AssertionError extends Error
■ ■ AssertionError()
■ ■ AssertionError(char)
■ ■ AssertionError(double)
■ ■ AssertionError(float)

■ ■ AssertionError(int)
■ ■ AssertionError(long)
■ ■ AssertionError(Object)
■ ■ AssertionError(boolean)

■ ■ final class Boolean implements java.io.Serializable
■ ■ Boolean(String)
■ ■ Boolean(boolean)
■ ■ boolean booleanValue()
■ ■ final static Boolean FALSE
■ ■ static boolean getBoolean(String)

■ ■ static String toString(boolean)
■ ■ final static Boolean TRUE
■ ■ final static Class TYPE
■ ■ static Boolean valueOf(String)
■ ■ static Boolean valueOf(boolean)

■ ■ final class Byte extends Number implements Comparable
■ ■ Byte(byte)
■ ■ Byte(String)
■ ■ int compareTo(Byte)
■ ■ int compareTo(Object)
■ ■ static Byte decode(String)
■ ■ double doubleValue()
■ ■ float floatValue()
■ ■ int intValue()
■ ■ long longValue()

■ ■ final static byte MAX_VALUE
■ ■ final static byte MIN_VALUE
■ ■ static byte parseByte(String)
■ ■ static byte parseByte(String,int)
■ ■ static String toString(byte)
■ ■ final static Class TYPE
■ ■ static Byte valueOf(String)
■ ■ static Byte valueOf(String,int)

■ ■ final class Character implements java.io.Serializable , Comparable

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1162 OSGi Compendium Release 6

■ ■ Character(char)
■ ■ char charValue()
■ ■ final static byte COMBINING_SPACING_MARK
■ ■ int compareTo(Character)
■ ■ int compareTo(Object)
■ ■ final static byte CONNECTOR_PUNCTUATION
■ ■ final static byte CONTROL
■ ■ final static byte CURRENCY_SYMBOL
■ ■ final static byte DASH_PUNCTUATION
■ ■ final static byte DECIMAL_DIGIT_NUMBER
■ ■ static int digit(char,int)
■ ■ final static byte DIRECTIONALITY_ARABIC_NUMBER
■ ■ final static byte DIRECTIONALITY_BOUNDARY_NEUTRAL
■ ■ final static byte DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
■ ■ final static byte DIRECTIONALITY_EUROPEAN_NUMBER
■ ■ final static byte DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
■ ■ final static byte
DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
■ ■ final static byte DIRECTIONALITY_LEFT_TO_RIGHT
■ ■ final static byte DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING
■ ■ final static byte DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE
■ ■ final static byte DIRECTIONALITY_NONSPACING_MARK
■ ■ final static byte DIRECTIONALITY_OTHER_NEUTRALS
■ ■ final static byte DIRECTIONALITY_PARAGRAPH_SEPARATOR
■ ■ final static byte DIRECTIONALITY_POP_DIRECTIONAL_FORMAT
■ ■ final static byte DIRECTIONALITY_RIGHT_TO_LEFT
■ ■ final static byte DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC
■ ■ final static byte DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING
■ ■ final static byte DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE
■ ■ final static byte DIRECTIONALITY_SEGMENT_SEPARATOR
■ ■ final static byte DIRECTIONALITY_UNDEFINED
■ ■ final static byte DIRECTIONALITY_WHITESPACE
■ ■ final static byte ENCLOSING_MARK
■ ■ final static byte END_PUNCTUATION
■ ■ final static byte FINAL_QUOTE_PUNCTUATION
■ ■ static char forDigit(int,int)
■ ■ final static byte FORMAT
■ ■ static byte getDirectionality(char)
■ ■ static int getNumericValue(char)
■ ■ static int getType(char)
■ ■ final static byte INITIAL_QUOTE_PUNCTUATION
■ ■ static boolean isDefined(char)
■ ■ static boolean isDigit(char)

■ ■ static boolean isIdentifierIgnorable(char)
■ ■ static boolean isISOControl(char)
■ ■ static boolean isJavaIdentifierPart(char)
■ ■ static boolean isJavaIdentifierStart(char)
■ ■ static boolean isLetter(char)
■ ■ static boolean isLetterOrDigit(char)
■ ■ static boolean isLowerCase(char)
■ ■ static boolean isMirrored(char)
■ ■ static boolean isSpaceChar(char)
■ ■ static boolean isTitleCase(char)
■ ■ static boolean isUnicodeIdentifierPart(char)
■ ■ static boolean isUnicodeIdentifierStart(char)
■ ■ static boolean isUpperCase(char)
■ ■ static boolean isWhitespace(char)
■ ■ final static byte LETTER_NUMBER
■ ■ final static byte LINE_SEPARATOR
■ ■ final static byte LOWERCASE_LETTER
■ ■ final static byte MATH_SYMBOL
■ ■ final static int MAX_RADIX
■ ■ final static char MAX_VALUE
■ ■ final static int MIN_RADIX
■ ■ final static char MIN_VALUE
■ ■ final static byte MODIFIER_LETTER
■ ■ final static byte MODIFIER_SYMBOL
■ ■ final static byte NON_SPACING_MARK
■ ■ final static byte OTHER_LETTER
■ ■ final static byte OTHER_NUMBER
■ ■ final static byte OTHER_PUNCTUATION
■ ■ final static byte OTHER_SYMBOL
■ ■ final static byte PARAGRAPH_SEPARATOR
■ ■ final static byte PRIVATE_USE
■ ■ final static byte SPACE_SEPARATOR
■ ■ final static byte START_PUNCTUATION
■ ■ final static byte SURROGATE
■ ■ final static byte TITLECASE_LETTER
■ ■ static char toLowerCase(char)
■ ■ static String toString(char)
■ ■ static char toTitleCase(char)
■ ■ static char toUpperCase(char)
■ ■ final static Class TYPE
■ ■ final static byte UNASSIGNED
■ ■ final static byte UPPERCASE_LETTER

■ ■ class Character.Subset
■ ■ protected Character.Subset(String)
■ ■ final boolean equals(Object)

■ ■ final int hashCode()
■ ■ final String toString()

■ ■ final class Character.UnicodeBlock extends Character.Subset

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1163

■ ■ final static Character.UnicodeBlock
ALPHABETIC_PRESENTATION_FORMS
■ ■ final static Character.UnicodeBlock ARABIC
■ ■ final static Character.UnicodeBlock
ARABIC_PRESENTATION_FORMS_A
■ ■ final static Character.UnicodeBlock
ARABIC_PRESENTATION_FORMS_B
■ ■ final static Character.UnicodeBlock ARMENIAN
■ ■ final static Character.UnicodeBlock ARROWS
■ ■ final static Character.UnicodeBlock BASIC_LATIN
■ ■ final static Character.UnicodeBlock BENGALI
■ ■ final static Character.UnicodeBlock BLOCK_ELEMENTS
■ ■ final static Character.UnicodeBlock BOPOMOFO
■ ■ final static Character.UnicodeBlock BOPOMOFO_EXTENDED
■ ■ final static Character.UnicodeBlock BOX_DRAWING
■ ■ final static Character.UnicodeBlock BRAILLE_PATTERNS
■ ■ final static Character.UnicodeBlock CHEROKEE
■ ■ final static Character.UnicodeBlock CJK_COMPATIBILITY
■ ■ final static Character.UnicodeBlock CJK_COMPATIBILITY_FORMS
■ ■ final static Character.UnicodeBlock
CJK_COMPATIBILITY_IDEOGRAPHS
■ ■ final static Character.UnicodeBlock CJK_RADICALS_SUPPLEMENT
■ ■ final static Character.UnicodeBlock
CJK_SYMBOLS_AND_PUNCTUATION
■ ■ final static Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS
■ ■ final static Character.UnicodeBlock
CJK_UNIFIED_IDEOGRAPHS_EXTENSION_A
■ ■ final static Character.UnicodeBlock
COMBINING_DIACRITICAL_MARKS
■ ■ final static Character.UnicodeBlock COMBINING_HALF_MARKS
■ ■ final static Character.UnicodeBlock
COMBINING_MARKS_FOR_SYMBOLS
■ ■ final static Character.UnicodeBlock CONTROL_PICTURES
■ ■ final static Character.UnicodeBlock CURRENCY_SYMBOLS
■ ■ final static Character.UnicodeBlock CYRILLIC
■ ■ final static Character.UnicodeBlock DEVANAGARI
■ ■ final static Character.UnicodeBlock DINGBATS
■ ■ final static Character.UnicodeBlock ENCLOSED_ALPHANUMERICS
■ ■ final static Character.UnicodeBlock
ENCLOSED_CJK_LETTERS_AND_MONTHS
■ ■ final static Character.UnicodeBlock ETHIOPIC
■ ■ final static Character.UnicodeBlock GENERAL_PUNCTUATION
■ ■ final static Character.UnicodeBlock GEOMETRIC_SHAPES
■ ■ final static Character.UnicodeBlock GEORGIAN
■ ■ final static Character.UnicodeBlock GREEK
■ ■ final static Character.UnicodeBlock GREEK_EXTENDED
■ ■ final static Character.UnicodeBlock GUJARATI
■ ■ final static Character.UnicodeBlock GURMUKHI
■ ■ final static Character.UnicodeBlock
HALFWIDTH_AND_FULLWIDTH_FORMS
■ ■ final static Character.UnicodeBlock HANGUL_COMPATIBILITY_JAMO
■ ■ final static Character.UnicodeBlock HANGUL_JAMO
■ ■ final static Character.UnicodeBlock HANGUL_SYLLABLES

■ ■ final static Character.UnicodeBlock HEBREW
■ ■ final static Character.UnicodeBlock HIRAGANA
■ ■ final static Character.UnicodeBlock
IDEOGRAPHIC_DESCRIPTION_CHARACTERS
■ ■ final static Character.UnicodeBlock IPA_EXTENSIONS
■ ■ final static Character.UnicodeBlock KANBUN
■ ■ final static Character.UnicodeBlock KANGXI_RADICALS
■ ■ final static Character.UnicodeBlock KANNADA
■ ■ final static Character.UnicodeBlock KATAKANA
■ ■ final static Character.UnicodeBlock KHMER
■ ■ final static Character.UnicodeBlock LAO
■ ■ final static Character.UnicodeBlock LATIN_1_SUPPLEMENT
■ ■ final static Character.UnicodeBlock LATIN_EXTENDED_A
■ ■ final static Character.UnicodeBlock LATIN_EXTENDED_ADDITIONAL
■ ■ final static Character.UnicodeBlock LATIN_EXTENDED_B
■ ■ final static Character.UnicodeBlock LETTERLIKE_SYMBOLS
■ ■ final static Character.UnicodeBlock MALAYALAM
■ ■ final static Character.UnicodeBlock MATHEMATICAL_OPERATORS
■ ■ final static Character.UnicodeBlock MISCELLANEOUS_SYMBOLS
■ ■ final static Character.UnicodeBlock MISCELLANEOUS_TECHNICAL
■ ■ final static Character.UnicodeBlock MONGOLIAN
■ ■ final static Character.UnicodeBlock MYANMAR
■ ■ final static Character.UnicodeBlock NUMBER_FORMS
■ ■ static Character.UnicodeBlock of(char)
■ ■ final static Character.UnicodeBlock OGHAM
■ ■ final static Character.UnicodeBlock
OPTICAL_CHARACTER_RECOGNITION
■ ■ final static Character.UnicodeBlock ORIYA
■ ■ final static Character.UnicodeBlock PRIVATE_USE_AREA
■ ■ final static Character.UnicodeBlock RUNIC
■ ■ final static Character.UnicodeBlock SINHALA
■ ■ final static Character.UnicodeBlock SMALL_FORM_VARIANTS
■ ■ final static Character.UnicodeBlock SPACING_MODIFIER_LETTERS
■ ■ final static Character.UnicodeBlock SPECIALS
■ ■ final static Character.UnicodeBlock SUPERSCRIPTS_AND_SUBSCRIPTS
■ ■ final static Character.UnicodeBlock SURROGATES_AREA
■ ■ final static Character.UnicodeBlock SYRIAC
■ ■ final static Character.UnicodeBlock TAMIL
■ ■ final static Character.UnicodeBlock TELUGU
■ ■ final static Character.UnicodeBlock THAANA
■ ■ final static Character.UnicodeBlock THAI
■ ■ final static Character.UnicodeBlock TIBETAN
■ ■ final static Character.UnicodeBlock
UNIFIED_CANADIAN_ABORIGINAL_SYLLABICS
■ ■ final static Character.UnicodeBlock YI_RADICALS
■ ■ final static Character.UnicodeBlock YI_SYLLABLES

■ ■ interface CharSequence
■ ■ abstract char charAt(int)
■ ■ abstract int length()

■ ■ abstract CharSequence subSequence(int,int)
■ ■ abstract String toString()

■ ■ final class Class implements java.io.Serializable

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1164 OSGi Compendium Release 6

■ ■ boolean desiredAssertionStatus()
■ ■ static Class forName(String) throws ClassNotFoundException
■ ■ static Class forName(String,boolean,ClassLoader)
throws ClassNotFoundException
■ ■ Class[] getClasses()
■ ■ ClassLoader getClassLoader()
■ ■ Class getComponentType()
■ ■ Constructor getConstructor(Class[]) throws NoSuchMethodException
■ ■ Constructor[] getConstructors()
■ ■ Class[] getDeclaredClasses()
■ ■ Constructor getDeclaredConstructor(Class[])
throws NoSuchMethodException
■ ■ Constructor[] getDeclaredConstructors()
■ ■ Field getDeclaredField(String) throws NoSuchFieldException
■ ■ Field[] getDeclaredFields()
■ ■ Method getDeclaredMethod(String,Class[])
throws NoSuchMethodException
■ ■ Method[] getDeclaredMethods()
■ ■ Class getDeclaringClass()
■ ■ Field getField(String) throws NoSuchFieldException
■ ■ Field[] getFields()

■ ■ Class[] getInterfaces()
■ ■ Method getMethod(String,Class[]) throws NoSuchMethodException
■ ■ Method[] getMethods()
■ ■ int getModifiers()
■ ■ String getName()
■ ■ Package getPackage()
■ ■ java.security.ProtectionDomain getProtectionDomain()
■ ■ java.net.URL getResource(String)
■ ■ java.io.InputStream getResourceAsStream(String)
■ ■ Object[] getSigners()
■ ■ Class getSuperclass()
■ ■ boolean isArray()
■ ■ boolean isAssignableFrom(Class)
■ ■ boolean isInstance(Object)
■ ■ boolean isInterface()
■ ■ boolean isPrimitive()
■ ■ Object newInstance() throws IllegalAccessException,
 InstantiationException

■ ■ class ClassCastException extends RuntimeException
■ ■ ClassCastException() ■ ■ ClassCastException(String)

■ ■ class ClassCircularityError extends LinkageError
■ ■ ClassCircularityError() ■ ■ ClassCircularityError(String)

■ ■ class ClassFormatError extends LinkageError
■ ■ ClassFormatError() ■ ■ ClassFormatError(String)

■ ■ abstract class ClassLoader
■ ■ protected ClassLoader()
■ ■ protected ClassLoader(ClassLoader)
■ ■ void clearAssertionStatus()
■ ■ final protected Class defineClass(String,byte[],int,int)
throws ClassFormatError
■ ■ final protected Class defineClass(String,byte[],int,int,
java.security.ProtectionDomain) throws ClassFormatError
■ ■ protected Package definePackage(String,String,String,String,String,
String,String,java.net.URL)
■ ■ protected Class findClass(String) throws ClassNotFoundException
■ ■ protected String findLibrary(String)
■ ■ final protected Class findLoadedClass(String)
■ ■ protected java.net.URL findResource(String)
■ ■ protected java.util.Enumeration findResources(String)
throws java.io.IOException
■ ■ final protected Class findSystemClass(String)
throws ClassNotFoundException
■ ■ protected Package getPackage(String)
■ ■ protected Package[] getPackages()
■ ■ final ClassLoader getParent()

■ ■ java.net.URL getResource(String)
■ ■ java.io.InputStream getResourceAsStream(String)
■ ■ final java.util.Enumeration getResources(String)
throws java.io.IOException
■ ■ static ClassLoader getSystemClassLoader()
■ ■ static java.net.URL getSystemResource(String)
■ ■ static java.io.InputStream getSystemResourceAsStream(String)
■ ■ static java.util.Enumeration getSystemResources(String)
throws java.io.IOException
■ ■ Class loadClass(String) throws ClassNotFoundException
■ ■ protected Class loadClass(String,boolean)
throws ClassNotFoundException
■ ■ final protected void resolveClass(Class)
■ ■ void setClassAssertionStatus(String,boolean)
■ ■ void setDefaultAssertionStatus(boolean)
■ ■ void setPackageAssertionStatus(String,boolean)
■ ■ final protected void setSigners(Class,Object[])

■ ■ class ClassNotFoundException extends Exception
■ ■ ClassNotFoundException()
■ ■ ClassNotFoundException(String)

■ ■ ClassNotFoundException(String,Throwable)
■ ■ Throwable getException()

■ ■ interface Cloneable

■ ■ class CloneNotSupportedException extends Exception
■ ■ CloneNotSupportedException() ■ ■ CloneNotSupportedException(String)

■ ■ interface Comparable
■ ■ abstract int compareTo(Object)

■ ■ final class Compiler
■ ■ static Object command(Object)
■ ■ static boolean compileClass(Class)
■ ■ static boolean compileClasses(String)

■ ■ static void disable()
■ ■ static void enable()

■ ■ final class Double extends Number implements Comparable

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1165

■ ■ Double(double)
■ ■ Double(String)
■ ■ static int compare(double,double)
■ ■ int compareTo(Double)
■ ■ int compareTo(Object)
■ ■ static long doubleToLongBits(double)
■ ■ static long doubleToRawLongBits(double)
■ ■ double doubleValue()
■ ■ float floatValue()
■ ■ int intValue()
■ ■ boolean isInfinite()
■ ■ static boolean isInfinite(double)
■ ■ boolean isNaN()

■ ■ static boolean isNaN(double)
■ ■ static double longBitsToDouble(long)
■ ■ long longValue()
■ ■ final static double MAX_VALUE
■ ■ final static double MIN_VALUE
■ ■ final static double NaN
■ ■ final static double NEGATIVE_INFINITY
■ ■ static double parseDouble(String)
■ ■ final static double POSITIVE_INFINITY
■ ■ static String toString(double)
■ ■ final static Class TYPE
■ ■ static Double valueOf(String)

■ ■ class Error extends Throwable
■ ■ Error()
■ ■ Error(String)

■ ■ Error(String,Throwable)
■ ■ Error(Throwable)

■ ■ class Exception extends Throwable
■ ■ Exception()
■ ■ Exception(String)

■ ■ Exception(String,Throwable)
■ ■ Exception(Throwable)

■ ■ class ExceptionInInitializerError extends LinkageError
■ ■ ExceptionInInitializerError()
■ ■ ExceptionInInitializerError(String)

■ ■ ExceptionInInitializerError(Throwable)
■ ■ Throwable getException()

■ ■ final class Float extends Number implements Comparable
■ ■ Float(double)
■ ■ Float(float)
■ ■ Float(String)
■ ■ static int compare(float,float)
■ ■ int compareTo(Float)
■ ■ int compareTo(Object)
■ ■ double doubleValue()
■ ■ static int floatToIntBits(float)
■ ■ static int floatToRawIntBits(float)
■ ■ float floatValue()
■ ■ static float intBitsToFloat(int)
■ ■ int intValue()
■ ■ boolean isInfinite()

■ ■ static boolean isInfinite(float)
■ ■ boolean isNaN()
■ ■ static boolean isNaN(float)
■ ■ long longValue()
■ ■ final static float MAX_VALUE
■ ■ final static float MIN_VALUE
■ ■ final static float NaN
■ ■ final static float NEGATIVE_INFINITY
■ ■ static float parseFloat(String)
■ ■ final static float POSITIVE_INFINITY
■ ■ static String toString(float)
■ ■ final static Class TYPE
■ ■ static Float valueOf(String)

■ ■ class IllegalAccessError extends IncompatibleClassChangeError
■ ■ IllegalAccessError() ■ ■ IllegalAccessError(String)

■ ■ class IllegalAccessException extends Exception
■ ■ IllegalAccessException() ■ ■ IllegalAccessException(String)

■ ■ class IllegalArgumentException extends RuntimeException
■ ■ IllegalArgumentException() ■ ■ IllegalArgumentException(String)

■ ■ class IllegalMonitorStateException extends RuntimeException
■ ■ IllegalMonitorStateException() ■ ■ IllegalMonitorStateException(String)

■ ■ class IllegalStateException extends RuntimeException
■ ■ IllegalStateException() ■ ■ IllegalStateException(String)

■ ■ class IllegalThreadStateException extends IllegalArgumentException
■ ■ IllegalThreadStateException() ■ ■ IllegalThreadStateException(String)

■ ■ class IncompatibleClassChangeError extends LinkageError
■ ■ IncompatibleClassChangeError() ■ ■ IncompatibleClassChangeError(String)

■ ■ class IndexOutOfBoundsException extends RuntimeException
■ ■ IndexOutOfBoundsException() ■ ■ IndexOutOfBoundsException(String)

■ ■ class InheritableThreadLocal extends ThreadLocal
■ ■ InheritableThreadLocal() ■ ■ protected Object childValue(Object)

■ ■ class InstantiationError extends IncompatibleClassChangeError
■ ■ InstantiationError() ■ ■ InstantiationError(String)

■ ■ class InstantiationException extends Exception
■ ■ InstantiationException() ■ ■ InstantiationException(String)

■ ■ final class Integer extends Number implements Comparable

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1166 OSGi Compendium Release 6

■ ■ Integer(int)
■ ■ Integer(String)
■ ■ int compareTo(Integer)
■ ■ int compareTo(Object)
■ ■ static Integer decode(String)
■ ■ double doubleValue()
■ ■ float floatValue()
■ ■ static Integer getInteger(String)
■ ■ static Integer getInteger(String,int)
■ ■ static Integer getInteger(String,Integer)
■ ■ int intValue()
■ ■ long longValue()

■ ■ final static int MAX_VALUE
■ ■ final static int MIN_VALUE
■ ■ static int parseInt(String)
■ ■ static int parseInt(String,int)
■ ■ static String toBinaryString(int)
■ ■ static String toHexString(int)
■ ■ static String toOctalString(int)
■ ■ static String toString(int)
■ ■ static String toString(int,int)
■ ■ final static Class TYPE
■ ■ static Integer valueOf(String)
■ ■ static Integer valueOf(String,int)

■ ■ class InternalError extends VirtualMachineError
■ ■ InternalError() ■ ■ InternalError(String)

■ ■ class InterruptedException extends Exception
■ ■ InterruptedException() ■ ■ InterruptedException(String)

■ ■ class LinkageError extends Error
■ ■ LinkageError() ■ ■ LinkageError(String)

■ ■ final class Long extends Number implements Comparable
■ ■ Long(long)
■ ■ Long(String)
■ ■ int compareTo(Long)
■ ■ int compareTo(Object)
■ ■ static Long decode(String)
■ ■ double doubleValue()
■ ■ float floatValue()
■ ■ static Long getLong(String)
■ ■ static Long getLong(String,long)
■ ■ static Long getLong(String,Long)
■ ■ int intValue()
■ ■ long longValue()

■ ■ final static long MAX_VALUE
■ ■ final static long MIN_VALUE
■ ■ static long parseLong(String)
■ ■ static long parseLong(String,int)
■ ■ static String toBinaryString(long)
■ ■ static String toHexString(long)
■ ■ static String toOctalString(long)
■ ■ static String toString(long)
■ ■ static String toString(long,int)
■ ■ final static Class TYPE
■ ■ static Long valueOf(String)
■ ■ static Long valueOf(String,int)

■ ■ final class Math
■ ■ static double abs(double)
■ ■ static float abs(float)
■ ■ static int abs(int)
■ ■ static long abs(long)
■ ■ static double acos(double)
■ ■ static double asin(double)
■ ■ static double atan(double)
■ ■ static double atan2(double,double)
■ ■ static double ceil(double)
■ ■ static double cos(double)
■ ■ final static double E
■ ■ static double exp(double)
■ ■ static double floor(double)
■ ■ static double IEEEremainder(double,double)
■ ■ static double log(double)
■ ■ static double max(double,double)
■ ■ static float max(float,float)

■ ■ static int max(int,int)
■ ■ static long max(long,long)
■ ■ static double min(double,double)
■ ■ static float min(float,float)
■ ■ static int min(int,int)
■ ■ static long min(long,long)
■ ■ final static double PI
■ ■ static double pow(double,double)
■ ■ static double random()
■ ■ static double rint(double)
■ ■ static long round(double)
■ ■ static int round(float)
■ ■ static double sin(double)
■ ■ static double sqrt(double)
■ ■ static double tan(double)
■ ■ static double toDegrees(double)
■ ■ static double toRadians(double)

■ ■ class NegativeArraySizeException extends RuntimeException
■ ■ NegativeArraySizeException() ■ ■ NegativeArraySizeException(String)

■ ■ class NoClassDefFoundError extends LinkageError
■ ■ NoClassDefFoundError() ■ ■ NoClassDefFoundError(String)

■ ■ class NoSuchFieldError extends IncompatibleClassChangeError
■ ■ NoSuchFieldError() ■ ■ NoSuchFieldError(String)

■ ■ class NoSuchFieldException extends Exception
■ ■ NoSuchFieldException() ■ ■ NoSuchFieldException(String)

■ ■ class NoSuchMethodError extends IncompatibleClassChangeError
■ ■ NoSuchMethodError() ■ ■ NoSuchMethodError(String)

■ ■ class NoSuchMethodException extends Exception
■ ■ NoSuchMethodException() ■ ■ NoSuchMethodException(String)

■ ■ class NullPointerException extends RuntimeException
■ ■ NullPointerException() ■ ■ NullPointerException(String)

■ ■ abstract class Number implements java.io.Serializable
■ ■ Number()
■ ■ byte byteValue()
■ ■ abstract double doubleValue()
■ ■ abstract float floatValue()

■ ■ abstract int intValue()
■ ■ abstract long longValue()
■ ■ short shortValue()

■ ■ class NumberFormatException extends IllegalArgumentException
■ ■ NumberFormatException() ■ ■ NumberFormatException(String)

■ ■ class Object

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1167

■ ■ Object()
■ ■ protected Object clone() throws CloneNotSupportedException
■ ■ boolean equals(Object)
■ ■ protected void finalize() throws Throwable
■ ■ final Class getClass()
■ ■ int hashCode()

■ ■ final void notify()
■ ■ final void notifyAll()
■ ■ String toString()
■ ■ final void wait() throws InterruptedException
■ ■ final void wait(long) throws InterruptedException
■ ■ final void wait(long,int) throws InterruptedException

■ ■ class OutOfMemoryError extends VirtualMachineError
■ ■ OutOfMemoryError() ■ ■ OutOfMemoryError(String)

■ ■ class Package
■ ■ String getImplementationTitle()
■ ■ String getImplementationVendor()
■ ■ String getImplementationVersion()
■ ■ String getName()
■ ■ static Package getPackage(String)
■ ■ static Package[] getPackages()

■ ■ String getSpecificationTitle()
■ ■ String getSpecificationVendor()
■ ■ String getSpecificationVersion()
■ ■ boolean isCompatibleWith(String)
■ ■ boolean isSealed()
■ ■ boolean isSealed(java.net.URL)

■ ■ abstract class Process
■ ■ Process()
■ ■ abstract void destroy()
■ ■ abstract int exitValue()
■ ■ abstract java.io.InputStream getErrorStream()

■ ■ abstract java.io.InputStream getInputStream()
■ ■ abstract java.io.OutputStream getOutputStream()
■ ■ abstract int waitFor() throws InterruptedException

■ ■ interface Runnable
■ ■ abstract void run()

■ ■ class Runtime
■ ■ void addShutdownHook(Thread)
■ ■ int availableProcessors()
■ ■ Process exec(String[]) throws java.io.IOException
■ ■ Process exec(String[],String[]) throws java.io.IOException
■ ■ Process exec(String[],String[],java.io.File) throws java.io.IOException
■ ■ Process exec(String) throws java.io.IOException
■ ■ Process exec(String,String[]) throws java.io.IOException
■ ■ Process exec(String,String[],java.io.File) throws java.io.IOException
■ ■ void exit(int)
■ ■ long freeMemory()
■ ■ void gc()

■ ■ static Runtime getRuntime()
■ ■ void halt(int)
■ ■ void load(String)
■ ■ void loadLibrary(String)
■ ■ long maxMemory()
■ ■ boolean removeShutdownHook(Thread)
■ ■ void runFinalization()
■ ■ long totalMemory()
■ ■ void traceInstructions(boolean)
■ ■ void traceMethodCalls(boolean)

■ ■ class RuntimeException extends Exception
■ ■ RuntimeException()
■ ■ RuntimeException(String)

■ ■ RuntimeException(String,Throwable)
■ ■ RuntimeException(Throwable)

■ ■ final class RuntimePermission extends java.security.BasicPermission
■ ■ RuntimePermission(String) ■ ■ RuntimePermission(String,String)

■ ■ class SecurityException extends RuntimeException
■ ■ SecurityException() ■ ■ SecurityException(String)

■ ■ class SecurityManager
■ ■ SecurityManager()
■ ■ void checkAccept(String,int)
■ ■ void checkAccess(Thread)
■ ■ void checkAccess(ThreadGroup)
■ ■ void checkAwtEventQueueAccess()
■ ■ void checkConnect(String,int)
■ ■ void checkConnect(String,int,Object)
■ ■ void checkCreateClassLoader()
■ ■ void checkDelete(String)
■ ■ void checkExec(String)
■ ■ void checkExit(int)
■ ■ void checkLink(String)
■ ■ void checkListen(int)
■ ■ void checkMemberAccess(Class,int)
■ ■ void checkMulticast(java.net.InetAddress)
■ ■ void checkMulticast(java.net.InetAddress,byte)
■ ■ void checkPackageAccess(String)
■ ■ void checkPackageDefinition(String)

■ ■ void checkPermission(java.security.Permission)
■ ■ void checkPermission(java.security.Permission,Object)
■ ■ void checkPrintJobAccess()
■ ■ void checkPropertiesAccess()
■ ■ void checkPropertyAccess(String)
■ ■ void checkRead(java.io.FileDescriptor)
■ ■ void checkRead(String)
■ ■ void checkRead(String,Object)
■ ■ void checkSecurityAccess(String)
■ ■ void checkSetFactory()
■ ■ void checkSystemClipboardAccess()
■ ■ boolean checkTopLevelWindow(Object)
■ ■ void checkWrite(java.io.FileDescriptor)
■ ■ void checkWrite(String)
■ ■ protected Class[] getClassContext()
■ ■ Object getSecurityContext()
■ ■ ThreadGroup getThreadGroup()

■ ■ final class Short extends Number implements Comparable
■ ■ Short(String)
■ ■ Short(short)
■ ■ int compareTo(Object)
■ ■ int compareTo(Short)
■ ■ static Short decode(String)
■ ■ double doubleValue()
■ ■ float floatValue()
■ ■ int intValue()
■ ■ long longValue()

■ ■ final static short MAX_VALUE
■ ■ final static short MIN_VALUE
■ ■ static short parseShort(String)
■ ■ static short parseShort(String,int)
■ ■ static String toString(short)
■ ■ final static Class TYPE
■ ■ static Short valueOf(String)
■ ■ static Short valueOf(String,int)

■ ■ class StackOverflowError extends VirtualMachineError
■ ■ StackOverflowError() ■ ■ StackOverflowError(String)

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1168 OSGi Compendium Release 6

■ ■ final class StackTraceElement implements java.io.Serializable
■ ■ String getClassName()
■ ■ String getFileName()
■ ■ int getLineNumber()

■ ■ String getMethodName()
■ ■ boolean isNativeMethod()

■ ■ final class StrictMath
■ ■ static double abs(double)
■ ■ static float abs(float)
■ ■ static int abs(int)
■ ■ static long abs(long)
■ ■ static double acos(double)
■ ■ static double asin(double)
■ ■ static double atan(double)
■ ■ static double atan2(double,double)
■ ■ static double ceil(double)
■ ■ static double cos(double)
■ ■ final static double E
■ ■ static double exp(double)
■ ■ static double floor(double)
■ ■ static double IEEEremainder(double,double)
■ ■ static double log(double)
■ ■ static double max(double,double)
■ ■ static float max(float,float)

■ ■ static int max(int,int)
■ ■ static long max(long,long)
■ ■ static double min(double,double)
■ ■ static float min(float,float)
■ ■ static int min(int,int)
■ ■ static long min(long,long)
■ ■ final static double PI
■ ■ static double pow(double,double)
■ ■ static double random()
■ ■ static double rint(double)
■ ■ static long round(double)
■ ■ static int round(float)
■ ■ static double sin(double)
■ ■ static double sqrt(double)
■ ■ static double tan(double)
■ ■ static double toDegrees(double)
■ ■ static double toRadians(double)

■ ■ final class String implements java.io.Serializable , CharSequence , Comparable
■ ■ String()
■ ■ String(byte[])
■ ■ String(byte[],int,int)
■ ■ String(byte[],int,int,String)
throws java.io.UnsupportedEncodingException
■ ■ String(byte[],String) throws java.io.UnsupportedEncodingException
■ ■ String(char[])
■ ■ String(char[],int,int)
■ ■ String(String)
■ ■ String(StringBuffer)
■ ■ final static java.util.Comparator CASE_INSENSITIVE_ORDER
■ ■ char charAt(int)
■ ■ int compareTo(Object)
■ ■ int compareTo(String)
■ ■ int compareToIgnoreCase(String)
■ ■ String concat(String)
■ ■ boolean contentEquals(StringBuffer)
■ ■ static String copyValueOf(char[])
■ ■ static String copyValueOf(char[],int,int)
■ ■ boolean endsWith(String)
■ ■ boolean equalsIgnoreCase(String)
■ ■ byte[] getBytes()
■ ■ byte[] getBytes(String) throws java.io.UnsupportedEncodingException
■ ■ void getChars(int,int,char[],int)
■ ■ int indexOf(int)
■ ■ int indexOf(int,int)
■ ■ int indexOf(String)
■ ■ int indexOf(String,int)
■ ■ String intern()

■ ■ int lastIndexOf(int)
■ ■ int lastIndexOf(int,int)
■ ■ int lastIndexOf(String)
■ ■ int lastIndexOf(String,int)
■ ■ int length()
■ ■ boolean regionMatches(int,String,int,int)
■ ■ boolean regionMatches(boolean,int,String,int,int)
■ ■ String replace(char,char)
■ ■ boolean startsWith(String)
■ ■ boolean startsWith(String,int)
■ ■ CharSequence subSequence(int,int)
■ ■ String substring(int)
■ ■ String substring(int,int)
■ ■ char[] toCharArray()
■ ■ String toLowerCase()
■ ■ String toLowerCase(java.util.Locale)
■ ■ String toUpperCase()
■ ■ String toUpperCase(java.util.Locale)
■ ■ String trim()
■ ■ static String valueOf(char[])
■ ■ static String valueOf(char[],int,int)
■ ■ static String valueOf(char)
■ ■ static String valueOf(double)
■ ■ static String valueOf(float)
■ ■ static String valueOf(int)
■ ■ static String valueOf(long)
■ ■ static String valueOf(Object)
■ ■ static String valueOf(boolean)

■ ■ final class StringBuffer implements java.io.Serializable , CharSequence
■ ■ StringBuffer()
■ ■ StringBuffer(int)
■ ■ StringBuffer(String)
■ ■ StringBuffer append(char[])
■ ■ StringBuffer append(char[],int,int)
■ ■ StringBuffer append(char)
■ ■ StringBuffer append(double)
■ ■ StringBuffer append(float)
■ ■ StringBuffer append(int)
■ ■ StringBuffer append(long)
■ ■ StringBuffer append(Object)
■ ■ StringBuffer append(String)
■ ■ StringBuffer append(StringBuffer)
■ ■ StringBuffer append(boolean)
■ ■ int capacity()
■ ■ char charAt(int)
■ ■ StringBuffer delete(int,int)
■ ■ StringBuffer deleteCharAt(int)
■ ■ void ensureCapacity(int)
■ ■ void getChars(int,int,char[],int)
■ ■ int indexOf(String)

■ ■ int indexOf(String,int)
■ ■ StringBuffer insert(int,char[])
■ ■ StringBuffer insert(int,char[],int,int)
■ ■ StringBuffer insert(int,char)
■ ■ StringBuffer insert(int,double)
■ ■ StringBuffer insert(int,float)
■ ■ StringBuffer insert(int,int)
■ ■ StringBuffer insert(int,long)
■ ■ StringBuffer insert(int,Object)
■ ■ StringBuffer insert(int,String)
■ ■ StringBuffer insert(int,boolean)
■ ■ int lastIndexOf(String)
■ ■ int lastIndexOf(String,int)
■ ■ int length()
■ ■ StringBuffer replace(int,int,String)
■ ■ StringBuffer reverse()
■ ■ void setCharAt(int,char)
■ ■ void setLength(int)
■ ■ CharSequence subSequence(int,int)
■ ■ String substring(int)
■ ■ String substring(int,int)

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1169

■ ■ class StringIndexOutOfBoundsException extends IndexOutOfBoundsException
■ ■ StringIndexOutOfBoundsException()
■ ■ StringIndexOutOfBoundsException(int)

■ ■ StringIndexOutOfBoundsException(String)

■ ■ final class System
■ ■ static void arraycopy(Object,int,Object,int,int)
■ ■ static long currentTimeMillis()
■ ■ final static java.io.PrintStream err
■ ■ static void exit(int)
■ ■ static void gc()
■ ■ static java.util.Properties getProperties()
■ ■ static String getProperty(String)
■ ■ static String getProperty(String,String)
■ ■ static SecurityManager getSecurityManager()
■ ■ static int identityHashCode(Object)
■ ■ final static java.io.InputStream in

■ ■ static void load(String)
■ ■ static void loadLibrary(String)
■ ■ static String mapLibraryName(String)
■ ■ final static java.io.PrintStream out
■ ■ static void runFinalization()
■ ■ static void setErr(java.io.PrintStream)
■ ■ static void setIn(java.io.InputStream)
■ ■ static void setOut(java.io.PrintStream)
■ ■ static void setProperties(java.util.Properties)
■ ■ static String setProperty(String,String)
■ ■ static void setSecurityManager(SecurityManager)

■ ■ class Thread implements Runnable
■ ■ Thread()
■ ■ Thread(Runnable)
■ ■ Thread(Runnable,String)
■ ■ Thread(String)
■ ■ Thread(ThreadGroup,Runnable)
■ ■ Thread(ThreadGroup,Runnable,String)
■ ■ Thread(ThreadGroup,Runnable,String,long)
■ ■ Thread(ThreadGroup,String)
■ ■ static int activeCount()
■ ■ final void checkAccess()
■ ■ static Thread currentThread()
■ ■ void destroy()
■ ■ static void dumpStack()
■ ■ static int enumerate(Thread[])
■ ■ ClassLoader getContextClassLoader()
■ ■ final String getName()
■ ■ final int getPriority()
■ ■ final ThreadGroup getThreadGroup()
■ ■ static boolean holdsLock(Object)
■ ■ void interrupt()

■ ■ static boolean interrupted()
■ ■ final boolean isAlive()
■ ■ final boolean isDaemon()
■ ■ boolean isInterrupted()
■ ■ final void join() throws InterruptedException
■ ■ final void join(long) throws InterruptedException
■ ■ final void join(long,int) throws InterruptedException
■ ■ final static int MAX_PRIORITY
■ ■ final static int MIN_PRIORITY
■ ■ final static int NORM_PRIORITY
■ ■ void run()
■ ■ void setContextClassLoader(ClassLoader)
■ ■ final void setDaemon(boolean)
■ ■ final void setName(String)
■ ■ final void setPriority(int)
■ ■ static void sleep(long) throws InterruptedException
■ ■ static void sleep(long,int) throws InterruptedException
■ ■ void start()
■ ■ static void yield()

■ ■ class ThreadDeath extends Error
■ ■ ThreadDeath()

■ ■ class ThreadGroup
■ ■ ThreadGroup(String)
■ ■ ThreadGroup(ThreadGroup,String)
■ ■ int activeCount()
■ ■ int activeGroupCount()
■ ■ final void checkAccess()
■ ■ final void destroy()
■ ■ int enumerate(Thread[])
■ ■ int enumerate(Thread[],boolean)
■ ■ int enumerate(ThreadGroup[])
■ ■ int enumerate(ThreadGroup[],boolean)
■ ■ final int getMaxPriority()

■ ■ final String getName()
■ ■ final ThreadGroup getParent()
■ ■ final void interrupt()
■ ■ final boolean isDaemon()
■ ■ boolean isDestroyed()
■ ■ void list()
■ ■ final boolean parentOf(ThreadGroup)
■ ■ final void setDaemon(boolean)
■ ■ final void setMaxPriority(int)
■ ■ void uncaughtException(Thread,Throwable)

■ ■ class ThreadLocal
■ ■ ThreadLocal()
■ ■ Object get()

■ ■ protected Object initialValue()
■ ■ void set(Object)

■ ■ class Throwable implements java.io.Serializable
■ ■ Throwable()
■ ■ Throwable(String)
■ ■ Throwable(String,Throwable)
■ ■ Throwable(Throwable)
■ ■ Throwable fillInStackTrace()
■ ■ Throwable getCause()
■ ■ String getLocalizedMessage()

■ ■ String getMessage()
■ ■ StackTraceElement[] getStackTrace()
■ ■ Throwable initCause(Throwable)
■ ■ void printStackTrace()
■ ■ void printStackTrace(java.io.PrintStream)
■ ■ void printStackTrace(java.io.PrintWriter)
■ ■ void setStackTrace(StackTraceElement[])

■ ■ class UnknownError extends VirtualMachineError
■ ■ UnknownError() ■ ■ UnknownError(String)

■ ■ class UnsatisfiedLinkError extends LinkageError
■ ■ UnsatisfiedLinkError() ■ ■ UnsatisfiedLinkError(String)

■ ■ class UnsupportedClassVersionError extends ClassFormatError
■ ■ UnsupportedClassVersionError() ■ ■ UnsupportedClassVersionError(String)

■ ■ class UnsupportedOperationException extends RuntimeException
■ ■ UnsupportedOperationException() ■ ■ UnsupportedOperationException(String)

■ ■ class VerifyError extends LinkageError
■ ■ VerifyError() ■ ■ VerifyError(String)

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1170 OSGi Compendium Release 6

■ ■ abstract class VirtualMachineError extends Error
■ ■ VirtualMachineError() ■ ■ VirtualMachineError(String)

■ ■ final class Void
■ ■ final static Class TYPE

999.3.3 java.lang.ref
■ ■ package java.lang.ref
■ ■ class PhantomReference extends Reference
■ ■ PhantomReference(Object,ReferenceQueue)

■ ■ abstract class Reference
■ ■ void clear()
■ ■ boolean enqueue()

■ ■ Object get()
■ ■ boolean isEnqueued()

■ ■ class ReferenceQueue
■ ■ ReferenceQueue()
■ ■ Reference poll()

■ ■ Reference remove() throws InterruptedException
■ ■ Reference remove(long) throws InterruptedException

■ ■ class SoftReference extends Reference
■ ■ SoftReference(Object) ■ ■ SoftReference(Object,ReferenceQueue)

■ ■ class WeakReference extends Reference
■ ■ WeakReference(Object) ■ ■ WeakReference(Object,ReferenceQueue)

999.3.4 java.lang.reflect
■ ■ package java.lang.reflect
■ ■ class AccessibleObject
■ ■ protected AccessibleObject()
■ ■ boolean isAccessible()

■ ■ static void setAccessible(AccessibleObject[],boolean)
■ ■ void setAccessible(boolean)

■ ■ final class Array
■ ■ static Object get(Object,int)
■ ■ static boolean getBoolean(Object,int)
■ ■ static byte getByte(Object,int)
■ ■ static char getChar(Object,int)
■ ■ static double getDouble(Object,int)
■ ■ static float getFloat(Object,int)
■ ■ static int getInt(Object,int)
■ ■ static int getLength(Object)
■ ■ static long getLong(Object,int)
■ ■ static short getShort(Object,int)
■ ■ static Object newInstance(Class,int[])

■ ■ static Object newInstance(Class,int)
■ ■ static void set(Object,int,Object)
■ ■ static void setBoolean(Object,int,boolean)
■ ■ static void setByte(Object,int,byte)
■ ■ static void setChar(Object,int,char)
■ ■ static void setDouble(Object,int,double)
■ ■ static void setFloat(Object,int,float)
■ ■ static void setInt(Object,int,int)
■ ■ static void setLong(Object,int,long)
■ ■ static void setShort(Object,int,short)

■ ■ final class Constructor extends AccessibleObject implements Member
■ ■ Class getDeclaringClass()
■ ■ Class[] getExceptionTypes()
■ ■ int getModifiers()

■ ■ String getName()
■ ■ Class[] getParameterTypes()
■ ■ Object newInstance(Object[]) throws IllegalAccessException,
 InstantiationException, InvocationTargetException

■ ■ final class Field extends AccessibleObject implements Member
■ ■ Object get(Object) throws IllegalAccessException
■ ■ boolean getBoolean(Object) throws IllegalAccessException
■ ■ byte getByte(Object) throws IllegalAccessException
■ ■ char getChar(Object) throws IllegalAccessException
■ ■ Class getDeclaringClass()
■ ■ double getDouble(Object) throws IllegalAccessException
■ ■ float getFloat(Object) throws IllegalAccessException
■ ■ int getInt(Object) throws IllegalAccessException
■ ■ long getLong(Object) throws IllegalAccessException
■ ■ int getModifiers()
■ ■ String getName()

■ ■ short getShort(Object) throws IllegalAccessException
■ ■ Class getType()
■ ■ void set(Object,Object) throws IllegalAccessException
■ ■ void setBoolean(Object,boolean) throws IllegalAccessException
■ ■ void setByte(Object,byte) throws IllegalAccessException
■ ■ void setChar(Object,char) throws IllegalAccessException
■ ■ void setDouble(Object,double) throws IllegalAccessException
■ ■ void setFloat(Object,float) throws IllegalAccessException
■ ■ void setInt(Object,int) throws IllegalAccessException
■ ■ void setLong(Object,long) throws IllegalAccessException
■ ■ void setShort(Object,short) throws IllegalAccessException

■ ■ interface InvocationHandler
■ ■ abstract Object invoke(Object,Method,Object[]) throws Throwable

■ ■ class InvocationTargetException extends Exception
■ ■ protected InvocationTargetException()
■ ■ InvocationTargetException(Throwable)

■ ■ InvocationTargetException(Throwable,String)
■ ■ Throwable getTargetException()

■ ■ interface Member
■ ■ final static int DECLARED
■ ■ abstract Class getDeclaringClass()
■ ■ abstract int getModifiers()

■ ■ abstract String getName()
■ ■ final static int PUBLIC

■ ■ final class Method extends AccessibleObject implements Member
■ ■ Class getDeclaringClass()
■ ■ Class[] getExceptionTypes()
■ ■ int getModifiers()
■ ■ String getName()

■ ■ Class[] getParameterTypes()
■ ■ Class getReturnType()
■ ■ Object invoke(Object,Object[]) throws IllegalAccessException,
 InvocationTargetException

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1171

■ ■ class Modifier
■ ■ Modifier()
■ ■ final static int ABSTRACT
■ ■ final static int FINAL
■ ■ final static int INTERFACE
■ ■ static boolean isAbstract(int)
■ ■ static boolean isFinal(int)
■ ■ static boolean isInterface(int)
■ ■ static boolean isNative(int)
■ ■ static boolean isPrivate(int)
■ ■ static boolean isProtected(int)
■ ■ static boolean isPublic(int)
■ ■ static boolean isStatic(int)
■ ■ static boolean isStrict(int)

■ ■ static boolean isSynchronized(int)
■ ■ static boolean isTransient(int)
■ ■ static boolean isVolatile(int)
■ ■ final static int NATIVE
■ ■ final static int PRIVATE
■ ■ final static int PROTECTED
■ ■ final static int PUBLIC
■ ■ final static int STATIC
■ ■ final static int STRICT
■ ■ final static int SYNCHRONIZED
■ ■ static String toString(int)
■ ■ final static int TRANSIENT
■ ■ final static int VOLATILE

■ ■ class Proxy implements java.io.Serializable
■ ■ protected Proxy(InvocationHandler)
■ ■ static InvocationHandler getInvocationHandler(Object)
■ ■ static Class getProxyClass(ClassLoader,Class[])

■ ■ protected InvocationHandler h
■ ■ static boolean isProxyClass(Class)
■ ■ static Object newProxyInstance(ClassLoader,Class[],
InvocationHandler)

■ ■ final class ReflectPermission extends java.security.BasicPermission
■ ■ ReflectPermission(String) ■ ■ ReflectPermission(String,String)

■ ■ class UndeclaredThrowableException extends RuntimeException
■ ■ UndeclaredThrowableException(Throwable)
■ ■ UndeclaredThrowableException(Throwable,String)

■ ■ Throwable getUndeclaredThrowable()

999.3.5 java.math

■ ■ package java.math
■ ■ class BigDecimal extends Number implements Comparable
■ ■ BigDecimal(double)
■ ■ BigDecimal(String)
■ ■ BigDecimal(BigInteger)
■ ■ BigDecimal(BigInteger,int)
■ ■ BigDecimal abs()
■ ■ BigDecimal add(BigDecimal)
■ ■ int compareTo(Object)
■ ■ int compareTo(BigDecimal)
■ ■ BigDecimal divide(BigDecimal,int)
■ ■ BigDecimal divide(BigDecimal,int,int)
■ ■ double doubleValue()
■ ■ float floatValue()
■ ■ int intValue()
■ ■ long longValue()
■ ■ BigDecimal max(BigDecimal)
■ ■ BigDecimal min(BigDecimal)
■ ■ BigDecimal movePointLeft(int)
■ ■ BigDecimal movePointRight(int)
■ ■ BigDecimal multiply(BigDecimal)

■ ■ BigDecimal negate()
■ ■ final static int ROUND_CEILING
■ ■ final static int ROUND_DOWN
■ ■ final static int ROUND_FLOOR
■ ■ final static int ROUND_HALF_DOWN
■ ■ final static int ROUND_HALF_EVEN
■ ■ final static int ROUND_HALF_UP
■ ■ final static int ROUND_UNNECESSARY
■ ■ final static int ROUND_UP
■ ■ int scale()
■ ■ BigDecimal setScale(int)
■ ■ BigDecimal setScale(int,int)
■ ■ int signum()
■ ■ BigDecimal subtract(BigDecimal)
■ ■ BigInteger toBigInteger()
■ ■ BigInteger unscaledValue()
■ ■ static BigDecimal valueOf(long)
■ ■ static BigDecimal valueOf(long,int)

■ ■ class BigInteger extends Number implements Comparable
■ ■ BigInteger(byte[])
■ ■ BigInteger(int,byte[])
■ ■ BigInteger(int,int,java.util.Random)
■ ■ BigInteger(int,java.util.Random)
■ ■ BigInteger(String)
■ ■ BigInteger(String,int)
■ ■ BigInteger abs()
■ ■ BigInteger add(BigInteger)
■ ■ BigInteger and(BigInteger)
■ ■ BigInteger andNot(BigInteger)
■ ■ int bitCount()
■ ■ int bitLength()
■ ■ BigInteger clearBit(int)
■ ■ int compareTo(Object)
■ ■ int compareTo(BigInteger)
■ ■ BigInteger divide(BigInteger)
■ ■ BigInteger[] divideAndRemainder(BigInteger)
■ ■ double doubleValue()
■ ■ BigInteger flipBit(int)
■ ■ float floatValue()
■ ■ BigInteger gcd(BigInteger)
■ ■ int getLowestSetBit()
■ ■ int intValue()
■ ■ boolean isProbablePrime(int)

■ ■ long longValue()
■ ■ BigInteger max(BigInteger)
■ ■ BigInteger min(BigInteger)
■ ■ BigInteger mod(BigInteger)
■ ■ BigInteger modInverse(BigInteger)
■ ■ BigInteger modPow(BigInteger,BigInteger)
■ ■ BigInteger multiply(BigInteger)
■ ■ BigInteger negate()
■ ■ BigInteger not()
■ ■ final static BigInteger ONE
■ ■ BigInteger or(BigInteger)
■ ■ BigInteger pow(int)
■ ■ BigInteger remainder(BigInteger)
■ ■ BigInteger setBit(int)
■ ■ BigInteger shiftLeft(int)
■ ■ BigInteger shiftRight(int)
■ ■ int signum()
■ ■ BigInteger subtract(BigInteger)
■ ■ boolean testBit(int)
■ ■ byte[] toByteArray()
■ ■ String toString(int)
■ ■ static BigInteger valueOf(long)
■ ■ BigInteger xor(BigInteger)
■ ■ final static BigInteger ZERO

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1172 OSGi Compendium Release 6

999.3.6 java.net

■ ■ package java.net
■ ■ abstract class Authenticator
■ ■ Authenticator()
■ ■ protected PasswordAuthentication getPasswordAuthentication()
■ ■ final protected String getRequestingHost()
■ ■ final protected int getRequestingPort()
■ ■ final protected String getRequestingPrompt()
■ ■ final protected String getRequestingProtocol()

■ ■ final protected String getRequestingScheme()
■ ■ final protected InetAddress getRequestingSite()
■ ■ static PasswordAuthentication requestPasswordAuthentication(String,
InetAddress,int,String,String,String)
■ ■ static PasswordAuthentication
requestPasswordAuthentication(InetAddress,int,String,String,String)
■ ■ static void setDefault(Authenticator)

■ ■ class BindException extends SocketException
■ ■ BindException() ■ ■ BindException(String)

■ ■ class ConnectException extends SocketException
■ ■ ConnectException() ■ ■ ConnectException(String)

■ ■ abstract class ContentHandler
■ ■ ContentHandler()
■ ■ abstract Object getContent(URLConnection)
throws java.io.IOException

■ ■ Object getContent(URLConnection,Class[])
throws java.io.IOException

■ ■ interface ContentHandlerFactory
■ ■ abstract ContentHandler createContentHandler(String)

■ ■ final class DatagramPacket
■ ■ DatagramPacket(byte[],int)
■ ■ DatagramPacket(byte[],int,int)
■ ■ DatagramPacket(byte[],int,int,InetAddress,int)
■ ■ DatagramPacket(byte[],int,int,SocketAddress)
throws SocketException
■ ■ DatagramPacket(byte[],int,InetAddress,int)
■ ■ DatagramPacket(byte[],int,SocketAddress) throws SocketException
■ ■ InetAddress getAddress()
■ ■ byte[] getData()
■ ■ int getLength()

■ ■ int getOffset()
■ ■ int getPort()
■ ■ SocketAddress getSocketAddress()
■ ■ void setAddress(InetAddress)
■ ■ void setData(byte[])
■ ■ void setData(byte[],int,int)
■ ■ void setLength(int)
■ ■ void setPort(int)
■ ■ void setSocketAddress(SocketAddress)

■ ■ class DatagramSocket
■ ■ DatagramSocket() throws SocketException
■ ■ DatagramSocket(int) throws SocketException
■ ■ DatagramSocket(int,InetAddress) throws SocketException
■ ■ protected DatagramSocket(DatagramSocketImpl)
■ ■ DatagramSocket(SocketAddress) throws SocketException
■ ■ void bind(SocketAddress) throws SocketException
■ ■ void close()
■ ■ void connect(InetAddress,int)
■ ■ void connect(SocketAddress) throws SocketException
■ ■ void disconnect()
■ ■ boolean getBroadcast() throws SocketException
■ ■ InetAddress getInetAddress()
■ ■ InetAddress getLocalAddress()
■ ■ int getLocalPort()
■ ■ SocketAddress getLocalSocketAddress()
■ ■ int getPort()
■ ■ int getReceiveBufferSize() throws SocketException

■ ■ SocketAddress getRemoteSocketAddress()
■ ■ boolean getReuseAddress() throws SocketException
■ ■ int getSendBufferSize() throws SocketException
■ ■ int getSoTimeout() throws SocketException
■ ■ int getTrafficClass() throws SocketException
■ ■ boolean isBound()
■ ■ boolean isClosed()
■ ■ boolean isConnected()
■ ■ void receive(DatagramPacket) throws java.io.IOException
■ ■ void send(DatagramPacket) throws java.io.IOException
■ ■ void setBroadcast(boolean) throws SocketException
■ ■ static void
setDatagramSocketImplFactory(DatagramSocketImplFactory)
throws java.io.IOException
■ ■ void setReceiveBufferSize(int) throws SocketException
■ ■ void setReuseAddress(boolean) throws SocketException
■ ■ void setSendBufferSize(int) throws SocketException
■ ■ void setSoTimeout(int) throws SocketException
■ ■ void setTrafficClass(int) throws SocketException

■ ■ abstract class DatagramSocketImpl implements SocketOptions
■ ■ DatagramSocketImpl()
■ ■ abstract protected void bind(int,InetAddress) throws SocketException
■ ■ abstract protected void close()
■ ■ protected void connect(InetAddress,int) throws SocketException
■ ■ abstract protected void create() throws SocketException
■ ■ protected void disconnect()
■ ■ protected java.io.FileDescriptor fd
■ ■ protected java.io.FileDescriptor getFileDescriptor()
■ ■ protected int getLocalPort()
■ ■ abstract protected int getTimeToLive() throws java.io.IOException

■ ■ abstract protected void join(InetAddress) throws java.io.IOException
■ ■ abstract protected void joinGroup(SocketAddress,NetworkInterface)
throws java.io.IOException
■ ■ abstract protected void leave(InetAddress) throws java.io.IOException
■ ■ abstract protected void leaveGroup(SocketAddress,NetworkInterface)
throws java.io.IOException
■ ■ protected int localPort
■ ■ abstract protected int peek(InetAddress) throws java.io.IOException
■ ■ abstract protected int peekData(DatagramPacket)
throws java.io.IOException
■ ■ abstract protected void receive(DatagramPacket)
throws java.io.IOException
■ ■ abstract protected void send(DatagramPacket)
throws java.io.IOException
■ ■ abstract protected void setTimeToLive(int) throws java.io.IOException

■ ■ interface DatagramSocketImplFactory
■ ■ abstract DatagramSocketImpl createDatagramSocketImpl()

■ ■ interface FileNameMap
■ ■ abstract String getContentTypeFor(String)

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1173

■ ■ abstract class HttpURLConnection extends URLConnection
■ ■ protected HttpURLConnection(URL)
■ ■ abstract void disconnect()
■ ■ java.io.InputStream getErrorStream()
■ ■ static boolean getFollowRedirects()
■ ■ boolean getInstanceFollowRedirects()
■ ■ String getRequestMethod()
■ ■ int getResponseCode() throws java.io.IOException
■ ■ String getResponseMessage() throws java.io.IOException
■ ■ final static int HTTP_ACCEPTED
■ ■ final static int HTTP_BAD_GATEWAY
■ ■ final static int HTTP_BAD_METHOD
■ ■ final static int HTTP_BAD_REQUEST
■ ■ final static int HTTP_CLIENT_TIMEOUT
■ ■ final static int HTTP_CONFLICT
■ ■ final static int HTTP_CREATED
■ ■ final static int HTTP_ENTITY_TOO_LARGE
■ ■ final static int HTTP_FORBIDDEN
■ ■ final static int HTTP_GATEWAY_TIMEOUT
■ ■ final static int HTTP_GONE
■ ■ final static int HTTP_INTERNAL_ERROR
■ ■ final static int HTTP_LENGTH_REQUIRED
■ ■ final static int HTTP_MOVED_PERM
■ ■ final static int HTTP_MOVED_TEMP
■ ■ final static int HTTP_MULT_CHOICE
■ ■ final static int HTTP_NO_CONTENT
■ ■ final static int HTTP_NOT_ACCEPTABLE

■ ■ final static int HTTP_NOT_AUTHORITATIVE
■ ■ final static int HTTP_NOT_FOUND
■ ■ final static int HTTP_NOT_IMPLEMENTED
■ ■ final static int HTTP_NOT_MODIFIED
■ ■ final static int HTTP_OK
■ ■ final static int HTTP_PARTIAL
■ ■ final static int HTTP_PAYMENT_REQUIRED
■ ■ final static int HTTP_PRECON_FAILED
■ ■ final static int HTTP_PROXY_AUTH
■ ■ final static int HTTP_REQ_TOO_LONG
■ ■ final static int HTTP_RESET
■ ■ final static int HTTP_SEE_OTHER
■ ■ final static int HTTP_UNAUTHORIZED
■ ■ final static int HTTP_UNAVAILABLE
■ ■ final static int HTTP_UNSUPPORTED_TYPE
■ ■ final static int HTTP_USE_PROXY
■ ■ final static int HTTP_VERSION
■ ■ protected boolean instanceFollowRedirects
■ ■ protected String method
■ ■ protected int responseCode
■ ■ protected String responseMessage
■ ■ static void setFollowRedirects(boolean)
■ ■ void setInstanceFollowRedirects(boolean)
■ ■ void setRequestMethod(String) throws ProtocolException
■ ■ abstract boolean usingProxy()

■ ■ final class Inet4Address extends InetAddress

■ ■ final class Inet6Address extends InetAddress
■ ■ boolean isIPv4CompatibleAddress()

■ ■ class InetAddress implements java.io.Serializable
■ ■ byte[] getAddress()
■ ■ static InetAddress[] getAllByName(String)
throws UnknownHostException
■ ■ static InetAddress getByAddress(byte[])
throws UnknownHostException
■ ■ static InetAddress getByAddress(String,byte[])
throws UnknownHostException
■ ■ static InetAddress getByName(String) throws UnknownHostException
■ ■ String getCanonicalHostName()
■ ■ String getHostAddress()
■ ■ String getHostName()
■ ■ static InetAddress getLocalHost() throws UnknownHostException
■ ■ boolean isAnyLocalAddress()

■ ■ boolean isLinkLocalAddress()
■ ■ boolean isLoopbackAddress()
■ ■ boolean isMCGlobal()
■ ■ boolean isMCLinkLocal()
■ ■ boolean isMCNodeLocal()
■ ■ boolean isMCOrgLocal()
■ ■ boolean isMCSiteLocal()
■ ■ boolean isMulticastAddress()
■ ■ boolean isSiteLocalAddress()

■ ■ class InetSocketAddress extends SocketAddress
■ ■ InetSocketAddress(int)
■ ■ InetSocketAddress(String,int)
■ ■ InetSocketAddress(InetAddress,int)
■ ■ final boolean equals(Object)
■ ■ final InetAddress getAddress()

■ ■ final String getHostName()
■ ■ final int getPort()
■ ■ final int hashCode()
■ ■ final boolean isUnresolved()

■ ■ abstract class JarURLConnection extends URLConnection
■ ■ protected JarURLConnection(URL) throws MalformedURLException
■ ■ java.util.jar.Attributes getAttributes() throws java.io.IOException
■ ■ java.security.cert.Certificate[] getCertificates()
throws java.io.IOException
■ ■ String getEntryName()
■ ■ java.util.jar.JarEntry getJarEntry() throws java.io.IOException

■ ■ abstract java.util.jar.JarFile getJarFile() throws java.io.IOException
■ ■ URL getJarFileURL()
■ ■ java.util.jar.Attributes getMainAttributes() throws java.io.IOException
■ ■ java.util.jar.Manifest getManifest() throws java.io.IOException
■ ■ protected URLConnection jarFileURLConnection

■ ■ class MalformedURLException extends java.io.IOException
■ ■ MalformedURLException() ■ ■ MalformedURLException(String)

■ ■ class MulticastSocket extends DatagramSocket
■ ■ MulticastSocket() throws java.io.IOException
■ ■ MulticastSocket(int) throws java.io.IOException
■ ■ MulticastSocket(SocketAddress) throws java.io.IOException
■ ■ InetAddress getInterface() throws SocketException
■ ■ boolean getLoopbackMode() throws SocketException
■ ■ NetworkInterface getNetworkInterface() throws SocketException
■ ■ int getTimeToLive() throws java.io.IOException
■ ■ void joinGroup(InetAddress) throws java.io.IOException

■ ■ void joinGroup(SocketAddress,NetworkInterface)
throws java.io.IOException
■ ■ void leaveGroup(InetAddress) throws java.io.IOException
■ ■ void leaveGroup(SocketAddress,NetworkInterface)
throws java.io.IOException
■ ■ void send(DatagramPacket,byte) throws java.io.IOException
■ ■ void setInterface(InetAddress) throws SocketException
■ ■ void setLoopbackMode(boolean) throws SocketException
■ ■ void setNetworkInterface(NetworkInterface) throws SocketException
■ ■ void setTimeToLive(int) throws java.io.IOException

■ ■ final class NetPermission extends java.security.BasicPermission
■ ■ NetPermission(String) ■ ■ NetPermission(String,String)

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1174 OSGi Compendium Release 6

■ ■ final class NetworkInterface
■ ■ static NetworkInterface getByInetAddress(InetAddress)
throws SocketException
■ ■ static NetworkInterface getByName(String) throws SocketException
■ ■ String getDisplayName()

■ ■ java.util.Enumeration getInetAddresses()
■ ■ String getName()
■ ■ static java.util.Enumeration getNetworkInterfaces()
throws SocketException

■ ■ class NoRouteToHostException extends SocketException
■ ■ NoRouteToHostException() ■ ■ NoRouteToHostException(String)

■ ■ final class PasswordAuthentication
■ ■ PasswordAuthentication(String,char[])
■ ■ char[] getPassword()

■ ■ String getUserName()

■ ■ class PortUnreachableException extends SocketException
■ ■ PortUnreachableException() ■ ■ PortUnreachableException(String)

■ ■ class ProtocolException extends java.io.IOException
■ ■ ProtocolException() ■ ■ ProtocolException(String)

■ ■ class ServerSocket
■ ■ ServerSocket() throws java.io.IOException
■ ■ ServerSocket(int) throws java.io.IOException
■ ■ ServerSocket(int,int) throws java.io.IOException
■ ■ ServerSocket(int,int,InetAddress) throws java.io.IOException
■ ■ Socket accept() throws java.io.IOException
■ ■ void bind(SocketAddress) throws java.io.IOException
■ ■ void bind(SocketAddress,int) throws java.io.IOException
■ ■ void close() throws java.io.IOException
■ ■ InetAddress getInetAddress()
■ ■ int getLocalPort()
■ ■ SocketAddress getLocalSocketAddress()

■ ■ int getReceiveBufferSize() throws SocketException
■ ■ boolean getReuseAddress() throws SocketException
■ ■ int getSoTimeout() throws java.io.IOException
■ ■ final protected void implAccept(Socket) throws java.io.IOException
■ ■ boolean isBound()
■ ■ boolean isClosed()
■ ■ void setReceiveBufferSize(int) throws SocketException
■ ■ void setReuseAddress(boolean) throws SocketException
■ ■ static void setSocketFactory(SocketImplFactory)
throws java.io.IOException
■ ■ void setSoTimeout(int) throws SocketException

■ ■ class Socket
■ ■ Socket()
■ ■ Socket(String,int) throws java.io.IOException
■ ■ Socket(String,int,InetAddress,int) throws java.io.IOException
■ ■ Socket(InetAddress,int) throws java.io.IOException
■ ■ Socket(InetAddress,int,InetAddress,int) throws java.io.IOException
■ ■ protected Socket(SocketImpl) throws SocketException
■ ■ void bind(SocketAddress) throws java.io.IOException
■ ■ void close() throws java.io.IOException
■ ■ void connect(SocketAddress) throws java.io.IOException
■ ■ void connect(SocketAddress,int) throws java.io.IOException
■ ■ InetAddress getInetAddress()
■ ■ java.io.InputStream getInputStream() throws java.io.IOException
■ ■ boolean getKeepAlive() throws SocketException
■ ■ InetAddress getLocalAddress()
■ ■ int getLocalPort()
■ ■ SocketAddress getLocalSocketAddress()
■ ■ boolean getOOBInline() throws SocketException
■ ■ java.io.OutputStream getOutputStream() throws java.io.IOException
■ ■ int getPort()
■ ■ int getReceiveBufferSize() throws SocketException
■ ■ SocketAddress getRemoteSocketAddress()
■ ■ boolean getReuseAddress() throws SocketException
■ ■ int getSendBufferSize() throws SocketException

■ ■ int getSoLinger() throws SocketException
■ ■ int getSoTimeout() throws SocketException
■ ■ boolean getTcpNoDelay() throws SocketException
■ ■ int getTrafficClass() throws SocketException
■ ■ boolean isBound()
■ ■ boolean isClosed()
■ ■ boolean isConnected()
■ ■ boolean isInputShutdown()
■ ■ boolean isOutputShutdown()
■ ■ void sendUrgentData(int) throws java.io.IOException
■ ■ void setKeepAlive(boolean) throws SocketException
■ ■ void setOOBInline(boolean) throws SocketException
■ ■ void setReceiveBufferSize(int) throws SocketException
■ ■ void setReuseAddress(boolean) throws SocketException
■ ■ void setSendBufferSize(int) throws SocketException
■ ■ static void setSocketImplFactory(SocketImplFactory)
throws java.io.IOException
■ ■ void setSoLinger(boolean,int) throws SocketException
■ ■ void setSoTimeout(int) throws SocketException
■ ■ void setTcpNoDelay(boolean) throws SocketException
■ ■ void setTrafficClass(int) throws SocketException
■ ■ void shutdownInput() throws java.io.IOException
■ ■ void shutdownOutput() throws java.io.IOException

■ ■ abstract class SocketAddress implements java.io.Serializable
■ ■ SocketAddress()

■ ■ class SocketException extends java.io.IOException
■ ■ SocketException() ■ ■ SocketException(String)

■ ■ abstract class SocketImpl implements SocketOptions
■ ■ SocketImpl()
■ ■ abstract protected void accept(SocketImpl)
throws java.io.IOException
■ ■ protected InetAddress address
■ ■ abstract protected int available() throws java.io.IOException
■ ■ abstract protected void bind(InetAddress,int)
throws java.io.IOException
■ ■ abstract protected void close() throws java.io.IOException
■ ■ abstract protected void connect(String,int) throws java.io.IOException
■ ■ abstract protected void connect(InetAddress,int)
throws java.io.IOException
■ ■ abstract protected void connect(SocketAddress,int)
throws java.io.IOException
■ ■ abstract protected void create(boolean) throws java.io.IOException
■ ■ protected java.io.FileDescriptor fd
■ ■ protected java.io.FileDescriptor getFileDescriptor()

■ ■ protected InetAddress getInetAddress()
■ ■ abstract protected java.io.InputStream getInputStream()
throws java.io.IOException
■ ■ protected int getLocalPort()
■ ■ abstract protected java.io.OutputStream getOutputStream()
throws java.io.IOException
■ ■ protected int getPort()
■ ■ abstract protected void listen(int) throws java.io.IOException
■ ■ protected int localport
■ ■ protected int port
■ ■ abstract protected void sendUrgentData(int)
throws java.io.IOException
■ ■ protected void shutdownInput() throws java.io.IOException
■ ■ protected void shutdownOutput() throws java.io.IOException
■ ■ protected boolean supportsUrgentData()

■ ■ interface SocketImplFactory

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1175

■ ■ abstract SocketImpl createSocketImpl()

■ ■ interface SocketOptions
■ ■ abstract Object getOption(int) throws SocketException
■ ■ final static int IP_MULTICAST_IF
■ ■ final static int IP_MULTICAST_IF2
■ ■ final static int IP_MULTICAST_LOOP
■ ■ final static int IP_TOS
■ ■ abstract void setOption(int,Object) throws SocketException
■ ■ final static int SO_BINDADDR
■ ■ final static int SO_BROADCAST

■ ■ final static int SO_KEEPALIVE
■ ■ final static int SO_LINGER
■ ■ final static int SO_OOBINLINE
■ ■ final static int SO_RCVBUF
■ ■ final static int SO_REUSEADDR
■ ■ final static int SO_SNDBUF
■ ■ final static int SO_TIMEOUT
■ ■ final static int TCP_NODELAY

■ ■ final class SocketPermission extends java.security.Permission implements java.io.Serializable
■ ■ SocketPermission(String,String)
■ ■ boolean equals(Object)
■ ■ String getActions()

■ ■ int hashCode()
■ ■ boolean implies(java.security.Permission)

■ ■ class SocketTimeoutException extends java.io.InterruptedIOException
■ ■ SocketTimeoutException() ■ ■ SocketTimeoutException(String)

■ ■ class UnknownHostException extends java.io.IOException
■ ■ UnknownHostException() ■ ■ UnknownHostException(String)

■ ■ class UnknownServiceException extends java.io.IOException
■ ■ UnknownServiceException() ■ ■ UnknownServiceException(String)

■ ■ final class URI implements java.io.Serializable , Comparable
■ ■ URI(String) throws URISyntaxException
■ ■ URI(String,String,String) throws URISyntaxException
■ ■ URI(String,String,String,int,String,String,String)
throws URISyntaxException
■ ■ URI(String,String,String,String) throws URISyntaxException
■ ■ URI(String,String,String,String,String) throws URISyntaxException
■ ■ int compareTo(Object)
■ ■ static URI create(String)
■ ■ String getAuthority()
■ ■ String getFragment()
■ ■ String getHost()
■ ■ String getPath()
■ ■ int getPort()
■ ■ String getQuery()
■ ■ String getRawAuthority()
■ ■ String getRawFragment()
■ ■ String getRawPath()

■ ■ String getRawQuery()
■ ■ String getRawSchemeSpecificPart()
■ ■ String getRawUserInfo()
■ ■ String getScheme()
■ ■ String getSchemeSpecificPart()
■ ■ String getUserInfo()
■ ■ boolean isAbsolute()
■ ■ boolean isOpaque()
■ ■ URI normalize()
■ ■ URI parseServerAuthority() throws URISyntaxException
■ ■ URI relativize(URI)
■ ■ URI resolve(String)
■ ■ URI resolve(URI)
■ ■ String toASCIIString()
■ ■ URL toURL() throws MalformedURLException

■ ■ class URISyntaxException extends Exception
■ ■ URISyntaxException(String,String)
■ ■ URISyntaxException(String,String,int)
■ ■ int getIndex()

■ ■ String getInput()
■ ■ String getReason()

■ ■ final class URL implements java.io.Serializable
■ ■ URL(String) throws MalformedURLException
■ ■ URL(String,String,int,String) throws MalformedURLException
■ ■ URL(String,String,int,String,URLStreamHandler)
throws MalformedURLException
■ ■ URL(String,String,String) throws MalformedURLException
■ ■ URL(URL,String) throws MalformedURLException
■ ■ URL(URL,String,URLStreamHandler) throws MalformedURLException
■ ■ String getAuthority()
■ ■ final Object getContent() throws java.io.IOException
■ ■ final Object getContent(Class[]) throws java.io.IOException
■ ■ int getDefaultPort()
■ ■ String getFile()
■ ■ String getHost()
■ ■ String getPath()

■ ■ int getPort()
■ ■ String getProtocol()
■ ■ String getQuery()
■ ■ String getRef()
■ ■ String getUserInfo()
■ ■ URLConnection openConnection() throws java.io.IOException
■ ■ final java.io.InputStream openStream() throws java.io.IOException
■ ■ boolean sameFile(URL)
■ ■ protected void set(String,String,int,String,String)
■ ■ protected void set(String,String,int,String,String,String,String,String)
■ ■ static void setURLStreamHandlerFactory(URLStreamHandlerFactory)
■ ■ String toExternalForm()

■ ■ class URLClassLoader extends java.security.SecureClassLoader
■ ■ URLClassLoader(URL[])
■ ■ URLClassLoader(URL[],ClassLoader)
■ ■ URLClassLoader(URL[],ClassLoader,URLStreamHandlerFactory)
■ ■ protected void addURL(URL)
■ ■ protected Package definePackage(String,java.util.jar.Manifest,URL)

■ ■ URL findResource(String)
■ ■ java.util.Enumeration findResources(String)
throws java.io.IOException
■ ■ URL[] getURLs()
■ ■ static URLClassLoader newInstance(URL[])
■ ■ static URLClassLoader newInstance(URL[],ClassLoader)

■ ■ abstract class URLConnection

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1176 OSGi Compendium Release 6

■ ■ protected URLConnection(URL)
■ ■ void addRequestProperty(String,String)
■ ■ protected boolean allowUserInteraction
■ ■ abstract void connect() throws java.io.IOException
■ ■ protected boolean connected
■ ■ protected boolean doInput
■ ■ protected boolean doOutput
■ ■ boolean getAllowUserInteraction()
■ ■ Object getContent() throws java.io.IOException
■ ■ Object getContent(Class[]) throws java.io.IOException
■ ■ String getContentEncoding()
■ ■ int getContentLength()
■ ■ String getContentType()
■ ■ long getDate()
■ ■ static boolean getDefaultAllowUserInteraction()
■ ■ boolean getDefaultUseCaches()
■ ■ boolean getDoInput()
■ ■ boolean getDoOutput()
■ ■ long getExpiration()
■ ■ static FileNameMap getFileNameMap()
■ ■ String getHeaderField(int)
■ ■ String getHeaderField(String)
■ ■ long getHeaderFieldDate(String,long)
■ ■ int getHeaderFieldInt(String,int)
■ ■ String getHeaderFieldKey(int)

■ ■ java.util.Map getHeaderFields()
■ ■ long getIfModifiedSince()
■ ■ java.io.InputStream getInputStream() throws java.io.IOException
■ ■ long getLastModified()
■ ■ java.io.OutputStream getOutputStream() throws java.io.IOException
■ ■ java.security.Permission getPermission() throws java.io.IOException
■ ■ java.util.Map getRequestProperties()
■ ■ String getRequestProperty(String)
■ ■ URL getURL()
■ ■ boolean getUseCaches()
■ ■ static String guessContentTypeFromName(String)
■ ■ static String guessContentTypeFromStream(java.io.InputStream)
throws java.io.IOException
■ ■ protected long ifModifiedSince
■ ■ void setAllowUserInteraction(boolean)
■ ■ static void setContentHandlerFactory(ContentHandlerFactory)
■ ■ static void setDefaultAllowUserInteraction(boolean)
■ ■ void setDefaultUseCaches(boolean)
■ ■ void setDoInput(boolean)
■ ■ void setDoOutput(boolean)
■ ■ static void setFileNameMap(FileNameMap)
■ ■ void setIfModifiedSince(long)
■ ■ void setRequestProperty(String,String)
■ ■ void setUseCaches(boolean)
■ ■ protected URL url
■ ■ protected boolean useCaches

■ ■ class URLDecoder
■ ■ URLDecoder()
■ ■ static String decode(String)

■ ■ static String decode(String,String)
throws java.io.UnsupportedEncodingException

■ ■ class URLEncoder
■ ■ static String encode(String) ■ ■ static String encode(String,String)

throws java.io.UnsupportedEncodingException

■ ■ abstract class URLStreamHandler
■ ■ URLStreamHandler()
■ ■ protected boolean equals(URL,URL)
■ ■ protected int getDefaultPort()
■ ■ protected InetAddress getHostAddress(URL)
■ ■ protected int hashCode(URL)
■ ■ protected boolean hostsEqual(URL,URL)

■ ■ abstract protected URLConnection openConnection(URL)
throws java.io.IOException
■ ■ protected void parseURL(URL,String,int,int)
■ ■ protected boolean sameFile(URL,URL)
■ ■ protected void setURL(URL,String,String,int,String,String,String,String,
String)
■ ■ protected String toExternalForm(URL)

■ ■ interface URLStreamHandlerFactory
■ ■ abstract URLStreamHandler createURLStreamHandler(String)

999.3.7 java.security

■ ■ package java.security
■ ■ final class AccessControlContext
■ ■ AccessControlContext(ProtectionDomain[])
■ ■ AccessControlContext(AccessControlContext,DomainCombiner)

■ ■ void checkPermission(Permission)
■ ■ DomainCombiner getDomainCombiner()

■ ■ class AccessControlException extends SecurityException
■ ■ AccessControlException(String)
■ ■ AccessControlException(String,Permission)

■ ■ Permission getPermission()

■ ■ final class AccessController
■ ■ static void checkPermission(Permission)
■ ■ static Object doPrivileged(PrivilegedAction)
■ ■ static Object doPrivileged(PrivilegedAction,AccessControlContext)

■ ■ static Object doPrivileged(PrivilegedExceptionAction)
throws PrivilegedActionException
■ ■ static Object doPrivileged(PrivilegedExceptionAction,
AccessControlContext) throws PrivilegedActionException
■ ■ static AccessControlContext getContext()

■ ■ class AlgorithmParameterGenerator
■ ■ protected
AlgorithmParameterGenerator(AlgorithmParameterGeneratorSpi,Provider,
String)
■ ■ final AlgorithmParameters generateParameters()
■ ■ final String getAlgorithm()
■ ■ static AlgorithmParameterGenerator getInstance(String)
throws NoSuchAlgorithmException
■ ■ static AlgorithmParameterGenerator getInstance(String,String)
throws NoSuchAlgorithmException, NoSuchProviderException
■ ■ static AlgorithmParameterGenerator getInstance(String,Provider)
throws NoSuchAlgorithmException

■ ■ final Provider getProvider()
■ ■ final void init(int)
■ ■ final void init(int,SecureRandom)
■ ■ final void init(AlgorithmParameterSpec)
throws InvalidAlgorithmParameterException
■ ■ final void init(AlgorithmParameterSpec,SecureRandom)
throws InvalidAlgorithmParameterException

■ ■ abstract class AlgorithmParameterGeneratorSpi

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1177

■ ■ AlgorithmParameterGeneratorSpi()
■ ■ abstract protected AlgorithmParameters engineGenerateParameters()

■ ■ abstract protected void engineInit(int,SecureRandom)
■ ■ abstract protected void engineInit(AlgorithmParameterSpec,
SecureRandom) throws InvalidAlgorithmParameterException

■ ■ class AlgorithmParameters
■ ■ protected AlgorithmParameters(AlgorithmParametersSpi,Provider,
String)
■ ■ final String getAlgorithm()
■ ■ final byte[] getEncoded() throws java.io.IOException
■ ■ final byte[] getEncoded(String) throws java.io.IOException
■ ■ static AlgorithmParameters getInstance(String)
throws NoSuchAlgorithmException
■ ■ static AlgorithmParameters getInstance(String,String)
throws NoSuchAlgorithmException, NoSuchProviderException
■ ■ static AlgorithmParameters getInstance(String,Provider)
throws NoSuchAlgorithmException

■ ■ final AlgorithmParameterSpec getParameterSpec(Class)
throws InvalidParameterSpecException
■ ■ final Provider getProvider()
■ ■ final void init(byte[]) throws java.io.IOException
■ ■ final void init(byte[],String) throws java.io.IOException
■ ■ final void init(AlgorithmParameterSpec)
throws InvalidParameterSpecException
■ ■ final String toString()

■ ■ abstract class AlgorithmParametersSpi
■ ■ AlgorithmParametersSpi()
■ ■ abstract protected byte[] engineGetEncoded()
throws java.io.IOException
■ ■ abstract protected byte[] engineGetEncoded(String)
throws java.io.IOException
■ ■ abstract protected AlgorithmParameterSpec
engineGetParameterSpec(Class) throws InvalidParameterSpecException

■ ■ abstract protected void engineInit(byte[]) throws java.io.IOException
■ ■ abstract protected void engineInit(byte[],String)
throws java.io.IOException
■ ■ abstract protected void engineInit(AlgorithmParameterSpec)
throws InvalidParameterSpecException
■ ■ abstract protected String engineToString()

■ ■ final class AllPermission extends Permission
■ ■ AllPermission()
■ ■ AllPermission(String,String)
■ ■ boolean equals(Object)

■ ■ String getActions()
■ ■ int hashCode()
■ ■ boolean implies(Permission)

■ ■ abstract class BasicPermission extends Permission implements java.io.Serializable
■ ■ BasicPermission(String)
■ ■ BasicPermission(String,String)
■ ■ boolean equals(Object)

■ ■ String getActions()
■ ■ int hashCode()
■ ■ boolean implies(Permission)

■ ■ interface Certificate
■ ■ abstract void decode(java.io.InputStream) throws java.io.IOException,
 KeyException
■ ■ abstract void encode(java.io.OutputStream)
throws java.io.IOException, KeyException
■ ■ abstract String getFormat()
■ ■ abstract Principal getGuarantor()

■ ■ abstract Principal getPrincipal()
■ ■ abstract PublicKey getPublicKey()
■ ■ abstract String toString(boolean)

■ ■ class CodeSource implements java.io.Serializable
■ ■ CodeSource(java.net.URL,Certificate[])
■ ■ final Certificate[] getCertificates()

■ ■ final java.net.URL getLocation()
■ ■ boolean implies(CodeSource)

■ ■ class DigestException extends GeneralSecurityException
■ ■ DigestException() ■ ■ DigestException(String)

■ ■ class DigestInputStream extends java.io.FilterInputStream
■ ■ DigestInputStream(java.io.InputStream,MessageDigest)
■ ■ protected MessageDigest digest
■ ■ MessageDigest getMessageDigest()

■ ■ void on(boolean)
■ ■ void setMessageDigest(MessageDigest)

■ ■ class DigestOutputStream extends java.io.FilterOutputStream
■ ■ DigestOutputStream(java.io.OutputStream,MessageDigest)
■ ■ protected MessageDigest digest
■ ■ MessageDigest getMessageDigest()

■ ■ void on(boolean)
■ ■ void setMessageDigest(MessageDigest)

■ ■ interface DomainCombiner
■ ■ abstract ProtectionDomain[] combine(ProtectionDomain[],
ProtectionDomain[])

■ ■ class GeneralSecurityException extends Exception
■ ■ GeneralSecurityException() ■ ■ GeneralSecurityException(String)

■ ■ interface Guard
■ ■ abstract void checkGuard(Object)

■ ■ class GuardedObject implements java.io.Serializable
■ ■ GuardedObject(Object,Guard) ■ ■ Object getObject()

■ ■ abstract class Identity implements java.io.Serializable , Principal
■ ■ protected Identity()
■ ■ Identity(String)
■ ■ Identity(String,IdentityScope) throws KeyManagementException
■ ■ void addCertificate(Certificate) throws KeyManagementException
■ ■ Certificate[] certificates()
■ ■ final boolean equals(Object)
■ ■ String getInfo()
■ ■ final String getName()

■ ■ PublicKey getPublicKey()
■ ■ final IdentityScope getScope()
■ ■ protected boolean identityEquals(Identity)
■ ■ void removeCertificate(Certificate) throws KeyManagementException
■ ■ void setInfo(String)
■ ■ void setPublicKey(PublicKey) throws KeyManagementException
■ ■ String toString(boolean)

■ ■ abstract class IdentityScope extends Identity

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1178 OSGi Compendium Release 6

■ ■ protected IdentityScope()
■ ■ IdentityScope(String)
■ ■ IdentityScope(String,IdentityScope)
throws KeyManagementException
■ ■ abstract void addIdentity(Identity) throws KeyManagementException
■ ■ abstract Identity getIdentity(String)
■ ■ Identity getIdentity(Principal)

■ ■ abstract Identity getIdentity(PublicKey)
■ ■ static IdentityScope getSystemScope()
■ ■ abstract java.util.Enumeration identities()
■ ■ abstract void removeIdentity(Identity)
throws KeyManagementException
■ ■ protected static void setSystemScope(IdentityScope)
■ ■ abstract int size()

■ ■ class InvalidAlgorithmParameterException extends GeneralSecurityException
■ ■ InvalidAlgorithmParameterException() ■ ■ InvalidAlgorithmParameterException(String)

■ ■ class InvalidKeyException extends KeyException
■ ■ InvalidKeyException() ■ ■ InvalidKeyException(String)

■ ■ class InvalidParameterException extends IllegalArgumentException
■ ■ InvalidParameterException() ■ ■ InvalidParameterException(String)

■ ■ interface Key extends java.io.Serializable
■ ■ abstract String getAlgorithm()
■ ■ abstract byte[] getEncoded()

■ ■ abstract String getFormat()
■ ■ final static long serialVersionUID

■ ■ class KeyException extends GeneralSecurityException
■ ■ KeyException() ■ ■ KeyException(String)

■ ■ class KeyFactory
■ ■ protected KeyFactory(KeyFactorySpi,Provider,String)
■ ■ final PrivateKey generatePrivate(KeySpec)
throws InvalidKeySpecException
■ ■ final PublicKey generatePublic(KeySpec)
throws InvalidKeySpecException
■ ■ final String getAlgorithm()
■ ■ static KeyFactory getInstance(String)
throws NoSuchAlgorithmException

■ ■ static KeyFactory getInstance(String,String)
throws NoSuchAlgorithmException, NoSuchProviderException
■ ■ static KeyFactory getInstance(String,Provider)
throws NoSuchAlgorithmException
■ ■ final KeySpec getKeySpec(Key,Class) throws InvalidKeySpecException
■ ■ final Provider getProvider()
■ ■ final Key translateKey(Key) throws InvalidKeyException

■ ■ abstract class KeyFactorySpi
■ ■ KeyFactorySpi()
■ ■ abstract protected PrivateKey engineGeneratePrivate(KeySpec)
throws InvalidKeySpecException
■ ■ abstract protected PublicKey engineGeneratePublic(KeySpec)
throws InvalidKeySpecException

■ ■ abstract protected KeySpec engineGetKeySpec(Key,Class)
throws InvalidKeySpecException
■ ■ abstract protected Key engineTranslateKey(Key)
throws InvalidKeyException

■ ■ class KeyManagementException extends KeyException
■ ■ KeyManagementException() ■ ■ KeyManagementException(String)

■ ■ final class KeyPair implements java.io.Serializable
■ ■ KeyPair(PublicKey,PrivateKey)
■ ■ PrivateKey getPrivate()

■ ■ PublicKey getPublic()

■ ■ abstract class KeyPairGenerator extends KeyPairGeneratorSpi
■ ■ protected KeyPairGenerator(String)
■ ■ KeyPair generateKeyPair()
■ ■ final KeyPair genKeyPair()
■ ■ String getAlgorithm()
■ ■ static KeyPairGenerator getInstance(String)
throws NoSuchAlgorithmException
■ ■ static KeyPairGenerator getInstance(String,String)
throws NoSuchAlgorithmException, NoSuchProviderException

■ ■ static KeyPairGenerator getInstance(String,Provider)
throws NoSuchAlgorithmException
■ ■ final Provider getProvider()
■ ■ void initialize(int)
■ ■ void initialize(int,SecureRandom)
■ ■ void initialize(AlgorithmParameterSpec)
throws InvalidAlgorithmParameterException

■ ■ abstract class KeyPairGeneratorSpi
■ ■ KeyPairGeneratorSpi()
■ ■ abstract KeyPair generateKeyPair()

■ ■ abstract void initialize(int,SecureRandom)
■ ■ void initialize(AlgorithmParameterSpec,SecureRandom)
throws InvalidAlgorithmParameterException

■ ■ class KeyStore
■ ■ protected KeyStore(KeyStoreSpi,Provider,String)
■ ■ final java.util.Enumeration aliases() throws KeyStoreException
■ ■ final boolean containsAlias(String) throws KeyStoreException
■ ■ final void deleteEntry(String) throws KeyStoreException
■ ■ final Certificate getCertificate(String) throws KeyStoreException
■ ■ final String getCertificateAlias(Certificate) throws KeyStoreException
■ ■ final Certificate[] getCertificateChain(String)
throws KeyStoreException
■ ■ final java.util.Date getCreationDate(String) throws KeyStoreException
■ ■ final static String getDefaultType()
■ ■ static KeyStore getInstance(String) throws KeyStoreException
■ ■ static KeyStore getInstance(String,String) throws KeyStoreException,
 NoSuchProviderException
■ ■ static KeyStore getInstance(String,Provider) throws KeyStoreException

■ ■ final Key getKey(String,char[]) throws KeyStoreException,
 NoSuchAlgorithmException, UnrecoverableKeyException
■ ■ final Provider getProvider()
■ ■ final String getType()
■ ■ final boolean isCertificateEntry(String) throws KeyStoreException
■ ■ final boolean isKeyEntry(String) throws KeyStoreException
■ ■ final void load(java.io.InputStream,char[]) throws java.io.IOException,
 NoSuchAlgorithmException, CertificateException
■ ■ final void setCertificateEntry(String,Certificate)
throws KeyStoreException
■ ■ final void setKeyEntry(String,byte[],Certificate[])
throws KeyStoreException
■ ■ final void setKeyEntry(String,Key,char[],Certificate[])
throws KeyStoreException
■ ■ final int size() throws KeyStoreException
■ ■ final void store(java.io.OutputStream,char[])
throws java.io.IOException, KeyStoreException,
 NoSuchAlgorithmException, CertificateException

■ ■ class KeyStoreException extends GeneralSecurityException

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1179

■ ■ KeyStoreException() ■ ■ KeyStoreException(String)

■ ■ abstract class KeyStoreSpi
■ ■ KeyStoreSpi()
■ ■ abstract java.util.Enumeration engineAliases()
■ ■ abstract boolean engineContainsAlias(String)
■ ■ abstract void engineDeleteEntry(String) throws KeyStoreException
■ ■ abstract Certificate engineGetCertificate(String)
■ ■ abstract String engineGetCertificateAlias(Certificate)
■ ■ abstract Certificate[] engineGetCertificateChain(String)
■ ■ abstract java.util.Date engineGetCreationDate(String)
■ ■ abstract Key engineGetKey(String,char[])
throws NoSuchAlgorithmException, UnrecoverableKeyException

■ ■ abstract boolean engineIsCertificateEntry(String)
■ ■ abstract boolean engineIsKeyEntry(String)
■ ■ abstract void engineLoad(java.io.InputStream,char[])
throws java.io.IOException, NoSuchAlgorithmException,
 CertificateException
■ ■ abstract void engineSetCertificateEntry(String,Certificate)
throws KeyStoreException
■ ■ abstract void engineSetKeyEntry(String,byte[],Certificate[])
throws KeyStoreException
■ ■ abstract void engineSetKeyEntry(String,Key,char[],Certificate[])
throws KeyStoreException
■ ■ abstract int engineSize()
■ ■ abstract void engineStore(java.io.OutputStream,char[])
throws java.io.IOException, NoSuchAlgorithmException,
 CertificateException

■ ■ abstract class MessageDigest extends MessageDigestSpi
■ ■ protected MessageDigest(String)
■ ■ byte[] digest()
■ ■ byte[] digest(byte[])
■ ■ int digest(byte[],int,int) throws DigestException
■ ■ final String getAlgorithm()
■ ■ final int getDigestLength()
■ ■ static MessageDigest getInstance(String)
throws NoSuchAlgorithmException
■ ■ static MessageDigest getInstance(String,String)
throws NoSuchAlgorithmException, NoSuchProviderException

■ ■ static MessageDigest getInstance(String,Provider)
throws NoSuchAlgorithmException
■ ■ final Provider getProvider()
■ ■ static boolean isEqual(byte[],byte[])
■ ■ void reset()
■ ■ void update(byte[])
■ ■ void update(byte[],int,int)
■ ■ void update(byte)

■ ■ abstract class MessageDigestSpi
■ ■ MessageDigestSpi()
■ ■ Object clone() throws CloneNotSupportedException
■ ■ abstract protected byte[] engineDigest()
■ ■ protected int engineDigest(byte[],int,int) throws DigestException

■ ■ protected int engineGetDigestLength()
■ ■ abstract protected void engineReset()
■ ■ abstract protected void engineUpdate(byte[],int,int)
■ ■ abstract protected void engineUpdate(byte)

■ ■ class NoSuchAlgorithmException extends GeneralSecurityException
■ ■ NoSuchAlgorithmException() ■ ■ NoSuchAlgorithmException(String)

■ ■ class NoSuchProviderException extends GeneralSecurityException
■ ■ NoSuchProviderException() ■ ■ NoSuchProviderException(String)

■ ■ abstract class Permission implements java.io.Serializable , Guard
■ ■ Permission(String)
■ ■ void checkGuard(Object)
■ ■ abstract boolean equals(Object)
■ ■ abstract String getActions()

■ ■ final String getName()
■ ■ abstract int hashCode()
■ ■ abstract boolean implies(Permission)
■ ■ PermissionCollection newPermissionCollection()

■ ■ abstract class PermissionCollection implements java.io.Serializable
■ ■ PermissionCollection()
■ ■ abstract void add(Permission)
■ ■ abstract java.util.Enumeration elements()

■ ■ abstract boolean implies(Permission)
■ ■ boolean isReadOnly()
■ ■ void setReadOnly()

■ ■ final class Permissions extends PermissionCollection implements java.io.Serializable
■ ■ Permissions()
■ ■ void add(Permission)

■ ■ java.util.Enumeration elements()
■ ■ boolean implies(Permission)

■ ■ abstract class Policy
■ ■ Policy()
■ ■ abstract PermissionCollection getPermissions(CodeSource)
■ ■ PermissionCollection getPermissions(ProtectionDomain)
■ ■ static Policy getPolicy()

■ ■ boolean implies(ProtectionDomain,Permission)
■ ■ abstract void refresh()
■ ■ static void setPolicy(Policy)

■ ■ interface Principal
■ ■ abstract boolean equals(Object)
■ ■ abstract String getName()

■ ■ abstract int hashCode()
■ ■ abstract String toString()

■ ■ interface PrivateKey extends Key
■ ■ final static long serialVersionUID

■ ■ interface PrivilegedAction
■ ■ abstract Object run()

■ ■ class PrivilegedActionException extends Exception
■ ■ PrivilegedActionException(Exception) ■ ■ Exception getException()

■ ■ interface PrivilegedExceptionAction
■ ■ abstract Object run() throws Exception

■ ■ class ProtectionDomain
■ ■ ProtectionDomain(CodeSource,PermissionCollection)
■ ■ ProtectionDomain(CodeSource,PermissionCollection,ClassLoader,
Principal[])
■ ■ final ClassLoader getClassLoader()
■ ■ final CodeSource getCodeSource()

■ ■ final PermissionCollection getPermissions()
■ ■ final Principal[] getPrincipals()
■ ■ boolean implies(Permission)

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1180 OSGi Compendium Release 6

■ ■ abstract class Provider extends java.util.Properties
■ ■ protected Provider(String,double,String)
■ ■ String getInfo()

■ ■ String getName()
■ ■ double getVersion()

■ ■ class ProviderException extends RuntimeException
■ ■ ProviderException() ■ ■ ProviderException(String)

■ ■ interface PublicKey extends Key
■ ■ final static long serialVersionUID

■ ■ class SecureClassLoader extends ClassLoader
■ ■ protected SecureClassLoader()
■ ■ protected SecureClassLoader(ClassLoader)

■ ■ final protected Class defineClass(String,byte[],int,int,CodeSource)
■ ■ protected PermissionCollection getPermissions(CodeSource)

■ ■ class SecureRandom extends java.util.Random
■ ■ SecureRandom()
■ ■ SecureRandom(byte[])
■ ■ protected SecureRandom(SecureRandomSpi,Provider)
■ ■ byte[] generateSeed(int)
■ ■ static SecureRandom getInstance(String)
throws NoSuchAlgorithmException
■ ■ static SecureRandom getInstance(String,String)
throws NoSuchAlgorithmException, NoSuchProviderException

■ ■ static SecureRandom getInstance(String,Provider)
throws NoSuchAlgorithmException
■ ■ final Provider getProvider()
■ ■ static byte[] getSeed(int)
■ ■ final protected int next(int)
■ ■ void setSeed(byte[])

■ ■ abstract class SecureRandomSpi implements java.io.Serializable
■ ■ SecureRandomSpi()
■ ■ abstract protected byte[] engineGenerateSeed(int)

■ ■ abstract protected void engineNextBytes(byte[])
■ ■ abstract protected void engineSetSeed(byte[])

■ ■ final class Security
■ ■ static int addProvider(Provider)
■ ■ static java.util.Set getAlgorithms(String)
■ ■ static String getProperty(String)
■ ■ static Provider getProvider(String)
■ ■ static Provider[] getProviders()

■ ■ static Provider[] getProviders(String)
■ ■ static Provider[] getProviders(java.util.Map)
■ ■ static int insertProviderAt(Provider,int)
■ ■ static void removeProvider(String)
■ ■ static void setProperty(String,String)

■ ■ final class SecurityPermission extends BasicPermission
■ ■ SecurityPermission(String) ■ ■ SecurityPermission(String,String)

■ ■ abstract class Signature extends SignatureSpi
■ ■ protected Signature(String)
■ ■ final String getAlgorithm()
■ ■ static Signature getInstance(String)
throws NoSuchAlgorithmException
■ ■ static Signature getInstance(String,String)
throws NoSuchAlgorithmException, NoSuchProviderException
■ ■ static Signature getInstance(String,Provider)
throws NoSuchAlgorithmException
■ ■ final AlgorithmParameters getParameters()
■ ■ final Provider getProvider()
■ ■ final void initSign(PrivateKey) throws InvalidKeyException
■ ■ final void initSign(PrivateKey,SecureRandom)
throws InvalidKeyException
■ ■ final void initVerify(Certificate) throws InvalidKeyException
■ ■ final void initVerify(PublicKey) throws InvalidKeyException
■ ■ final void setParameter(AlgorithmParameterSpec)
throws InvalidAlgorithmParameterException

■ ■ final protected static int SIGN
■ ■ final byte[] sign() throws SignatureException
■ ■ final int sign(byte[],int,int) throws SignatureException
■ ■ protected int state
■ ■ final protected static int UNINITIALIZED
■ ■ final void update(byte[]) throws SignatureException
■ ■ final void update(byte[],int,int) throws SignatureException
■ ■ final void update(byte) throws SignatureException
■ ■ final protected static int VERIFY
■ ■ final boolean verify(byte[]) throws SignatureException
■ ■ final boolean verify(byte[],int,int) throws SignatureException

■ ■ class SignatureException extends GeneralSecurityException
■ ■ SignatureException() ■ ■ SignatureException(String)

■ ■ abstract class SignatureSpi
■ ■ SignatureSpi()
■ ■ protected SecureRandom appRandom
■ ■ Object clone() throws CloneNotSupportedException
■ ■ protected AlgorithmParameters engineGetParameters()
■ ■ abstract protected void engineInitSign(PrivateKey)
throws InvalidKeyException
■ ■ protected void engineInitSign(PrivateKey,SecureRandom)
throws InvalidKeyException
■ ■ abstract protected void engineInitVerify(PublicKey)
throws InvalidKeyException

■ ■ protected void engineSetParameter(AlgorithmParameterSpec)
throws InvalidAlgorithmParameterException
■ ■ abstract protected byte[] engineSign() throws SignatureException
■ ■ protected int engineSign(byte[],int,int) throws SignatureException
■ ■ abstract protected void engineUpdate(byte[],int,int)
throws SignatureException
■ ■ abstract protected void engineUpdate(byte)
throws SignatureException
■ ■ abstract protected boolean engineVerify(byte[])
throws SignatureException
■ ■ protected boolean engineVerify(byte[],int,int)
throws SignatureException

■ ■ final class SignedObject implements java.io.Serializable
■ ■ SignedObject(java.io.Serializable,PrivateKey,Signature)
throws java.io.IOException, InvalidKeyException, SignatureException
■ ■ String getAlgorithm()
■ ■ Object getObject() throws java.io.IOException,
 ClassNotFoundException

■ ■ byte[] getSignature()
■ ■ boolean verify(PublicKey,Signature) throws InvalidKeyException,
 SignatureException

■ ■ abstract class Signer extends Identity

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1181

■ ■ protected Signer()
■ ■ Signer(String)
■ ■ Signer(String,IdentityScope) throws KeyManagementException

■ ■ PrivateKey getPrivateKey()
■ ■ final void setKeyPair(KeyPair) throws KeyException

■ ■ class UnrecoverableKeyException extends GeneralSecurityException
■ ■ UnrecoverableKeyException() ■ ■ UnrecoverableKeyException(String)

■ ■ final class UnresolvedPermission extends Permission implements java.io.Serializable
■ ■ UnresolvedPermission(String,String,String,Certificate[])
■ ■ boolean equals(Object)
■ ■ String getActions()

■ ■ int hashCode()
■ ■ boolean implies(Permission)

999.3.8 java.security.acl

■ ■ package java.security.acl
■ ■ interface Acl extends Owner
■ ■ abstract boolean addEntry(java.security.Principal,AclEntry)
throws NotOwnerException
■ ■ abstract boolean checkPermission(java.security.Principal,Permission)
■ ■ abstract java.util.Enumeration entries()
■ ■ abstract String getName()

■ ■ abstract java.util.Enumeration getPermissions(java.security.Principal)
■ ■ abstract boolean removeEntry(java.security.Principal,AclEntry)
throws NotOwnerException
■ ■ abstract void setName(java.security.Principal,String)
throws NotOwnerException
■ ■ abstract String toString()

■ ■ interface AclEntry extends Cloneable
■ ■ abstract boolean addPermission(Permission)
■ ■ abstract boolean checkPermission(Permission)
■ ■ abstract Object clone()
■ ■ abstract java.security.Principal getPrincipal()
■ ■ abstract boolean isNegative()

■ ■ abstract java.util.Enumeration permissions()
■ ■ abstract boolean removePermission(Permission)
■ ■ abstract void setNegativePermissions()
■ ■ abstract boolean setPrincipal(java.security.Principal)
■ ■ abstract String toString()

■ ■ class AclNotFoundException extends Exception
■ ■ AclNotFoundException()

■ ■ interface Group extends java.security.Principal
■ ■ abstract boolean addMember(java.security.Principal)
■ ■ abstract boolean isMember(java.security.Principal)

■ ■ abstract java.util.Enumeration members()
■ ■ abstract boolean removeMember(java.security.Principal)

■ ■ class LastOwnerException extends Exception
■ ■ LastOwnerException()

■ ■ class NotOwnerException extends Exception
■ ■ NotOwnerException()

■ ■ interface Owner
■ ■ abstract boolean addOwner(java.security.Principal,
java.security.Principal) throws NotOwnerException
■ ■ abstract boolean deleteOwner(java.security.Principal,
java.security.Principal) throws LastOwnerException, NotOwnerException

■ ■ abstract boolean isOwner(java.security.Principal)

■ ■ interface Permission
■ ■ abstract boolean equals(Object) ■ ■ abstract String toString()

999.3.9 java.security.cert

■ ■ package java.security.cert
■ ■ abstract class Certificate implements java.io.Serializable
■ ■ protected Certificate(String)
■ ■ abstract byte[] getEncoded() throws CertificateEncodingException
■ ■ abstract java.security.PublicKey getPublicKey()
■ ■ final String getType()

■ ■ abstract String toString()
■ ■ abstract void verify(java.security.PublicKey)
throws java.security.InvalidKeyException,
 java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException, java.security.SignatureException,
 CertificateException
■ ■ abstract void verify(java.security.PublicKey,
String) throws java.security.InvalidKeyException,
 java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException, java.security.SignatureException,
 CertificateException
■ ■ protected Object writeReplace()
throws java.io.ObjectStreamException

■ ■ class Certificate.CertificateRep implements java.io.Serializable
■ ■ protected Certificate.CertificateRep(String,byte[]) ■ ■ protected Object readResolve() throws java.io.ObjectStreamException

■ ■ class CertificateEncodingException extends CertificateException
■ ■ CertificateEncodingException() ■ ■ CertificateEncodingException(String)

■ ■ class CertificateException extends java.security.GeneralSecurityException
■ ■ CertificateException() ■ ■ CertificateException(String)

■ ■ class CertificateExpiredException extends CertificateException
■ ■ CertificateExpiredException() ■ ■ CertificateExpiredException(String)

■ ■ class CertificateFactory

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1182 OSGi Compendium Release 6

■ ■ protected CertificateFactory(CertificateFactorySpi,
java.security.Provider,String)
■ ■ final Certificate generateCertificate(java.io.InputStream)
throws CertificateException
■ ■ final java.util.Collection generateCertificates(java.io.InputStream)
throws CertificateException
■ ■ final CertPath generateCertPath(java.io.InputStream)
throws CertificateException
■ ■ final CertPath generateCertPath(java.io.InputStream,String)
throws CertificateException
■ ■ final CertPath generateCertPath(java.util.List)
throws CertificateException
■ ■ final CRL generateCRL(java.io.InputStream) throws CRLException

■ ■ final java.util.Collection generateCRLs(java.io.InputStream)
throws CRLException
■ ■ final java.util.Iterator getCertPathEncodings()
■ ■ final static CertificateFactory getInstance(String)
throws CertificateException
■ ■ final static CertificateFactory getInstance(String,String)
throws java.security.NoSuchProviderException, CertificateException
■ ■ final static CertificateFactory getInstance(String,java.security.Provider)
throws CertificateException
■ ■ final java.security.Provider getProvider()
■ ■ final String getType()

■ ■ abstract class CertificateFactorySpi
■ ■ CertificateFactorySpi()
■ ■ abstract Certificate engineGenerateCertificate(java.io.InputStream)
throws CertificateException
■ ■ abstract java.util.Collection
engineGenerateCertificates(java.io.InputStream)
throws CertificateException
■ ■ CertPath engineGenerateCertPath(java.io.InputStream)
throws CertificateException
■ ■ CertPath engineGenerateCertPath(java.io.InputStream,String)
throws CertificateException

■ ■ CertPath engineGenerateCertPath(java.util.List)
throws CertificateException
■ ■ abstract CRL engineGenerateCRL(java.io.InputStream)
throws CRLException
■ ■ abstract java.util.Collection engineGenerateCRLs(java.io.InputStream)
throws CRLException
■ ■ java.util.Iterator engineGetCertPathEncodings()

■ ■ class CertificateNotYetValidException extends CertificateException
■ ■ CertificateNotYetValidException() ■ ■ CertificateNotYetValidException(String)

■ ■ class CertificateParsingException extends CertificateException
■ ■ CertificateParsingException() ■ ■ CertificateParsingException(String)

■ ■ abstract class CertPath implements java.io.Serializable
■ ■ protected CertPath(String)
■ ■ abstract java.util.List getCertificates()
■ ■ abstract byte[] getEncoded() throws CertificateEncodingException
■ ■ abstract byte[] getEncoded(String)
throws CertificateEncodingException

■ ■ abstract java.util.Iterator getEncodings()
■ ■ String getType()
■ ■ protected Object writeReplace()
throws java.io.ObjectStreamException

■ ■ class CertPath.CertPathRep implements java.io.Serializable
■ ■ protected CertPath.CertPathRep(String,byte[]) ■ ■ protected Object readResolve() throws java.io.ObjectStreamException

■ ■ abstract class CRL
■ ■ protected CRL(String)
■ ■ final String getType()

■ ■ abstract boolean isRevoked(Certificate)
■ ■ abstract String toString()

■ ■ class CRLException extends java.security.GeneralSecurityException
■ ■ CRLException() ■ ■ CRLException(String)

■ ■ abstract class X509Certificate extends Certificate implements X509Extension
■ ■ protected X509Certificate()
■ ■ abstract void checkValidity() throws CertificateExpiredException,
 CertificateNotYetValidException
■ ■ abstract void checkValidity(java.util.Date)
throws CertificateExpiredException, CertificateNotYetValidException
■ ■ abstract int getBasicConstraints()
■ ■ java.util.List getExtendedKeyUsage()
throws CertificateParsingException
■ ■ java.util.Collection getIssuerAlternativeNames()
throws CertificateParsingException
■ ■ abstract java.security.Principal getIssuerDN()
■ ■ abstract boolean[] getIssuerUniqueID()
■ ■ javax.security.auth.x500.X500Principal getIssuerX500Principal()
■ ■ abstract boolean[] getKeyUsage()
■ ■ abstract java.util.Date getNotAfter()
■ ■ abstract java.util.Date getNotBefore()

■ ■ abstract java.math.BigInteger getSerialNumber()
■ ■ abstract String getSigAlgName()
■ ■ abstract String getSigAlgOID()
■ ■ abstract byte[] getSigAlgParams()
■ ■ abstract byte[] getSignature()
■ ■ java.util.Collection getSubjectAlternativeNames()
throws CertificateParsingException
■ ■ abstract java.security.Principal getSubjectDN()
■ ■ abstract boolean[] getSubjectUniqueID()
■ ■ javax.security.auth.x500.X500Principal getSubjectX500Principal()
■ ■ abstract byte[] getTBSCertificate()
throws CertificateEncodingException
■ ■ abstract int getVersion()

■ ■ abstract class X509CRL extends CRL implements X509Extension

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1183

■ ■ protected X509CRL()
■ ■ abstract byte[] getEncoded() throws CRLException
■ ■ abstract java.security.Principal getIssuerDN()
■ ■ javax.security.auth.x500.X500Principal getIssuerX500Principal()
■ ■ abstract java.util.Date getNextUpdate()
■ ■ abstract X509CRLEntry getRevokedCertificate(java.math.BigInteger)
■ ■ abstract java.util.Set getRevokedCertificates()
■ ■ abstract String getSigAlgName()

■ ■ abstract String getSigAlgOID()
■ ■ abstract byte[] getSigAlgParams()
■ ■ abstract byte[] getSignature()
■ ■ abstract byte[] getTBSCertList() throws CRLException
■ ■ abstract java.util.Date getThisUpdate()
■ ■ abstract int getVersion()
■ ■ abstract void verify(java.security.PublicKey)
throws java.security.InvalidKeyException,
 java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException, java.security.SignatureException,
 CRLException
■ ■ abstract void verify(java.security.PublicKey,
String) throws java.security.InvalidKeyException,
 java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException, java.security.SignatureException,
 CRLException

■ ■ abstract class X509CRLEntry implements X509Extension
■ ■ X509CRLEntry()
■ ■ abstract byte[] getEncoded() throws CRLException
■ ■ abstract java.util.Date getRevocationDate()

■ ■ abstract java.math.BigInteger getSerialNumber()
■ ■ abstract boolean hasExtensions()
■ ■ abstract String toString()

■ ■ interface X509Extension
■ ■ abstract java.util.Set getCriticalExtensionOIDs()
■ ■ abstract byte[] getExtensionValue(String)

■ ■ abstract java.util.Set getNonCriticalExtensionOIDs()
■ ■ abstract boolean hasUnsupportedCriticalExtension()

999.3.10 java.security.interfaces

■ ■ package java.security.interfaces
■ ■ interface DSAKey
■ ■ abstract DSAParams getParams()

■ ■ interface DSAKeyPairGenerator
■ ■ abstract void initialize(int,boolean,java.security.SecureRandom) ■ ■ abstract void initialize(DSAParams,java.security.SecureRandom)

■ ■ interface DSAParams
■ ■ abstract java.math.BigInteger getG()
■ ■ abstract java.math.BigInteger getP()

■ ■ abstract java.math.BigInteger getQ()

■ ■ interface DSAPrivateKey extends java.security.PrivateKey , DSAKey
■ ■ abstract java.math.BigInteger getX() ■ ■ final static long serialVersionUID

■ ■ interface DSAPublicKey extends java.security.PublicKey , DSAKey
■ ■ abstract java.math.BigInteger getY() ■ ■ final static long serialVersionUID

■ ■ interface RSAKey
■ ■ abstract java.math.BigInteger getModulus()

■ ■ interface RSAPrivateCrtKey extends RSAPrivateKey
■ ■ abstract java.math.BigInteger getCrtCoefficient()
■ ■ abstract java.math.BigInteger getPrimeExponentP()
■ ■ abstract java.math.BigInteger getPrimeExponentQ()

■ ■ abstract java.math.BigInteger getPrimeP()
■ ■ abstract java.math.BigInteger getPrimeQ()
■ ■ abstract java.math.BigInteger getPublicExponent()

■ ■ interface RSAPrivateKey extends java.security.PrivateKey , RSAKey
■ ■ abstract java.math.BigInteger getPrivateExponent()

■ ■ interface RSAPublicKey extends java.security.PublicKey , RSAKey
■ ■ abstract java.math.BigInteger getPublicExponent()

999.3.11 java.security.spec

■ ■ package java.security.spec
■ ■ interface AlgorithmParameterSpec

■ ■ class DSAParameterSpec implements java.security.interfaces.DSAParams , AlgorithmParameterSpec
■ ■ DSAParameterSpec(java.math.BigInteger,java.math.BigInteger,
java.math.BigInteger)
■ ■ java.math.BigInteger getG()

■ ■ java.math.BigInteger getP()
■ ■ java.math.BigInteger getQ()

■ ■ class DSAPrivateKeySpec implements KeySpec
■ ■ DSAPrivateKeySpec(java.math.BigInteger,java.math.BigInteger,
java.math.BigInteger,java.math.BigInteger)
■ ■ java.math.BigInteger getG()
■ ■ java.math.BigInteger getP()

■ ■ java.math.BigInteger getQ()
■ ■ java.math.BigInteger getX()

■ ■ class DSAPublicKeySpec implements KeySpec
■ ■ DSAPublicKeySpec(java.math.BigInteger,java.math.BigInteger,
java.math.BigInteger,java.math.BigInteger)
■ ■ java.math.BigInteger getG()
■ ■ java.math.BigInteger getP()

■ ■ java.math.BigInteger getQ()
■ ■ java.math.BigInteger getY()

■ ■ abstract class EncodedKeySpec implements KeySpec

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1184 OSGi Compendium Release 6

■ ■ EncodedKeySpec(byte[])
■ ■ byte[] getEncoded()

■ ■ abstract String getFormat()

■ ■ class InvalidKeySpecException extends java.security.GeneralSecurityException
■ ■ InvalidKeySpecException() ■ ■ InvalidKeySpecException(String)

■ ■ class InvalidParameterSpecException extends java.security.GeneralSecurityException
■ ■ InvalidParameterSpecException() ■ ■ InvalidParameterSpecException(String)

■ ■ interface KeySpec

■ ■ class PKCS8EncodedKeySpec extends EncodedKeySpec
■ ■ PKCS8EncodedKeySpec(byte[]) ■ ■ final String getFormat()

■ ■ class PSSParameterSpec implements AlgorithmParameterSpec
■ ■ PSSParameterSpec(int) ■ ■ int getSaltLength()

■ ■ class RSAKeyGenParameterSpec implements AlgorithmParameterSpec
■ ■ RSAKeyGenParameterSpec(int,java.math.BigInteger)
■ ■ final static java.math.BigInteger F0
■ ■ final static java.math.BigInteger F4

■ ■ int getKeysize()
■ ■ java.math.BigInteger getPublicExponent()

■ ■ class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec
■ ■ RSAPrivateCrtKeySpec(java.math.BigInteger,java.math.BigInteger,
java.math.BigInteger,java.math.BigInteger,java.math.BigInteger,
java.math.BigInteger,java.math.BigInteger,java.math.BigInteger)
■ ■ java.math.BigInteger getCrtCoefficient()
■ ■ java.math.BigInteger getPrimeExponentP()
■ ■ java.math.BigInteger getPrimeExponentQ()

■ ■ java.math.BigInteger getPrimeP()
■ ■ java.math.BigInteger getPrimeQ()
■ ■ java.math.BigInteger getPublicExponent()

■ ■ class RSAPrivateKeySpec implements KeySpec
■ ■ RSAPrivateKeySpec(java.math.BigInteger,java.math.BigInteger)
■ ■ java.math.BigInteger getModulus()

■ ■ java.math.BigInteger getPrivateExponent()

■ ■ class RSAPublicKeySpec implements KeySpec
■ ■ RSAPublicKeySpec(java.math.BigInteger,java.math.BigInteger)
■ ■ java.math.BigInteger getModulus()

■ ■ java.math.BigInteger getPublicExponent()

■ ■ class X509EncodedKeySpec extends EncodedKeySpec
■ ■ X509EncodedKeySpec(byte[]) ■ ■ final String getFormat()

999.3.12 java.text

■ ■ package java.text
■ ■ class Annotation
■ ■ Annotation(Object) ■ ■ Object getValue()

■ ■ interface AttributedCharacterIterator extends CharacterIterator
■ ■ abstract java.util.Set getAllAttributeKeys()
■ ■ abstract Object getAttribute(AttributedCharacterIterator.Attribute)
■ ■ abstract java.util.Map getAttributes()
■ ■ abstract int getRunLimit()
■ ■ abstract int getRunLimit(AttributedCharacterIterator.Attribute)

■ ■ abstract int getRunLimit(java.util.Set)
■ ■ abstract int getRunStart()
■ ■ abstract int getRunStart(AttributedCharacterIterator.Attribute)
■ ■ abstract int getRunStart(java.util.Set)

■ ■ class AttributedCharacterIterator.Attribute implements java.io.Serializable
■ ■ protected AttributedCharacterIterator.Attribute(String)
■ ■ final boolean equals(Object)
■ ■ protected String getName()
■ ■ final int hashCode()

■ ■ final static AttributedCharacterIterator.Attribute
INPUT_METHOD_SEGMENT
■ ■ final static AttributedCharacterIterator.Attribute LANGUAGE
■ ■ final static AttributedCharacterIterator.Attribute READING
■ ■ protected Object readResolve() throws java.io.InvalidObjectException

■ ■ class AttributedString
■ ■ AttributedString(String)
■ ■ AttributedString(String,java.util.Map)
■ ■ AttributedString(AttributedCharacterIterator)
■ ■ AttributedString(AttributedCharacterIterator,int,int)
■ ■ AttributedString(AttributedCharacterIterator,int,int,
AttributedCharacterIterator.Attribute[])
■ ■ void addAttribute(AttributedCharacterIterator.Attribute,Object)

■ ■ void addAttribute(AttributedCharacterIterator.Attribute,Object,int,int)
■ ■ void addAttributes(java.util.Map,int,int)
■ ■ AttributedCharacterIterator getIterator()
■ ■ AttributedCharacterIterator
getIterator(AttributedCharacterIterator.Attribute[])
■ ■ AttributedCharacterIterator
getIterator(AttributedCharacterIterator.Attribute[],int,int)

■ ■ abstract class BreakIterator implements Cloneable
■ ■ protected BreakIterator()
■ ■ Object clone()
■ ■ abstract int current()
■ ■ final static int DONE
■ ■ abstract int first()
■ ■ abstract int following(int)
■ ■ static java.util.Locale[] getAvailableLocales()
■ ■ static BreakIterator getCharacterInstance()
■ ■ static BreakIterator getCharacterInstance(java.util.Locale)
■ ■ static BreakIterator getLineInstance()
■ ■ static BreakIterator getLineInstance(java.util.Locale)
■ ■ static BreakIterator getSentenceInstance()

■ ■ static BreakIterator getSentenceInstance(java.util.Locale)
■ ■ abstract CharacterIterator getText()
■ ■ static BreakIterator getWordInstance()
■ ■ static BreakIterator getWordInstance(java.util.Locale)
■ ■ boolean isBoundary(int)
■ ■ abstract int last()
■ ■ abstract int next()
■ ■ abstract int next(int)
■ ■ int preceding(int)
■ ■ abstract int previous()
■ ■ void setText(String)
■ ■ abstract void setText(CharacterIterator)

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1185

■ ■ interface CharacterIterator extends Cloneable
■ ■ abstract Object clone()
■ ■ abstract char current()
■ ■ final static char DONE
■ ■ abstract char first()
■ ■ abstract int getBeginIndex()
■ ■ abstract int getEndIndex()

■ ■ abstract int getIndex()
■ ■ abstract char last()
■ ■ abstract char next()
■ ■ abstract char previous()
■ ■ abstract char setIndex(int)

■ ■ class ChoiceFormat extends NumberFormat
■ ■ ChoiceFormat(double[],String[])
■ ■ ChoiceFormat(String)
■ ■ void applyPattern(String)
■ ■ StringBuffer format(double,StringBuffer,FieldPosition)
■ ■ StringBuffer format(long,StringBuffer,FieldPosition)
■ ■ Object[] getFormats()
■ ■ double[] getLimits()

■ ■ final static double nextDouble(double)
■ ■ static double nextDouble(double,boolean)
■ ■ Number parse(String,ParsePosition)
■ ■ final static double previousDouble(double)
■ ■ void setChoices(double[],String[])
■ ■ String toPattern()

■ ■ final class CollationElementIterator
■ ■ int getMaxExpansion(int)
■ ■ int getOffset()
■ ■ int next()
■ ■ final static int NULLORDER
■ ■ int previous()
■ ■ final static int primaryOrder(int)

■ ■ void reset()
■ ■ final static short secondaryOrder(int)
■ ■ void setOffset(int)
■ ■ void setText(String)
■ ■ void setText(CharacterIterator)
■ ■ final static short tertiaryOrder(int)

■ ■ final class CollationKey implements Comparable
■ ■ int compareTo(Object)
■ ■ int compareTo(CollationKey)

■ ■ String getSourceString()
■ ■ byte[] toByteArray()

■ ■ abstract class Collator implements Cloneable , java.util.Comparator
■ ■ protected Collator()
■ ■ final static int CANONICAL_DECOMPOSITION
■ ■ Object clone()
■ ■ int compare(Object,Object)
■ ■ abstract int compare(String,String)
■ ■ boolean equals(String,String)
■ ■ final static int FULL_DECOMPOSITION
■ ■ static java.util.Locale[] getAvailableLocales()
■ ■ abstract CollationKey getCollationKey(String)
■ ■ int getDecomposition()
■ ■ static Collator getInstance()

■ ■ static Collator getInstance(java.util.Locale)
■ ■ int getStrength()
■ ■ abstract int hashCode()
■ ■ final static int IDENTICAL
■ ■ final static int NO_DECOMPOSITION
■ ■ final static int PRIMARY
■ ■ final static int SECONDARY
■ ■ void setDecomposition(int)
■ ■ void setStrength(int)
■ ■ final static int TERTIARY

■ ■ abstract class DateFormat extends Format
■ ■ protected DateFormat()
■ ■ final static int AM_PM_FIELD
■ ■ protected java.util.Calendar calendar
■ ■ final static int DATE_FIELD
■ ■ final static int DAY_OF_WEEK_FIELD
■ ■ final static int DAY_OF_WEEK_IN_MONTH_FIELD
■ ■ final static int DAY_OF_YEAR_FIELD
■ ■ final static int DEFAULT
■ ■ final static int ERA_FIELD
■ ■ final StringBuffer format(Object,StringBuffer,FieldPosition)
■ ■ final String format(java.util.Date)
■ ■ abstract StringBuffer format(java.util.Date,StringBuffer,FieldPosition)
■ ■ final static int FULL
■ ■ static java.util.Locale[] getAvailableLocales()
■ ■ java.util.Calendar getCalendar()
■ ■ final static DateFormat getDateInstance()
■ ■ final static DateFormat getDateInstance(int)
■ ■ final static DateFormat getDateInstance(int,java.util.Locale)
■ ■ final static DateFormat getDateTimeInstance()
■ ■ final static DateFormat getDateTimeInstance(int,int)
■ ■ final static DateFormat getDateTimeInstance(int,int,java.util.Locale)
■ ■ final static DateFormat getInstance()
■ ■ NumberFormat getNumberFormat()
■ ■ final static DateFormat getTimeInstance()
■ ■ final static DateFormat getTimeInstance(int)
■ ■ final static DateFormat getTimeInstance(int,java.util.Locale)

■ ■ java.util.TimeZone getTimeZone()
■ ■ final static int HOUR0_FIELD
■ ■ final static int HOUR1_FIELD
■ ■ final static int HOUR_OF_DAY0_FIELD
■ ■ final static int HOUR_OF_DAY1_FIELD
■ ■ boolean isLenient()
■ ■ final static int LONG
■ ■ final static int MEDIUM
■ ■ final static int MILLISECOND_FIELD
■ ■ final static int MINUTE_FIELD
■ ■ final static int MONTH_FIELD
■ ■ protected NumberFormat numberFormat
■ ■ java.util.Date parse(String) throws ParseException
■ ■ abstract java.util.Date parse(String,ParsePosition)
■ ■ Object parseObject(String,ParsePosition)
■ ■ final static int SECOND_FIELD
■ ■ void setCalendar(java.util.Calendar)
■ ■ void setLenient(boolean)
■ ■ void setNumberFormat(NumberFormat)
■ ■ void setTimeZone(java.util.TimeZone)
■ ■ final static int SHORT
■ ■ final static int TIMEZONE_FIELD
■ ■ final static int WEEK_OF_MONTH_FIELD
■ ■ final static int WEEK_OF_YEAR_FIELD
■ ■ final static int YEAR_FIELD

■ ■ class DateFormat.Field extends Format.Field

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1186 OSGi Compendium Release 6

■ ■ protected DateFormat.Field(String,int)
■ ■ final static DateFormat.Field AM_PM
■ ■ final static DateFormat.Field DAY_OF_MONTH
■ ■ final static DateFormat.Field DAY_OF_WEEK
■ ■ final static DateFormat.Field DAY_OF_WEEK_IN_MONTH
■ ■ final static DateFormat.Field DAY_OF_YEAR
■ ■ final static DateFormat.Field ERA
■ ■ int getCalendarField()
■ ■ final static DateFormat.Field HOUR0
■ ■ final static DateFormat.Field HOUR1
■ ■ final static DateFormat.Field HOUR_OF_DAY0

■ ■ final static DateFormat.Field HOUR_OF_DAY1
■ ■ final static DateFormat.Field MILLISECOND
■ ■ final static DateFormat.Field MINUTE
■ ■ final static DateFormat.Field MONTH
■ ■ static DateFormat.Field ofCalendarField(int)
■ ■ final static DateFormat.Field SECOND
■ ■ final static DateFormat.Field TIME_ZONE
■ ■ final static DateFormat.Field WEEK_OF_MONTH
■ ■ final static DateFormat.Field WEEK_OF_YEAR
■ ■ final static DateFormat.Field YEAR

■ ■ class DateFormatSymbols implements java.io.Serializable , Cloneable
■ ■ DateFormatSymbols()
■ ■ DateFormatSymbols(java.util.Locale)
■ ■ Object clone()
■ ■ String[] getAmPmStrings()
■ ■ String[] getEras()
■ ■ String getLocalPatternChars()
■ ■ String[] getMonths()
■ ■ String[] getShortMonths()
■ ■ String[] getShortWeekdays()
■ ■ String[] getWeekdays()

■ ■ String[][] getZoneStrings()
■ ■ void setAmPmStrings(String[])
■ ■ void setEras(String[])
■ ■ void setLocalPatternChars(String)
■ ■ void setMonths(String[])
■ ■ void setShortMonths(String[])
■ ■ void setShortWeekdays(String[])
■ ■ void setWeekdays(String[])
■ ■ void setZoneStrings(String[][])

■ ■ class DecimalFormat extends NumberFormat
■ ■ DecimalFormat()
■ ■ DecimalFormat(String)
■ ■ DecimalFormat(String,DecimalFormatSymbols)
■ ■ void applyLocalizedPattern(String)
■ ■ void applyPattern(String)
■ ■ StringBuffer format(double,StringBuffer,FieldPosition)
■ ■ StringBuffer format(long,StringBuffer,FieldPosition)
■ ■ DecimalFormatSymbols getDecimalFormatSymbols()
■ ■ int getGroupingSize()
■ ■ int getMultiplier()
■ ■ String getNegativePrefix()
■ ■ String getNegativeSuffix()
■ ■ String getPositivePrefix()

■ ■ String getPositiveSuffix()
■ ■ boolean isDecimalSeparatorAlwaysShown()
■ ■ Number parse(String,ParsePosition)
■ ■ void setDecimalFormatSymbols(DecimalFormatSymbols)
■ ■ void setDecimalSeparatorAlwaysShown(boolean)
■ ■ void setGroupingSize(int)
■ ■ void setMultiplier(int)
■ ■ void setNegativePrefix(String)
■ ■ void setNegativeSuffix(String)
■ ■ void setPositivePrefix(String)
■ ■ void setPositiveSuffix(String)
■ ■ String toLocalizedPattern()
■ ■ String toPattern()

■ ■ final class DecimalFormatSymbols implements java.io.Serializable , Cloneable
■ ■ DecimalFormatSymbols()
■ ■ DecimalFormatSymbols(java.util.Locale)
■ ■ Object clone()
■ ■ java.util.Currency getCurrency()
■ ■ String getCurrencySymbol()
■ ■ char getDecimalSeparator()
■ ■ char getDigit()
■ ■ char getGroupingSeparator()
■ ■ String getInfinity()
■ ■ String getInternationalCurrencySymbol()
■ ■ char getMinusSign()
■ ■ char getMonetaryDecimalSeparator()
■ ■ String getNaN()
■ ■ char getPatternSeparator()
■ ■ char getPercent()
■ ■ char getPerMill()

■ ■ char getZeroDigit()
■ ■ void setCurrency(java.util.Currency)
■ ■ void setCurrencySymbol(String)
■ ■ void setDecimalSeparator(char)
■ ■ void setDigit(char)
■ ■ void setGroupingSeparator(char)
■ ■ void setInfinity(String)
■ ■ void setInternationalCurrencySymbol(String)
■ ■ void setMinusSign(char)
■ ■ void setMonetaryDecimalSeparator(char)
■ ■ void setNaN(String)
■ ■ void setPatternSeparator(char)
■ ■ void setPercent(char)
■ ■ void setPerMill(char)
■ ■ void setZeroDigit(char)

■ ■ class FieldPosition
■ ■ FieldPosition(int)
■ ■ FieldPosition(Format.Field)
■ ■ FieldPosition(Format.Field,int)
■ ■ int getBeginIndex()
■ ■ int getEndIndex()

■ ■ int getField()
■ ■ Format.Field getFieldAttribute()
■ ■ void setBeginIndex(int)
■ ■ void setEndIndex(int)

■ ■ abstract class Format implements java.io.Serializable , Cloneable
■ ■ Format()
■ ■ Object clone()
■ ■ final String format(Object)
■ ■ abstract StringBuffer format(Object,StringBuffer,FieldPosition)

■ ■ AttributedCharacterIterator formatToCharacterIterator(Object)
■ ■ Object parseObject(String) throws ParseException
■ ■ abstract Object parseObject(String,ParsePosition)

■ ■ class Format.Field extends AttributedCharacterIterator.Attribute
■ ■ protected Format.Field(String)

■ ■ class MessageFormat extends Format

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1187

■ ■ MessageFormat(String)
■ ■ MessageFormat(String,java.util.Locale)
■ ■ void applyPattern(String)
■ ■ final StringBuffer format(Object[],StringBuffer,FieldPosition)
■ ■ final StringBuffer format(Object,StringBuffer,FieldPosition)
■ ■ static String format(String,Object[])
■ ■ Format[] getFormats()
■ ■ Format[] getFormatsByArgumentIndex()
■ ■ java.util.Locale getLocale()

■ ■ Object[] parse(String) throws ParseException
■ ■ Object[] parse(String,ParsePosition)
■ ■ Object parseObject(String,ParsePosition)
■ ■ void setFormat(int,Format)
■ ■ void setFormatByArgumentIndex(int,Format)
■ ■ void setFormats(Format[])
■ ■ void setFormatsByArgumentIndex(Format[])
■ ■ void setLocale(java.util.Locale)
■ ■ String toPattern()

■ ■ class MessageFormat.Field extends Format.Field
■ ■ protected MessageFormat.Field(String) ■ ■ final static MessageFormat.Field ARGUMENT

■ ■ abstract class NumberFormat extends Format
■ ■ NumberFormat()
■ ■ final String format(double)
■ ■ abstract StringBuffer format(double,StringBuffer,FieldPosition)
■ ■ final String format(long)
■ ■ abstract StringBuffer format(long,StringBuffer,FieldPosition)
■ ■ final StringBuffer format(Object,StringBuffer,FieldPosition)
■ ■ final static int FRACTION_FIELD
■ ■ static java.util.Locale[] getAvailableLocales()
■ ■ java.util.Currency getCurrency()
■ ■ final static NumberFormat getCurrencyInstance()
■ ■ static NumberFormat getCurrencyInstance(java.util.Locale)
■ ■ final static NumberFormat getInstance()
■ ■ static NumberFormat getInstance(java.util.Locale)
■ ■ final static NumberFormat getIntegerInstance()
■ ■ static NumberFormat getIntegerInstance(java.util.Locale)
■ ■ int getMaximumFractionDigits()
■ ■ int getMaximumIntegerDigits()
■ ■ int getMinimumFractionDigits()

■ ■ int getMinimumIntegerDigits()
■ ■ final static NumberFormat getNumberInstance()
■ ■ static NumberFormat getNumberInstance(java.util.Locale)
■ ■ final static NumberFormat getPercentInstance()
■ ■ static NumberFormat getPercentInstance(java.util.Locale)
■ ■ final static int INTEGER_FIELD
■ ■ boolean isGroupingUsed()
■ ■ boolean isParseIntegerOnly()
■ ■ Number parse(String) throws ParseException
■ ■ abstract Number parse(String,ParsePosition)
■ ■ final Object parseObject(String,ParsePosition)
■ ■ void setCurrency(java.util.Currency)
■ ■ void setGroupingUsed(boolean)
■ ■ void setMaximumFractionDigits(int)
■ ■ void setMaximumIntegerDigits(int)
■ ■ void setMinimumFractionDigits(int)
■ ■ void setMinimumIntegerDigits(int)
■ ■ void setParseIntegerOnly(boolean)

■ ■ class NumberFormat.Field extends Format.Field
■ ■ protected NumberFormat.Field(String)
■ ■ final static NumberFormat.Field CURRENCY
■ ■ final static NumberFormat.Field DECIMAL_SEPARATOR
■ ■ final static NumberFormat.Field EXPONENT
■ ■ final static NumberFormat.Field EXPONENT_SIGN
■ ■ final static NumberFormat.Field EXPONENT_SYMBOL

■ ■ final static NumberFormat.Field FRACTION
■ ■ final static NumberFormat.Field GROUPING_SEPARATOR
■ ■ final static NumberFormat.Field INTEGER
■ ■ final static NumberFormat.Field PERCENT
■ ■ final static NumberFormat.Field PERMILLE
■ ■ final static NumberFormat.Field SIGN

■ ■ class ParseException extends Exception
■ ■ ParseException(String,int) ■ ■ int getErrorOffset()

■ ■ class ParsePosition
■ ■ ParsePosition(int)
■ ■ int getErrorIndex()
■ ■ int getIndex()

■ ■ void setErrorIndex(int)
■ ■ void setIndex(int)

■ ■ class RuleBasedCollator extends Collator
■ ■ RuleBasedCollator(String) throws ParseException
■ ■ int compare(String,String)
■ ■ CollationElementIterator getCollationElementIterator(String)
■ ■ CollationElementIterator
getCollationElementIterator(CharacterIterator)

■ ■ CollationKey getCollationKey(String)
■ ■ String getRules()
■ ■ int hashCode()

■ ■ class SimpleDateFormat extends DateFormat
■ ■ SimpleDateFormat()
■ ■ SimpleDateFormat(String)
■ ■ SimpleDateFormat(String,DateFormatSymbols)
■ ■ SimpleDateFormat(String,java.util.Locale)
■ ■ void applyLocalizedPattern(String)
■ ■ void applyPattern(String)
■ ■ StringBuffer format(java.util.Date,StringBuffer,FieldPosition)

■ ■ java.util.Date get2DigitYearStart()
■ ■ DateFormatSymbols getDateFormatSymbols()
■ ■ java.util.Date parse(String,ParsePosition)
■ ■ void set2DigitYearStart(java.util.Date)
■ ■ void setDateFormatSymbols(DateFormatSymbols)
■ ■ String toLocalizedPattern()
■ ■ String toPattern()

■ ■ final class StringCharacterIterator implements CharacterIterator
■ ■ StringCharacterIterator(String)
■ ■ StringCharacterIterator(String,int)
■ ■ StringCharacterIterator(String,int,int,int)
■ ■ Object clone()
■ ■ char current()
■ ■ char first()
■ ■ int getBeginIndex()

■ ■ int getEndIndex()
■ ■ int getIndex()
■ ■ char last()
■ ■ char next()
■ ■ char previous()
■ ■ char setIndex(int)
■ ■ void setText(String)

999.3.13 java.util

■ ■ package java.util
■ ■ abstract class AbstractCollection implements Collection

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1188 OSGi Compendium Release 6

■ ■ protected AbstractCollection()
■ ■ boolean add(Object)
■ ■ boolean addAll(Collection)
■ ■ void clear()
■ ■ boolean contains(Object)
■ ■ boolean containsAll(Collection)

■ ■ boolean isEmpty()
■ ■ boolean remove(Object)
■ ■ boolean removeAll(Collection)
■ ■ boolean retainAll(Collection)
■ ■ Object[] toArray()
■ ■ Object[] toArray(Object[])

■ ■ abstract class AbstractList extends AbstractCollection implements List
■ ■ protected AbstractList()
■ ■ void add(int,Object)
■ ■ boolean addAll(int,Collection)
■ ■ int indexOf(Object)
■ ■ Iterator iterator()
■ ■ int lastIndexOf(Object)
■ ■ ListIterator listIterator()

■ ■ ListIterator listIterator(int)
■ ■ protected int modCount
■ ■ Object remove(int)
■ ■ protected void removeRange(int,int)
■ ■ Object set(int,Object)
■ ■ List subList(int,int)

■ ■ abstract class AbstractMap implements Map
■ ■ protected AbstractMap()
■ ■ void clear()
■ ■ boolean containsKey(Object)
■ ■ boolean containsValue(Object)
■ ■ Object get(Object)
■ ■ boolean isEmpty()

■ ■ Set keySet()
■ ■ Object put(Object,Object)
■ ■ void putAll(Map)
■ ■ Object remove(Object)
■ ■ int size()
■ ■ Collection values()

■ ■ abstract class AbstractSequentialList extends AbstractList
■ ■ protected AbstractSequentialList()
■ ■ Object get(int)

■ ■ abstract ListIterator listIterator(int)

■ ■ abstract class AbstractSet extends AbstractCollection implements Set
■ ■ protected AbstractSet()

■ ■ class ArrayList extends AbstractList implements java.io.Serializable , Cloneable , List , RandomAccess
■ ■ ArrayList()
■ ■ ArrayList(int)
■ ■ ArrayList(Collection)
■ ■ Object clone()

■ ■ void ensureCapacity(int)
■ ■ Object get(int)
■ ■ int size()
■ ■ void trimToSize()

■ ■ class Arrays
■ ■ static List asList(Object[])
■ ■ static int binarySearch(byte[],byte)
■ ■ static int binarySearch(char[],char)
■ ■ static int binarySearch(double[],double)
■ ■ static int binarySearch(float[],float)
■ ■ static int binarySearch(int[],int)
■ ■ static int binarySearch(long[],long)
■ ■ static int binarySearch(Object[],Object)
■ ■ static int binarySearch(Object[],Object,Comparator)
■ ■ static int binarySearch(short[],short)
■ ■ static boolean equals(byte[],byte[])
■ ■ static boolean equals(char[],char[])
■ ■ static boolean equals(double[],double[])
■ ■ static boolean equals(float[],float[])
■ ■ static boolean equals(int[],int[])
■ ■ static boolean equals(long[],long[])
■ ■ static boolean equals(Object[],Object[])
■ ■ static boolean equals(short[],short[])
■ ■ static boolean equals(boolean[],boolean[])
■ ■ static void fill(byte[],byte)
■ ■ static void fill(byte[],int,int,byte)
■ ■ static void fill(char[],char)
■ ■ static void fill(char[],int,int,char)
■ ■ static void fill(double[],double)
■ ■ static void fill(double[],int,int,double)
■ ■ static void fill(float[],float)
■ ■ static void fill(float[],int,int,float)
■ ■ static void fill(int[],int)

■ ■ static void fill(int[],int,int,int)
■ ■ static void fill(long[],int,int,long)
■ ■ static void fill(long[],long)
■ ■ static void fill(Object[],int,int,Object)
■ ■ static void fill(Object[],Object)
■ ■ static void fill(short[],int,int,short)
■ ■ static void fill(short[],short)
■ ■ static void fill(boolean[],int,int,boolean)
■ ■ static void fill(boolean[],boolean)
■ ■ static void sort(byte[])
■ ■ static void sort(byte[],int,int)
■ ■ static void sort(char[])
■ ■ static void sort(char[],int,int)
■ ■ static void sort(double[])
■ ■ static void sort(double[],int,int)
■ ■ static void sort(float[])
■ ■ static void sort(float[],int,int)
■ ■ static void sort(int[])
■ ■ static void sort(int[],int,int)
■ ■ static void sort(long[])
■ ■ static void sort(long[],int,int)
■ ■ static void sort(Object[])
■ ■ static void sort(Object[],int,int)
■ ■ static void sort(Object[],int,int,Comparator)
■ ■ static void sort(Object[],Comparator)
■ ■ static void sort(short[])
■ ■ static void sort(short[],int,int)

■ ■ class BitSet implements java.io.Serializable , Cloneable

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1189

■ ■ BitSet()
■ ■ BitSet(int)
■ ■ void and(BitSet)
■ ■ void andNot(BitSet)
■ ■ int cardinality()
■ ■ void clear()
■ ■ void clear(int)
■ ■ void clear(int,int)
■ ■ Object clone()
■ ■ void flip(int)
■ ■ void flip(int,int)
■ ■ boolean get(int)
■ ■ BitSet get(int,int)

■ ■ boolean intersects(BitSet)
■ ■ boolean isEmpty()
■ ■ int length()
■ ■ int nextClearBit(int)
■ ■ int nextSetBit(int)
■ ■ void or(BitSet)
■ ■ void set(int)
■ ■ void set(int,int)
■ ■ void set(int,int,boolean)
■ ■ void set(int,boolean)
■ ■ int size()
■ ■ void xor(BitSet)

■ ■ abstract class Calendar implements java.io.Serializable , Cloneable
■ ■ protected Calendar()
■ ■ protected Calendar(TimeZone,Locale)
■ ■ abstract void add(int,int)
■ ■ boolean after(Object)
■ ■ final static int AM
■ ■ final static int AM_PM
■ ■ final static int APRIL
■ ■ protected boolean areFieldsSet
■ ■ final static int AUGUST
■ ■ boolean before(Object)
■ ■ final void clear()
■ ■ final void clear(int)
■ ■ Object clone()
■ ■ protected void complete()
■ ■ abstract protected void computeFields()
■ ■ abstract protected void computeTime()
■ ■ final static int DATE
■ ■ final static int DAY_OF_MONTH
■ ■ final static int DAY_OF_WEEK
■ ■ final static int DAY_OF_WEEK_IN_MONTH
■ ■ final static int DAY_OF_YEAR
■ ■ final static int DECEMBER
■ ■ final static int DST_OFFSET
■ ■ final static int ERA
■ ■ final static int FEBRUARY
■ ■ final static int FIELD_COUNT
■ ■ protected int[] fields
■ ■ final static int FRIDAY
■ ■ int get(int)
■ ■ int getActualMaximum(int)
■ ■ int getActualMinimum(int)
■ ■ static Locale[] getAvailableLocales()
■ ■ int getFirstDayOfWeek()
■ ■ abstract int getGreatestMinimum(int)
■ ■ static Calendar getInstance()
■ ■ static Calendar getInstance(Locale)
■ ■ static Calendar getInstance(TimeZone)
■ ■ static Calendar getInstance(TimeZone,Locale)
■ ■ abstract int getLeastMaximum(int)
■ ■ abstract int getMaximum(int)
■ ■ int getMinimalDaysInFirstWeek()
■ ■ abstract int getMinimum(int)
■ ■ final Date getTime()
■ ■ long getTimeInMillis()
■ ■ TimeZone getTimeZone()

■ ■ final static int HOUR
■ ■ final static int HOUR_OF_DAY
■ ■ final protected int internalGet(int)
■ ■ boolean isLenient()
■ ■ final boolean isSet(int)
■ ■ protected boolean[] isSet
■ ■ protected boolean isTimeSet
■ ■ final static int JANUARY
■ ■ final static int JULY
■ ■ final static int JUNE
■ ■ final static int MARCH
■ ■ final static int MAY
■ ■ final static int MILLISECOND
■ ■ final static int MINUTE
■ ■ final static int MONDAY
■ ■ final static int MONTH
■ ■ final static int NOVEMBER
■ ■ final static int OCTOBER
■ ■ final static int PM
■ ■ void roll(int,int)
■ ■ abstract void roll(int,boolean)
■ ■ final static int SATURDAY
■ ■ final static int SECOND
■ ■ final static int SEPTEMBER
■ ■ void set(int,int)
■ ■ final void set(int,int,int)
■ ■ final void set(int,int,int,int,int)
■ ■ final void set(int,int,int,int,int,int)
■ ■ void setFirstDayOfWeek(int)
■ ■ void setLenient(boolean)
■ ■ void setMinimalDaysInFirstWeek(int)
■ ■ final void setTime(Date)
■ ■ void setTimeInMillis(long)
■ ■ void setTimeZone(TimeZone)
■ ■ final static int SUNDAY
■ ■ final static int THURSDAY
■ ■ protected long time
■ ■ final static int TUESDAY
■ ■ final static int UNDECIMBER
■ ■ final static int WEDNESDAY
■ ■ final static int WEEK_OF_MONTH
■ ■ final static int WEEK_OF_YEAR
■ ■ final static int YEAR
■ ■ final static int ZONE_OFFSET

■ ■ interface Collection
■ ■ abstract boolean add(Object)
■ ■ abstract boolean addAll(Collection)
■ ■ abstract void clear()
■ ■ abstract boolean contains(Object)
■ ■ abstract boolean containsAll(Collection)
■ ■ abstract boolean equals(Object)
■ ■ abstract int hashCode()
■ ■ abstract boolean isEmpty()

■ ■ abstract Iterator iterator()
■ ■ abstract boolean remove(Object)
■ ■ abstract boolean removeAll(Collection)
■ ■ abstract boolean retainAll(Collection)
■ ■ abstract int size()
■ ■ abstract Object[] toArray()
■ ■ abstract Object[] toArray(Object[])

■ ■ class Collections

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1190 OSGi Compendium Release 6

■ ■ static int binarySearch(List,Object)
■ ■ static int binarySearch(List,Object,Comparator)
■ ■ static void copy(List,List)
■ ■ final static List EMPTY_LIST
■ ■ final static Map EMPTY_MAP
■ ■ final static Set EMPTY_SET
■ ■ static Enumeration enumeration(Collection)
■ ■ static void fill(List,Object)
■ ■ static int indexOfSubList(List,List)
■ ■ static int lastIndexOfSubList(List,List)
■ ■ static ArrayList list(Enumeration)
■ ■ static Object max(Collection)
■ ■ static Object max(Collection,Comparator)
■ ■ static Object min(Collection)
■ ■ static Object min(Collection,Comparator)
■ ■ static List nCopies(int,Object)
■ ■ static boolean replaceAll(List,Object,Object)
■ ■ static void reverse(List)
■ ■ static Comparator reverseOrder()
■ ■ static void rotate(List,int)

■ ■ static void shuffle(List)
■ ■ static void shuffle(List,Random)
■ ■ static Set singleton(Object)
■ ■ static List singletonList(Object)
■ ■ static Map singletonMap(Object,Object)
■ ■ static void sort(List)
■ ■ static void sort(List,Comparator)
■ ■ static void swap(List,int,int)
■ ■ static Collection synchronizedCollection(Collection)
■ ■ static List synchronizedList(List)
■ ■ static Map synchronizedMap(Map)
■ ■ static Set synchronizedSet(Set)
■ ■ static SortedMap synchronizedSortedMap(SortedMap)
■ ■ static SortedSet synchronizedSortedSet(SortedSet)
■ ■ static Collection unmodifiableCollection(Collection)
■ ■ static List unmodifiableList(List)
■ ■ static Map unmodifiableMap(Map)
■ ■ static Set unmodifiableSet(Set)
■ ■ static SortedMap unmodifiableSortedMap(SortedMap)
■ ■ static SortedSet unmodifiableSortedSet(SortedSet)

■ ■ interface Comparator
■ ■ abstract int compare(Object,Object) ■ ■ abstract boolean equals(Object)

■ ■ class ConcurrentModificationException extends RuntimeException
■ ■ ConcurrentModificationException() ■ ■ ConcurrentModificationException(String)

■ ■ final class Currency implements java.io.Serializable
■ ■ String getCurrencyCode()
■ ■ int getDefaultFractionDigits()
■ ■ static Currency getInstance(String)

■ ■ static Currency getInstance(Locale)
■ ■ String getSymbol()
■ ■ String getSymbol(Locale)

■ ■ class Date implements java.io.Serializable , Cloneable , Comparable
■ ■ Date()
■ ■ Date(long)
■ ■ boolean after(Date)
■ ■ boolean before(Date)
■ ■ Object clone()

■ ■ int compareTo(Object)
■ ■ int compareTo(Date)
■ ■ long getTime()
■ ■ void setTime(long)

■ ■ abstract class Dictionary
■ ■ Dictionary()
■ ■ abstract Enumeration elements()
■ ■ abstract Object get(Object)
■ ■ abstract boolean isEmpty()

■ ■ abstract Enumeration keys()
■ ■ abstract Object put(Object,Object)
■ ■ abstract Object remove(Object)
■ ■ abstract int size()

■ ■ class EmptyStackException extends RuntimeException
■ ■ EmptyStackException()

■ ■ interface Enumeration
■ ■ abstract boolean hasMoreElements() ■ ■ abstract Object nextElement()

■ ■ interface EventListener

■ ■ abstract class EventListenerProxy implements EventListener
■ ■ EventListenerProxy(EventListener) ■ ■ EventListener getListener()

■ ■ class EventObject implements java.io.Serializable
■ ■ EventObject(Object)
■ ■ Object getSource()

■ ■ protected Object source

■ ■ class GregorianCalendar extends Calendar
■ ■ GregorianCalendar()
■ ■ GregorianCalendar(int,int,int)
■ ■ GregorianCalendar(int,int,int,int,int)
■ ■ GregorianCalendar(int,int,int,int,int,int)
■ ■ GregorianCalendar(Locale)
■ ■ GregorianCalendar(TimeZone)
■ ■ GregorianCalendar(TimeZone,Locale)
■ ■ final static int AD
■ ■ void add(int,int)
■ ■ final static int BC

■ ■ protected void computeFields()
■ ■ protected void computeTime()
■ ■ int getGreatestMinimum(int)
■ ■ final Date getGregorianChange()
■ ■ int getLeastMaximum(int)
■ ■ int getMaximum(int)
■ ■ int getMinimum(int)
■ ■ boolean isLeapYear(int)
■ ■ void roll(int,boolean)
■ ■ void setGregorianChange(Date)

■ ■ class HashMap extends AbstractMap implements java.io.Serializable , Cloneable , Map
■ ■ HashMap()
■ ■ HashMap(int)
■ ■ HashMap(int,float)

■ ■ HashMap(Map)
■ ■ Object clone()
■ ■ Set entrySet()

■ ■ class HashSet extends AbstractSet implements java.io.Serializable , Cloneable , Set
■ ■ HashSet()
■ ■ HashSet(int)
■ ■ HashSet(int,float)
■ ■ HashSet(Collection)

■ ■ Object clone()
■ ■ Iterator iterator()
■ ■ int size()

■ ■ class Hashtable extends Dictionary implements java.io.Serializable , Cloneable , Map

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1191

■ ■ Hashtable()
■ ■ Hashtable(int)
■ ■ Hashtable(int,float)
■ ■ Hashtable(Map)
■ ■ void clear()
■ ■ Object clone()
■ ■ boolean contains(Object)
■ ■ boolean containsKey(Object)
■ ■ boolean containsValue(Object)
■ ■ Enumeration elements()
■ ■ Set entrySet()

■ ■ Object get(Object)
■ ■ boolean isEmpty()
■ ■ Enumeration keys()
■ ■ Set keySet()
■ ■ Object put(Object,Object)
■ ■ void putAll(Map)
■ ■ protected void rehash()
■ ■ Object remove(Object)
■ ■ int size()
■ ■ Collection values()

■ ■ class IdentityHashMap extends AbstractMap implements java.io.Serializable , Cloneable , Map
■ ■ IdentityHashMap()
■ ■ IdentityHashMap(int)
■ ■ IdentityHashMap(Map)

■ ■ Object clone()
■ ■ Set entrySet()

■ ■ interface Iterator
■ ■ abstract boolean hasNext()
■ ■ abstract Object next()

■ ■ abstract void remove()

■ ■ class LinkedHashMap extends HashMap
■ ■ LinkedHashMap()
■ ■ LinkedHashMap(int)
■ ■ LinkedHashMap(int,float)

■ ■ LinkedHashMap(int,float,boolean)
■ ■ LinkedHashMap(Map)
■ ■ protected boolean removeEldestEntry(Map.Entry)

■ ■ class LinkedHashSet extends HashSet implements java.io.Serializable , Cloneable , Set
■ ■ LinkedHashSet()
■ ■ LinkedHashSet(int)

■ ■ LinkedHashSet(int,float)
■ ■ LinkedHashSet(Collection)

■ ■ class LinkedList extends AbstractSequentialList implements java.io.Serializable , Cloneable , List
■ ■ LinkedList()
■ ■ LinkedList(Collection)
■ ■ void addFirst(Object)
■ ■ void addLast(Object)
■ ■ Object clone()
■ ■ Object getFirst()

■ ■ Object getLast()
■ ■ ListIterator listIterator(int)
■ ■ Object removeFirst()
■ ■ Object removeLast()
■ ■ int size()

■ ■ interface List extends Collection
■ ■ abstract void add(int,Object)
■ ■ abstract boolean addAll(int,Collection)
■ ■ abstract boolean equals(Object)
■ ■ abstract Object get(int)
■ ■ abstract int hashCode()
■ ■ abstract int indexOf(Object)

■ ■ abstract int lastIndexOf(Object)
■ ■ abstract ListIterator listIterator()
■ ■ abstract ListIterator listIterator(int)
■ ■ abstract Object remove(int)
■ ■ abstract Object set(int,Object)
■ ■ abstract List subList(int,int)

■ ■ interface ListIterator extends Iterator
■ ■ abstract void add(Object)
■ ■ abstract boolean hasPrevious()
■ ■ abstract int nextIndex()

■ ■ abstract Object previous()
■ ■ abstract int previousIndex()
■ ■ abstract void set(Object)

■ ■ abstract class ListResourceBundle extends ResourceBundle
■ ■ ListResourceBundle()
■ ■ abstract protected Object[][] getContents()

■ ■ Enumeration getKeys()
■ ■ final Object handleGetObject(String)

■ ■ final class Locale implements java.io.Serializable , Cloneable
■ ■ Locale(String)
■ ■ Locale(String,String)
■ ■ Locale(String,String,String)
■ ■ final static Locale CANADA
■ ■ final static Locale CANADA_FRENCH
■ ■ final static Locale CHINA
■ ■ final static Locale CHINESE
■ ■ Object clone()
■ ■ final static Locale ENGLISH
■ ■ final static Locale FRANCE
■ ■ final static Locale FRENCH
■ ■ final static Locale GERMAN
■ ■ final static Locale GERMANY
■ ■ static Locale[] getAvailableLocales()
■ ■ String getCountry()
■ ■ static Locale getDefault()
■ ■ final String getDisplayCountry()
■ ■ String getDisplayCountry(Locale)
■ ■ final String getDisplayLanguage()
■ ■ String getDisplayLanguage(Locale)
■ ■ final String getDisplayName()
■ ■ String getDisplayName(Locale)

■ ■ final String getDisplayVariant()
■ ■ String getDisplayVariant(Locale)
■ ■ String getISO3Country()
■ ■ String getISO3Language()
■ ■ static String[] getISOCountries()
■ ■ static String[] getISOLanguages()
■ ■ String getLanguage()
■ ■ String getVariant()
■ ■ final static Locale ITALIAN
■ ■ final static Locale ITALY
■ ■ final static Locale JAPAN
■ ■ final static Locale JAPANESE
■ ■ final static Locale KOREA
■ ■ final static Locale KOREAN
■ ■ final static Locale PRC
■ ■ static void setDefault(Locale)
■ ■ final static Locale SIMPLIFIED_CHINESE
■ ■ final static Locale TAIWAN
■ ■ final String toString()
■ ■ final static Locale TRADITIONAL_CHINESE
■ ■ final static Locale UK
■ ■ final static Locale US

■ ■ interface Map

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1192 OSGi Compendium Release 6

■ ■ abstract void clear()
■ ■ abstract boolean containsKey(Object)
■ ■ abstract boolean containsValue(Object)
■ ■ abstract Set entrySet()
■ ■ abstract boolean equals(Object)
■ ■ abstract Object get(Object)
■ ■ abstract int hashCode()

■ ■ abstract boolean isEmpty()
■ ■ abstract Set keySet()
■ ■ abstract Object put(Object,Object)
■ ■ abstract void putAll(Map)
■ ■ abstract Object remove(Object)
■ ■ abstract int size()
■ ■ abstract Collection values()

■ ■ interface Map.Entry
■ ■ abstract boolean equals(Object)
■ ■ abstract Object getKey()
■ ■ abstract Object getValue()

■ ■ abstract int hashCode()
■ ■ abstract Object setValue(Object)

■ ■ class MissingResourceException extends RuntimeException
■ ■ MissingResourceException(String,String,String)
■ ■ String getClassName()

■ ■ String getKey()

■ ■ class NoSuchElementException extends RuntimeException
■ ■ NoSuchElementException() ■ ■ NoSuchElementException(String)

■ ■ class Observable
■ ■ Observable()
■ ■ void addObserver(Observer)
■ ■ protected void clearChanged()
■ ■ int countObservers()
■ ■ void deleteObserver(Observer)

■ ■ void deleteObservers()
■ ■ boolean hasChanged()
■ ■ void notifyObservers()
■ ■ void notifyObservers(Object)
■ ■ protected void setChanged()

■ ■ interface Observer
■ ■ abstract void update(Observable,Object)

■ ■ class Properties extends Hashtable
■ ■ Properties()
■ ■ Properties(Properties)
■ ■ protected Properties defaults
■ ■ String getProperty(String)
■ ■ String getProperty(String,String)
■ ■ void list(java.io.PrintStream)

■ ■ void list(java.io.PrintWriter)
■ ■ void load(java.io.InputStream) throws java.io.IOException
■ ■ Enumeration propertyNames()
■ ■ void save(java.io.OutputStream,String)
■ ■ Object setProperty(String,String)
■ ■ void store(java.io.OutputStream,String) throws java.io.IOException

■ ■ final class PropertyPermission extends java.security.BasicPermission
■ ■ PropertyPermission(String,String)

■ ■ class PropertyResourceBundle extends ResourceBundle
■ ■ PropertyResourceBundle(java.io.InputStream)
throws java.io.IOException
■ ■ Enumeration getKeys()

■ ■ Object handleGetObject(String)

■ ■ class Random implements java.io.Serializable
■ ■ Random()
■ ■ Random(long)
■ ■ protected int next(int)
■ ■ boolean nextBoolean()
■ ■ void nextBytes(byte[])
■ ■ double nextDouble()

■ ■ float nextFloat()
■ ■ double nextGaussian()
■ ■ int nextInt()
■ ■ int nextInt(int)
■ ■ long nextLong()
■ ■ void setSeed(long)

■ ■ interface RandomAccess

■ ■ abstract class ResourceBundle
■ ■ ResourceBundle()
■ ■ final static ResourceBundle getBundle(String)
■ ■ final static ResourceBundle getBundle(String,Locale)
■ ■ static ResourceBundle getBundle(String,Locale,ClassLoader)
■ ■ abstract Enumeration getKeys()
■ ■ Locale getLocale()

■ ■ final Object getObject(String)
■ ■ final String getString(String)
■ ■ final String[] getStringArray(String)
■ ■ abstract protected Object handleGetObject(String)
■ ■ protected ResourceBundle parent
■ ■ protected void setParent(ResourceBundle)

■ ■ interface Set extends Collection
■ ■ abstract boolean equals(Object) ■ ■ abstract int hashCode()

■ ■ class SimpleTimeZone extends TimeZone
■ ■ SimpleTimeZone(int,String)
■ ■ SimpleTimeZone(int,String,int,int,int,int,int,int,int,int)
■ ■ SimpleTimeZone(int,String,int,int,int,int,int,int,int,int,int)
■ ■ SimpleTimeZone(int,String,int,int,int,int,int,int,int,int,int,int,int)
■ ■ int getOffset(int,int,int,int,int,int)
■ ■ int getRawOffset()
■ ■ boolean inDaylightTime(Date)
■ ■ void setDSTSavings(int)
■ ■ void setEndRule(int,int,int)
■ ■ void setEndRule(int,int,int,int)

■ ■ void setEndRule(int,int,int,int,boolean)
■ ■ void setRawOffset(int)
■ ■ void setStartRule(int,int,int)
■ ■ void setStartRule(int,int,int,int)
■ ■ void setStartRule(int,int,int,int,boolean)
■ ■ void setStartYear(int)
■ ■ final static int STANDARD_TIME
■ ■ boolean useDaylightTime()
■ ■ final static int UTC_TIME
■ ■ final static int WALL_TIME

■ ■ interface SortedMap extends Map
■ ■ abstract Comparator comparator()
■ ■ abstract Object firstKey()
■ ■ abstract SortedMap headMap(Object)

■ ■ abstract Object lastKey()
■ ■ abstract SortedMap subMap(Object,Object)
■ ■ abstract SortedMap tailMap(Object)

■ ■ interface SortedSet extends Set

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1193

■ ■ abstract Comparator comparator()
■ ■ abstract Object first()
■ ■ abstract SortedSet headSet(Object)

■ ■ abstract Object last()
■ ■ abstract SortedSet subSet(Object,Object)
■ ■ abstract SortedSet tailSet(Object)

■ ■ class Stack extends Vector
■ ■ Stack()
■ ■ boolean empty()
■ ■ Object peek()

■ ■ Object pop()
■ ■ Object push(Object)
■ ■ int search(Object)

■ ■ class StringTokenizer implements Enumeration
■ ■ StringTokenizer(String)
■ ■ StringTokenizer(String,String)
■ ■ StringTokenizer(String,String,boolean)
■ ■ int countTokens()
■ ■ boolean hasMoreElements()

■ ■ boolean hasMoreTokens()
■ ■ Object nextElement()
■ ■ String nextToken()
■ ■ String nextToken(String)

■ ■ class Timer
■ ■ Timer()
■ ■ Timer(boolean)
■ ■ void cancel()
■ ■ void schedule(TimerTask,long)
■ ■ void schedule(TimerTask,long,long)

■ ■ void schedule(TimerTask,Date)
■ ■ void schedule(TimerTask,Date,long)
■ ■ void scheduleAtFixedRate(TimerTask,long,long)
■ ■ void scheduleAtFixedRate(TimerTask,Date,long)

■ ■ abstract class TimerTask implements Runnable
■ ■ protected TimerTask()
■ ■ boolean cancel()

■ ■ long scheduledExecutionTime()

■ ■ abstract class TimeZone implements java.io.Serializable , Cloneable
■ ■ TimeZone()
■ ■ Object clone()
■ ■ static String[] getAvailableIDs()
■ ■ static String[] getAvailableIDs(int)
■ ■ static TimeZone getDefault()
■ ■ final String getDisplayName()
■ ■ final String getDisplayName(Locale)
■ ■ final String getDisplayName(boolean,int)
■ ■ String getDisplayName(boolean,int,Locale)
■ ■ int getDSTSavings()
■ ■ String getID()
■ ■ abstract int getOffset(int,int,int,int,int,int)

■ ■ int getOffset(long)
■ ■ abstract int getRawOffset()
■ ■ static TimeZone getTimeZone(String)
■ ■ boolean hasSameRules(TimeZone)
■ ■ abstract boolean inDaylightTime(Date)
■ ■ final static int LONG
■ ■ static void setDefault(TimeZone)
■ ■ void setID(String)
■ ■ abstract void setRawOffset(int)
■ ■ final static int SHORT
■ ■ abstract boolean useDaylightTime()

■ ■ class TooManyListenersException extends Exception
■ ■ TooManyListenersException() ■ ■ TooManyListenersException(String)

■ ■ class TreeMap extends AbstractMap implements java.io.Serializable , Cloneable , SortedMap
■ ■ TreeMap()
■ ■ TreeMap(Comparator)
■ ■ TreeMap(Map)
■ ■ TreeMap(SortedMap)
■ ■ Object clone()
■ ■ Comparator comparator()

■ ■ Set entrySet()
■ ■ Object firstKey()
■ ■ SortedMap headMap(Object)
■ ■ Object lastKey()
■ ■ SortedMap subMap(Object,Object)
■ ■ SortedMap tailMap(Object)

■ ■ class TreeSet extends AbstractSet implements java.io.Serializable , Cloneable , SortedSet
■ ■ TreeSet()
■ ■ TreeSet(Collection)
■ ■ TreeSet(Comparator)
■ ■ TreeSet(SortedSet)
■ ■ Object clone()
■ ■ Comparator comparator()
■ ■ Object first()

■ ■ SortedSet headSet(Object)
■ ■ Iterator iterator()
■ ■ Object last()
■ ■ int size()
■ ■ SortedSet subSet(Object,Object)
■ ■ SortedSet tailSet(Object)

■ ■ class Vector extends AbstractList implements java.io.Serializable , Cloneable , List , RandomAccess
■ ■ Vector()
■ ■ Vector(int)
■ ■ Vector(int,int)
■ ■ Vector(Collection)
■ ■ void addElement(Object)
■ ■ int capacity()
■ ■ protected int capacityIncrement
■ ■ Object clone()
■ ■ void copyInto(Object[])
■ ■ Object elementAt(int)
■ ■ protected int elementCount
■ ■ protected Object[] elementData
■ ■ Enumeration elements()
■ ■ void ensureCapacity(int)

■ ■ Object firstElement()
■ ■ Object get(int)
■ ■ int indexOf(Object,int)
■ ■ void insertElementAt(Object,int)
■ ■ Object lastElement()
■ ■ int lastIndexOf(Object,int)
■ ■ void removeAllElements()
■ ■ boolean removeElement(Object)
■ ■ void removeElementAt(int)
■ ■ void setElementAt(Object,int)
■ ■ void setSize(int)
■ ■ int size()
■ ■ void trimToSize()

■ ■ class WeakHashMap extends AbstractMap implements Map
■ ■ WeakHashMap()
■ ■ WeakHashMap(int)
■ ■ WeakHashMap(int,float)

■ ■ WeakHashMap(Map)
■ ■ Set entrySet()

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1194 OSGi Compendium Release 6

999.3.14 java.util.jar

■ ■ package java.util.jar
■ ■ class Attributes implements Cloneable , java.util.Map
■ ■ Attributes()
■ ■ Attributes(int)
■ ■ Attributes(Attributes)
■ ■ void clear()
■ ■ Object clone()
■ ■ boolean containsKey(Object)
■ ■ boolean containsValue(Object)
■ ■ java.util.Set entrySet()
■ ■ Object get(Object)
■ ■ String getValue(String)

■ ■ String getValue(Attributes.Name)
■ ■ boolean isEmpty()
■ ■ java.util.Set keySet()
■ ■ protected java.util.Map map
■ ■ Object put(Object,Object)
■ ■ void putAll(java.util.Map)
■ ■ String putValue(String,String)
■ ■ Object remove(Object)
■ ■ int size()
■ ■ java.util.Collection values()

■ ■ class Attributes.Name
■ ■ Attributes.Name(String)
■ ■ final static Attributes.Name CLASS_PATH
■ ■ final static Attributes.Name CONTENT_TYPE
■ ■ final static Attributes.Name EXTENSION_INSTALLATION
■ ■ final static Attributes.Name EXTENSION_LIST
■ ■ final static Attributes.Name EXTENSION_NAME
■ ■ final static Attributes.Name IMPLEMENTATION_TITLE
■ ■ final static Attributes.Name IMPLEMENTATION_URL
■ ■ final static Attributes.Name IMPLEMENTATION_VENDOR

■ ■ final static Attributes.Name IMPLEMENTATION_VENDOR_ID
■ ■ final static Attributes.Name IMPLEMENTATION_VERSION
■ ■ final static Attributes.Name MAIN_CLASS
■ ■ final static Attributes.Name MANIFEST_VERSION
■ ■ final static Attributes.Name SEALED
■ ■ final static Attributes.Name SIGNATURE_VERSION
■ ■ final static Attributes.Name SPECIFICATION_TITLE
■ ■ final static Attributes.Name SPECIFICATION_VENDOR
■ ■ final static Attributes.Name SPECIFICATION_VERSION

■ ■ class JarEntry extends java.util.zip.ZipEntry
■ ■ JarEntry(String)
■ ■ JarEntry(JarEntry)
■ ■ JarEntry(java.util.zip.ZipEntry)

■ ■ Attributes getAttributes() throws java.io.IOException
■ ■ java.security.cert.Certificate[] getCertificates()

■ ■ class JarException extends java.util.zip.ZipException
■ ■ JarException() ■ ■ JarException(String)

■ ■ class JarFile extends java.util.zip.ZipFile
■ ■ JarFile(java.io.File) throws java.io.IOException
■ ■ JarFile(java.io.File,boolean) throws java.io.IOException
■ ■ JarFile(java.io.File,boolean,int) throws java.io.IOException
■ ■ JarFile(String) throws java.io.IOException
■ ■ JarFile(String,boolean) throws java.io.IOException

■ □ java.util.Enumeration entries()
■ ■ JarEntry getJarEntry(String)
■ ■ Manifest getManifest() throws java.io.IOException
■ ■ final static String MANIFEST_NAME

■ ■ class JarInputStream extends java.util.zip.ZipInputStream
■ ■ JarInputStream(java.io.InputStream) throws java.io.IOException
■ ■ JarInputStream(java.io.InputStream,boolean)
throws java.io.IOException

■ ■ Manifest getManifest()
■ ■ JarEntry getNextJarEntry() throws java.io.IOException

■ ■ class JarOutputStream extends java.util.zip.ZipOutputStream
■ ■ JarOutputStream(java.io.OutputStream) throws java.io.IOException ■ ■ JarOutputStream(java.io.OutputStream,Manifest)

throws java.io.IOException

■ ■ class Manifest implements Cloneable
■ ■ Manifest()
■ ■ Manifest(java.io.InputStream) throws java.io.IOException
■ ■ Manifest(Manifest)
■ ■ void clear()
■ ■ Object clone()

■ ■ Attributes getAttributes(String)
■ ■ java.util.Map getEntries()
■ ■ Attributes getMainAttributes()
■ ■ void read(java.io.InputStream) throws java.io.IOException
■ ■ void write(java.io.OutputStream) throws java.io.IOException

999.3.15 java.util.zip

■ ■ package java.util.zip
■ ■ class Adler32 implements Checksum
■ ■ Adler32()
■ ■ long getValue()
■ ■ void reset()

■ ■ void update(byte[])
■ ■ void update(byte[],int,int)
■ ■ void update(int)

■ ■ class CheckedInputStream extends java.io.FilterInputStream
■ ■ CheckedInputStream(java.io.InputStream,Checksum) ■ ■ Checksum getChecksum()

■ ■ class CheckedOutputStream extends java.io.FilterOutputStream
■ ■ CheckedOutputStream(java.io.OutputStream,Checksum) ■ ■ Checksum getChecksum()

■ ■ interface Checksum
■ ■ abstract long getValue()
■ ■ abstract void reset()

■ ■ abstract void update(byte[],int,int)
■ ■ abstract void update(int)

■ ■ class CRC32 implements Checksum
■ ■ CRC32()
■ ■ long getValue()
■ ■ void reset()

■ ■ void update(byte[])
■ ■ void update(byte[],int,int)
■ ■ void update(int)

■ ■ class DataFormatException extends Exception
■ ■ DataFormatException() ■ ■ DataFormatException(String)

Execution Environment Specification Version 1.3 OSGi Defined Execution Environments

OSGi Compendium Release 6 Page 1195

■ ■ class Deflater
■ ■ Deflater()
■ ■ Deflater(int)
■ ■ Deflater(int,boolean)
■ ■ final static int BEST_COMPRESSION
■ ■ final static int BEST_SPEED
■ ■ final static int DEFAULT_COMPRESSION
■ ■ final static int DEFAULT_STRATEGY
■ ■ int deflate(byte[])
■ ■ int deflate(byte[],int,int)
■ ■ final static int DEFLATED
■ ■ void end()
■ ■ final static int FILTERED
■ ■ protected void finalize()
■ ■ void finish()

■ ■ boolean finished()
■ ■ int getAdler()
■ ■ int getTotalIn()
■ ■ int getTotalOut()
■ ■ final static int HUFFMAN_ONLY
■ ■ boolean needsInput()
■ ■ final static int NO_COMPRESSION
■ ■ void reset()
■ ■ void setDictionary(byte[])
■ ■ void setDictionary(byte[],int,int)
■ ■ void setInput(byte[])
■ ■ void setInput(byte[],int,int)
■ ■ void setLevel(int)
■ ■ void setStrategy(int)

■ ■ class DeflaterOutputStream extends java.io.FilterOutputStream
■ ■ DeflaterOutputStream(java.io.OutputStream)
■ ■ DeflaterOutputStream(java.io.OutputStream,Deflater)
■ ■ DeflaterOutputStream(java.io.OutputStream,Deflater,int)
■ ■ protected byte[] buf

■ ■ protected Deflater def
■ ■ protected void deflate() throws java.io.IOException
■ ■ void finish() throws java.io.IOException

■ ■ class GZIPInputStream extends InflaterInputStream
■ ■ GZIPInputStream(java.io.InputStream) throws java.io.IOException
■ ■ GZIPInputStream(java.io.InputStream,int) throws java.io.IOException
■ ■ protected CRC32 crc

■ ■ protected boolean eos
■ ■ final static int GZIP_MAGIC

■ ■ class GZIPOutputStream extends DeflaterOutputStream
■ ■ GZIPOutputStream(java.io.OutputStream) throws java.io.IOException
■ ■ GZIPOutputStream(java.io.OutputStream,int)
throws java.io.IOException

■ ■ protected CRC32 crc

■ ■ class Inflater
■ ■ Inflater()
■ ■ Inflater(boolean)
■ ■ void end()
■ ■ protected void finalize()
■ ■ boolean finished()
■ ■ int getAdler()
■ ■ int getRemaining()
■ ■ int getTotalIn()
■ ■ int getTotalOut()

■ ■ int inflate(byte[]) throws DataFormatException
■ ■ int inflate(byte[],int,int) throws DataFormatException
■ ■ boolean needsDictionary()
■ ■ boolean needsInput()
■ ■ void reset()
■ ■ void setDictionary(byte[])
■ ■ void setDictionary(byte[],int,int)
■ ■ void setInput(byte[])
■ ■ void setInput(byte[],int,int)

■ ■ class InflaterInputStream extends java.io.FilterInputStream
■ ■ InflaterInputStream(java.io.InputStream)
■ ■ InflaterInputStream(java.io.InputStream,Inflater)
■ ■ InflaterInputStream(java.io.InputStream,Inflater,int)
■ ■ protected byte[] buf

■ ■ protected void fill() throws java.io.IOException
■ ■ protected Inflater inf
■ ■ protected int len

■ ■ class ZipEntry implements Cloneable , ZipConstants
■ ■ ZipEntry(String)
■ ■ ZipEntry(ZipEntry)
■ ■ Object clone()
■ ■ final static int DEFLATED
■ ■ String getComment()
■ ■ long getCompressedSize()
■ ■ long getCrc()
■ ■ byte[] getExtra()
■ ■ int getMethod()
■ ■ String getName()
■ ■ long getSize()

■ ■ long getTime()
■ ■ boolean isDirectory()
■ ■ void setComment(String)
■ ■ void setCompressedSize(long)
■ ■ void setCrc(long)
■ ■ void setExtra(byte[])
■ ■ void setMethod(int)
■ ■ void setSize(long)
■ ■ void setTime(long)
■ ■ final static int STORED

■ ■ class ZipException extends java.io.IOException
■ ■ ZipException() ■ ■ ZipException(String)

■ ■ class ZipFile implements ZipConstants
■ ■ ZipFile(java.io.File) throws java.io.IOException
■ ■ ZipFile(java.io.File,int) throws java.io.IOException
■ ■ ZipFile(String) throws java.io.IOException
■ ■ void close() throws java.io.IOException
■ ■ java.util.Enumeration entries()
■ ■ protected void finalize() throws java.io.IOException

■ ■ ZipEntry getEntry(String)
■ ■ java.io.InputStream getInputStream(ZipEntry)
throws java.io.IOException
■ ■ String getName()
■ ■ final static int OPEN_DELETE
■ ■ final static int OPEN_READ
■ ■ int size()

■ ■ class ZipInputStream extends InflaterInputStream implements ZipConstants
■ ■ ZipInputStream(java.io.InputStream)
■ ■ void closeEntry() throws java.io.IOException

■ ■ protected ZipEntry createZipEntry(String)
■ ■ ZipEntry getNextEntry() throws java.io.IOException

■ ■ class ZipOutputStream extends DeflaterOutputStream implements ZipConstants

OSGi Defined Execution Environments Execution Environment Specification Version 1.3

Page 1196 OSGi Compendium Release 6

■ ■ ZipOutputStream(java.io.OutputStream)
■ ■ void closeEntry() throws java.io.IOException
■ ■ final static int DEFLATED
■ ■ void putNextEntry(ZipEntry) throws java.io.IOException

■ ■ void setComment(String)
■ ■ void setLevel(int)
■ ■ void setMethod(int)
■ ■ final static int STORED

999.3.16 javax.microedition.io

□ ■ package javax.microedition.io
□ ■ interface CommConnection extends StreamConnection
□ ■ abstract int getBaudRate() □ ■ abstract int setBaudRate(int)

□ ■ interface Connection
□ ■ abstract void close() throws java.io.IOException

□ ■ class ConnectionNotFoundException extends java.io.IOException
□ ■ ConnectionNotFoundException() □ ■ ConnectionNotFoundException(String)

□ ■ class Connector
□ ■ static Connection open(String) throws java.io.IOException
□ ■ static Connection open(String,int) throws java.io.IOException
□ ■ static Connection open(String,int,boolean) throws java.io.IOException
□ ■ static java.io.DataInputStream openDataInputStream(String)
throws java.io.IOException
□ ■ static java.io.DataOutputStream openDataOutputStream(String)
throws java.io.IOException

□ ■ static java.io.InputStream openInputStream(String)
throws java.io.IOException
□ ■ static java.io.OutputStream openOutputStream(String)
throws java.io.IOException
□ ■ final static int READ
□ ■ final static int READ_WRITE
□ ■ final static int WRITE

□ ■ interface ContentConnection extends StreamConnection
□ ■ abstract String getEncoding()
□ ■ abstract long getLength()

□ ■ abstract String getType()

□ ■ interface Datagram extends java.io.DataInput , java.io.DataOutput
□ ■ abstract String getAddress()
□ ■ abstract byte[] getData()
□ ■ abstract int getLength()
□ ■ abstract int getOffset()
□ ■ abstract void reset()

□ ■ abstract void setAddress(String) throws java.io.IOException
□ ■ abstract void setAddress(Datagram)
□ ■ abstract void setData(byte[],int,int)
□ ■ abstract void setLength(int)

□ ■ interface DatagramConnection extends Connection
□ ■ abstract int getMaximumLength() throws java.io.IOException
□ ■ abstract int getNominalLength() throws java.io.IOException
□ ■ abstract Datagram newDatagram(byte[],int)
throws java.io.IOException
□ ■ abstract Datagram newDatagram(byte[],int,String)
throws java.io.IOException

□ ■ abstract Datagram newDatagram(int) throws java.io.IOException
□ ■ abstract Datagram newDatagram(int,String)
throws java.io.IOException
□ ■ abstract void receive(Datagram) throws java.io.IOException
□ ■ abstract void send(Datagram) throws java.io.IOException

□ ■ interface HttpConnection extends ContentConnection
□ ■ final static String GET
□ ■ abstract long getDate() throws java.io.IOException
□ ■ abstract long getExpiration() throws java.io.IOException
□ ■ abstract String getFile()
□ ■ abstract String getHeaderField(int) throws java.io.IOException
□ ■ abstract String getHeaderField(String) throws java.io.IOException
□ ■ abstract long getHeaderFieldDate(String,long)
throws java.io.IOException
□ ■ abstract int getHeaderFieldInt(String,int) throws java.io.IOException
□ ■ abstract String getHeaderFieldKey(int) throws java.io.IOException
□ ■ abstract String getHost()
□ ■ abstract long getLastModified() throws java.io.IOException
□ ■ abstract int getPort()
□ ■ abstract String getProtocol()
□ ■ abstract String getQuery()
□ ■ abstract String getRef()
□ ■ abstract String getRequestMethod()
□ ■ abstract String getRequestProperty(String)
□ ■ abstract int getResponseCode() throws java.io.IOException
□ ■ abstract String getResponseMessage() throws java.io.IOException
□ ■ abstract String getURL()
□ ■ final static String HEAD
□ ■ final static int HTTP_ACCEPTED
□ ■ final static int HTTP_BAD_GATEWAY
□ ■ final static int HTTP_BAD_METHOD
□ ■ final static int HTTP_BAD_REQUEST
□ ■ final static int HTTP_CLIENT_TIMEOUT
□ ■ final static int HTTP_CONFLICT
□ ■ final static int HTTP_CREATED
□ ■ final static int HTTP_ENTITY_TOO_LARGE
□ ■ final static int HTTP_EXPECT_FAILED
□ ■ final static int HTTP_FORBIDDEN

□ ■ final static int HTTP_GATEWAY_TIMEOUT
□ ■ final static int HTTP_GONE
□ ■ final static int HTTP_INTERNAL_ERROR
□ ■ final static int HTTP_LENGTH_REQUIRED
□ ■ final static int HTTP_MOVED_PERM
□ ■ final static int HTTP_MOVED_TEMP
□ ■ final static int HTTP_MULT_CHOICE
□ ■ final static int HTTP_NO_CONTENT
□ ■ final static int HTTP_NOT_ACCEPTABLE
□ ■ final static int HTTP_NOT_AUTHORITATIVE
□ ■ final static int HTTP_NOT_FOUND
□ ■ final static int HTTP_NOT_IMPLEMENTED
□ ■ final static int HTTP_NOT_MODIFIED
□ ■ final static int HTTP_OK
□ ■ final static int HTTP_PARTIAL
□ ■ final static int HTTP_PAYMENT_REQUIRED
□ ■ final static int HTTP_PRECON_FAILED
□ ■ final static int HTTP_PROXY_AUTH
□ ■ final static int HTTP_REQ_TOO_LONG
□ ■ final static int HTTP_RESET
□ ■ final static int HTTP_SEE_OTHER
□ ■ final static int HTTP_TEMP_REDIRECT
□ ■ final static int HTTP_UNAUTHORIZED
□ ■ final static int HTTP_UNAVAILABLE
□ ■ final static int HTTP_UNSUPPORTED_RANGE
□ ■ final static int HTTP_UNSUPPORTED_TYPE
□ ■ final static int HTTP_USE_PROXY
□ ■ final static int HTTP_VERSION
□ ■ final static String POST
□ ■ abstract void setRequestMethod(String) throws java.io.IOException
□ ■ abstract void setRequestProperty(String,String)
throws java.io.IOException

□ ■ interface HttpsConnection extends HttpConnection

Execution Environment Specification Version 1.3 References

OSGi Compendium Release 6 Page 1197

□ ■ abstract SecurityInfo getSecurityInfo() throws java.io.IOException

□ ■ interface InputConnection extends Connection
□ ■ abstract java.io.DataInputStream openDataInputStream()
throws java.io.IOException

□ ■ abstract java.io.InputStream openInputStream()
throws java.io.IOException

□ ■ interface OutputConnection extends Connection
□ ■ abstract java.io.DataOutputStream openDataOutputStream()
throws java.io.IOException

□ ■ abstract java.io.OutputStream openOutputStream()
throws java.io.IOException

□ ■ interface SecureConnection extends SocketConnection
□ ■ abstract SecurityInfo getSecurityInfo() throws java.io.IOException

□ ■ interface SecurityInfo
□ ■ abstract String getCipherSuite()
□ ■ abstract String getProtocolName()

□ ■ abstract String getProtocolVersion()
□ ■ abstract javax.microedition.pki.Certificate getServerCertificate()

□ ■ interface ServerSocketConnection extends StreamConnectionNotifier
□ ■ abstract String getLocalAddress() throws java.io.IOException □ ■ abstract int getLocalPort() throws java.io.IOException

□ ■ interface SocketConnection extends StreamConnection
□ ■ final static byte DELAY
□ ■ abstract String getAddress() throws java.io.IOException
□ ■ abstract String getLocalAddress() throws java.io.IOException
□ ■ abstract int getLocalPort() throws java.io.IOException
□ ■ abstract int getPort() throws java.io.IOException
□ ■ abstract int getSocketOption(byte) throws java.io.IOException

□ ■ final static byte KEEPALIVE
□ ■ final static byte LINGER
□ ■ final static byte RCVBUF
□ ■ abstract void setSocketOption(byte,int) throws java.io.IOException
□ ■ final static byte SNDBUF

□ ■ interface StreamConnection extends InputConnection , OutputConnection

□ ■ interface StreamConnectionNotifier extends Connection
□ ■ abstract StreamConnection acceptAndOpen()
throws java.io.IOException

□ ■ interface UDPDatagramConnection extends DatagramConnection
□ ■ abstract String getLocalAddress() throws java.io.IOException □ ■ abstract int getLocalPort() throws java.io.IOException

999.3.17 javax.microedition.pki

□ ■ package javax.microedition.pki
□ ■ interface Certificate
□ ■ abstract String getIssuer()
□ ■ abstract long getNotAfter()
□ ■ abstract long getNotBefore()
□ ■ abstract String getSerialNumber()

□ ■ abstract String getSigAlgName()
□ ■ abstract String getSubject()
□ ■ abstract String getType()
□ ■ abstract String getVersion()

□ ■ class CertificateException extends java.io.IOException
□ ■ CertificateException(String,Certificate,byte)
□ ■ CertificateException(Certificate,byte)
□ ■ final static byte BAD_EXTENSIONS
□ ■ final static byte BROKEN_CHAIN
□ ■ final static byte CERTIFICATE_CHAIN_TOO_LONG
□ ■ final static byte EXPIRED
□ ■ Certificate getCertificate()
□ ■ byte getReason()
□ ■ final static byte INAPPROPRIATE_KEY_USAGE

□ ■ final static byte MISSING_SIGNATURE
□ ■ final static byte NOT_YET_VALID
□ ■ final static byte ROOT_CA_EXPIRED
□ ■ final static byte SITENAME_MISMATCH
□ ■ final static byte UNAUTHORIZED_INTERMEDIATE_CA
□ ■ final static byte UNRECOGNIZED_ISSUER
□ ■ final static byte UNSUPPORTED_PUBLIC_KEY_TYPE
□ ■ final static byte UNSUPPORTED_SIGALG
□ ■ final static byte VERIFICATION_FAILED

999.3.18 javax.security.auth.x500

■ ■ package javax.security.auth.x500
■ ■ final class X500Principal implements java.io.Serializable , java.security.Principal
■ ■ X500Principal(byte[])
■ ■ X500Principal(java.io.InputStream)
■ ■ X500Principal(String)
■ ■ final static String CANONICAL
■ ■ byte[] getEncoded()

■ ■ String getName()
■ ■ String getName(String)
■ ■ final static String RFC1779
■ ■ final static String RFC2253

999.4 References

[1] The Java Virtual Machine Specification
Tim Lindholm and Frank Yellin, Addison Wesley, ISBN 0-201-63452-X

[2] Downloadable Execution Environments
http://www.osgi.org/Specifications/HomePage

References Execution Environment Specification Version 1.3

Page 1198 OSGi Compendium Release 6

[3] J2ME, Java 2 Micro Edition
http://java.sun.com/j2me

[4] CDC, Connected Device Configuration
http://java.sun.com/products/cdc

[5] CLDC, Connected Limited Device Configuration
http://java.sun.com/products/cldc

[6] Foundation Profile
http://java.sun.com/products/foundation
This external specification is © Copyright 2000 Sun Microsystems, Inc.

OSGi Compendium Release 6

OSGi Compendium Release 6 Page 1199

OSGi Compendium Release 6

Page 1200 OSGi Compendium Release 6

End Of Document

	OSGi Compendium
	Table of Contents
	Chapter 1. Introduction
	1.1. Reader Level
	1.2. Version Information
	1.2.1. OSGi Core Release 6
	1.2.2. Component Versions

	1.3. References
	1.4. Changes

	Chapter 100. Remote Services
	100.1. The Fallacies
	100.2. Remote Service Properties
	100.2.1. Registering a Service for Export
	100.2.2. Getting an Imported Service
	100.2.3. On Demand Import

	100.3. Intents
	100.4. General Usage
	100.4.1. Call by Value
	100.4.2. Data Fencing
	100.4.3. Remote Services Life Cycle
	100.4.4. Runtime
	100.4.5. Exceptions

	100.5. Configuration Types
	100.5.1. Configuration Type Properties
	100.5.2. Dependencies

	100.6. Security
	100.6.1. Limiting Exports and Imports

	100.7. References

	Chapter 101. Log Service Specification
	101.1. Introduction
	101.1.1. Entities

	101.2. The Log Service Interface
	101.3. Log Level and Error Severity
	101.4. Log Reader Service
	101.5. Log Entry Interface
	101.6. Mapping of Events
	101.6.1. Bundle Events Mapping
	101.6.2. Service Events Mapping
	101.6.3. Framework Events Mapping
	101.6.4. Log Events

	101.7. Security
	101.8. org.osgi.service.log
	101.8.1. Summary
	101.8.2. public interface LogEntry
	101.8.2.1. public Bundle getBundle()
	101.8.2.2. public Throwable getException()
	101.8.2.3. public int getLevel()
	101.8.2.4. public String getMessage()
	101.8.2.5. public ServiceReference getServiceReference()
	101.8.2.6. public long getTime()

	101.8.3. public interface LogListener extends EventListener
	101.8.3.1. public void logged(LogEntry entry)

	101.8.4. public interface LogReaderService
	101.8.4.1. public void addLogListener(LogListener listener)
	101.8.4.2. public Enumeration getLog()
	101.8.4.3. public void removeLogListener(LogListener listener)

	101.8.5. public interface LogService
	101.8.5.1. public static final int LOG_DEBUG = 4
	101.8.5.2. public static final int LOG_ERROR = 1
	101.8.5.3. public static final int LOG_INFO = 3
	101.8.5.4. public static final int LOG_WARNING = 2
	101.8.5.5. public void log(int level,String message)
	101.8.5.6. public void log(int level,String message,Throwable exception)
	101.8.5.7. public void log(ServiceReference sr,int level,String message)
	101.8.5.8. public void log(ServiceReference sr,int level,String message,Throwable exception)

	Chapter 102. Http Service Specification
	102.1. Introduction
	102.1.1. Entities

	102.2. Registering Servlets
	102.3. Registering Resources
	102.4. Mapping HTTP Requests to Servlet and Resource Registrations
	102.5. The Default Http Context Object
	102.6. Multipurpose Internet Mail Extension (MIME) Types
	102.7. Authentication
	102.8. Security
	102.8.1. Accessing Resources with the Default Http Context
	102.8.2. Accessing Other Types of Resources
	102.8.3. Servlet and HttpContext objects

	102.9. Configuration Properties
	102.10. org.osgi.service.http
	102.10.1. Summary
	102.10.2. public interface HttpContext
	102.10.2.1. public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"
	102.10.2.2. public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"
	102.10.2.3. public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"
	102.10.2.4. public String getMimeType(String name)
	102.10.2.5. public URL getResource(String name)
	102.10.2.6. public boolean handleSecurity(HttpServletRequest request,HttpServletResponse response) throws IOException

	102.10.3. public interface HttpService
	102.10.3.1. public HttpContext createDefaultHttpContext()
	102.10.3.2. public void registerResources(String alias,String name,HttpContext context) throws NamespaceException
	102.10.3.3. public void registerServlet(String alias,Servlet servlet,Dictionary initparams,HttpContext context) throws ServletException, NamespaceException
	102.10.3.4. public void unregister(String alias)

	102.10.4. public class NamespaceException extends Exception
	102.10.4.1. public NamespaceException(String message)
	102.10.4.2. public NamespaceException(String message,Throwable cause)
	102.10.4.3. public Throwable getCause()
	102.10.4.4. public Throwable getException()
	102.10.4.5. public Throwable initCause(Throwable cause)

	102.11. References

	Chapter 103. Device Access Specification
	103.1. Introduction
	103.1.1. Essentials
	103.1.2. Operation
	103.1.3. Entities

	103.2. Device Services
	103.2.1. Device Service Registration
	103.2.2. Device Service Attachment
	103.2.2.1. Idle Device Service
	103.2.2.2. Device Service Unregistration

	103.3. Device Category Specifications
	103.3.1. Device Category Guidelines
	103.3.2. Sample Device Category Specification
	103.3.3. Match Example

	103.4. Driver Services
	103.4.1. Driver Bundles
	103.4.2. Driver Taxonomy
	103.4.2.1. Base Drivers
	103.4.2.2. Refining Drivers
	103.4.2.3. Network Drivers
	103.4.2.4. Composite Drivers
	103.4.2.5. Referring Drivers
	103.4.2.6. Bridging Drivers
	103.4.2.7. Multiplexing Drivers
	103.4.2.8. Pure Consuming Drivers
	103.4.2.9. Other Driver Types

	103.4.3. Driver Service Registration
	103.4.4. Driver Service Unregistration
	103.4.5. Driver Service Methods
	103.4.6. Idle Driver Bundles

	103.5. Driver Locator Service
	103.5.1. The DriverLocator Interface
	103.5.2. A Driver Example

	103.6. The Driver Selector Service
	103.7. Device Manager
	103.7.1. Device Manager Startup
	103.7.2. The Device Attachment Algorithm
	103.7.3. Legend
	103.7.4. Optimizations
	103.7.5. Driver Bundle Reclamation
	103.7.6. Handling Driver Bundle Updates
	103.7.7. Simultaneous Device Service and Driver Service Registration

	103.8. Security
	103.9. org.osgi.service.device
	103.9.1. Summary
	103.9.2. public interface Constants
	103.9.2.1. public static final String DEVICE_CATEGORY = "DEVICE_CATEGORY"
	103.9.2.2. public static final String DEVICE_DESCRIPTION = "DEVICE_DESCRIPTION"
	103.9.2.3. public static final String DEVICE_SERIAL = "DEVICE_SERIAL"
	103.9.2.4. public static final String DRIVER_ID = "DRIVER_ID"

	103.9.3. public interface Device
	103.9.3.1. public static final int MATCH_NONE = 0
	103.9.3.2. public void noDriverFound()

	103.9.4. public interface Driver
	103.9.4.1. public String attach(ServiceReference reference) throws Exception
	103.9.4.2. public int match(ServiceReference reference) throws Exception

	103.9.5. public interface DriverLocator
	103.9.5.1. public String[] findDrivers(Dictionary props)
	103.9.5.2. public InputStream loadDriver(String id) throws IOException

	103.9.6. public interface DriverSelector
	103.9.6.1. public static final int SELECT_NONE = -1
	103.9.6.2. public int select(ServiceReference reference,Match[] matches)

	103.9.7. public interface Match
	103.9.7.1. public ServiceReference getDriver()
	103.9.7.2. public int getMatchValue()

	103.10. References

	Chapter 104. Configuration Admin Service Specification
	104.1. Introduction
	104.1.1. Essentials
	104.1.2. Entities
	104.1.3. Synopsis

	104.2. Configuration Targets
	104.3. The Persistent Identity
	104.3.1. PID Syntax
	104.3.1.1. Local Bundle PIDs
	104.3.1.2. Software PIDs
	104.3.1.3. Devices

	104.3.2. Targeted PIDs
	104.3.3. Extenders and Targeted PIDs

	104.4. The Configuration Object
	104.4.1. Location Binding
	104.4.2. Dynamic Binding
	104.4.3. Configuration Properties
	104.4.4. Property Propagation
	104.4.5. Automatic Properties
	104.4.6. Equality

	104.5. Managed Service
	104.5.1. Singletons
	104.5.2. Networks
	104.5.3. Configuring Managed Services
	104.5.4. Race Conditions
	104.5.5. Examples of Managed Service
	104.5.5.1. Configuring A Console Bundle

	104.5.6. Deletion

	104.6. Managed Service Factory
	104.6.1. When to Use a Managed Service Factory
	104.6.1.1. Example Email Fetcher
	104.6.1.2. Example Temperature Conversion Service
	104.6.1.3. Serial Ports

	104.6.2. Registration
	104.6.3. Deletion
	104.6.4. Managed Service Factory Example
	104.6.5. Multiple Consoles Example

	104.7. Configuration Admin Service
	104.7.1. Creating a Managed Service Configuration Object
	104.7.2. Creating a Managed Service Factory Configuration Object
	104.7.3. Accessing Existing Configurations
	104.7.4. Updating a Configuration
	104.7.5. Using Multi-Locations
	104.7.6. Regions
	104.7.7. Deletion
	104.7.8. Updating a Bundle's Own Configuration

	104.8. Configuration Events
	104.8.1. Event Admin Service and Configuration Change Events

	104.9. Configuration Plugin
	104.9.1. Limiting The Targets
	104.9.2. Example of Property Expansion
	104.9.3. Configuration Data Modifications
	104.9.4. Forcing a Callback
	104.9.5. Calling Order

	104.10. Meta Typing
	104.11. Security
	104.11.1. Configuration Permission
	104.11.2. Permissions Summary
	104.11.3. Configuration and Permission Administration

	104.12. org.osgi.service.cm
	104.12.1. Summary
	104.12.2. Permissions
	104.12.2.1. Configuration
	104.12.2.2. ConfigurationAdmin
	104.12.2.3. ManagedService
	104.12.2.4. ManagedServiceFactory

	104.12.3. public interface Configuration
	104.12.3.1. public void delete() throws IOException
	104.12.3.2. public boolean equals(Object other)
	104.12.3.3. public String getBundleLocation()
	104.12.3.4. public long getChangeCount()
	104.12.3.5. public String getFactoryPid()
	104.12.3.6. public String getPid()
	104.12.3.7. public Dictionary<String,Object> getProperties()
	104.12.3.8. public int hashCode()
	104.12.3.9. public void setBundleLocation(String location)
	104.12.3.10. public void update(Dictionary<String,?> properties) throws IOException
	104.12.3.11. public void update() throws IOException

	104.12.4. public interface ConfigurationAdmin
	104.12.4.1. public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"
	104.12.4.2. public static final String SERVICE_FACTORYPID = "service.factoryPid"
	104.12.4.3. public Configuration createFactoryConfiguration(String factoryPid) throws IOException
	104.12.4.4. public Configuration createFactoryConfiguration(String factoryPid,String location) throws IOException
	104.12.4.5. public Configuration getConfiguration(String pid,String location) throws IOException
	104.12.4.6. public Configuration getConfiguration(String pid) throws IOException
	104.12.4.7. public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

	104.12.5. public class ConfigurationEvent
	104.12.5.1. public static final int CM_DELETED = 2
	104.12.5.2. public static final int CM_LOCATION_CHANGED = 3
	104.12.5.3. public static final int CM_UPDATED = 1
	104.12.5.4. public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference,int type,String factoryPid,String pid)
	104.12.5.5. public String getFactoryPid()
	104.12.5.6. public String getPid()
	104.12.5.7. public ServiceReference<ConfigurationAdmin> getReference()
	104.12.5.8. public int getType()

	104.12.6. public class ConfigurationException extends Exception
	104.12.6.1. public ConfigurationException(String property,String reason)
	104.12.6.2. public ConfigurationException(String property,String reason,Throwable cause)
	104.12.6.3. public Throwable getCause()
	104.12.6.4. public String getProperty()
	104.12.6.5. public String getReason()
	104.12.6.6. public Throwable initCause(Throwable cause)

	104.12.7. public interface ConfigurationListener
	104.12.7.1. public void configurationEvent(ConfigurationEvent event)

	104.12.8. public final class ConfigurationPermission extends BasicPermission
	104.12.8.1. public static final String CONFIGURE = "configure"
	104.12.8.2. public static final String TARGET = "target"
	104.12.8.3. public ConfigurationPermission(String name,String actions)
	104.12.8.4. public boolean equals(Object obj)
	104.12.8.5. public String getActions()
	104.12.8.6. public int hashCode()
	104.12.8.7. public boolean implies(Permission p)
	104.12.8.8. public PermissionCollection newPermissionCollection()

	104.12.9. public interface ConfigurationPlugin
	104.12.9.1. public static final String CM_RANKING = "service.cmRanking"
	104.12.9.2. public static final String CM_TARGET = "cm.target"
	104.12.9.3. public void modifyConfiguration(ServiceReference<?> reference,Dictionary<String,Object> properties)

	104.12.10. public interface ManagedService
	104.12.10.1. public void updated(Dictionary<String,?> properties) throws ConfigurationException

	104.12.11. public interface ManagedServiceFactory
	104.12.11.1. public void deleted(String pid)
	104.12.11.2. public String getName()
	104.12.11.3. public void updated(String pid,Dictionary<String,?> properties) throws ConfigurationException

	104.12.12. public interface SynchronousConfigurationListener extends ConfigurationListener

	104.13. Changes

	Chapter 105. Metatype Service Specification
	105.1. Introduction
	105.1.1. Essentials
	105.1.2. Entities
	105.1.3. Operation

	105.2. Attributes Model
	105.3. Object Class Definition
	105.4. Attribute Definition
	105.5. Meta Type Service
	105.6. Meta Type Provider Service
	105.7. Using the Meta Type Resources
	105.7.1. XML Schema of a Meta Type Resource
	105.7.2. Designate Element
	105.7.3. Example Metadata File
	105.7.4. Object Element

	105.8. Meta Type Resource XML Schema
	105.9. Meta Type Annotations
	105.9.1. ObjectClassDefinition Annotation
	105.9.2. AttributeDefinition Annotation
	105.9.3. Designate Annotation

	105.10. Limitations
	105.11. Related Standards
	105.12. Capabilities
	105.13. Security Considerations
	105.14. org.osgi.service.metatype
	105.14.1. Summary
	105.14.2. public interface AttributeDefinition
	105.14.2.1. public static final int BIGDECIMAL = 10
	105.14.2.2. public static final int BIGINTEGER = 9
	105.14.2.3. public static final int BOOLEAN = 11
	105.14.2.4. public static final int BYTE = 6
	105.14.2.5. public static final int CHARACTER = 5
	105.14.2.6. public static final int DOUBLE = 7
	105.14.2.7. public static final int FLOAT = 8
	105.14.2.8. public static final int INTEGER = 3
	105.14.2.9. public static final int LONG = 2
	105.14.2.10. public static final int PASSWORD = 12
	105.14.2.11. public static final int SHORT = 4
	105.14.2.12. public static final int STRING = 1
	105.14.2.13. public int getCardinality()
	105.14.2.14. public String[] getDefaultValue()
	105.14.2.15. public String getDescription()
	105.14.2.16. public String getID()
	105.14.2.17. public String getName()
	105.14.2.18. public String[] getOptionLabels()
	105.14.2.19. public String[] getOptionValues()
	105.14.2.20. public int getType()
	105.14.2.21. public String validate(String value)

	105.14.3. public interface MetaTypeInformation extends MetaTypeProvider
	105.14.3.1. public Bundle getBundle()
	105.14.3.2. public String[] getFactoryPids()
	105.14.3.3. public String[] getPids()

	105.14.4. public interface MetaTypeProvider
	105.14.4.1. public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"
	105.14.4.2. public static final String METATYPE_PID = "metatype.pid"
	105.14.4.3. public String[] getLocales()
	105.14.4.4. public ObjectClassDefinition getObjectClassDefinition(String id,String locale)

	105.14.5. public interface MetaTypeService
	105.14.5.1. public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"
	105.14.5.2. public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"
	105.14.5.3. public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

	105.14.6. public interface ObjectClassDefinition
	105.14.6.1. public static final int ALL = -1
	105.14.6.2. public static final int OPTIONAL = 2
	105.14.6.3. public static final int REQUIRED = 1
	105.14.6.4. public AttributeDefinition[] getAttributeDefinitions(int filter)
	105.14.6.5. public String getDescription()
	105.14.6.6. public InputStream getIcon(int size) throws IOException
	105.14.6.7. public String getID()
	105.14.6.8. public String getName()

	105.15. org.osgi.service.metatype.annotations
	105.15.1. Summary
	105.15.2. @AttributeDefinition
	105.15.2.1. String name default ""
	105.15.2.2. String description default ""
	105.15.2.3. AttributeType type default STRING
	105.15.2.4. int cardinality default 0
	105.15.2.5. String min default ""
	105.15.2.6. String max default ""
	105.15.2.7. String[] defaultValue default {}
	105.15.2.8. boolean required default true
	105.15.2.9. Option[] options default {}

	105.15.3. enum AttributeType
	105.15.3.1. STRING
	105.15.3.2. LONG
	105.15.3.3. INTEGER
	105.15.3.4. SHORT
	105.15.3.5. CHARACTER
	105.15.3.6. BYTE
	105.15.3.7. DOUBLE
	105.15.3.8. FLOAT
	105.15.3.9. BOOLEAN
	105.15.3.10. PASSWORD

	105.15.4. @Designate
	105.15.4.1. Class<?> ocd
	105.15.4.2. boolean factory default false

	105.15.5. @Icon
	105.15.5.1. String resource
	105.15.5.2. int size

	105.15.6. @ObjectClassDefinition
	105.15.6.1. String id default ""
	105.15.6.2. String name default ""
	105.15.6.3. String description default ""
	105.15.6.4. String localization default ""
	105.15.6.5. String[] pid default {}
	105.15.6.6. String[] factoryPid default {}
	105.15.6.7. Icon[] icon default {}

	105.15.7. @Option
	105.15.7.1. String label default ""
	105.15.7.2. String value

	105.16. References
	105.17. Changes

	Chapter 106. PreferencesService Specification
	106.1. Introduction
	106.1.1. Essentials
	106.1.2. Entities
	106.1.3. Operation

	106.2. Preferences Interface
	106.2.1. Hierarchies
	106.2.2. Naming
	106.2.3. Tree Traversal Methods
	106.2.4. Properties
	106.2.5. Storing and Retrieving Properties
	106.2.6. Defaults

	106.3. Concurrency
	106.4. PreferencesService Interface
	106.5. Cleanup
	106.6. org.osgi.service.prefs
	106.6.1. Summary
	106.6.2. public class BackingStoreException extends Exception
	106.6.2.1. public BackingStoreException(String message)
	106.6.2.2. public BackingStoreException(String message,Throwable cause)
	106.6.2.3. public Throwable getCause()
	106.6.2.4. public Throwable initCause(Throwable cause)

	106.6.3. public interface Preferences
	106.6.3.1. public String absolutePath()
	106.6.3.2. public String[] childrenNames() throws BackingStoreException
	106.6.3.3. public void clear() throws BackingStoreException
	106.6.3.4. public void flush() throws BackingStoreException
	106.6.3.5. public String get(String key,String def)
	106.6.3.6. public boolean getBoolean(String key,boolean def)
	106.6.3.7. public byte[] getByteArray(String key,byte[] def)
	106.6.3.8. public double getDouble(String key,double def)
	106.6.3.9. public float getFloat(String key,float def)
	106.6.3.10. public int getInt(String key,int def)
	106.6.3.11. public long getLong(String key,long def)
	106.6.3.12. public String[] keys() throws BackingStoreException
	106.6.3.13. public String name()
	106.6.3.14. public Preferences node(String pathName)
	106.6.3.15. public boolean nodeExists(String pathName) throws BackingStoreException
	106.6.3.16. public Preferences parent()
	106.6.3.17. public void put(String key,String value)
	106.6.3.18. public void putBoolean(String key,boolean value)
	106.6.3.19. public void putByteArray(String key,byte[] value)
	106.6.3.20. public void putDouble(String key,double value)
	106.6.3.21. public void putFloat(String key,float value)
	106.6.3.22. public void putInt(String key,int value)
	106.6.3.23. public void putLong(String key,long value)
	106.6.3.24. public void remove(String key)
	106.6.3.25. public void removeNode() throws BackingStoreException
	106.6.3.26. public void sync() throws BackingStoreException

	106.6.4. public interface PreferencesService
	106.6.4.1. public Preferences getSystemPreferences()
	106.6.4.2. public Preferences getUserPreferences(String name)
	106.6.4.3. public String[] getUsers()

	106.7. References

	Chapter 107. User Admin Service Specification
	107.1. Introduction
	107.1.1. Essentials
	107.1.2. Entities
	107.1.3. Operation

	107.2. Authentication
	107.2.1. Repository
	107.2.2. Basic Authentication
	107.2.3. Certificates

	107.3. Authorization
	107.3.1. The Authorization Object
	107.3.2. Authorization Example

	107.4. Repository Maintenance
	107.5. User Admin Events
	107.5.1. Event Admin and User Admin Change Events

	107.6. Security
	107.6.1. User Admin Permission

	107.7. Relation to JAAS
	107.7.1. JDK 1.3 Dependencies
	107.7.2. Existing OSGi Mechanism
	107.7.3. Future Road Map

	107.8. org.osgi.service.useradmin
	107.8.1. Summary
	107.8.2. public interface Authorization
	107.8.2.1. public String getName()
	107.8.2.2. public String[] getRoles()
	107.8.2.3. public boolean hasRole(String name)

	107.8.3. public interface Group extends User
	107.8.3.1. public boolean addMember(Role role)
	107.8.3.2. public boolean addRequiredMember(Role role)
	107.8.3.3. public Role[] getMembers()
	107.8.3.4. public Role[] getRequiredMembers()
	107.8.3.5. public boolean removeMember(Role role)

	107.8.4. public interface Role
	107.8.4.1. public static final int GROUP = 2
	107.8.4.2. public static final int ROLE = 0
	107.8.4.3. public static final int USER = 1
	107.8.4.4. public static final String USER_ANYONE = "user.anyone"
	107.8.4.5. public String getName()
	107.8.4.6. public Dictionary getProperties()
	107.8.4.7. public int getType()

	107.8.5. public interface User extends Role
	107.8.5.1. public Dictionary getCredentials()
	107.8.5.2. public boolean hasCredential(String key,Object value)

	107.8.6. public interface UserAdmin
	107.8.6.1. public Role createRole(String name,int type)
	107.8.6.2. public Authorization getAuthorization(User user)
	107.8.6.3. public Role getRole(String name)
	107.8.6.4. public Role[] getRoles(String filter) throws InvalidSyntaxException
	107.8.6.5. public User getUser(String key,String value)
	107.8.6.6. public boolean removeRole(String name)

	107.8.7. public class UserAdminEvent
	107.8.7.1. public static final int ROLE_CHANGED = 2
	107.8.7.2. public static final int ROLE_CREATED = 1
	107.8.7.3. public static final int ROLE_REMOVED = 4
	107.8.7.4. public UserAdminEvent(ServiceReference ref,int type,Role role)
	107.8.7.5. public Role getRole()
	107.8.7.6. public ServiceReference getServiceReference()
	107.8.7.7. public int getType()

	107.8.8. public interface UserAdminListener
	107.8.8.1. public void roleChanged(UserAdminEvent event)

	107.8.9. public final class UserAdminPermission extends BasicPermission
	107.8.9.1. public static final String ADMIN = "admin"
	107.8.9.2. public static final String CHANGE_CREDENTIAL = "changeCredential"
	107.8.9.3. public static final String CHANGE_PROPERTY = "changeProperty"
	107.8.9.4. public static final String GET_CREDENTIAL = "getCredential"
	107.8.9.5. public UserAdminPermission(String name,String actions)
	107.8.9.6. public boolean equals(Object obj)
	107.8.9.7. public String getActions()
	107.8.9.8. public int hashCode()
	107.8.9.9. public boolean implies(Permission p)
	107.8.9.10. public PermissionCollection newPermissionCollection()
	107.8.9.11. public String toString()

	107.9. References

	Chapter 108. Wire Admin Service Specification
	108.1. Introduction
	108.1.1. Wire Admin Service Essentials
	108.1.2. Wire Admin Service Entities
	108.1.3. Operation Summary

	108.2. Producer Service
	108.2.1. Producer Properties
	108.2.2. Connections
	108.2.3. Producer Example
	108.2.4. Push and Pull
	108.2.5. Producers and Flavors

	108.3. Consumer Service
	108.3.1. Consumer Properties
	108.3.2. Connections
	108.3.3. Consumer Example
	108.3.4. Polling or Receiving a Value
	108.3.5. Consumers and Flavors

	108.4. Implementation issues
	108.5. Wire Properties
	108.5.1. Display Service Example

	108.6. Composite objects
	108.6.1. Identification
	108.6.2. Scope
	108.6.3. Access Control
	108.6.4. Composites and Flavors
	108.6.5. Scope name syntax

	108.7. Wire Flow Control
	108.7.1. Filtering by Time
	108.7.2. Filtering by Change
	108.7.3. Hysteresis

	108.8. Flavors
	108.9. Converters
	108.10. Wire Admin Service Implementation
	108.11. Wire Admin Listener Service Events
	108.11.1. Event Admin Service Events

	108.12. Connecting External Entities
	108.13. Related Standards
	108.13.1. Java Beans

	108.14. Security
	108.14.1. Separation of Consumer and Producer Services
	108.14.2. Using Wire Admin Service
	108.14.3. Wire Permission

	108.15. org.osgi.service.wireadmin
	108.15.1. Summary
	108.15.2. public class BasicEnvelope implements Envelope
	108.15.2.1. public BasicEnvelope(Object value,Object identification,String scope)
	108.15.2.2. public Object getIdentification()
	108.15.2.3. public String getScope()
	108.15.2.4. public Object getValue()

	108.15.3. public interface Consumer
	108.15.3.1. public void producersConnected(Wire[] wires)
	108.15.3.2. public void updated(Wire wire,Object value)

	108.15.4. public interface Envelope
	108.15.4.1. public Object getIdentification()
	108.15.4.2. public String getScope()
	108.15.4.3. public Object getValue()

	108.15.5. public interface Producer
	108.15.5.1. public void consumersConnected(Wire[] wires)
	108.15.5.2. public Object polled(Wire wire)

	108.15.6. public interface Wire
	108.15.6.1. public Class[] getFlavors()
	108.15.6.2. public Object getLastValue()
	108.15.6.3. public Dictionary getProperties()
	108.15.6.4. public String[] getScope()
	108.15.6.5. public boolean hasScope(String name)
	108.15.6.6. public boolean isConnected()
	108.15.6.7. public boolean isValid()
	108.15.6.8. public Object poll()
	108.15.6.9. public void update(Object value)

	108.15.7. public interface WireAdmin
	108.15.7.1. public Wire createWire(String producerPID,String consumerPID,Dictionary properties)
	108.15.7.2. public void deleteWire(Wire wire)
	108.15.7.3. public Wire[] getWires(String filter) throws InvalidSyntaxException
	108.15.7.4. public void updateWire(Wire wire,Dictionary properties)

	108.15.8. public class WireAdminEvent
	108.15.8.1. public static final int CONSUMER_EXCEPTION = 2
	108.15.8.2. public static final int PRODUCER_EXCEPTION = 1
	108.15.8.3. public static final int WIRE_CONNECTED = 32
	108.15.8.4. public static final int WIRE_CREATED = 4
	108.15.8.5. public static final int WIRE_DELETED = 16
	108.15.8.6. public static final int WIRE_DISCONNECTED = 64
	108.15.8.7. public static final int WIRE_TRACE = 128
	108.15.8.8. public static final int WIRE_UPDATED = 8
	108.15.8.9. public WireAdminEvent(ServiceReference reference,int type,Wire wire,Throwable exception)
	108.15.8.10. public ServiceReference getServiceReference()
	108.15.8.11. public Throwable getThrowable()
	108.15.8.12. public int getType()
	108.15.8.13. public Wire getWire()

	108.15.9. public interface WireAdminListener
	108.15.9.1. public void wireAdminEvent(WireAdminEvent event)

	108.15.10. public interface WireConstants
	108.15.10.1. public static final String WIREADMIN_CONSUMER_COMPOSITE = "wireadmin.consumer.composite"
	108.15.10.2. public static final String WIREADMIN_CONSUMER_FLAVORS = "wireadmin.consumer.flavors"
	108.15.10.3. public static final String WIREADMIN_CONSUMER_PID = "wireadmin.consumer.pid"
	108.15.10.4. public static final String WIREADMIN_CONSUMER_SCOPE = "wireadmin.consumer.scope"
	108.15.10.5. public static final String WIREADMIN_EVENTS = "wireadmin.events"
	108.15.10.6. public static final String WIREADMIN_FILTER = "wireadmin.filter"
	108.15.10.7. public static final String WIREADMIN_PID = "wireadmin.pid"
	108.15.10.8. public static final String WIREADMIN_PRODUCER_COMPOSITE = "wireadmin.producer.composite"
	108.15.10.9. public static final String WIREADMIN_PRODUCER_FILTERS = "wireadmin.producer.filters"
	108.15.10.10. public static final String WIREADMIN_PRODUCER_FLAVORS = "wireadmin.producer.flavors"
	108.15.10.11. public static final String WIREADMIN_PRODUCER_PID = "wireadmin.producer.pid"
	108.15.10.12. public static final String WIREADMIN_PRODUCER_SCOPE = "wireadmin.producer.scope"
	108.15.10.13. public static final String[] WIREADMIN_SCOPE_ALL
	108.15.10.14. public static final String WIREVALUE_CURRENT = "wirevalue.current"
	108.15.10.15. public static final String WIREVALUE_DELTA_ABSOLUTE = "wirevalue.delta.absolute"
	108.15.10.16. public static final String WIREVALUE_DELTA_RELATIVE = "wirevalue.delta.relative"
	108.15.10.17. public static final String WIREVALUE_ELAPSED = "wirevalue.elapsed"
	108.15.10.18. public static final String WIREVALUE_PREVIOUS = "wirevalue.previous"

	108.15.11. public final class WirePermission extends BasicPermission
	108.15.11.1. public static final String CONSUME = "consume"
	108.15.11.2. public static final String PRODUCE = "produce"
	108.15.11.3. public WirePermission(String name,String actions)
	108.15.11.4. public boolean equals(Object obj)
	108.15.11.5. public String getActions()
	108.15.11.6. public int hashCode()
	108.15.11.7. public boolean implies(Permission p)
	108.15.11.8. public PermissionCollection newPermissionCollection()
	108.15.11.9. public String toString()

	108.16. References

	Chapter 109. IO Connector Service Specification
	109.1. Introduction
	109.1.1. Essentials
	109.1.2. Entities

	109.2. The Connector Framework
	109.3. Connector Service
	109.4. Providing New Schemes
	109.4.1. Orphaned Connection Objects

	109.5. Execution Environment
	109.6. Security
	109.7. org.osgi.service.io
	109.7.1. Summary
	109.7.2. public interface ConnectionFactory
	109.7.2.1. public static final String IO_SCHEME = "io.scheme"
	109.7.2.2. public Connection createConnection(String name,int mode,boolean timeouts) throws IOException

	109.7.3. public interface ConnectorService
	109.7.3.1. public static final int READ = 1
	109.7.3.2. public static final int READ_WRITE = 3
	109.7.3.3. public static final int WRITE = 2
	109.7.3.4. public Connection open(String name) throws IOException
	109.7.3.5. public Connection open(String name,int mode) throws IOException
	109.7.3.6. public Connection open(String name,int mode,boolean timeouts) throws IOException
	109.7.3.7. public DataInputStream openDataInputStream(String name) throws IOException
	109.7.3.8. public DataOutputStream openDataOutputStream(String name) throws IOException
	109.7.3.9. public InputStream openInputStream(String name) throws IOException
	109.7.3.10. public OutputStream openOutputStream(String name) throws IOException

	109.8. References

	Chapter 110. Initial Provisioning Specification
	110.1. Introduction
	110.1.1. Essentials
	110.1.2. Entities

	110.2. Procedure
	110.2.1. InitialProvisioning-Entries Manifest Header

	110.3. Special Configurations
	110.3.1. Branded OSGi framework Server
	110.3.2. Non-connected OSGi framework

	110.4. The Provisioning Service
	110.5. Management Agent Environment
	110.6. Mapping To File Scheme
	110.6.1. Example With File Scheme

	110.7. Mapping To HTTP(S) Scheme
	110.7.1. HTTPS Certificates
	110.7.2. Certificate Encoding
	110.7.3. URL Encoding

	110.8. Mapping To RSH Scheme
	110.8.1. Shared Secret
	110.8.2. Request Coding
	110.8.3. Response Coding
	110.8.4. RSH URL
	110.8.5. Extensions to the Provisioning Service Dictionary
	110.8.6. RSH Transport

	110.9. Exception Handling
	110.10. Security
	110.10.1. Concerns
	110.10.2. OSGi framework Long-Term Security
	110.10.3. Permissions

	110.11. org.osgi.service.provisioning
	110.11.1. Summary
	110.11.2. public interface ProvisioningService
	110.11.2.1. public static final String INITIALPROVISIONING_ENTRIES = "InitialProvisioning-Entries"
	110.11.2.2. public static final String MIME_BUNDLE = "application/vnd.osgi.bundle"
	110.11.2.3. public static final String MIME_BUNDLE_ALT = "application/x-osgi-bundle"
	110.11.2.4. public static final String MIME_BUNDLE_URL = "text/x-osgi-bundle-url"
	110.11.2.5. public static final String MIME_BYTE_ARRAY = "application/octet-stream"
	110.11.2.6. public static final String MIME_STRING = "text/plain;charset=utf-8"
	110.11.2.7. public static final String PROVISIONING_AGENT_CONFIG = "provisioning.agent.config"
	110.11.2.8. public static final String PROVISIONING_REFERENCE = "provisioning.reference"
	110.11.2.9. public static final String PROVISIONING_ROOTX509 = "provisioning.rootx509"
	110.11.2.10. public static final String PROVISIONING_RSH_SECRET = "provisioning.rsh.secret"
	110.11.2.11. public static final String PROVISIONING_SPID = "provisioning.spid"
	110.11.2.12. public static final String PROVISIONING_START_BUNDLE = "provisioning.start.bundle"
	110.11.2.13. public static final String PROVISIONING_UPDATE_COUNT = "provisioning.update.count"
	110.11.2.14. public void addInformation(Dictionary info)
	110.11.2.15. public void addInformation(ZipInputStream zis) throws IOException
	110.11.2.16. public Dictionary getInformation()
	110.11.2.17. public void setInformation(Dictionary info)

	110.12. References

	Chapter 111. UPnP™ Device Service Specification
	111.1. Introduction
	111.1.1. Essentials
	111.1.2. Entities
	111.1.3. Operation Summary

	111.2. UPnP Specifications
	111.2.1. UPnP Base Driver

	111.3. UPnP Device
	111.3.1. Root Device
	111.3.2. Exported Versus Imported Devices
	111.3.3. Icons

	111.4. Device Category
	111.5. UPnPService
	111.5.1. State Variables

	111.6. Working With a UPnP Device
	111.7. Implementing a UPnP Device
	111.8. Event API
	111.8.1. Initial Event Delivery

	111.9. UPnP Events and Event Admin service
	111.10. Localization
	111.11. Dates and Times
	111.12. UPnP Exception
	111.13. Configuration
	111.14. Networking considerations
	111.14.1. The UPnP Multicasts

	111.15. Security
	111.16. org.osgi.service.upnp
	111.16.1. Summary
	111.16.2. public interface UPnPAction
	111.16.2.1. public String[] getInputArgumentNames()
	111.16.2.2. public String getName()
	111.16.2.3. public String[] getOutputArgumentNames()
	111.16.2.4. public String getReturnArgumentName()
	111.16.2.5. public UPnPStateVariable getStateVariable(String argumentName)
	111.16.2.6. public Dictionary invoke(Dictionary args) throws Exception

	111.16.3. public interface UPnPDevice
	111.16.3.1. public static final String CHILDREN_UDN = "UPnP.device.childrenUDN"
	111.16.3.2. public static final String DEVICE_CATEGORY = "UPnP"
	111.16.3.3. public static final String FRIENDLY_NAME = "UPnP.device.friendlyName"
	111.16.3.4. public static final String ID = "UPnP.device.UDN"
	111.16.3.5. public static final String MANUFACTURER = "UPnP.device.manufacturer"
	111.16.3.6. public static final String MANUFACTURER_URL = "UPnP.device.manufacturerURL"
	111.16.3.7. public static final int MATCH_GENERIC = 1
	111.16.3.8. public static final int MATCH_MANUFACTURER_MODEL = 7
	111.16.3.9. public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15
	111.16.3.10. public static final int MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31
	111.16.3.11. public static final int MATCH_TYPE = 3
	111.16.3.12. public static final String MODEL_DESCRIPTION = "UPnP.device.modelDescription"
	111.16.3.13. public static final String MODEL_NAME = "UPnP.device.modelName"
	111.16.3.14. public static final String MODEL_NUMBER = "UPnP.device.modelNumber"
	111.16.3.15. public static final String MODEL_URL = "UPnP.device.modelURL"
	111.16.3.16. public static final String PARENT_UDN = "UPnP.device.parentUDN"
	111.16.3.17. public static final String PRESENTATION_URL = "UPnP.presentationURL"
	111.16.3.18. public static final String SERIAL_NUMBER = "UPnP.device.serialNumber"
	111.16.3.19. public static final String TYPE = "UPnP.device.type"
	111.16.3.20. public static final String UDN = "UPnP.device.UDN"
	111.16.3.21. public static final String UPC = "UPnP.device.UPC"
	111.16.3.22. public static final String UPNP_EXPORT = "UPnP.export"
	111.16.3.23. public Dictionary getDescriptions(String locale)
	111.16.3.24. public UPnPIcon[] getIcons(String locale)
	111.16.3.25. public UPnPService getService(String serviceId)
	111.16.3.26. public UPnPService[] getServices()

	111.16.4. public interface UPnPEventListener
	111.16.4.1. public static final String UPNP_FILTER = "upnp.filter"
	111.16.4.2. public void notifyUPnPEvent(String deviceId,String serviceId,Dictionary events)

	111.16.5. public class UPnPException extends Exception
	111.16.5.1. public static final int DEVICE_INTERNAL_ERROR = 501
	111.16.5.2. public static final int INVALID_ACTION = 401
	111.16.5.3. public static final int INVALID_ARGS = 402
	111.16.5.4. public static final int INVALID_SEQUENCE_NUMBER = 403
	111.16.5.5. public static final int INVALID_VARIABLE = 404
	111.16.5.6. public UPnPException(int errorCode,String errorDescription)
	111.16.5.7. public UPnPException(int errorCode,String errorDescription,Throwable errorCause)
	111.16.5.8. public int getUPnPError_Code()
	111.16.5.9. public int getUPnPErrorCode()

	111.16.6. public interface UPnPIcon
	111.16.6.1. public int getDepth()
	111.16.6.2. public int getHeight()
	111.16.6.3. public InputStream getInputStream() throws IOException
	111.16.6.4. public String getMimeType()
	111.16.6.5. public int getSize()
	111.16.6.6. public int getWidth()

	111.16.7. public interface UPnPLocalStateVariable extends UPnPStateVariable
	111.16.7.1. public Object getCurrentValue()

	111.16.8. public interface UPnPService
	111.16.8.1. public static final String ID = "UPnP.service.id"
	111.16.8.2. public static final String TYPE = "UPnP.service.type"
	111.16.8.3. public UPnPAction getAction(String name)
	111.16.8.4. public UPnPAction[] getActions()
	111.16.8.5. public String getId()
	111.16.8.6. public UPnPStateVariable getStateVariable(String name)
	111.16.8.7. public UPnPStateVariable[] getStateVariables()
	111.16.8.8. public String getType()
	111.16.8.9. public String getVersion()

	111.16.9. public interface UPnPStateVariable
	111.16.9.1. public static final String TYPE_BIN_BASE64 = "bin.base64"
	111.16.9.2. public static final String TYPE_BIN_HEX = "bin.hex"
	111.16.9.3. public static final String TYPE_BOOLEAN = "boolean"
	111.16.9.4. public static final String TYPE_CHAR = "char"
	111.16.9.5. public static final String TYPE_DATE = "date"
	111.16.9.6. public static final String TYPE_DATETIME = "dateTime"
	111.16.9.7. public static final String TYPE_DATETIME_TZ = "dateTime.tz"
	111.16.9.8. public static final String TYPE_FIXED_14_4 = "fixed.14.4"
	111.16.9.9. public static final String TYPE_FLOAT = "float"
	111.16.9.10. public static final String TYPE_I1 = "i1"
	111.16.9.11. public static final String TYPE_I2 = "i2"
	111.16.9.12. public static final String TYPE_I4 = "i4"
	111.16.9.13. public static final String TYPE_INT = "int"
	111.16.9.14. public static final String TYPE_NUMBER = "number"
	111.16.9.15. public static final String TYPE_R4 = "r4"
	111.16.9.16. public static final String TYPE_R8 = "r8"
	111.16.9.17. public static final String TYPE_STRING = "string"
	111.16.9.18. public static final String TYPE_TIME = "time"
	111.16.9.19. public static final String TYPE_TIME_TZ = "time.tz"
	111.16.9.20. public static final String TYPE_UI1 = "ui1"
	111.16.9.21. public static final String TYPE_UI2 = "ui2"
	111.16.9.22. public static final String TYPE_UI4 = "ui4"
	111.16.9.23. public static final String TYPE_URI = "uri"
	111.16.9.24. public static final String TYPE_UUID = "uuid"
	111.16.9.25. public String[] getAllowedValues()
	111.16.9.26. public Object getDefaultValue()
	111.16.9.27. public Class getJavaDataType()
	111.16.9.28. public Number getMaximum()
	111.16.9.29. public Number getMinimum()
	111.16.9.30. public String getName()
	111.16.9.31. public Number getStep()
	111.16.9.32. public String getUPnPDataType()
	111.16.9.33. public boolean sendsEvents()

	111.17. References

	Chapter 112. Declarative Services Specification
	112.1. Introduction
	112.1.1. Essentials
	112.1.2. Entities
	112.1.3. Synopsis
	112.1.4. Readers

	112.2. Components
	112.2.1. Declaring a Component
	112.2.2. Immediate Component
	112.2.3. Delayed Component
	112.2.4. Factory Component

	112.3. References to Services
	112.3.1. Accessing Services
	112.3.2. Event Methods
	112.3.3. Field Strategy
	112.3.4. Reference Cardinality
	112.3.5. Reference Scope
	112.3.6. Reference Policy
	112.3.6.1. Static Reference Policy
	112.3.6.2. Dynamic Reference Policy

	112.3.7. Reference Policy Option
	112.3.8. Reference Field Option
	112.3.8.1. Replace Field Option
	112.3.8.2. Update Field Option

	112.3.9. Selecting Target Services
	112.3.10. Circular References

	112.4. Component Description
	112.4.1. Annotations
	112.4.2. Service Component Header
	112.4.3. XML Document
	112.4.4. Component Element
	112.4.5. Implementation Element
	112.4.6. Property and Properties Elements
	112.4.7. Service Element
	112.4.8. Reference Element

	112.5. Component Life Cycle
	112.5.1. Enabled
	112.5.2. Satisfied
	112.5.3. Immediate Component
	112.5.4. Delayed Component
	112.5.5. Factory Component
	112.5.6. Activation
	112.5.7. Binding Services
	112.5.8. Activate Method
	112.5.9. Component Context
	112.5.10. Bound Service Replacement
	112.5.11. Updated
	112.5.12. Modification
	112.5.13. Modified Method
	112.5.14. Deactivation
	112.5.15. Deactivate Method
	112.5.16. Unbinding
	112.5.17. Life Cycle Example

	112.6. Component Properties
	112.6.1. Service Properties
	112.6.2. Reference Properties
	112.6.2.1. Target Property
	112.6.2.2. Minimum Cardinality Property

	112.7. Deployment
	112.7.1. Configuration Changes
	112.7.1.1. Ignore Configuration Policy
	112.7.1.2. Require Configuration Policy
	112.7.1.3. Optional Configuration Policy
	112.7.1.4. Configuration Change Actions

	112.8. Annotations
	112.8.1. Component Annotations
	112.8.2. Component Property Types
	112.8.2.1. Component Property Mapping
	112.8.2.2. Coercing Component Property Values

	112.8.3. Ordering of Generated Properties

	112.9. Service Component Runtime
	112.9.1. Relationship to OSGi Framework
	112.9.2. Starting and Stopping SCR
	112.9.3. Logging Error Messages
	112.9.4. Locating Component Methods and Fields
	112.9.5. Bundle Activator Interaction
	112.9.6. Introspection
	112.9.7. Capabilities

	112.10. Security
	112.10.1. Service Permissions
	112.10.2. Required Admin Permission
	112.10.3. Using hasPermission
	112.10.4. Configuration Multi-Locations and Regions

	112.11. Component Description Schema
	112.12. org.osgi.service.component
	112.12.1. Summary
	112.12.2. public interface ComponentConstants
	112.12.2.1. public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"
	112.12.2.2. public static final String COMPONENT_FACTORY = "component.factory"
	112.12.2.3. public static final String COMPONENT_ID = "component.id"
	112.12.2.4. public static final String COMPONENT_NAME = "component.name"
	112.12.2.5. public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6
	112.12.2.6. public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4
	112.12.2.7. public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3
	112.12.2.8. public static final int DEACTIVATION_REASON_DISABLED = 1
	112.12.2.9. public static final int DEACTIVATION_REASON_DISPOSED = 5
	112.12.2.10. public static final int DEACTIVATION_REASON_REFERENCE = 2
	112.12.2.11. public static final int DEACTIVATION_REASON_UNSPECIFIED = 0
	112.12.2.12. public static final String REFERENCE_TARGET_SUFFIX = ".target"
	112.12.2.13. public static final String SERVICE_COMPONENT = "Service-Component"

	112.12.3. public interface ComponentContext
	112.12.3.1. public void disableComponent(String name)
	112.12.3.2. public void enableComponent(String name)
	112.12.3.3. public BundleContext getBundleContext()
	112.12.3.4. public ComponentInstance getComponentInstance()
	112.12.3.5. public Dictionary<String,Object> getProperties()
	112.12.3.6. public ServiceReference<?> getServiceReference()
	112.12.3.7. public Bundle getUsingBundle()
	112.12.3.8. public Object locateService(String name)
	112.12.3.9. public S locateService(String name,ServiceReference<S> reference)
	112.12.3.10. public Object[] locateServices(String name)

	112.12.4. public class ComponentException extends RuntimeException
	112.12.4.1. public ComponentException(String message,Throwable cause)
	112.12.4.2. public ComponentException(String message)
	112.12.4.3. public ComponentException(Throwable cause)
	112.12.4.4. public Throwable getCause()
	112.12.4.5. public Throwable initCause(Throwable cause)

	112.12.5. public interface ComponentFactory
	112.12.5.1. public ComponentInstance newInstance(Dictionary<String,?> properties)

	112.12.6. public interface ComponentInstance
	112.12.6.1. public void dispose()
	112.12.6.2. public Object getInstance()

	112.12.7. public interface ComponentServiceObjects<S>
	112.12.7.1. public S getService()
	112.12.7.2. public ServiceReference<S> getServiceReference()
	112.12.7.3. public void ungetService(S service)

	112.13. org.osgi.service.component.annotations
	112.13.1. Summary
	112.13.2. @Activate
	112.13.3. @Component
	112.13.3.1. String name default ""
	112.13.3.2. Class<?>[] service default {}
	112.13.3.3. String factory default ""
	112.13.3.4. boolean servicefactory default false
	112.13.3.5. boolean enabled default true
	112.13.3.6. boolean immediate default false
	112.13.3.7. String[] property default {}
	112.13.3.8. String[] properties default {}
	112.13.3.9. String xmlns default ""
	112.13.3.10. ConfigurationPolicy configurationPolicy default OPTIONAL
	112.13.3.11. String[] configurationPid default "$"
	112.13.3.12. ServiceScope scope default DEFAULT
	112.13.3.13. Reference[] reference default {}
	112.13.3.14. String NAME = "$"

	112.13.4. enum ConfigurationPolicy
	112.13.4.1. OPTIONAL
	112.13.4.2. REQUIRE
	112.13.4.3. IGNORE

	112.13.5. @Deactivate
	112.13.6. enum FieldOption
	112.13.6.1. UPDATE
	112.13.6.2. REPLACE

	112.13.7. @Modified
	112.13.8. @Reference
	112.13.8.1. String name default ""
	112.13.8.2. Class<?> service default Object.class
	112.13.8.3. ReferenceCardinality cardinality default MANDATORY
	112.13.8.4. ReferencePolicy policy default STATIC
	112.13.8.5. String target default ""
	112.13.8.6. ReferencePolicyOption policyOption default RELUCTANT
	112.13.8.7. ReferenceScope scope default BUNDLE
	112.13.8.8. String bind default ""
	112.13.8.9. String updated default ""
	112.13.8.10. String unbind default ""
	112.13.8.11. String field default ""
	112.13.8.12. FieldOption fieldOption default REPLACE

	112.13.9. enum ReferenceCardinality
	112.13.9.1. OPTIONAL
	112.13.9.2. MANDATORY
	112.13.9.3. MULTIPLE
	112.13.9.4. AT_LEAST_ONE

	112.13.10. enum ReferencePolicy
	112.13.10.1. STATIC
	112.13.10.2. DYNAMIC

	112.13.11. enum ReferencePolicyOption
	112.13.11.1. RELUCTANT
	112.13.11.2. GREEDY

	112.13.12. enum ReferenceScope
	112.13.12.1. BUNDLE
	112.13.12.2. PROTOTYPE
	112.13.12.3. PROTOTYPE_REQUIRED

	112.13.13. enum ServiceScope
	112.13.13.1. SINGLETON
	112.13.13.2. BUNDLE
	112.13.13.3. PROTOTYPE
	112.13.13.4. DEFAULT

	112.14. org.osgi.service.component.runtime
	112.14.1. Summary
	112.14.2. public interface ServiceComponentRuntime
	112.14.2.1. public Promise<Void> disableComponent(ComponentDescriptionDTO description)
	112.14.2.2. public Promise<Void> enableComponent(ComponentDescriptionDTO description)
	112.14.2.3. public Collection<ComponentConfigurationDTO> getComponentConfigurationDTOs(ComponentDescriptionDTO description)
	112.14.2.4. public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle,String name)
	112.14.2.5. public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle ... bundles)
	112.14.2.6. public boolean isComponentEnabled(ComponentDescriptionDTO description)

	112.15. org.osgi.service.component.runtime.dto
	112.15.1. Summary
	112.15.2. public class ComponentConfigurationDTO extends DTO
	112.15.2.1. public static final int ACTIVE = 8
	112.15.2.2. public ComponentDescriptionDTO description
	112.15.2.3. public long id
	112.15.2.4. public Map<String,Object> properties
	112.15.2.5. public static final int SATISFIED = 4
	112.15.2.6. public SatisfiedReferenceDTO[] satisfiedReferences
	112.15.2.7. public int state
	112.15.2.8. public static final int UNSATISFIED_CONFIGURATION = 1
	112.15.2.9. public static final int UNSATISFIED_REFERENCE = 2
	112.15.2.10. public UnsatisfiedReferenceDTO[] unsatisfiedReferences
	112.15.2.11. public ComponentConfigurationDTO()

	112.15.3. public class ComponentDescriptionDTO extends DTO
	112.15.3.1. public String activate
	112.15.3.2. public BundleDTO bundle
	112.15.3.3. public String[] configurationPid
	112.15.3.4. public String configurationPolicy
	112.15.3.5. public String deactivate
	112.15.3.6. public boolean defaultEnabled
	112.15.3.7. public String factory
	112.15.3.8. public boolean immediate
	112.15.3.9. public String implementationClass
	112.15.3.10. public String modified
	112.15.3.11. public String name
	112.15.3.12. public Map<String,Object> properties
	112.15.3.13. public ReferenceDTO[] references
	112.15.3.14. public String scope
	112.15.3.15. public String[] serviceInterfaces
	112.15.3.16. public ComponentDescriptionDTO()

	112.15.4. public class ReferenceDTO extends DTO
	112.15.4.1. public String bind
	112.15.4.2. public String cardinality
	112.15.4.3. public String field
	112.15.4.4. public String fieldOption
	112.15.4.5. public String interfaceName
	112.15.4.6. public String name
	112.15.4.7. public String policy
	112.15.4.8. public String policyOption
	112.15.4.9. public String scope
	112.15.4.10. public String target
	112.15.4.11. public String unbind
	112.15.4.12. public String updated
	112.15.4.13. public ReferenceDTO()

	112.15.5. public class SatisfiedReferenceDTO extends DTO
	112.15.5.1. public ServiceReferenceDTO[] boundServices
	112.15.5.2. public String name
	112.15.5.3. public String target
	112.15.5.4. public SatisfiedReferenceDTO()

	112.15.6. public class UnsatisfiedReferenceDTO extends DTO
	112.15.6.1. public String name
	112.15.6.2. public String target
	112.15.6.3. public ServiceReferenceDTO[] targetServices
	112.15.6.4. public UnsatisfiedReferenceDTO()

	112.16. References
	112.17. Changes

	Chapter 113. Event Admin Service Specification
	113.1. Introduction
	113.1.1. Essentials
	113.1.2. Entities
	113.1.3. Synopsis
	113.1.4. What To Read

	113.2. Event Admin Architecture
	113.3. The Event
	113.3.1. Topics
	113.3.2. Properties
	113.3.3. High Performance

	113.4. Event Handler
	113.4.1. Ordering

	113.5. Event Publisher
	113.6. Specific Events
	113.6.1. General Conventions
	113.6.2. OSGi Events
	113.6.3. Framework Event
	113.6.4. Bundle Event
	113.6.5. Service Event
	113.6.6. Other Event Sources

	113.7. Event Admin Service
	113.7.1. Synchronous Event Delivery
	113.7.2. Asynchronous Event Delivery
	113.7.3. Order of Event Delivery

	113.8. Reliability
	113.8.1. Exceptions in callbacks
	113.8.2. Dealing with Stalled Handlers

	113.9. Inter-operability with Native Applications
	113.10. Security
	113.10.1. Topic Permission
	113.10.2. Required Permissions
	113.10.3. Security Context During Event Callbacks

	113.11. org.osgi.service.event
	113.11.1. Summary
	113.11.2. public class Event
	113.11.2.1. public Event(String topic,Map<String,?> properties)
	113.11.2.2. public Event(String topic,Dictionary<String,?> properties)
	113.11.2.3. public final boolean containsProperty(String name)
	113.11.2.4. public boolean equals(Object object)
	113.11.2.5. public final Object getProperty(String name)
	113.11.2.6. public final String[] getPropertyNames()
	113.11.2.7. public final String getTopic()
	113.11.2.8. public int hashCode()
	113.11.2.9. public final boolean matches(Filter filter)
	113.11.2.10. public String toString()

	113.11.3. public interface EventAdmin
	113.11.3.1. public void postEvent(Event event)
	113.11.3.2. public void sendEvent(Event event)

	113.11.4. public interface EventConstants
	113.11.4.1. public static final String BUNDLE = "bundle"
	113.11.4.2. public static final String BUNDLE_ID = "bundle.id"
	113.11.4.3. public static final String BUNDLE_SIGNER = "bundle.signer"
	113.11.4.4. public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"
	113.11.4.5. public static final String BUNDLE_VERSION = "bundle.version"
	113.11.4.6. public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"
	113.11.4.7. public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"
	113.11.4.8. public static final String EVENT = "event"
	113.11.4.9. public static final String EVENT_DELIVERY = "event.delivery"
	113.11.4.10. public static final String EVENT_FILTER = "event.filter"
	113.11.4.11. public static final String EVENT_TOPIC = "event.topics"
	113.11.4.12. public static final String EXCEPTION = "exception"
	113.11.4.13. public static final String EXCEPTION_CLASS = "exception.class"
	113.11.4.14. public static final String EXCEPTION_MESSAGE = "exception.message"
	113.11.4.15. public static final String EXECPTION_CLASS = "exception.class"
	113.11.4.16. public static final String MESSAGE = "message"
	113.11.4.17. public static final String SERVICE = "service"
	113.11.4.18. public static final String SERVICE_ID = "service.id"
	113.11.4.19. public static final String SERVICE_OBJECTCLASS = "service.objectClass"
	113.11.4.20. public static final String SERVICE_PID = "service.pid"
	113.11.4.21. public static final String TIMESTAMP = "timestamp"

	113.11.5. public interface EventHandler
	113.11.5.1. public void handleEvent(Event event)

	113.11.6. public class EventProperties implements Map<String,Object>
	113.11.6.1. public EventProperties(Map<String,?> properties)
	113.11.6.2. public void clear()
	113.11.6.3. public boolean containsKey(Object name)
	113.11.6.4. public boolean containsValue(Object value)
	113.11.6.5. public Set<Map.Entry<String,Object>> entrySet()
	113.11.6.6. public boolean equals(Object object)
	113.11.6.7. public Object get(Object name)
	113.11.6.8. public int hashCode()
	113.11.6.9. public boolean isEmpty()
	113.11.6.10. public Set<String> keySet()
	113.11.6.11. public Object put(String key,Object value)
	113.11.6.12. public void putAll(Map<? extends String,? extends Object> map)
	113.11.6.13. public Object remove(Object key)
	113.11.6.14. public int size()
	113.11.6.15. public String toString()
	113.11.6.16. public Collection<Object> values()

	113.11.7. public final class TopicPermission extends Permission
	113.11.7.1. public static final String PUBLISH = "publish"
	113.11.7.2. public static final String SUBSCRIBE = "subscribe"
	113.11.7.3. public TopicPermission(String name,String actions)
	113.11.7.4. public boolean equals(Object obj)
	113.11.7.5. public String getActions()
	113.11.7.6. public int hashCode()
	113.11.7.7. public boolean implies(Permission p)
	113.11.7.8. public PermissionCollection newPermissionCollection()

	Chapter 114. Deployment Admin Specification
	114.1. Introduction
	114.1.1. Essentials
	114.1.2. Entities
	114.1.3. Synopsis

	114.2. Deployment Package
	114.2.1. Resources
	114.2.2. Atomicity and Sharing
	114.2.3. Naming

	114.3. File Format
	114.3.1. Signing
	114.3.2. Path Names
	114.3.3. Deployment Package Manifest
	114.3.4. Deployment Package Headers
	114.3.4.1. DeploymentPackage-SymbolicName
	114.3.4.2. DeploymentPackage-Version
	114.3.4.3. DeploymentPackage-FixPack
	114.3.4.4. DeploymentPackage-Icon
	114.3.4.5. DeploymentPackage-Name
	114.3.4.6. DeploymentPackage-RequiredStorage
	114.3.4.7. Bundle-SymbolicName (Name Section)
	114.3.4.8. Bundle-Version (Name Section)
	114.3.4.9. Resource-Processor (Name Section)
	114.3.4.10. DeploymentPackage-Missing (Name Section)
	114.3.4.11. DeploymentPackage-Customizer (Name Section)

	114.3.5. Localization

	114.4. Fix Package
	114.5. Customizer
	114.5.1. Bundle's Data File Area
	114.5.2. Customizers and Update

	114.6. Deployment Admin Service
	114.6.1. Introspection
	114.6.2. Canceling

	114.7. Sessions
	114.7.1. Roll Back
	114.7.2. Bundle Events During Deployment

	114.8. Installing a Deployment Package
	114.8.1. Example Installation

	114.9. Uninstalling a Deployment Package
	114.10. Resource Processors
	114.10.1. Example Resource Processor

	114.11. Events
	114.12. Threading
	114.13. Security
	114.13.1. Deployment Admin Permission
	114.13.2. Deployment Customizer Permission
	114.13.3. Permissions During an Install Session
	114.13.4. Contained Bundle Permissions
	114.13.5. Service Registry Security
	114.13.5.1. Deployment Admin Service
	114.13.5.2. Resource Processor
	114.13.5.3. Client

	114.14. org.osgi.service.deploymentadmin
	114.14.1. Summary
	114.14.2. public interface BundleInfo
	114.14.2.1. public String getSymbolicName()
	114.14.2.2. public Version getVersion()

	114.14.3. public interface DeploymentAdmin
	114.14.3.1. public boolean cancel()
	114.14.3.2. public DeploymentPackage getDeploymentPackage(String symbName)
	114.14.3.3. public DeploymentPackage getDeploymentPackage(Bundle bundle)
	114.14.3.4. public DeploymentPackage installDeploymentPackage(InputStream in) throws DeploymentException
	114.14.3.5. public DeploymentPackage[] listDeploymentPackages()

	114.14.4. public final class DeploymentAdminPermission extends Permission
	114.14.4.1. public static final String CANCEL = "cancel"
	114.14.4.2. public static final String INSTALL = "install"
	114.14.4.3. public static final String LIST = "list"
	114.14.4.4. public static final String METADATA = "metadata"
	114.14.4.5. public static final String UNINSTALL = "uninstall"
	114.14.4.6. public static final String UNINSTALL_FORCED = "uninstall_forced"
	114.14.4.7. public DeploymentAdminPermission(String name,String actions)
	114.14.4.8. public boolean equals(Object obj)
	114.14.4.9. public String getActions()
	114.14.4.10. public int hashCode()
	114.14.4.11. public boolean implies(Permission permission)
	114.14.4.12. public PermissionCollection newPermissionCollection()

	114.14.5. public class DeploymentException extends Exception
	114.14.5.1. public static final int CODE_BAD_HEADER = 452
	114.14.5.2. public static final int CODE_BUNDLE_NAME_ERROR = 457
	114.14.5.3. public static final int CODE_BUNDLE_SHARING_VIOLATION = 460
	114.14.5.4. public static final int CODE_CANCELLED = 401
	114.14.5.5. public static final int CODE_COMMIT_ERROR = 462
	114.14.5.6. public static final int CODE_FOREIGN_CUSTOMIZER = 458
	114.14.5.7. public static final int CODE_MISSING_BUNDLE = 454
	114.14.5.8. public static final int CODE_MISSING_FIXPACK_TARGET = 453
	114.14.5.9. public static final int CODE_MISSING_HEADER = 451
	114.14.5.10. public static final int CODE_MISSING_RESOURCE = 455
	114.14.5.11. public static final int CODE_NOT_A_JAR = 404
	114.14.5.12. public static final int CODE_ORDER_ERROR = 450
	114.14.5.13. public static final int CODE_OTHER_ERROR = 463
	114.14.5.14. public static final int CODE_PROCESSOR_NOT_FOUND = 464
	114.14.5.15. public static final int CODE_RESOURCE_SHARING_VIOLATION = 461
	114.14.5.16. public static final int CODE_SIGNING_ERROR = 456
	114.14.5.17. public static final int CODE_TIMEOUT = 465
	114.14.5.18. public DeploymentException(int code,String message,Throwable cause)
	114.14.5.19. public DeploymentException(int code,String message)
	114.14.5.20. public DeploymentException(int code)
	114.14.5.21. public Throwable getCause()
	114.14.5.22. public int getCode()
	114.14.5.23. public Throwable initCause(Throwable cause)

	114.14.6. public interface DeploymentPackage
	114.14.6.1. public static final String EVENT_DEPLOYMENTPACKAGE_CURRENTVERSION = "deploymentpackage.currentversion"
	114.14.6.2. public static final String EVENT_DEPLOYMENTPACKAGE_NAME = "deploymentpackage.name"
	114.14.6.3. public static final String EVENT_DEPLOYMENTPACKAGE_NEXTVERSION = "deploymentpackage.nextversion"
	114.14.6.4. public static final String EVENT_DEPLOYMENTPACKAGE_READABLENAME = "deploymentpackage.readablename"
	114.14.6.5. public boolean equals(Object other)
	114.14.6.6. public Bundle getBundle(String symbolicName)
	114.14.6.7. public BundleInfo[] getBundleInfos()
	114.14.6.8. public String getDisplayName()
	114.14.6.9. public String getHeader(String header)
	114.14.6.10. public URL getIcon()
	114.14.6.11. public String getName()
	114.14.6.12. public String getResourceHeader(String resource,String header)
	114.14.6.13. public ServiceReference getResourceProcessor(String resource)
	114.14.6.14. public String[] getResources()
	114.14.6.15. public Version getVersion()
	114.14.6.16. public int hashCode()
	114.14.6.17. public boolean isStale()
	114.14.6.18. public void uninstall() throws DeploymentException
	114.14.6.19. public boolean uninstallForced() throws DeploymentException

	114.15. org.osgi.service.deploymentadmin.spi
	114.15.1. Summary
	114.15.2. public class DeploymentCustomizerPermission extends Permission
	114.15.2.1. public static final String PRIVATEAREA = "privatearea"
	114.15.2.2. public DeploymentCustomizerPermission(String name,String actions)
	114.15.2.3. public boolean equals(Object obj)
	114.15.2.4. public String getActions()
	114.15.2.5. public int hashCode()
	114.15.2.6. public boolean implies(Permission permission)
	114.15.2.7. public PermissionCollection newPermissionCollection()

	114.15.3. public interface DeploymentSession
	114.15.3.1. public File getDataFile(Bundle bundle)
	114.15.3.2. public DeploymentPackage getSourceDeploymentPackage()
	114.15.3.3. public DeploymentPackage getTargetDeploymentPackage()

	114.15.4. public interface ResourceProcessor
	114.15.4.1. public void begin(DeploymentSession session)
	114.15.4.2. public void cancel()
	114.15.4.3. public void commit()
	114.15.4.4. public void dropAllResources() throws ResourceProcessorException
	114.15.4.5. public void dropped(String resource) throws ResourceProcessorException
	114.15.4.6. public void prepare() throws ResourceProcessorException
	114.15.4.7. public void process(String name,InputStream stream) throws ResourceProcessorException
	114.15.4.8. public void rollback()

	114.15.5. public class ResourceProcessorException extends Exception
	114.15.5.1. public static final int CODE_OTHER_ERROR = 463
	114.15.5.2. public static final int CODE_PREPARE = 1
	114.15.5.3. public static final int CODE_RESOURCE_SHARING_VIOLATION = 461
	114.15.5.4. public ResourceProcessorException(int code,String message,Throwable cause)
	114.15.5.5. public ResourceProcessorException(int code,String message)
	114.15.5.6. public ResourceProcessorException(int code)
	114.15.5.7. public Throwable getCause()
	114.15.5.8. public int getCode()
	114.15.5.9. public Throwable initCause(Throwable cause)

	114.16. References

	Chapter 115. Auto Configuration Specification
	115.1. Introduction
	115.1.1. Entities
	115.1.2. Synopsis

	115.2. Configuration Data
	115.3. Processing
	115.3.1. Factory Configurations
	115.3.2. Singleton Configuration
	115.3.3. Example
	115.3.4. Assigning a Value
	115.3.5. Process Ordering

	115.4. Security Considerations
	115.4.1. Location Binding
	115.4.2. Autoconf Resource Permissions

	Chapter 116. Application Admin Specification
	116.1. Introduction
	116.1.1. Essentials
	116.1.2. Entities
	116.1.3. Synopsis

	116.2. Application Managers
	116.2.1. Discovery
	116.2.2. Application Descriptor Properties
	116.2.3. Launching
	116.2.4. Application States
	116.2.5. Destroying an Application Instance
	116.2.6. Getting the Exit Value of an Application
	116.2.7. Locking an Application
	116.2.8. Scheduling
	116.2.9. Application Exceptions
	116.2.10. Application Events

	116.3. Application Containers
	116.3.1. The Application Descriptor
	116.3.2. The Application Handle
	116.3.3. Certificates
	116.3.4. Application Descriptor Example

	116.4. Application Admin Implementations
	116.4.1. Implementing the Base Classes
	116.4.2. Exception Handling
	116.4.3. Launching
	116.4.4. Destroying
	116.4.5. Scheduling
	116.4.6. Virtual Timer Event

	116.5. Interaction
	116.5.1. Application Installation
	116.5.2. Launching an Application
	116.5.3. Destroying an Application Instance

	116.6. Security
	116.6.1. Application Admin Permissions
	116.6.2. Service and Package Permissions
	116.6.2.1. Application Admin Implementation
	116.6.2.2. Application Container

	116.7. org.osgi.service.application
	116.7.1. Summary
	116.7.2. public class ApplicationAdminPermission extends Permission
	116.7.2.1. public static final String LIFECYCLE_ACTION = "lifecycle"
	116.7.2.2. public static final String LOCK_ACTION = "lock"
	116.7.2.3. public static final String SCHEDULE_ACTION = "schedule"
	116.7.2.4. public ApplicationAdminPermission(String filter,String actions) throws InvalidSyntaxException
	116.7.2.5. public ApplicationAdminPermission(ApplicationDescriptor application,String actions)
	116.7.2.6. public boolean equals(Object with)
	116.7.2.7. public String getActions()
	116.7.2.8. public int hashCode()
	116.7.2.9. public boolean implies(Permission otherPermission)
	116.7.2.10. public ApplicationAdminPermission setCurrentApplicationId(String applicationId)

	116.7.3. public abstract class ApplicationDescriptor
	116.7.3.1. public static final String APPLICATION_CONTAINER = "application.container"
	116.7.3.2. public static final String APPLICATION_COPYRIGHT = "application.copyright"
	116.7.3.3. public static final String APPLICATION_DESCRIPTION = "application.description"
	116.7.3.4. public static final String APPLICATION_DOCUMENTATION = "application.documentation"
	116.7.3.5. public static final String APPLICATION_ICON = "application.icon"
	116.7.3.6. public static final String APPLICATION_LAUNCHABLE = "application.launchable"
	116.7.3.7. public static final String APPLICATION_LICENSE = "application.license"
	116.7.3.8. public static final String APPLICATION_LOCATION = "application.location"
	116.7.3.9. public static final String APPLICATION_LOCKED = "application.locked"
	116.7.3.10. public static final String APPLICATION_NAME = "application.name"
	116.7.3.11. public static final String APPLICATION_PID = "service.pid"
	116.7.3.12. public static final String APPLICATION_VENDOR = "service.vendor"
	116.7.3.13. public static final String APPLICATION_VERSION = "application.version"
	116.7.3.14. public static final String APPLICATION_VISIBLE = "application.visible"
	116.7.3.15. protected ApplicationDescriptor(String applicationId)
	116.7.3.16. public final String getApplicationId()
	116.7.3.17. public final Map getProperties(String locale)
	116.7.3.18. protected abstract Map getPropertiesSpecific(String locale)
	116.7.3.19. protected abstract boolean isLaunchableSpecific()
	116.7.3.20. public final ApplicationHandle launch(Map arguments) throws ApplicationException
	116.7.3.21. protected abstract ApplicationHandle launchSpecific(Map arguments) throws Exception
	116.7.3.22. public final void lock()
	116.7.3.23. protected abstract void lockSpecific()
	116.7.3.24. public abstract boolean matchDNChain(String pattern)
	116.7.3.25. public final ScheduledApplication schedule(String scheduleId,Map arguments,String topic,String eventFilter,boolean recurring) throws InvalidSyntaxException, ApplicationException
	116.7.3.26. public final void unlock()
	116.7.3.27. protected abstract void unlockSpecific()

	116.7.4. public class ApplicationException extends Exception
	116.7.4.1. public static final int APPLICATION_DUPLICATE_SCHEDULE_ID = 5
	116.7.4.2. public static final int APPLICATION_EXITVALUE_NOT_AVAILABLE = 6
	116.7.4.3. public static final int APPLICATION_INTERNAL_ERROR = 3
	116.7.4.4. public static final int APPLICATION_INVALID_STARTUP_ARGUMENT = 7
	116.7.4.5. public static final int APPLICATION_LOCKED = 1
	116.7.4.6. public static final int APPLICATION_NOT_LAUNCHABLE = 2
	116.7.4.7. public static final int APPLICATION_SCHEDULING_FAILED = 4
	116.7.4.8. public ApplicationException(int errorCode)
	116.7.4.9. public ApplicationException(int errorCode,Throwable cause)
	116.7.4.10. public ApplicationException(int errorCode,String message)
	116.7.4.11. public ApplicationException(int errorCode,String message,Throwable cause)
	116.7.4.12. public Throwable getCause()
	116.7.4.13. public int getErrorCode()

	116.7.5. public abstract class ApplicationHandle
	116.7.5.1. public static final String APPLICATION_DESCRIPTOR = "application.descriptor"
	116.7.5.2. public static final String APPLICATION_PID = "service.pid"
	116.7.5.3. public static final String APPLICATION_STATE = "application.state"
	116.7.5.4. public static final String APPLICATION_SUPPORTS_EXITVALUE = "application.supports.exitvalue"
	116.7.5.5. public static final String RUNNING = "RUNNING"
	116.7.5.6. public static final String STOPPING = "STOPPING"
	116.7.5.7. protected ApplicationHandle(String instanceId,ApplicationDescriptor descriptor)
	116.7.5.8. public final void destroy()
	116.7.5.9. protected abstract void destroySpecific()
	116.7.5.10. public final ApplicationDescriptor getApplicationDescriptor()
	116.7.5.11. public Object getExitValue(long timeout) throws ApplicationException, InterruptedException
	116.7.5.12. public final String getInstanceId()
	116.7.5.13. public abstract String getState()

	116.7.6. public interface ScheduledApplication
	116.7.6.1. public static final String APPLICATION_PID = "service.pid"
	116.7.6.2. public static final String DAY_OF_MONTH = "day_of_month"
	116.7.6.3. public static final String DAY_OF_WEEK = "day_of_week"
	116.7.6.4. public static final String HOUR_OF_DAY = "hour_of_day"
	116.7.6.5. public static final String MINUTE = "minute"
	116.7.6.6. public static final String MONTH = "month"
	116.7.6.7. public static final String SCHEDULE_ID = "schedule.id"
	116.7.6.8. public static final String TIMER_TOPIC = "org/osgi/application/timer"
	116.7.6.9. public static final String TRIGGERING_EVENT = "org.osgi.triggeringevent"
	116.7.6.10. public static final String YEAR = "year"
	116.7.6.11. public ApplicationDescriptor getApplicationDescriptor()
	116.7.6.12. public Map getArguments()
	116.7.6.13. public String getEventFilter()
	116.7.6.14. public String getScheduleId()
	116.7.6.15. public String getTopic()
	116.7.6.16. public boolean isRecurring()
	116.7.6.17. public void remove()

	116.8. References

	Chapter 117. Dmt Admin Service Specification
	117.1. Introduction
	117.1.1. Entities

	117.2. The Device Management Model
	117.2.1. Tree Terminology
	117.2.2. Actors

	117.3. The DMT Admin Service
	117.4. Manipulating the DMT
	117.4.1. The DMT Addressing URI
	117.4.2. Locking and Sessions
	117.4.3. Associating a Principal
	117.4.4. Relative Addressing
	117.4.5. Creating Nodes
	117.4.6. Node Properties
	117.4.7. Setting and Getting Data
	117.4.8. Complex Values
	117.4.9. Nodes and Types
	117.4.10. Deleting Nodes
	117.4.11. Copying Nodes
	117.4.12. Renaming Nodes
	117.4.13. Execute
	117.4.14. Closing

	117.5. Meta Data
	117.5.1. Operations
	117.5.2. Scope
	117.5.3. Description and Default
	117.5.4. Validation
	117.5.5. Data Types
	117.5.6. Cardinality
	117.5.7. Matching
	117.5.8. Numeric Ranges
	117.5.9. Name Validation
	117.5.10. User Extensions

	117.6. Plugins
	117.6.1. Data Sessions
	117.6.2. URIs and Plugins
	117.6.3. Associating a sub-tree
	117.6.4. Synchronization with Dmt Admin Service
	117.6.5. Plugin Meta Data
	117.6.6. Plugins and Transactions
	117.6.7. Side Effects
	117.6.8. Copying
	117.6.9. Scaffold Nodes

	117.7. Sharing the DMT
	117.7.1. Mount Points
	117.7.2. Parent Plugin
	117.7.3. Shared Mount Points
	117.7.4. Mount Points are Excluded
	117.7.5. Mapping a Plugin
	117.7.6. Mount Plugins

	117.8. Access Control Lists
	117.8.1. Global Permissions
	117.8.2. Ghost ACLs

	117.9. Notifications
	117.9.1. Routing Alerts

	117.10. Exceptions
	117.11. Events
	117.11.1. Event Admin
	117.11.2. Dmt Event Listeners
	117.11.3. Atomic Sessions and Events
	117.11.4. Event Types
	117.11.5. General Event Properties
	117.11.6. Session Event Properties
	117.11.7. Life Cycle Event Properties
	117.11.8. Example Event Delivery

	117.12. OSGi Object Modeling
	117.12.1. Object Models
	117.12.2. Protocol Mapping
	117.12.3. Hierarchy
	117.12.4. General Restriction Guidelines
	117.12.5. DDF
	117.12.6. Types
	117.12.7. Primitives
	117.12.8. Structured Nodes
	117.12.9. LIST Nodes
	117.12.9.1. Complex Collections

	117.12.10. MAP Nodes
	117.12.10.1. Complex Value

	117.12.11. Instance Id
	117.12.12. Conversions
	117.12.13. Extensions

	117.13. Security
	117.13.1. Principals
	117.13.2. Operational Permissions
	117.13.3. Protocol Adapters
	117.13.4. Local Manager
	117.13.5. Plugin Security
	117.13.6. Events and Permissions
	117.13.7. Dmt Principal Permission
	117.13.8. Dmt Permission
	117.13.9. Alert Permission
	117.13.10. Security Summary
	117.13.10.1. Dmt Admin Service and Notification Service
	117.13.10.2. Dmt Event Listener Service
	117.13.10.3. Data and Exec Plugin
	117.13.10.4. Local Manager
	117.13.10.5. Protocol Adapter

	117.14. org.osgi.service.dmt
	117.14.1. Summary
	117.14.2. public final class Acl
	117.14.2.1. public static final int ADD = 2
	117.14.2.2. public static final int ALL_PERMISSION = 31
	117.14.2.3. public static final int DELETE = 8
	117.14.2.4. public static final int EXEC = 16
	117.14.2.5. public static final int GET = 1
	117.14.2.6. public static final int REPLACE = 4
	117.14.2.7. public Acl(String acl)
	117.14.2.8. public Acl(String[] principals,int[] permissions)
	117.14.2.9. public synchronized Acl addPermission(String principal,int permissions)
	117.14.2.10. public synchronized Acl deletePermission(String principal,int permissions)
	117.14.2.11. public boolean equals(Object obj)
	117.14.2.12. public synchronized int getPermissions(String principal)
	117.14.2.13. public String[] getPrincipals()
	117.14.2.14. public int hashCode()
	117.14.2.15. public synchronized boolean isPermitted(String principal,int permissions)
	117.14.2.16. public synchronized Acl setPermission(String principal,int permissions)
	117.14.2.17. public synchronized String toString()

	117.14.3. public interface DmtAdmin
	117.14.3.1. public DmtSession getSession(String subtreeUri) throws DmtException
	117.14.3.2. public DmtSession getSession(String subtreeUri,int lockMode) throws DmtException
	117.14.3.3. public DmtSession getSession(String principal,String subtreeUri,int lockMode) throws DmtException

	117.14.4. public class DmtConstants
	117.14.4.1. public static final String DDF_LIST = "org.osgi/1.0/LIST"
	117.14.4.2. public static final String DDF_MAP = "org.osgi/1.0/MAP"
	117.14.4.3. public static final String DDF_SCAFFOLD = "org.osgi/1.0/SCAFFOLD"
	117.14.4.4. public static final String EVENT_PROPERTY_NEW_NODES = "newnodes"
	117.14.4.5. public static final String EVENT_PROPERTY_NODES = "nodes"
	117.14.4.6. public static final String EVENT_PROPERTY_SESSION_ID = "session.id"
	117.14.4.7. public static final String EVENT_TOPIC_ADDED = "org/osgi/service/dmt/DmtEvent/ADDED"
	117.14.4.8. public static final String EVENT_TOPIC_COPIED = "org/osgi/service/dmt/DmtEvent/COPIED"
	117.14.4.9. public static final String EVENT_TOPIC_DELETED = "org/osgi/service/dmt/DmtEvent/DELETED"
	117.14.4.10. public static final String EVENT_TOPIC_RENAMED = "org/osgi/service/dmt/DmtEvent/RENAMED"
	117.14.4.11. public static final String EVENT_TOPIC_REPLACED = "org/osgi/service/dmt/DmtEvent/REPLACED"
	117.14.4.12. public static final String EVENT_TOPIC_SESSION_CLOSED = "org/osgi/service/dmt/DmtEvent/SESSION_CLOSED"
	117.14.4.13. public static final String EVENT_TOPIC_SESSION_OPENED = "org/osgi/service/dmt/DmtEvent/SESSION_OPENED"

	117.14.5. public final class DmtData
	117.14.5.1. public static final DmtData FALSE_VALUE
	117.14.5.2. public static final int FORMAT_BASE64 = 128
	117.14.5.3. public static final int FORMAT_BINARY = 64
	117.14.5.4. public static final int FORMAT_BOOLEAN = 8
	117.14.5.5. public static final int FORMAT_DATE = 16
	117.14.5.6. public static final int FORMAT_DATE_TIME = 16384
	117.14.5.7. public static final int FORMAT_FLOAT = 2
	117.14.5.8. public static final int FORMAT_INTEGER = 1
	117.14.5.9. public static final int FORMAT_LONG = 8192
	117.14.5.10. public static final int FORMAT_NODE = 1024
	117.14.5.11. public static final int FORMAT_NULL = 512
	117.14.5.12. public static final int FORMAT_RAW_BINARY = 4096
	117.14.5.13. public static final int FORMAT_RAW_STRING = 2048
	117.14.5.14. public static final int FORMAT_STRING = 4
	117.14.5.15. public static final int FORMAT_TIME = 32
	117.14.5.16. public static final int FORMAT_XML = 256
	117.14.5.17. public static final DmtData NULL_VALUE
	117.14.5.18. public static final DmtData TRUE_VALUE
	117.14.5.19. public DmtData(String string)
	117.14.5.20. public DmtData(Date date)
	117.14.5.21. public DmtData(Object complex)
	117.14.5.22. public DmtData(String value,int format)
	117.14.5.23. public DmtData(int integer)
	117.14.5.24. public DmtData(float flt)
	117.14.5.25. public DmtData(long lng)
	117.14.5.26. public DmtData(boolean bool)
	117.14.5.27. public DmtData(byte[] bytes)
	117.14.5.28. public DmtData(byte[] bytes,boolean base64)
	117.14.5.29. public DmtData(byte[] bytes,int format)
	117.14.5.30. public DmtData(String formatName,String data)
	117.14.5.31. public DmtData(String formatName,byte[] data)
	117.14.5.32. public boolean equals(Object obj)
	117.14.5.33. public byte[] getBase64()
	117.14.5.34. public byte[] getBinary()
	117.14.5.35. public boolean getBoolean()
	117.14.5.36. public String getDate()
	117.14.5.37. public Date getDateTime()
	117.14.5.38. public float getFloat()
	117.14.5.39. public int getFormat()
	117.14.5.40. public String getFormatName()
	117.14.5.41. public int getInt()
	117.14.5.42. public long getLong()
	117.14.5.43. public Object getNode()
	117.14.5.44. public byte[] getRawBinary()
	117.14.5.45. public String getRawString()
	117.14.5.46. public int getSize()
	117.14.5.47. public String getString()
	117.14.5.48. public String getTime()
	117.14.5.49. public String getXml()
	117.14.5.50. public int hashCode()
	117.14.5.51. public String toString()

	117.14.6. public interface DmtEvent
	117.14.6.1. public static final int ADDED = 1
	117.14.6.2. public static final int COPIED = 2
	117.14.6.3. public static final int DELETED = 4
	117.14.6.4. public static final int RENAMED = 8
	117.14.6.5. public static final int REPLACED = 16
	117.14.6.6. public static final int SESSION_CLOSED = 64
	117.14.6.7. public static final int SESSION_OPENED = 32
	117.14.6.8. public String[] getNewNodes()
	117.14.6.9. public String[] getNodes()
	117.14.6.10. public Object getProperty(String key)
	117.14.6.11. public String[] getPropertyNames()
	117.14.6.12. public int getSessionId()
	117.14.6.13. public int getType()

	117.14.7. public interface DmtEventListener
	117.14.7.1. public static final String FILTER_EVENT = "osgi.filter.event"
	117.14.7.2. public static final String FILTER_PRINCIPAL = "osgi.filter.principal"
	117.14.7.3. public static final String FILTER_SUBTREE = "osgi.filter.subtree"
	117.14.7.4. public void changeOccurred(DmtEvent event)

	117.14.8. public class DmtException extends Exception
	117.14.8.1. public static final int ALERT_NOT_ROUTED = 5
	117.14.8.2. public static final int COMMAND_FAILED = 500
	117.14.8.3. public static final int COMMAND_NOT_ALLOWED = 405
	117.14.8.4. public static final int CONCURRENT_ACCESS = 4
	117.14.8.5. public static final int DATA_STORE_FAILURE = 510
	117.14.8.6. public static final int FEATURE_NOT_SUPPORTED = 406
	117.14.8.7. public static final int INVALID_URI = 3
	117.14.8.8. public static final int LIMIT_EXCEEDED = 413
	117.14.8.9. public static final int METADATA_MISMATCH = 2
	117.14.8.10. public static final int NODE_ALREADY_EXISTS = 418
	117.14.8.11. public static final int NODE_NOT_FOUND = 404
	117.14.8.12. public static final int PERMISSION_DENIED = 425
	117.14.8.13. public static final int REMOTE_ERROR = 1
	117.14.8.14. public static final int ROLLBACK_FAILED = 516
	117.14.8.15. public static final int SESSION_CREATION_TIMEOUT = 7
	117.14.8.16. public static final int TRANSACTION_ERROR = 6
	117.14.8.17. public static final int UNAUTHORIZED = 401
	117.14.8.18. public static final int URI_TOO_LONG = 414
	117.14.8.19. public DmtException(String uri,int code,String message)
	117.14.8.20. public DmtException(String uri,int code,String message,Throwable cause)
	117.14.8.21. public DmtException(String uri,int code,String message,Vector causes,boolean fatal)
	117.14.8.22. public DmtException(String[] path,int code,String message)
	117.14.8.23. public DmtException(String[] path,int code,String message,Throwable cause)
	117.14.8.24. public DmtException(String[] path,int code,String message,Vector causes,boolean fatal)
	117.14.8.25. public Throwable getCause()
	117.14.8.26. public Throwable[] getCauses()
	117.14.8.27. public int getCode()
	117.14.8.28. public String getMessage()
	117.14.8.29. public String getURI()
	117.14.8.30. public boolean isFatal()
	117.14.8.31. public void printStackTrace(PrintStream s)

	117.14.9. public class DmtIllegalStateException extends RuntimeException
	117.14.9.1. public DmtIllegalStateException()
	117.14.9.2. public DmtIllegalStateException(String message)
	117.14.9.3. public DmtIllegalStateException(Throwable cause)
	117.14.9.4. public DmtIllegalStateException(String message,Throwable cause)

	117.14.10. public interface DmtSession
	117.14.10.1. public static final int LOCK_TYPE_ATOMIC = 2
	117.14.10.2. public static final int LOCK_TYPE_EXCLUSIVE = 1
	117.14.10.3. public static final int LOCK_TYPE_SHARED = 0
	117.14.10.4. public static final int STATE_CLOSED = 1
	117.14.10.5. public static final int STATE_INVALID = 2
	117.14.10.6. public static final int STATE_OPEN = 0
	117.14.10.7. public void close() throws DmtException
	117.14.10.8. public void commit() throws DmtException
	117.14.10.9. public void copy(String nodeUri,String newNodeUri,boolean recursive) throws DmtException
	117.14.10.10. public void createInteriorNode(String nodeUri) throws DmtException
	117.14.10.11. public void createInteriorNode(String nodeUri,String type) throws DmtException
	117.14.10.12. public void createLeafNode(String nodeUri) throws DmtException
	117.14.10.13. public void createLeafNode(String nodeUri,DmtData value) throws DmtException
	117.14.10.14. public void createLeafNode(String nodeUri,DmtData value,String mimeType) throws DmtException
	117.14.10.15. public void deleteNode(String nodeUri) throws DmtException
	117.14.10.16. public void execute(String nodeUri,String data) throws DmtException
	117.14.10.17. public void execute(String nodeUri,String correlator,String data) throws DmtException
	117.14.10.18. public String[] getChildNodeNames(String nodeUri) throws DmtException
	117.14.10.19. public Acl getEffectiveNodeAcl(String nodeUri) throws DmtException
	117.14.10.20. public int getLockType()
	117.14.10.21. public MetaNode getMetaNode(String nodeUri) throws DmtException
	117.14.10.22. public Acl getNodeAcl(String nodeUri) throws DmtException
	117.14.10.23. public int getNodeSize(String nodeUri) throws DmtException
	117.14.10.24. public Date getNodeTimestamp(String nodeUri) throws DmtException
	117.14.10.25. public String getNodeTitle(String nodeUri) throws DmtException
	117.14.10.26. public String getNodeType(String nodeUri) throws DmtException
	117.14.10.27. public DmtData getNodeValue(String nodeUri) throws DmtException
	117.14.10.28. public int getNodeVersion(String nodeUri) throws DmtException
	117.14.10.29. public String getPrincipal()
	117.14.10.30. public String getRootUri()
	117.14.10.31. public int getSessionId()
	117.14.10.32. public int getState()
	117.14.10.33. public boolean isLeafNode(String nodeUri) throws DmtException
	117.14.10.34. public boolean isNodeUri(String nodeUri)
	117.14.10.35. public void renameNode(String nodeUri,String newName) throws DmtException
	117.14.10.36. public void rollback() throws DmtException
	117.14.10.37. public void setDefaultNodeValue(String nodeUri) throws DmtException
	117.14.10.38. public void setNodeAcl(String nodeUri,Acl acl) throws DmtException
	117.14.10.39. public void setNodeTitle(String nodeUri,String title) throws DmtException
	117.14.10.40. public void setNodeType(String nodeUri,String type) throws DmtException
	117.14.10.41. public void setNodeValue(String nodeUri,DmtData data) throws DmtException

	117.14.11. public interface MetaNode
	117.14.11.1. public static final int AUTOMATIC = 2
	117.14.11.2. public static final int CMD_ADD = 0
	117.14.11.3. public static final int CMD_DELETE = 1
	117.14.11.4. public static final int CMD_EXECUTE = 2
	117.14.11.5. public static final int CMD_GET = 4
	117.14.11.6. public static final int CMD_REPLACE = 3
	117.14.11.7. public static final int DYNAMIC = 1
	117.14.11.8. public static final int PERMANENT = 0
	117.14.11.9. public boolean can(int operation)
	117.14.11.10. public DmtData getDefault()
	117.14.11.11. public String getDescription()
	117.14.11.12. public Object getExtensionProperty(String key)
	117.14.11.13. public String[] getExtensionPropertyKeys()
	117.14.11.14. public int getFormat()
	117.14.11.15. public double getMax()
	117.14.11.16. public int getMaxOccurrence()
	117.14.11.17. public String[] getMimeTypes()
	117.14.11.18. public double getMin()
	117.14.11.19. public String[] getRawFormatNames()
	117.14.11.20. public int getScope()
	117.14.11.21. public String[] getValidNames()
	117.14.11.22. public DmtData[] getValidValues()
	117.14.11.23. public boolean isLeaf()
	117.14.11.24. public boolean isValidName(String name)
	117.14.11.25. public boolean isValidValue(DmtData value)
	117.14.11.26. public boolean isZeroOccurrenceAllowed()

	117.14.12. public final class Uri
	117.14.12.1. public static final String PATH_SEPARATOR = "/"
	117.14.12.2. public static final char PATH_SEPARATOR_CHAR = 47
	117.14.12.3. public static final String ROOT_NODE = "."
	117.14.12.4. public static final char ROOT_NODE_CHAR = 46
	117.14.12.5. public static String decode(String nodeName)
	117.14.12.6. public static String encode(String nodeName)
	117.14.12.7. public static boolean isAbsoluteUri(String uri)
	117.14.12.8. public static boolean isValidUri(String uri)
	117.14.12.9. public static String mangle(String nodeName)
	117.14.12.10. public static String[] toPath(String uri)
	117.14.12.11. public static String toUri(String[] path)

	117.15. org.osgi.service.dmt.spi
	117.15.1. Summary
	117.15.2. public interface DataPlugin
	117.15.2.1. public static final String DATA_ROOT_URIS = "dataRootURIs"
	117.15.2.2. public static final String MOUNT_POINTS = "mountPoints"
	117.15.2.3. public TransactionalDataSession openAtomicSession(String[] sessionRoot,DmtSession session) throws DmtException
	117.15.2.4. public ReadableDataSession openReadOnlySession(String[] sessionRoot,DmtSession session) throws DmtException
	117.15.2.5. public ReadWriteDataSession openReadWriteSession(String[] sessionRoot,DmtSession session) throws DmtException

	117.15.3. public interface ExecPlugin
	117.15.3.1. public static final String EXEC_ROOT_URIS = "execRootURIs"
	117.15.3.2. public static final String MOUNT_POINTS = "mountPoints"
	117.15.3.3. public void execute(DmtSession session,String[] nodePath,String correlator,String data) throws DmtException

	117.15.4. public interface MountPlugin
	117.15.4.1. public void mountPointAdded(MountPoint mountPoint)
	117.15.4.2. public void mountPointRemoved(MountPoint mountPoint)

	117.15.5. public interface MountPoint
	117.15.5.1. public boolean equals(Object other)
	117.15.5.2. public String[] getMountPath()
	117.15.5.3. public int hashCode()
	117.15.5.4. public void postEvent(String topic,String[] relativeURIs,Dictionary properties)
	117.15.5.5. public void postEvent(String topic,String[] relativeURIs,String[] newRelativeURIs,Dictionary properties)

	117.15.6. public interface ReadableDataSession
	117.15.6.1. public void close() throws DmtException
	117.15.6.2. public String[] getChildNodeNames(String[] nodePath) throws DmtException
	117.15.6.3. public MetaNode getMetaNode(String[] nodePath) throws DmtException
	117.15.6.4. public int getNodeSize(String[] nodePath) throws DmtException
	117.15.6.5. public Date getNodeTimestamp(String[] nodePath) throws DmtException
	117.15.6.6. public String getNodeTitle(String[] nodePath) throws DmtException
	117.15.6.7. public String getNodeType(String[] nodePath) throws DmtException
	117.15.6.8. public DmtData getNodeValue(String[] nodePath) throws DmtException
	117.15.6.9. public int getNodeVersion(String[] nodePath) throws DmtException
	117.15.6.10. public boolean isLeafNode(String[] nodePath) throws DmtException
	117.15.6.11. public boolean isNodeUri(String[] nodePath)
	117.15.6.12. public void nodeChanged(String[] nodePath) throws DmtException

	117.15.7. public interface ReadWriteDataSession extends ReadableDataSession
	117.15.7.1. public void copy(String[] nodePath,String[] newNodePath,boolean recursive) throws DmtException
	117.15.7.2. public void createInteriorNode(String[] nodePath,String type) throws DmtException
	117.15.7.3. public void createLeafNode(String[] nodePath,DmtData value,String mimeType) throws DmtException
	117.15.7.4. public void deleteNode(String[] nodePath) throws DmtException
	117.15.7.5. public void renameNode(String[] nodePath,String newName) throws DmtException
	117.15.7.6. public void setNodeTitle(String[] nodePath,String title) throws DmtException
	117.15.7.7. public void setNodeType(String[] nodePath,String type) throws DmtException
	117.15.7.8. public void setNodeValue(String[] nodePath,DmtData data) throws DmtException

	117.15.8. public interface TransactionalDataSession extends ReadWriteDataSession
	117.15.8.1. public void commit() throws DmtException
	117.15.8.2. public void rollback() throws DmtException

	117.16. org.osgi.service.dmt.notification
	117.16.1. Summary
	117.16.2. public class AlertItem
	117.16.2.1. public AlertItem(String source,String type,String mark,DmtData data)
	117.16.2.2. public AlertItem(String[] source,String type,String mark,DmtData data)
	117.16.2.3. public DmtData getData()
	117.16.2.4. public String getMark()
	117.16.2.5. public String getSource()
	117.16.2.6. public String getType()
	117.16.2.7. public String toString()

	117.16.3. public interface NotificationService
	117.16.3.1. public void sendNotification(String principal,int code,String correlator,AlertItem[] items) throws DmtException

	117.17. org.osgi.service.dmt.notification.spi
	117.17.1. Summary
	117.17.2. public interface RemoteAlertSender
	117.17.2.1. public void sendAlert(String principal,int code,String correlator,AlertItem[] items) throws Exception

	117.18. org.osgi.service.dmt.security
	117.18.1. Summary
	117.18.2. public class AlertPermission extends Permission
	117.18.2.1. public AlertPermission(String target)
	117.18.2.2. public AlertPermission(String target,String actions)
	117.18.2.3. public boolean equals(Object obj)
	117.18.2.4. public String getActions()
	117.18.2.5. public int hashCode()
	117.18.2.6. public boolean implies(Permission p)
	117.18.2.7. public PermissionCollection newPermissionCollection()

	117.18.3. public class DmtPermission extends Permission
	117.18.3.1. public static final String ADD = "Add"
	117.18.3.2. public static final String DELETE = "Delete"
	117.18.3.3. public static final String EXEC = "Exec"
	117.18.3.4. public static final String GET = "Get"
	117.18.3.5. public static final String REPLACE = "Replace"
	117.18.3.6. public DmtPermission(String dmtUri,String actions)
	117.18.3.7. public boolean equals(Object obj)
	117.18.3.8. public String getActions()
	117.18.3.9. public int hashCode()
	117.18.3.10. public boolean implies(Permission p)
	117.18.3.11. public PermissionCollection newPermissionCollection()

	117.18.4. public class DmtPrincipalPermission extends Permission
	117.18.4.1. public DmtPrincipalPermission(String target)
	117.18.4.2. public DmtPrincipalPermission(String target,String actions)
	117.18.4.3. public boolean equals(Object obj)
	117.18.4.4. public String getActions()
	117.18.4.5. public int hashCode()
	117.18.4.6. public boolean implies(Permission p)
	117.18.4.7. public PermissionCollection newPermissionCollection()

	117.19. References

	Chapter 119. Monitor Admin Service Specification
	119.1. Introduction
	119.1.1. Entities
	119.1.2. Synopsis

	119.2. Monitorable
	119.2.1. Providing Notifications
	119.2.2. Example Monitorable Implementation

	119.3. Status Variable
	119.3.1. Name
	119.3.2. Value
	119.3.3. Time Stamp
	119.3.4. Collection Method

	119.4. Using Monitor Admin Service
	119.4.1. Discovery
	119.4.2. Status Variable Administration
	119.4.3. Notifications
	119.4.4. Monitoring jobs
	119.4.4.1. Example Monitoring Job

	119.5. Monitoring events
	119.6. Security
	119.6.1. Monitor Permission

	119.7. org.osgi.service.monitor
	119.7.1. Summary
	119.7.2. public interface Monitorable
	119.7.2.1. public String getDescription(String id) throws IllegalArgumentException
	119.7.2.2. public StatusVariable getStatusVariable(String id) throws IllegalArgumentException
	119.7.2.3. public String[] getStatusVariableNames()
	119.7.2.4. public boolean notifiesOnChange(String id) throws IllegalArgumentException
	119.7.2.5. public boolean resetStatusVariable(String id) throws IllegalArgumentException

	119.7.3. public interface MonitorAdmin
	119.7.3.1. public String getDescription(String path) throws IllegalArgumentException, SecurityException
	119.7.3.2. public String[] getMonitorableNames()
	119.7.3.3. public MonitoringJob[] getRunningJobs()
	119.7.3.4. public StatusVariable getStatusVariable(String path) throws IllegalArgumentException, SecurityException
	119.7.3.5. public String[] getStatusVariableNames(String monitorableId) throws IllegalArgumentException
	119.7.3.6. public StatusVariable[] getStatusVariables(String monitorableId) throws IllegalArgumentException
	119.7.3.7. public boolean resetStatusVariable(String path) throws IllegalArgumentException, SecurityException
	119.7.3.8. public MonitoringJob startJob(String initiator,String[] statusVariables,int count) throws IllegalArgumentException, SecurityException
	119.7.3.9. public MonitoringJob startScheduledJob(String initiator,String[] statusVariables,int schedule,int count) throws IllegalArgumentException, SecurityException
	119.7.3.10. public void switchEvents(String path,boolean on) throws IllegalArgumentException, SecurityException

	119.7.4. public interface MonitoringJob
	119.7.4.1. public String getInitiator()
	119.7.4.2. public int getReportCount()
	119.7.4.3. public int getSchedule()
	119.7.4.4. public String[] getStatusVariableNames()
	119.7.4.5. public boolean isLocal()
	119.7.4.6. public boolean isRunning()
	119.7.4.7. public void stop()

	119.7.5. public interface MonitorListener
	119.7.5.1. public void updated(String monitorableId,StatusVariable statusVariable) throws IllegalArgumentException

	119.7.6. public class MonitorPermission extends Permission
	119.7.6.1. public static final String PUBLISH = "publish"
	119.7.6.2. public static final String READ = "read"
	119.7.6.3. public static final String RESET = "reset"
	119.7.6.4. public static final String STARTJOB = "startjob"
	119.7.6.5. public static final String SWITCHEVENTS = "switchevents"
	119.7.6.6. public MonitorPermission(String statusVariable,String actions) throws IllegalArgumentException
	119.7.6.7. public boolean equals(Object o)
	119.7.6.8. public String getActions()
	119.7.6.9. public int hashCode()
	119.7.6.10. public boolean implies(Permission p)

	119.7.7. public final class StatusVariable
	119.7.7.1. public static final int CM_CC = 0
	119.7.7.2. public static final int CM_DER = 1
	119.7.7.3. public static final int CM_GAUGE = 2
	119.7.7.4. public static final int CM_SI = 3
	119.7.7.5. public static final int TYPE_BOOLEAN = 3
	119.7.7.6. public static final int TYPE_FLOAT = 1
	119.7.7.7. public static final int TYPE_INTEGER = 0
	119.7.7.8. public static final int TYPE_STRING = 2
	119.7.7.9. public StatusVariable(String id,int cm,int data)
	119.7.7.10. public StatusVariable(String id,int cm,float data)
	119.7.7.11. public StatusVariable(String id,int cm,boolean data)
	119.7.7.12. public StatusVariable(String id,int cm,String data)
	119.7.7.13. public boolean equals(Object obj)
	119.7.7.14. public boolean getBoolean() throws IllegalStateException
	119.7.7.15. public int getCollectionMethod()
	119.7.7.16. public float getFloat() throws IllegalStateException
	119.7.7.17. public String getID()
	119.7.7.18. public int getInteger() throws IllegalStateException
	119.7.7.19. public String getString() throws IllegalStateException
	119.7.7.20. public Date getTimeStamp()
	119.7.7.21. public int getType()
	119.7.7.22. public int hashCode()
	119.7.7.23. public String toString()

	119.8. References

	Chapter 120. Foreign Application Access Specification
	120.1. Introduction
	120.1.1. Essentials
	120.1.2. Entities
	120.1.3. Synopsis

	120.2. Foreign Applications
	120.2.1. Foreign Metadata
	120.2.2. OSGi Manifest Headers
	120.2.3. Interacting with the OSGi Framework
	120.2.4. Introspection
	120.2.5. Access to Services
	120.2.6. Service Properties
	120.2.7. Dependencies on Services
	120.2.8. Registering Services
	120.2.9. Listening to Service Events
	120.2.10. Access to Startup Parameters
	120.2.11. Sibling Instances

	120.3. Application Containers
	120.3.1. Installation

	120.4. Application Descriptor Resource
	120.4.1. Descriptor Element
	120.4.2. Application Element
	120.4.3. Reference Element
	120.4.4. Example XML

	120.5. Component Description Schema
	120.6. Security
	120.6.1. Application Context Access
	120.6.2. Signing
	120.6.3. Permission Management

	120.7. org.osgi.application
	120.7.1. Summary
	120.7.2. public interface ApplicationContext
	120.7.2.1. public void addServiceListener(ApplicationServiceListener listener,String referenceName) throws IllegalArgumentException
	120.7.2.2. public void addServiceListener(ApplicationServiceListener listener,String[] referenceNames) throws IllegalArgumentException
	120.7.2.3. public String getApplicationId()
	120.7.2.4. public String getInstanceId()
	120.7.2.5. public Map getServiceProperties(Object serviceObject)
	120.7.2.6. public Map getStartupParameters()
	120.7.2.7. public Object locateService(String referenceName)
	120.7.2.8. public Object[] locateServices(String referenceName)
	120.7.2.9. public ServiceRegistration registerService(String[] clazzes,Object service,Dictionary properties)
	120.7.2.10. public ServiceRegistration registerService(String clazz,Object service,Dictionary properties)
	120.7.2.11. public void removeServiceListener(ApplicationServiceListener listener)

	120.7.3. public class ApplicationServiceEvent extends ServiceEvent
	120.7.3.1. public ApplicationServiceEvent(int type,ServiceReference reference,Object serviceObject)
	120.7.3.2. public Object getServiceObject()

	120.7.4. public interface ApplicationServiceListener extends EventListener
	120.7.4.1. public void serviceChanged(ApplicationServiceEvent event)

	120.7.5. public final class Framework
	120.7.5.1. public static ApplicationContext getApplicationContext(Object applicationInstance)

	120.8. References

	Chapter 121. Blueprint Container Specification
	121.1. Introduction
	121.1.1. Essentials
	121.1.2. Entities
	121.1.3. Synopsis

	121.2. Managers
	121.2.1. Manager Types
	121.2.2. Metadata Objects
	121.2.3. Activation and Deactivation
	121.2.4. Manager Dependencies
	121.2.5. Reverse Dependency Order
	121.2.6. Cyclic Dependencies
	121.2.7. Eager Managers

	121.3. Blueprint Life-Cycle
	121.3.1. Class Space Compatibility
	121.3.2. Initialization of a Blueprint Container
	121.3.2.1. Initialization Steps
	121.3.2.2. Failure
	121.3.2.3. Diagram

	121.3.3. Extensions
	121.3.4. Preparing
	121.3.5. Parsing
	121.3.6. Tracking References
	121.3.7. Grace Period
	121.3.8. Service Registration
	121.3.9. Eager Instantiation
	121.3.10. Runtime Phase
	121.3.11. Destroy the Blueprint Container
	121.3.12. Failure
	121.3.13. Lazy

	121.4. Blueprint Definitions
	121.4.1. XML
	121.4.2. Syntax for Java types
	121.4.3. XML and Metadata
	121.4.4. <blueprint>
	121.4.5. Metadata
	121.4.6. Defaults
	121.4.7. <type-converters>
	121.4.8. manager
	121.4.9. Explicit Dependencies
	121.4.10. Lazy and Eager
	121.4.11. Target

	121.5. Bean Manager
	121.5.1. Bean Component XML
	121.5.2. <bean>
	121.5.3. <argument>
	121.5.4. <property>
	121.5.5. Scope
	121.5.6. Construction
	121.5.7. Properties
	121.5.8. Life Cycle Callbacks
	121.5.9. Activation and Deactivation

	121.6. Service Manager
	121.6.1. <service>
	121.6.2. <registration-listener>
	121.6.3. Explicit Dependencies
	121.6.4. Provided Object
	121.6.5. Service Interfaces
	121.6.6. Service Properties
	121.6.7. Service Object
	121.6.8. Scope
	121.6.9. Ranking
	121.6.10. Registration Listener
	121.6.11. Enabled
	121.6.12. Activation and Deactivation

	121.7. Service Reference Managers
	121.7.1. Service Reference
	121.7.2. <reference>
	121.7.3. <reference-list>
	121.7.4. <reference-listener>
	121.7.5. Provided Object For a Reference
	121.7.6. Provided Object For a Reference-list
	121.7.7. Read Only Lists
	121.7.8. Selection
	121.7.9. Availability
	121.7.10. Reference Listeners
	121.7.11. Service Proxies
	121.7.12. Activation and Deactivation

	121.8. Object Values
	121.8.1. <ref>
	121.8.2. <idref>
	121.8.3. <value>
	121.8.4. <null>
	121.8.5. <list>, <set>, <array>
	121.8.6. <map>
	121.8.7. <entry>
	121.8.8. <props>
	121.8.9. Manager as Value

	121.9. Dependency Injection
	121.9.1. Signature Disambiguation
	121.9.2. Type Compatibility
	121.9.3. Type Conversion
	121.9.4. Type Converters
	121.9.5. Built-in Converter
	121.9.6. Concrete Types for Interfaces
	121.9.7. Generics

	121.10. Service Dynamics
	121.10.1. Damping
	121.10.2. Iteration
	121.10.3. Mandatory Dependencies

	121.11. Blueprint Container
	121.11.1. Environment Managers
	121.11.2. Component Instances
	121.11.3. Access to Component Metadata
	121.11.4. Concurrency

	121.12. Events
	121.12.1. Blueprint Event
	121.12.2. Replay
	121.12.3. Event Admin Mapping

	121.13. Class Loading
	121.13.1. Blueprint Extender and Bundle Compatibility
	121.13.2. XML and Class Loading
	121.13.3. Foreign Bundle Context
	121.13.4. Converters and Class Loading
	121.13.5. Type Compatibility
	121.13.6. Visibility and Accessibility

	121.14. Metadata
	121.15. Blueprint XML Schema
	121.16. Security
	121.16.1. Blueprint Extender
	121.16.2. Blueprint Bundle

	121.17. org.osgi.service.blueprint.container
	121.17.1. Summary
	121.17.2. public interface BlueprintContainer
	121.17.2.1. public Set<String> getComponentIds()
	121.17.2.2. public Object getComponentInstance(String id)
	121.17.2.3. public ComponentMetadata getComponentMetadata(String id)
	121.17.2.4. public Collection<T> getMetadata(Class<T> type)

	121.17.3. public class BlueprintEvent
	121.17.3.1. public static final int CREATED = 2
	121.17.3.2. public static final int CREATING = 1
	121.17.3.3. public static final int DESTROYED = 4
	121.17.3.4. public static final int DESTROYING = 3
	121.17.3.5. public static final int FAILURE = 5
	121.17.3.6. public static final int GRACE_PERIOD = 6
	121.17.3.7. public static final int WAITING = 7
	121.17.3.8. public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle)
	121.17.3.9. public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle,String[] dependencies)
	121.17.3.10. public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle,Throwable cause)
	121.17.3.11. public BlueprintEvent(int type,Bundle bundle,Bundle extenderBundle,String[] dependencies,Throwable cause)
	121.17.3.12. public BlueprintEvent(BlueprintEvent event,boolean replay)
	121.17.3.13. public Bundle getBundle()
	121.17.3.14. public Throwable getCause()
	121.17.3.15. public String[] getDependencies()
	121.17.3.16. public Bundle getExtenderBundle()
	121.17.3.17. public long getTimestamp()
	121.17.3.18. public int getType()
	121.17.3.19. public boolean isReplay()

	121.17.4. public interface BlueprintListener
	121.17.4.1. public void blueprintEvent(BlueprintEvent event)

	121.17.5. public class ComponentDefinitionException extends RuntimeException
	121.17.5.1. public ComponentDefinitionException()
	121.17.5.2. public ComponentDefinitionException(String explanation)
	121.17.5.3. public ComponentDefinitionException(String explanation,Throwable cause)
	121.17.5.4. public ComponentDefinitionException(Throwable cause)

	121.17.6. public interface Converter
	121.17.6.1. public boolean canConvert(Object sourceObject,ReifiedType targetType)
	121.17.6.2. public Object convert(Object sourceObject,ReifiedType targetType) throws Exception

	121.17.7. public class EventConstants
	121.17.7.1. public static final String BUNDLE = "bundle"
	121.17.7.2. public static final String BUNDLE_ID = "bundle.id"
	121.17.7.3. public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"
	121.17.7.4. public static final String BUNDLE_VERSION = "bundle.version"
	121.17.7.5. public static final String CAUSE = "cause"
	121.17.7.6. public static final String DEPENDENCIES = "dependencies"
	121.17.7.7. public static final String EVENT = "event"
	121.17.7.8. public static final String EXTENDER_BUNDLE = "extender.bundle"
	121.17.7.9. public static final String EXTENDER_BUNDLE_ID = "extender.bundle.id"
	121.17.7.10. public static final String EXTENDER_BUNDLE_SYMBOLICNAME = "extender.bundle.symbolicName"
	121.17.7.11. public static final String EXTENDER_BUNDLE_VERSION = "extender.bundle.version"
	121.17.7.12. public static final String TIMESTAMP = "timestamp"
	121.17.7.13. public static final String TOPIC_BLUEPRINT_EVENTS = "org/osgi/service/blueprint/container"
	121.17.7.14. public static final String TOPIC_CREATED = "org/osgi/service/blueprint/container/CREATED"
	121.17.7.15. public static final String TOPIC_CREATING = "org/osgi/service/blueprint/container/CREATING"
	121.17.7.16. public static final String TOPIC_DESTROYED = "org/osgi/service/blueprint/container/DESTROYED"
	121.17.7.17. public static final String TOPIC_DESTROYING = "org/osgi/service/blueprint/container/DESTROYING"
	121.17.7.18. public static final String TOPIC_FAILURE = "org/osgi/service/blueprint/container/FAILURE"
	121.17.7.19. public static final String TOPIC_GRACE_PERIOD = "org/osgi/service/blueprint/container/GRACE_PERIOD"
	121.17.7.20. public static final String TOPIC_WAITING = "org/osgi/service/blueprint/container/WAITING"
	121.17.7.21. public static final String TYPE = "type"

	121.17.8. public class NoSuchComponentException extends RuntimeException
	121.17.8.1. public NoSuchComponentException(String msg,String id)
	121.17.8.2. public NoSuchComponentException(String id)
	121.17.8.3. public String getComponentId()

	121.17.9. public class ReifiedType
	121.17.9.1. public ReifiedType(Class<?> clazz)
	121.17.9.2. public ReifiedType getActualTypeArgument(int i)
	121.17.9.3. public Class<?> getRawClass()
	121.17.9.4. public int size()

	121.17.10. public class ServiceUnavailableException extends ServiceException
	121.17.10.1. public ServiceUnavailableException(String message,String filter)
	121.17.10.2. public ServiceUnavailableException(String message,String filter,Throwable cause)
	121.17.10.3. public String getFilter()

	121.18. org.osgi.service.blueprint.reflect
	121.18.1. Summary
	121.18.2. public interface BeanArgument
	121.18.2.1. public int getIndex()
	121.18.2.2. public Metadata getValue()
	121.18.2.3. public String getValueType()

	121.18.3. public interface BeanMetadata extends Target, ComponentMetadata
	121.18.3.1. public static final String SCOPE_PROTOTYPE = "prototype"
	121.18.3.2. public static final String SCOPE_SINGLETON = "singleton"
	121.18.3.3. public List<BeanArgument> getArguments()
	121.18.3.4. public String getClassName()
	121.18.3.5. public String getDestroyMethod()
	121.18.3.6. public Target getFactoryComponent()
	121.18.3.7. public String getFactoryMethod()
	121.18.3.8. public String getInitMethod()
	121.18.3.9. public List<BeanProperty> getProperties()
	121.18.3.10. public String getScope()

	121.18.4. public interface BeanProperty
	121.18.4.1. public String getName()
	121.18.4.2. public Metadata getValue()

	121.18.5. public interface CollectionMetadata extends NonNullMetadata
	121.18.5.1. public Class<?> getCollectionClass()
	121.18.5.2. public List<Metadata> getValues()
	121.18.5.3. public String getValueType()

	121.18.6. public interface ComponentMetadata extends NonNullMetadata
	121.18.6.1. public static final int ACTIVATION_EAGER = 1
	121.18.6.2. public static final int ACTIVATION_LAZY = 2
	121.18.6.3. public int getActivation()
	121.18.6.4. public List<String> getDependsOn()
	121.18.6.5. public String getId()

	121.18.7. public interface IdRefMetadata extends NonNullMetadata
	121.18.7.1. public String getComponentId()

	121.18.8. public interface MapEntry
	121.18.8.1. public NonNullMetadata getKey()
	121.18.8.2. public Metadata getValue()

	121.18.9. public interface MapMetadata extends NonNullMetadata
	121.18.9.1. public List<MapEntry> getEntries()
	121.18.9.2. public String getKeyType()
	121.18.9.3. public String getValueType()

	121.18.10. public interface Metadata
	121.18.11. public interface NonNullMetadata extends Metadata
	121.18.12. public interface NullMetadata extends Metadata
	121.18.12.1. public static final NullMetadata NULL

	121.18.13. public interface PropsMetadata extends NonNullMetadata
	121.18.13.1. public List<MapEntry> getEntries()

	121.18.14. public interface ReferenceListener
	121.18.14.1. public String getBindMethod()
	121.18.14.2. public Target getListenerComponent()
	121.18.14.3. public String getUnbindMethod()

	121.18.15. public interface ReferenceListMetadata extends ServiceReferenceMetadata
	121.18.15.1. public static final int USE_SERVICE_OBJECT = 1
	121.18.15.2. public static final int USE_SERVICE_REFERENCE = 2
	121.18.15.3. public int getMemberType()

	121.18.16. public interface ReferenceMetadata extends Target, ServiceReferenceMetadata
	121.18.16.1. public long getTimeout()

	121.18.17. public interface RefMetadata extends Target, NonNullMetadata
	121.18.17.1. public String getComponentId()

	121.18.18. public interface RegistrationListener
	121.18.18.1. public Target getListenerComponent()
	121.18.18.2. public String getRegistrationMethod()
	121.18.18.3. public String getUnregistrationMethod()

	121.18.19. public interface ServiceMetadata extends ComponentMetadata
	121.18.19.1. public static final int AUTO_EXPORT_ALL_CLASSES = 4
	121.18.19.2. public static final int AUTO_EXPORT_CLASS_HIERARCHY = 3
	121.18.19.3. public static final int AUTO_EXPORT_DISABLED = 1
	121.18.19.4. public static final int AUTO_EXPORT_INTERFACES = 2
	121.18.19.5. public int getAutoExport()
	121.18.19.6. public List<String> getInterfaces()
	121.18.19.7. public int getRanking()
	121.18.19.8. public Collection<RegistrationListener> getRegistrationListeners()
	121.18.19.9. public Target getServiceComponent()
	121.18.19.10. public List<MapEntry> getServiceProperties()

	121.18.20. public interface ServiceReferenceMetadata extends ComponentMetadata
	121.18.20.1. public static final int AVAILABILITY_MANDATORY = 1
	121.18.20.2. public static final int AVAILABILITY_OPTIONAL = 2
	121.18.20.3. public int getAvailability()
	121.18.20.4. public String getComponentName()
	121.18.20.5. public String getFilter()
	121.18.20.6. public String getInterface()
	121.18.20.7. public Collection<ReferenceListener> getReferenceListeners()

	121.18.21. public interface Target extends NonNullMetadata
	121.18.22. public interface ValueMetadata extends NonNullMetadata
	121.18.22.1. public String getStringValue()
	121.18.22.2. public String getType()

	121.19. References

	Chapter 122. Remote Service Admin Service Specification
	122.1. Introduction
	122.1.1. Essentials
	122.1.2. Entities
	122.1.3. Synopsis
	122.1.3.1. Endpoint Listener Services

	122.2. Actors
	122.3. Topology Managers
	122.3.1. Multiple Topology Managers
	122.3.2. Example Use Cases
	122.3.2.1. Promiscuous Policy
	122.3.2.2. Fail Over

	122.4. Endpoint Description
	122.4.1. Validity
	122.4.2. Mutability
	122.4.3. Endpoint Id
	122.4.4. Framework UUID
	122.4.5. Resource Containment

	122.5. Remote Service Admin
	122.5.1. Exporting
	122.5.2. Importing
	122.5.3. Updates
	122.5.4. Reflection
	122.5.5. Registration Life Cycle
	122.5.6. Invalid Registrations
	122.5.7. Proxying

	122.6. Discovery
	122.6.1. Scope and Filters
	122.6.2. Endpoint Event Listener Interface
	122.6.3. Endpoint Listener Interface
	122.6.4. Endpoint Event Listener and Endpoint Listener Implementations
	122.6.5. Endpoint Description Providers
	122.6.6. On Demand

	122.7. Events
	122.7.1. Event Admin Mapping

	122.8. Endpoint Description Extender Format
	122.8.1. XML Schema

	122.9. Capability Namespaces
	122.9.1. Local Discovery Extender
	122.9.2. Discovery Provider Capability
	122.9.3. Distribution Provider Capability
	122.9.4. Topology Manager Capability
	122.9.5. Service Capability

	122.10. Advice to implementations
	122.10.1. Notifying listeners
	122.10.2. Receiving Endpoint lifecycle notifications

	122.11. Security
	122.11.1. Import and Export Registrations
	122.11.2. Endpoint Permission

	122.12. org.osgi.service.remoteserviceadmin
	122.12.1. Summary
	122.12.2. public class EndpointDescription
	122.12.2.1. public EndpointDescription(Map<String,?> properties)
	122.12.2.2. public EndpointDescription(ServiceReference<?> reference,Map<String,?> properties)
	122.12.2.3. public boolean equals(Object other)
	122.12.2.4. public List<String> getConfigurationTypes()
	122.12.2.5. public String getFrameworkUUID()
	122.12.2.6. public String getId()
	122.12.2.7. public List<String> getIntents()
	122.12.2.8. public List<String> getInterfaces()
	122.12.2.9. public Version getPackageVersion(String packageName)
	122.12.2.10. public Map<String,Object> getProperties()
	122.12.2.11. public long getServiceId()
	122.12.2.12. public int hashCode()
	122.12.2.13. public boolean isSameService(EndpointDescription other)
	122.12.2.14. public boolean matches(String filter)
	122.12.2.15. public String toString()

	122.12.3. public class EndpointEvent
	122.12.3.1. public static final int ADDED = 1
	122.12.3.2. public static final int MODIFIED = 4
	122.12.3.3. public static final int MODIFIED_ENDMATCH = 8
	122.12.3.4. public static final int REMOVED = 2
	122.12.3.5. public EndpointEvent(int type,EndpointDescription endpoint)
	122.12.3.6. public EndpointDescription getEndpoint()
	122.12.3.7. public int getType()

	122.12.4. public interface EndpointEventListener
	122.12.4.1. public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"
	122.12.4.2. public void endpointChanged(EndpointEvent event,String filter)

	122.12.5. public interface EndpointListener
	122.12.5.1. public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"
	122.12.5.2. public void endpointAdded(EndpointDescription endpoint,String matchedFilter)
	122.12.5.3. public void endpointRemoved(EndpointDescription endpoint,String matchedFilter)

	122.12.6. public final class EndpointPermission extends Permission
	122.12.6.1. public static final String EXPORT = "export"
	122.12.6.2. public static final String IMPORT = "import"
	122.12.6.3. public static final String READ = "read"
	122.12.6.4. public EndpointPermission(String filterString,String actions)
	122.12.6.5. public EndpointPermission(EndpointDescription endpoint,String localFrameworkUUID,String actions)
	122.12.6.6. public boolean equals(Object obj)
	122.12.6.7. public String getActions()
	122.12.6.8. public int hashCode()
	122.12.6.9. public boolean implies(Permission p)
	122.12.6.10. public PermissionCollection newPermissionCollection()

	122.12.7. public interface ExportReference
	122.12.7.1. public EndpointDescription getExportedEndpoint()
	122.12.7.2. public ServiceReference<?> getExportedService()

	122.12.8. public interface ExportRegistration
	122.12.8.1. public void close()
	122.12.8.2. public Throwable getException()
	122.12.8.3. public ExportReference getExportReference()
	122.12.8.4. public EndpointDescription update(Map<String,?> properties)

	122.12.9. public interface ImportReference
	122.12.9.1. public EndpointDescription getImportedEndpoint()
	122.12.9.2. public ServiceReference<?> getImportedService()

	122.12.10. public interface ImportRegistration
	122.12.10.1. public void close()
	122.12.10.2. public Throwable getException()
	122.12.10.3. public ImportReference getImportReference()
	122.12.10.4. public boolean update(EndpointDescription endpoint)

	122.12.11. public class RemoteConstants
	122.12.11.1. public static final String ENDPOINT_FRAMEWORK_UUID = "endpoint.framework.uuid"
	122.12.11.2. public static final String ENDPOINT_ID = "endpoint.id"
	122.12.11.3. public static final String ENDPOINT_PACKAGE_VERSION_ = "endpoint.package.version."
	122.12.11.4. public static final String ENDPOINT_SERVICE_ID = "endpoint.service.id"
	122.12.11.5. public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"
	122.12.11.6. public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"
	122.12.11.7. public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"
	122.12.11.8. public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"
	122.12.11.9. public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"
	122.12.11.10. public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"
	122.12.11.11. public static final String SERVICE_IMPORTED = "service.imported"
	122.12.11.12. public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"
	122.12.11.13. public static final String SERVICE_INTENTS = "service.intents"

	122.12.12. public interface RemoteServiceAdmin
	122.12.12.1. public Collection<ExportRegistration> exportService(ServiceReference<?> reference,Map<String,?> properties)
	122.12.12.2. public Collection<ExportReference> getExportedServices()
	122.12.12.3. public Collection<ImportReference> getImportedEndpoints()
	122.12.12.4. public ImportRegistration importService(EndpointDescription endpoint)

	122.12.13. public class RemoteServiceAdminEvent
	122.12.13.1. public static final int EXPORT_ERROR = 6
	122.12.13.2. public static final int EXPORT_REGISTRATION = 2
	122.12.13.3. public static final int EXPORT_UNREGISTRATION = 3
	122.12.13.4. public static final int EXPORT_UPDATE = 10
	122.12.13.5. public static final int EXPORT_WARNING = 7
	122.12.13.6. public static final int IMPORT_ERROR = 5
	122.12.13.7. public static final int IMPORT_REGISTRATION = 1
	122.12.13.8. public static final int IMPORT_UNREGISTRATION = 4
	122.12.13.9. public static final int IMPORT_UPDATE = 9
	122.12.13.10. public static final int IMPORT_WARNING = 8
	122.12.13.11. public RemoteServiceAdminEvent(int type,Bundle source,ExportReference exportReference,Throwable exception)
	122.12.13.12. public RemoteServiceAdminEvent(int type,Bundle source,ImportReference importReference,Throwable exception)
	122.12.13.13. public Throwable getException()
	122.12.13.14. public ExportReference getExportReference()
	122.12.13.15. public ImportReference getImportReference()
	122.12.13.16. public Bundle getSource()
	122.12.13.17. public int getType()

	122.12.14. public interface RemoteServiceAdminListener
	122.12.14.1. public void remoteAdminEvent(RemoteServiceAdminEvent event)

	122.13. org.osgi.service.remoteserviceadmin.namespace
	122.13.1. Summary
	122.13.2. public final class DiscoveryNamespace extends Namespace
	122.13.2.1. public static final String CAPABILITY_PROTOCOLS_ATTRIBUTE = "protocols"
	122.13.2.2. public static final String DISCOVERY_NAMESPACE = "osgi.remoteserviceadmin.discovery"

	122.13.3. public final class DistributionNamespace extends Namespace
	122.13.3.1. public static final String CAPABILITY_CONFIGS_ATTRIBUTE = "configs"
	122.13.3.2. public static final String DISTRIBUTION_NAMESPACE = "osgi.remoteserviceadmin.distribution"

	122.13.4. public final class TopologyNamespace extends Namespace
	122.13.4.1. public static final String CAPABILITY_POLICY_ATTRIBUTE = "policy"
	122.13.4.2. public static final String FAIL_OVER_POLICY = "fail-over"
	122.13.4.3. public static final String PROMISCUOUS_POLICY = "promiscuous"
	122.13.4.4. public static final String TOPOLOGY_NAMESPACE = "osgi.remoteserviceadmin.topology"

	122.14. References
	122.15. Changes

	Chapter 123. JTA Transaction Services Specification
	123.1. Introduction
	123.1.1. Essentials
	123.1.2. Entities
	123.1.3. Dependencies
	123.1.4. Synopsis

	123.2. JTA Overview
	123.2.1. Global and Local Transactions
	123.2.2. Durable Resource
	123.2.3. Volatile Resource
	123.2.4. Threading

	123.3. Application
	123.3.1. No Enlistment
	123.3.2. Application Bundle Enlistment
	123.3.3. Container Managed Enlistment

	123.4. Resource Managers
	123.5. The JTA Provider
	123.5.1. User Transaction
	123.5.2. Transaction Manager
	123.5.3. Transaction Synchronization Service

	123.6. Life Cycle
	123.6.1. JTA Provider
	123.6.2. Application Bundles
	123.6.3. Error Handling

	123.7. Security
	123.8. References

	Chapter 125. JDBC™ Service Specification
	125.1. Introduction
	125.1.1. Essentials
	125.1.2. Entities
	125.1.3. Dependencies
	125.1.4. Synopsis

	125.2. Database Driver
	125.2.1. Life Cycle
	125.2.2. Package Dependencies

	125.3. Applications
	125.3.1. Selecting the Data Source Factory Service
	125.3.2. Using Database Drivers
	125.3.3. Using JDBC in OSGi and Containers

	125.4. Security
	125.5. org.osgi.service.jdbc
	125.5.1. Summary
	125.5.2. public interface DataSourceFactory
	125.5.2.1. public static final String JDBC_DATABASE_NAME = "databaseName"
	125.5.2.2. public static final String JDBC_DATASOURCE_NAME = "dataSourceName"
	125.5.2.3. public static final String JDBC_DESCRIPTION = "description"
	125.5.2.4. public static final String JDBC_INITIAL_POOL_SIZE = "initialPoolSize"
	125.5.2.5. public static final String JDBC_MAX_IDLE_TIME = "maxIdleTime"
	125.5.2.6. public static final String JDBC_MAX_POOL_SIZE = "maxPoolSize"
	125.5.2.7. public static final String JDBC_MAX_STATEMENTS = "maxStatements"
	125.5.2.8. public static final String JDBC_MIN_POOL_SIZE = "minPoolSize"
	125.5.2.9. public static final String JDBC_NETWORK_PROTOCOL = "networkProtocol"
	125.5.2.10. public static final String JDBC_PASSWORD = "password"
	125.5.2.11. public static final String JDBC_PORT_NUMBER = "portNumber"
	125.5.2.12. public static final String JDBC_PROPERTY_CYCLE = "propertyCycle"
	125.5.2.13. public static final String JDBC_ROLE_NAME = "roleName"
	125.5.2.14. public static final String JDBC_SERVER_NAME = "serverName"
	125.5.2.15. public static final String JDBC_URL = "url"
	125.5.2.16. public static final String JDBC_USER = "user"
	125.5.2.17. public static final String OSGI_JDBC_DRIVER_CLASS = "osgi.jdbc.driver.class"
	125.5.2.18. public static final String OSGI_JDBC_DRIVER_NAME = "osgi.jdbc.driver.name"
	125.5.2.19. public static final String OSGI_JDBC_DRIVER_VERSION = "osgi.jdbc.driver.version"
	125.5.2.20. public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props) throws SQLException
	125.5.2.21. public DataSource createDataSource(Properties props) throws SQLException
	125.5.2.22. public Driver createDriver(Properties props) throws SQLException
	125.5.2.23. public XADataSource createXADataSource(Properties props) throws SQLException

	125.6. References

	Chapter 126. JNDI Services Specification
	126.1. Introduction
	126.1.1. Essentials
	126.1.2. Entities
	126.1.3. Dependencies
	126.1.4. Synopsis

	126.2. JNDI Overview
	126.2.1. Context and Dir Context
	126.2.2. Initial Context
	126.2.3. URL Context Factory
	126.2.4. Object and Reference Conversion
	126.2.5. Environment
	126.2.6. Naming Manager Singletons
	126.2.7. Built-In JNDI Providers

	126.3. JNDI Context Manager Service
	126.3.1. Environment and Bundles
	126.3.2. Context Creation
	126.3.2.1. Implementation Class Present in Environment
	126.3.2.2. No Implementation Class Specified

	126.3.3. Rebinding
	126.3.4. Life Cycle and Dynamism

	126.4. JNDI Provider Admin service
	126.5. JNDI Providers
	126.5.1. Initial Context Factory Builder Provider
	126.5.2. Initial Context Factory Provider
	126.5.3. Object Factory Builder Provider
	126.5.4. Object Factory Provider
	126.5.5. URL Context Provider
	126.5.6. JRE Context Providers

	126.6. OSGi URL Scheme
	126.6.1. Service Proxies
	126.6.2. Services and State

	126.7. Traditional Client Model
	126.7.1. New Initial Context
	126.7.2. Static Conversion
	126.7.3. Caller's Bundle Context
	126.7.4. Life Cycle Mismatch

	126.8. Security
	126.8.1. JNDI Implementation
	126.8.2. JNDI Clients
	126.8.3. OSGi URL namespace

	126.9. org.osgi.service.jndi
	126.9.1. Summary
	126.9.2. public class JNDIConstants
	126.9.2.1. public static final String BUNDLE_CONTEXT = "osgi.service.jndi.bundleContext"
	126.9.2.2. public static final String JNDI_SERVICENAME = "osgi.jndi.service.name"
	126.9.2.3. public static final String JNDI_URLSCHEME = "osgi.jndi.url.scheme"

	126.9.3. public interface JNDIContextManager
	126.9.3.1. public Context newInitialContext() throws NamingException
	126.9.3.2. public Context newInitialContext(Map environment) throws NamingException
	126.9.3.3. public DirContext newInitialDirContext() throws NamingException
	126.9.3.4. public DirContext newInitialDirContext(Map environment) throws NamingException

	126.9.4. public interface JNDIProviderAdmin
	126.9.4.1. public Object getObjectInstance(Object refInfo,Name name,Context context,Map environment) throws Exception
	126.9.4.2. public Object getObjectInstance(Object refInfo,Name name,Context context,Map environment,Attributes attributes) throws Exception

	126.10. References

	Chapter 127. JPA Service Specification
	127.1. Introduction
	127.1.1. Essentials
	127.1.2. Entities
	127.1.3. Dependencies
	127.1.4. Synopsis

	127.2. JPA Overview
	127.2.1. Persistence
	127.2.2. JPA Provider
	127.2.3. Managed and Unmanaged
	127.2.4. JDBC Access in JPA

	127.3. Bundles with Persistence
	127.3.1. Services
	127.3.2. Persistence Bundle
	127.3.3. Client Bundles
	127.3.4. Custom Configured Entity Manager

	127.4. Extending a Persistence Bundle
	127.4.1. Class Space Consistency
	127.4.2. Meta Persistence Header
	127.4.3. Processing
	127.4.4. Ready Phase
	127.4.5. Service Registrations
	127.4.6. Registering the Entity Manager Factory Builder Service
	127.4.7. Registering the Entity Manager Factory
	127.4.8. Stopping

	127.5. JPA Provider
	127.5.1. Managed Model
	127.5.2. Database Access
	127.5.3. Data Source Factory Service Matching
	127.5.4. Rebinding
	127.5.5. Enhancing Entity Classes
	127.5.6. Class Loading
	127.5.7. Validation

	127.6. Static Access
	127.6.1. Access

	127.7. Security
	127.8. org.osgi.service.jpa
	127.8.1. Summary
	127.8.2. public interface EntityManagerFactoryBuilder
	127.8.2.1. public static final String JPA_UNIT_NAME = "osgi.unit.name"
	127.8.2.2. public static final String JPA_UNIT_PROVIDER = "osgi.unit.provider"
	127.8.2.3. public static final String JPA_UNIT_VERSION = "osgi.unit.version"
	127.8.2.4. public EntityManagerFactory createEntityManagerFactory(Map<String,Object> props)

	127.9. References

	Chapter 128. Web Applications Specification
	128.1. Introduction
	128.1.1. Essentials
	128.1.2. Entities
	128.1.3. Dependencies
	128.1.4. Synopsis

	128.2. Web Container
	128.3. Web Application Bundle
	128.3.1. WAB Definition
	128.3.2. Starting the Web Application Bundle
	128.3.3. Failure
	128.3.4. Publishing the Servlet Context
	128.3.5. Static Content
	128.3.6. Dynamic Content
	128.3.7. Content Serving Example
	128.3.8. Stopping the Web Application Bundle
	128.3.9. Uninstalling the Web Application Bundle
	128.3.10. Stopping of the Web Extender

	128.4. Web URL Handler
	128.4.1. URL Scheme
	128.4.2. URL Parsing
	128.4.3. URL Parameters
	128.4.4. WAB Modification
	128.4.5. WAR Manifest Processing
	128.4.6. Signed WAR files

	128.5. Events
	128.6. Interacting with the OSGi Environment
	128.6.1. Bundle Context Access
	128.6.2. Other Component Models
	128.6.3. Resource Lookup
	128.6.4. Resource Injection and Annotations
	128.6.5. Java Server Pages Support
	128.6.6. Compilation

	128.7. Security
	128.8. References

	Chapter 130. Coordinator Service Specification
	130.1. Introduction
	130.1.1. Essentials
	130.1.2. Entities

	130.2. Usage
	130.2.1. Synopsis
	130.2.2. Explicit Coordination
	130.2.3. Multi Threading
	130.2.4. Implicit Coordinations
	130.2.5. Partial Ending
	130.2.6. Locking
	130.2.7. Failing
	130.2.8. Time-out
	130.2.9. Joining
	130.2.10. Variables
	130.2.11. Optimizing Example
	130.2.12. Security Example

	130.3. Coordinator Service
	130.3.1. Coordination Creation
	130.3.2. Adding Participants
	130.3.3. Active
	130.3.4. Explicit and Implicit Models
	130.3.5. Termination
	130.3.6. Ending
	130.3.7. Failing, TIMEOUT, ORPHANED, and RELEASED
	130.3.8. Nesting Implicit Coordinations
	130.3.9. Time-outs
	130.3.10. Released
	130.3.11. Coordinator Convenience Methods
	130.3.12. Administrative Access
	130.3.13. Summary

	130.4. Security
	130.5. org.osgi.service.coordinator
	130.5.1. Summary
	130.5.2. public interface Coordination
	130.5.2.1. public static final Exception ORPHANED
	130.5.2.2. public static final Exception RELEASED
	130.5.2.3. public static final Exception TIMEOUT
	130.5.2.4. public void addParticipant(Participant participant)
	130.5.2.5. public void end()
	130.5.2.6. public long extendTimeout(long timeMillis)
	130.5.2.7. public boolean fail(Throwable cause)
	130.5.2.8. public Bundle getBundle()
	130.5.2.9. public Coordination getEnclosingCoordination()
	130.5.2.10. public Throwable getFailure()
	130.5.2.11. public long getId()
	130.5.2.12. public String getName()
	130.5.2.13. public List<Participant> getParticipants()
	130.5.2.14. public Thread getThread()
	130.5.2.15. public Map<Class<?>,Object> getVariables()
	130.5.2.16. public boolean isTerminated()
	130.5.2.17. public void join(long timeMillis) throws InterruptedException
	130.5.2.18. public Coordination push()

	130.5.3. public class CoordinationException extends RuntimeException
	130.5.3.1. public static final int ALREADY_ENDED = 4
	130.5.3.2. public static final int ALREADY_PUSHED = 5
	130.5.3.3. public static final int DEADLOCK_DETECTED = 1
	130.5.3.4. public static final int FAILED = 2
	130.5.3.5. public static final int LOCK_INTERRUPTED = 6
	130.5.3.6. public static final int PARTIALLY_ENDED = 3
	130.5.3.7. public static final int UNKNOWN = 0
	130.5.3.8. public static final int WRONG_THREAD = 7
	130.5.3.9. public CoordinationException(String message,Coordination coordination,int type,Throwable cause)
	130.5.3.10. public CoordinationException(String message,Coordination coordination,int type)
	130.5.3.11. public long getId()
	130.5.3.12. public String getName()
	130.5.3.13. public int getType()

	130.5.4. public final class CoordinationPermission extends BasicPermission
	130.5.4.1. public static final String ADMIN = "admin"
	130.5.4.2. public static final String INITIATE = "initiate"
	130.5.4.3. public static final String PARTICIPATE = "participate"
	130.5.4.4. public CoordinationPermission(String filter,String actions)
	130.5.4.5. public CoordinationPermission(String coordinationName,Bundle coordinationBundle,String actions)
	130.5.4.6. public boolean equals(Object obj)
	130.5.4.7. public String getActions()
	130.5.4.8. public int hashCode()
	130.5.4.9. public boolean implies(Permission p)
	130.5.4.10. public PermissionCollection newPermissionCollection()

	130.5.5. public interface Coordinator
	130.5.5.1. public boolean addParticipant(Participant participant)
	130.5.5.2. public Coordination begin(String name,long timeMillis)
	130.5.5.3. public Coordination create(String name,long timeMillis)
	130.5.5.4. public boolean fail(Throwable cause)
	130.5.5.5. public Coordination getCoordination(long id)
	130.5.5.6. public Collection<Coordination> getCoordinations()
	130.5.5.7. public Coordination peek()
	130.5.5.8. public Coordination pop()

	130.5.6. public interface Participant
	130.5.6.1. public void ended(Coordination coordination) throws Exception
	130.5.6.2. public void failed(Coordination coordination) throws Exception

	130.6. References

	Chapter 132. Repository Service Specification
	132.1. Introduction
	132.1.1. Essentials
	132.1.2. Entities
	132.1.3. Synopsis

	132.2. Using a Repository
	132.2.1. Combining Requirements

	132.3. Repository
	132.3.1. Repository Content

	132.4. osgi.content Namespace
	132.5. XML Repository Format
	132.5.1. Repository Element
	132.5.2. Referral Element
	132.5.3. Resource Element
	132.5.4. Capability Element
	132.5.5. Requirement Element
	132.5.6. Attribute Element
	132.5.7. Directive Element
	132.5.8. Sample XML File

	132.6. XML Repository Schema
	132.7. Capabilities
	132.7.1. osgi.implementation Capability
	132.7.2. osgi.service Capability

	132.8. Security
	132.8.1. External Access
	132.8.2. Permissions

	132.9. org.osgi.service.repository
	132.9.1. Summary
	132.9.2. public interface AndExpression extends RequirementExpression
	132.9.2.1. public List<RequirementExpression> getRequirementExpressions()

	132.9.3. public final class ContentNamespace extends Namespace
	132.9.3.1. public static final String CAPABILITY_MIME_ATTRIBUTE = "mime"
	132.9.3.2. public static final String CAPABILITY_SIZE_ATTRIBUTE = "size"
	132.9.3.3. public static final String CAPABILITY_URL_ATTRIBUTE = "url"
	132.9.3.4. public static final String CONTENT_NAMESPACE = "osgi.content"

	132.9.4. public interface ExpressionCombiner
	132.9.4.1. public AndExpression and(RequirementExpression expr1,RequirementExpression expr2)
	132.9.4.2. public AndExpression and(RequirementExpression expr1,RequirementExpression expr2,RequirementExpression ... moreExprs)
	132.9.4.3. public IdentityExpression identity(Requirement req)
	132.9.4.4. public NotExpression not(RequirementExpression expr)
	132.9.4.5. public OrExpression or(RequirementExpression expr1,RequirementExpression expr2)
	132.9.4.6. public OrExpression or(RequirementExpression expr1,RequirementExpression expr2,RequirementExpression ... moreExprs)

	132.9.5. public interface IdentityExpression extends RequirementExpression
	132.9.5.1. public Requirement getRequirement()

	132.9.6. public interface NotExpression extends RequirementExpression
	132.9.6.1. public RequirementExpression getRequirementExpression()

	132.9.7. public interface OrExpression extends RequirementExpression
	132.9.7.1. public List<RequirementExpression> getRequirementExpressions()

	132.9.8. public interface Repository
	132.9.8.1. public static final String URL = "repository.url"
	132.9.8.2. public Map<Requirement,Collection<Capability>> findProviders(Collection<? extends Requirement> requirements)
	132.9.8.3. public Promise<Collection<Resource>> findProviders(RequirementExpression expression)
	132.9.8.4. public ExpressionCombiner getExpressionCombiner()
	132.9.8.5. public RequirementBuilder newRequirementBuilder(String namespace)

	132.9.9. public interface RepositoryContent
	132.9.9.1. public InputStream getContent()

	132.9.10. public interface RequirementBuilder
	132.9.10.1. public RequirementBuilder addAttribute(String name,Object value)
	132.9.10.2. public RequirementBuilder addDirective(String name,String value)
	132.9.10.3. public Requirement build()
	132.9.10.4. public IdentityExpression buildExpression()
	132.9.10.5. public RequirementBuilder setAttributes(Map<String,Object> attributes)
	132.9.10.6. public RequirementBuilder setDirectives(Map<String,String> directives)
	132.9.10.7. public RequirementBuilder setResource(Resource resource)

	132.9.11. public interface RequirementExpression

	132.10. References
	132.11. Changes

	Chapter 133. Service Loader Mediator Specification
	133.1. Introduction
	133.1.1. Essentials
	133.1.2. Entities
	133.1.3. Synopsis

	133.2. Java Service Loader API
	133.3. Consumers
	133.3.1. Processing
	133.3.2. Opting In
	133.3.3. Restricting Visibility
	133.3.4. Life Cycle Impedance Mismatch
	133.3.5. Consumer Example

	133.4. Service Provider Bundles
	133.4.1. Advertising
	133.4.2. Publishing the Service Providers
	133.4.3. OSGi Services
	133.4.4. Service Provider Example

	133.5. Service Loader Mediator
	133.5.1. Registering Services
	133.5.2. OSGi Service Factory
	133.5.3. Service Loader and Modularity
	133.5.4. Processing Consumers
	133.5.5. Visibility
	133.5.6. Life Cycle

	133.6. osgi.serviceloader Namespace
	133.7. Use of the osgi.extender Namespace
	133.8. Security
	133.8.1. Mediator
	133.8.2. Consumers
	133.8.3. Service Providers

	133.9. org.osgi.service.serviceloader
	133.9.1. Summary
	133.9.2. public final class ServiceLoaderNamespace extends Namespace
	133.9.2.1. public static final String CAPABILITY_REGISTER_DIRECTIVE = "register"
	133.9.2.2. public static final String SERVICELOADER_NAMESPACE = "osgi.serviceloader"

	133.10. References

	Chapter 134. Subsystem Service Specification
	134.1. Introduction
	134.1.1. Essentials
	134.1.2. Entities
	134.1.3. Synopsis

	134.2. Subsystems
	134.2.1. Subsystem Manifest Headers
	134.2.1.1. Export-Package: org.acme.logging; version=1.0
	134.2.1.2. Import-Package: org.osgi.util.tracker; version="[1.4, 2.0)"
	134.2.1.3. Preferred-Provider: com.acme.logging
	134.2.1.4. Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2
	134.2.1.5. Require-Bundle: com.acme.chess; version= "[1.0, 2.0)"
	134.2.1.6. Require-Capability: osgi.ee; filter:="(osgi.ee=*)"
	134.2.1.7. Subsystem-Category: osgi, test, nursery
	134.2.1.8. Subsystem-ContactAddress: 2400 Oswego Road, Austin, TX 74563
	134.2.1.9. Subsystem-Content: com.acme.logging
	134.2.1.10. Subsystem-Copyright: OSGi (c) 2014
	134.2.1.11. Subsystem-Description: The ACME Account Admin Application
	134.2.1.12. Subsystem-DocURL: http://www.example.com/Firewall/doc
	134.2.1.13. Subsystem-ExportService: org.acme.billing.Account; filter:="(user=bob)"
	134.2.1.14. Subsystem-Icon: /icons/acme-logo.png; size=64
	134.2.1.15. Subsystem-ImportService: org.acme.billing.Account; filter:="(type=premium)"
	134.2.1.16. Subsystem-License: http://www.opensource.org/licenses/jabberpl.php
	134.2.1.17. Subsystem-Localization: OSGI-INF/l10n/subsystem
	134.2.1.18. Subsystem-ManifestVersion: 1
	134.2.1.19. Subsystem-Name: Account Application
	134.2.1.20. Subsystem-SymbolicName: com.acme.subsystem.logging
	134.2.1.21. Subsystem-Type: osgi.subsystem.application
	134.2.1.22. Subsystem-Vendor: OSGi Alliance
	134.2.1.23. Subsystem-Version: 1.0

	134.2.2. Subsystem Identifiers and Type
	134.2.3. Subsystem-SymbolicName Header
	134.2.4. Subsystem-Version Header
	134.2.5. Subsystem-Type Header
	134.2.6. Deriving the Subsystem Identity
	134.2.7. Subsystem Identity Capability
	134.2.8. Subsystem-Localization Header
	134.2.8.1. Localization Properties
	134.2.8.2. Locating Localization Entries

	134.3. Subsystem Region
	134.4. Subsystem Relationships
	134.4.1. Prevent Cycles and Recursion

	134.5. Determining Content
	134.5.1. Subsystem-Content Header
	134.5.2. Subsystem-Content Requirements
	134.5.3. Preferred-Provider Header
	134.5.4. Resource Repositories
	134.5.4.1. Local Repository
	134.5.4.2. System Repository
	134.5.4.3. Repository Services
	134.5.4.4. Content Repository
	134.5.4.5. Preferred Repository

	134.5.5. Discovering Content Resources
	134.5.5.1. Declared Subsystem-Content
	134.5.5.2. Use Subsystem Local Repository

	134.6. Determining Dependencies
	134.7. Accepting Dependencies
	134.8. Sharing Capabilities
	134.8.1. Preferred Provider
	134.8.2. System Capabilities

	134.9. Region Context Bundle
	134.10. Explicit and Implicit Resources
	134.10.1. Explicit Resources
	134.10.1.1. Explicit Bundle Resources
	134.10.1.2. Explicit Subsystem Resources

	134.10.2. Explicit Resource Example

	134.11. Resource References
	134.11.1. Reference Count

	134.12. Starting and Stopping Resources
	134.12.1. Start Order
	134.12.2. Active Use Count

	134.13. Subsystem Service
	134.13.1. Root Subsystem
	134.13.2. Subsystem Service Properties
	134.13.3. Subsystem States
	134.13.4. Subsystem Service Registrations
	134.13.5. Subsystem Manifest Headers

	134.14. Subsystem Life Cycle
	134.14.1. Installing
	134.14.2. Resolving
	134.14.3. Starting
	134.14.4. Stopping
	134.14.5. Uninstalling

	134.15. Pre-Calculated Deployment
	134.15.1. Deployment Headers
	134.15.1.1. Deployment-ManifestVersion: 1
	134.15.1.2. Subsystem-SymbolicName: com.acme.subsystem.logging
	134.15.1.3. Subsystem-Version: 1.0
	134.15.1.4. Deployed-Content: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0
	134.15.1.5. Provision-Resource: com.acme.logging;type=osgi.bundle;deployed-version=1.0.0
	134.15.1.6. Import-Package: com.acme.api;version="[1.0,1.1)"
	134.15.1.7. Export-Package: com.acme.api;version=1.0.1
	134.15.1.8. Require-Bundle: com.acme.logging;version="[1.0, 1.1)"
	134.15.1.9. Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2
	134.15.1.10. Require-Capability: osgi.ee; filter:="(osgi.ee=*)"
	134.15.1.11. Subsystem-ImportService: com.acme.service.Logging
	134.15.1.12. Subsystem-ExportService: com.acme.service.Logging

	134.15.2. Validating Subsystem Identity
	134.15.3. Deployed-Content
	134.15.4. Provision-Resource
	134.15.5. Import-Package
	134.15.6. Export-Package
	134.15.7. Require-Bundle
	134.15.8. Services
	134.15.9. Subsystem-ImportService
	134.15.10. Subsystem-ExportService

	134.16. Subsystem Types
	134.16.1. Application
	134.16.2. Application Deployment
	134.16.2.1. Package Imports
	134.16.2.2. Service Imports
	134.16.2.3. Bundle Requirements
	134.16.2.4. Generic Requirements
	134.16.2.5. Dependencies

	134.16.3. Composite
	134.16.3.1. Subsystem Content
	134.16.3.2. Package Imports
	134.16.3.3. Package Exports
	134.16.3.4. Service Imports
	134.16.3.5. Service Exports
	134.16.3.6. Bundle Requirements
	134.16.3.7. Generic Requirements
	134.16.3.8. Generic Capabilities
	134.16.3.9. Dependencies

	134.16.4. Feature
	134.16.4.1. Explicit Requirements and Capabilities
	134.16.4.2. Dependencies

	134.17. Weaving Hooks
	134.18. Stopping and Uninstalling Subsystems Implementation
	134.19. Capabilities
	134.20. Security
	134.20.1. Subsystem Permission
	134.20.2. Actions
	134.20.3. Required Permissions

	134.21. org.osgi.service.subsystem
	134.21.1. Summary
	134.21.2. public interface Subsystem
	134.21.2.1. public BundleContext getBundleContext()
	134.21.2.2. public Collection<Subsystem> getChildren()
	134.21.2.3. public Collection<Resource> getConstituents()
	134.21.2.4. public Map<String,String> getDeploymentHeaders()
	134.21.2.5. public String getLocation()
	134.21.2.6. public Collection<Subsystem> getParents()
	134.21.2.7. public Subsystem.State getState()
	134.21.2.8. public Map<String,String> getSubsystemHeaders(Locale locale)
	134.21.2.9. public long getSubsystemId()
	134.21.2.10. public String getSymbolicName()
	134.21.2.11. public String getType()
	134.21.2.12. public Version getVersion()
	134.21.2.13. public Subsystem install(String location)
	134.21.2.14. public Subsystem install(String location,InputStream content)
	134.21.2.15. public Subsystem install(String location,InputStream content,InputStream deploymentManifest)
	134.21.2.16. public void start()
	134.21.2.17. public void stop()
	134.21.2.18. public void uninstall()

	134.21.3. enum Subsystem.State
	134.21.3.1. INSTALLING
	134.21.3.2. INSTALLED
	134.21.3.3. INSTALL_FAILED
	134.21.3.4. RESOLVING
	134.21.3.5. RESOLVED
	134.21.3.6. STARTING
	134.21.3.7. ACTIVE
	134.21.3.8. STOPPING
	134.21.3.9. UNINSTALLING
	134.21.3.10. UNINSTALLED

	134.21.4. public class SubsystemConstants
	134.21.4.1. public static final String DEPLOYED_CONTENT = "Deployed-Content"
	134.21.4.2. public static final String DEPLOYED_VERSION_ATTRIBUTE = "deployed-version"
	134.21.4.3. public static final String DEPLOYMENT_MANIFESTVERSION = "Deployment-ManifestVersion"
	134.21.4.4. public static final String PREFERRED_PROVIDER = "Preferred-Provider"
	134.21.4.5. public static final String PROVISION_POLICY_ACCEPT_DEPENDENCIES = "acceptDependencies"
	134.21.4.6. public static final String PROVISION_POLICY_DIRECTIVE = "provision-policy"
	134.21.4.7. public static final String PROVISION_POLICY_REJECT_DEPENDENCIES = "rejectDependencies"
	134.21.4.8. public static final String PROVISION_RESOURCE = "Provision-Resource"
	134.21.4.9. public static final String ROOT_SUBSYSTEM_SYMBOLICNAME = "org.osgi.service.subsystem.root"
	134.21.4.10. public static final String START_ORDER_DIRECTIVE = "start-order"
	134.21.4.11. public static final String SUBSYSTEM_CATEGORY = "Subsystem-Category"
	134.21.4.12. public static final String SUBSYSTEM_CONTACTADDRESS = "Subsystem-ContactAddress"
	134.21.4.13. public static final String SUBSYSTEM_CONTENT = "Subsystem-Content"
	134.21.4.14. public static final String SUBSYSTEM_COPYRIGHT = "Subsystem-Copyright"
	134.21.4.15. public static final String SUBSYSTEM_DESCRIPTION = "Subsystem-Description"
	134.21.4.16. public static final String SUBSYSTEM_DOCURL = "Subsystem-DocURL"
	134.21.4.17. public static final String SUBSYSTEM_EXPORTSERVICE = "Subsystem-ExportService"
	134.21.4.18. public static final String SUBSYSTEM_ICON = "Subsystem-Icon"
	134.21.4.19. public static final String SUBSYSTEM_ID_PROPERTY = "subsystem.id"
	134.21.4.20. public static final String SUBSYSTEM_IMPORTSERVICE = "Subsystem-ImportService"
	134.21.4.21. public static final String SUBSYSTEM_LICENSE = "Subsystem-License"
	134.21.4.22. public static final String SUBSYSTEM_LOCALIZATION = "Subsystem-Localization"
	134.21.4.23. public static final String SUBSYSTEM_LOCALIZATION_DEFAULT_BASENAME = "OSGI-INF/l10n/subsystem"
	134.21.4.24. public static final String SUBSYSTEM_MANIFESTVERSION = "Subsystem-ManifestVersion"
	134.21.4.25. public static final String SUBSYSTEM_NAME = "Subsystem-Name"
	134.21.4.26. public static final String SUBSYSTEM_STATE_PROPERTY = "subsystem.state"
	134.21.4.27. public static final String SUBSYSTEM_SYMBOLICNAME = "Subsystem-SymbolicName"
	134.21.4.28. public static final String SUBSYSTEM_SYMBOLICNAME_PROPERTY = "subsystem.symbolicName"
	134.21.4.29. public static final String SUBSYSTEM_TYPE = "Subsystem-Type"
	134.21.4.30. public static final String SUBSYSTEM_TYPE_APPLICATION = "osgi.subsystem.application"
	134.21.4.31. public static final String SUBSYSTEM_TYPE_COMPOSITE = "osgi.subsystem.composite"
	134.21.4.32. public static final String SUBSYSTEM_TYPE_FEATURE = "osgi.subsystem.feature"
	134.21.4.33. public static final String SUBSYSTEM_TYPE_PROPERTY = "subsystem.type"
	134.21.4.34. public static final String SUBSYSTEM_VENDOR = "Subsystem-Vendor"
	134.21.4.35. public static final String SUBSYSTEM_VERSION = "Subsystem-Version"
	134.21.4.36. public static final String SUBSYSTEM_VERSION_PROPERTY = "subsystem.version"

	134.21.5. public class SubsystemException extends RuntimeException
	134.21.5.1. public SubsystemException()
	134.21.5.2. public SubsystemException(String message)
	134.21.5.3. public SubsystemException(Throwable cause)
	134.21.5.4. public SubsystemException(String message,Throwable cause)

	134.21.6. public final class SubsystemPermission extends BasicPermission
	134.21.6.1. public static final String CONTEXT = "context"
	134.21.6.2. public static final String EXECUTE = "execute"
	134.21.6.3. public static final String LIFECYCLE = "lifecycle"
	134.21.6.4. public static final String METADATA = "metadata"
	134.21.6.5. public SubsystemPermission(String filter,String actions)
	134.21.6.6. public SubsystemPermission(Subsystem subsystem,String actions)
	134.21.6.7. public boolean equals(Object obj)
	134.21.6.8. public String getActions()
	134.21.6.9. public int hashCode()
	134.21.6.10. public boolean implies(Permission p)
	134.21.6.11. public PermissionCollection newPermissionCollection()

	134.22. References
	134.23. Changes

	Chapter 135. Common Namespaces Specification
	135.1. Introduction
	135.1.1. Versioning

	135.2. osgi.extender Namespace
	135.2.1. Extenders and Framework Hooks

	135.3. osgi.contract Namespace
	135.3.1. Versioning

	135.4. osgi.service Namespace
	135.4.1. Versioning

	135.5. osgi.implementation Namespace
	135.6. org.osgi.namespace.contract
	135.6.1. Summary
	135.6.2. public final class ContractNamespace extends Namespace
	135.6.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.6.2.2. public static final String CONTRACT_NAMESPACE = "osgi.contract"

	135.7. org.osgi.namespace.extender
	135.7.1. Summary
	135.7.2. public final class ExtenderNamespace extends Namespace
	135.7.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.7.2.2. public static final String EXTENDER_NAMESPACE = "osgi.extender"

	135.8. org.osgi.namespace.service
	135.8.1. Summary
	135.8.2. public final class ServiceNamespace extends Namespace
	135.8.2.1. public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"
	135.8.2.2. public static final String SERVICE_NAMESPACE = "osgi.service"

	135.9. org.osgi.namespace.implementation
	135.9.1. Summary
	135.9.2. public final class ImplementationNamespace extends Namespace
	135.9.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.9.2.2. public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

	135.10. References
	135.11. Changes

	Chapter 136. Resolver Service Specification
	136.1. Introduction
	136.1.1. Essentials
	136.1.2. Entities
	136.1.3. Synopsis

	136.2. The Resolve Context
	136.2.1. Mandatory and Optional Resources
	136.2.2. Finding Capabilities
	136.2.3. Matching
	136.2.4. Repositories
	136.2.5. Existing Wiring State
	136.2.6. Effective
	136.2.7. Insert Hosted Capabilities
	136.2.8. Fragments
	136.2.9. Singleton Capabilities
	136.2.10. Diagnostics
	136.2.11. Complexity

	136.3. Resolver Service
	136.3.1. Variables
	136.3.2. Resolving
	136.3.3. Resolution Exception

	136.4. Security
	136.4.1. Resolving
	136.4.2. Minimum Implementation Permissions
	136.4.3. Minimum Using Permissions

	136.5. org.osgi.service.resolver
	136.5.1. Summary
	136.5.2. public interface HostedCapability extends Capability
	136.5.2.1. public Capability getDeclaredCapability()
	136.5.2.2. public Resource getResource()

	136.5.3. public class ResolutionException extends Exception
	136.5.3.1. public ResolutionException(String message,Throwable cause,Collection<Requirement> unresolvedRequirements)
	136.5.3.2. public ResolutionException(String message)
	136.5.3.3. public ResolutionException(Throwable cause)
	136.5.3.4. public Collection<Requirement> getUnresolvedRequirements()

	136.5.4. public abstract class ResolveContext
	136.5.4.1. public ResolveContext()
	136.5.4.2. public abstract List<Capability> findProviders(Requirement requirement)
	136.5.4.3. public Collection<Resource> getMandatoryResources()
	136.5.4.4. public Collection<Resource> getOptionalResources()
	136.5.4.5. public abstract Map<Resource,Wiring> getWirings()
	136.5.4.6. public abstract int insertHostedCapability(List<Capability> capabilities,HostedCapability hostedCapability)
	136.5.4.7. public abstract boolean isEffective(Requirement requirement)

	136.5.5. public interface Resolver
	136.5.5.1. public Map<Resource,List<Wire>> resolve(ResolveContext context) throws ResolutionException

	136.6. References

	Chapter 137. REST Management Service Specification
	137.1. Introduction
	137.1.1. Essentials
	137.1.2. Entities
	137.1.3. Synopsis

	137.2. Interacting with the REST Management Service
	137.2.1. Resource Identifier Overview
	137.2.2. Filtering Results
	137.2.3. Content Type Matching

	137.3. Resources
	137.3.1. Framework Startlevel Resource
	137.3.1.1. GET
	137.3.1.2. PUT

	137.3.2. Bundles Resource
	137.3.2.1. GET
	137.3.2.2. POST with Location String
	137.3.2.3. POST with Bundle

	137.3.3. Bundles Representations Resource
	137.3.3.1. GET of the Representations

	137.3.4. Bundle Resource
	137.3.4.1. GET
	137.3.4.2. PUT with Location String
	137.3.4.3. PUT with Bundle
	137.3.4.4. DELETE

	137.3.5. Bundle State Resource
	137.3.5.1. GET
	137.3.5.2. PUT

	137.3.6. Bundle Header Resource
	137.3.6.1. GET

	137.3.7. Bundle Startlevel Resource
	137.3.7.1. GET
	137.3.7.2. PUT

	137.3.8. Services Resource
	137.3.8.1. GET

	137.3.9. Services Representations Resource
	137.3.9.1. GET of the Representations

	137.3.10. Service Resource
	137.3.10.1. GET

	137.4. Representations
	137.4.1. Bundle Representation
	137.4.1.1. JSON
	137.4.1.2. XML

	137.4.2. Bundles Representations
	137.4.2.1. Bundle List Representation
	137.4.2.1.1. JSON
	137.4.2.1.2. XML

	137.4.2.2. Bundle Representations List Representation
	137.4.2.2.1. JSON
	137.4.2.2.2. XML

	137.4.3. Bundle State Representation
	137.4.3.1. JSON
	137.4.3.2. XML

	137.4.4. Bundle Header Representation
	137.4.4.1. JSON
	137.4.4.2. XML

	137.4.5. Framework Startlevel Representation
	137.4.5.1. JSON
	137.4.5.2. XML

	137.4.6. Bundle Startlevel Representation
	137.4.6.1. JSON
	137.4.6.2. XML

	137.4.7. Service Representation
	137.4.7.1. JSON
	137.4.7.2. XML

	137.4.8. Services Representations
	137.4.8.1. Service List Representation
	137.4.8.1.1. JSON
	137.4.8.1.2. XML

	137.4.8.2. Service Representations List Representation
	137.4.8.2.1. JSON
	137.4.8.2.2. XML

	137.4.9. Bundle Exception Representation
	137.4.9.1. JSON
	137.4.9.2. XML

	137.5. Clients
	137.5.1. Java Client
	137.5.2. JavaScript Client

	137.6. Extending the REST Management Service
	137.6.1. Extensions Resource
	137.6.1.1. GET

	137.6.2. Extensions Representation
	137.6.2.1. JSON
	137.6.2.2. XML

	137.7. XML Schema
	137.8. Capabilities
	137.8.1. osgi.implementation Capability
	137.8.2. osgi.service Capability

	137.9. Security
	137.10. org.osgi.service.rest
	137.10.1. Summary
	137.10.2. public interface RestApiExtension
	137.10.2.1. public static final String NAME = "org.osgi.rest.name"
	137.10.2.2. public static final String SERVICE = "org.osgi.rest.service"
	137.10.2.3. public static final String URI_PATH = "org.osgi.rest.uri.path"

	137.11. org.osgi.service.rest.client
	137.11.1. Summary
	137.11.2. public interface RestClient
	137.11.2.1. public BundleDTO getBundle(long id) throws Exception
	137.11.2.2. public BundleDTO getBundle(String bundlePath) throws Exception
	137.11.2.3. public Map<String,String> getBundleHeaders(long id) throws Exception
	137.11.2.4. public Map<String,String> getBundleHeaders(String bundlePath) throws Exception
	137.11.2.5. public Collection<String> getBundlePaths() throws Exception
	137.11.2.6. public Collection<BundleDTO> getBundles() throws Exception
	137.11.2.7. public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception
	137.11.2.8. public BundleStartLevelDTO getBundleStartLevel(String bundlePath) throws Exception
	137.11.2.9. public int getBundleState(long id) throws Exception
	137.11.2.10. public int getBundleState(String bundlePath) throws Exception
	137.11.2.11. public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception
	137.11.2.12. public Collection<String> getServicePaths() throws Exception
	137.11.2.13. public Collection<String> getServicePaths(String filter) throws Exception
	137.11.2.14. public ServiceReferenceDTO getServiceReference(long id) throws Exception
	137.11.2.15. public ServiceReferenceDTO getServiceReference(String servicePath) throws Exception
	137.11.2.16. public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception
	137.11.2.17. public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception
	137.11.2.18. public BundleDTO installBundle(String location) throws Exception
	137.11.2.19. public BundleDTO installBundle(String location,InputStream in) throws Exception
	137.11.2.20. public void setBundleStartLevel(long id,int startLevel) throws Exception
	137.11.2.21. public void setBundleStartLevel(String bundlePath,int startLevel) throws Exception
	137.11.2.22. public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception
	137.11.2.23. public void startBundle(long id) throws Exception
	137.11.2.24. public void startBundle(String bundlePath) throws Exception
	137.11.2.25. public void startBundle(long id,int options) throws Exception
	137.11.2.26. public void startBundle(String bundlePath,int options) throws Exception
	137.11.2.27. public void stopBundle(long id) throws Exception
	137.11.2.28. public void stopBundle(String bundlePath) throws Exception
	137.11.2.29. public void stopBundle(long id,int options) throws Exception
	137.11.2.30. public void stopBundle(String bundlePath,int options) throws Exception
	137.11.2.31. public BundleDTO uninstallBundle(long id) throws Exception
	137.11.2.32. public BundleDTO uninstallBundle(String bundlePath) throws Exception
	137.11.2.33. public BundleDTO updateBundle(long id) throws Exception
	137.11.2.34. public BundleDTO updateBundle(long id,String url) throws Exception
	137.11.2.35. public BundleDTO updateBundle(long id,InputStream in) throws Exception

	137.11.3. public interface RestClientFactory
	137.11.3.1. public RestClient createRestClient(URI uri)

	137.12. JavaScript Client API
	137.12.1. Summary
	137.12.2. interface OSGiRestClient
	137.12.2.1. void getBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.2. void getBundleHeader((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.3. void getBundleRepresentations(OSGiRestCallback cb)
	137.12.2.4. void getBundles(OSGiRestCallback cb)
	137.12.2.5. void getBundleStartLevel((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.6. void getBundleState((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.7. void getFrameworkStartLevel(OSGiRestCallback cb)
	137.12.2.8. void getService((DOMString or long long) service, OSGiRestCallback cb)
	137.12.2.9. void getServiceRepresentations(OSGiRestCallback cb)
	137.12.2.10. void getServices(OSGiRestCallback cb)
	137.12.2.11. void installBundle((DOMString or ArrayBuffer) bundle, OSGiRestCallback cb)
	137.12.2.12. void setBundleStartLevel((DOMString or long long) bundle, dictionary bsl, OSGiRestCallback cb)
	137.12.2.13. void setBundleState((DOMString or long long) bundle, dictionary state, OSGiRestCallback cb)
	137.12.2.14. void setFrameworkStartLevel(dictionary fwsl, OSGiRestCallback cb)
	137.12.2.15. void startBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.16. void startBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)
	137.12.2.17. void stopBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.18. void stopBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)
	137.12.2.19. void uninstallBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.20. void updateBundle((DOMString or long long) bundle, (DOMString or ArrayBuffer) updated, OSGiRestCallback cb)

	137.12.3. callback interface OSGiRestCallback
	137.12.3.1. void success(object response)
	137.12.3.2. void failure(short httpCode, object response)

	137.13. References

	Chapter 138. Asynchronous Service Specification
	138.1. Introduction
	138.1.1. Essentials
	138.1.2. Entities

	138.2. Usage
	138.2.1. Synopsis
	138.2.2. Making Async Invocations
	138.2.3. Async Invocations of Void Methods
	138.2.4. Fire and Forget Calls
	138.2.5. Multi Threading

	138.3. Async Service
	138.3.1. Using the Async Service
	138.3.2. Asynchronous Failures
	138.3.3. Thread Safety and Instance Sharing
	138.3.4. Service Object Lifecycle Management

	138.4. The Async Mediator
	138.4.1. Building the Mediator Object
	138.4.2. Async Mediator Behaviors
	138.4.3. Thread Safety and Instance Sharing

	138.5. Fire and Forget Invocations
	138.6. Delegating to Asynchronous Implementations
	138.6.1. Obtaining a Promise from an Async Delegate
	138.6.2. Delegating Fire and Forget Calls to an Async Delegate
	138.6.3. Lifecycle for Service Objects When Delegating

	138.7. Capabilities
	138.8. Security
	138.9. org.osgi.service.async
	138.9.1. Summary
	138.9.2. public interface Async
	138.9.2.1. public Promise<R> call(R r)
	138.9.2.2. public Promise<?> call()
	138.9.2.3. public Promise<Void> execute()
	138.9.2.4. public T mediate(T target,Class<T> iface)
	138.9.2.5. public T mediate(ServiceReference<? extends T> target,Class<T> iface)

	138.10. org.osgi.service.async.delegate
	138.10.1. Summary
	138.10.2. public interface AsyncDelegate
	138.10.2.1. public Promise<?> async(Method m,Object[] args) throws Exception
	138.10.2.2. public boolean execute(Method m,Object[] args) throws Exception

	138.11. References

	Chapter 140. Http Whiteboard Specification
	140.1. Introduction
	140.1.1. Entities

	140.2. The Servlet Context
	140.2.1. String getMimeType(String)
	140.2.2. String getRealPath(String)
	140.2.3. URL getResource(String)
	140.2.4. Set<String> getResourcePaths(String)
	140.2.5. boolean handleSecurity(HttpServletRequest, HttpServletResponse)
	140.2.6. Behavior of the Servlet Context
	140.2.7. Relation to the Servlet Container

	140.3. Common Whiteboard Properties
	140.4. Registering Servlets
	140.4.1. Error Pages
	140.4.2. Asynchronous request handling
	140.4.3. Annotations

	140.5. Registering Servlet Filters
	140.6. Registering Resources
	140.6.1. Overlapping Resource and Servlet registrations

	140.7. Registering Listeners
	140.8. Lifecycle
	140.8.1. Whiteboard Service Dynamics and Active Requests

	140.9. The Http Service Runtime Service
	140.10. Configuration Properties
	140.11. Capabilities
	140.11.1. osgi.implementation Capability
	140.11.2. osgi.contract Capability
	140.11.3. osgi.service Capability

	140.12. Security
	140.12.1. Service Permissions
	140.12.2. Introspection
	140.12.3. Accessing Resources with the Default Servlet Context Helper Implementation
	140.12.4. Accessing Other Types of Resources
	140.12.5. Calling Http Whiteboard Services

	140.13. org.osgi.service.http.context
	140.13.1. Summary
	140.13.2. public abstract class ServletContextHelper
	140.13.2.1. public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"
	140.13.2.2. public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"
	140.13.2.3. public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"
	140.13.2.4. public ServletContextHelper()
	140.13.2.5. public ServletContextHelper(Bundle bundle)
	140.13.2.6. public String getMimeType(String name)
	140.13.2.7. public String getRealPath(String path)
	140.13.2.8. public URL getResource(String name)
	140.13.2.9. public Set<String> getResourcePaths(String path)
	140.13.2.10. public boolean handleSecurity(HttpServletRequest request,HttpServletResponse response) throws IOException

	140.14. org.osgi.service.http.runtime
	140.14.1. Summary
	140.14.2. public interface HttpServiceRuntime
	140.14.2.1. public RequestInfoDTO calculateRequestInfoDTO(String path)
	140.14.2.2. public RuntimeDTO getRuntimeDTO()

	140.14.3. public final class HttpServiceRuntimeConstants
	140.14.3.1. public static final String HTTP_SERVICE_ENDPOINT = "osgi.http.endpoint"
	140.14.3.2. public static final String HTTP_SERVICE_ID = "osgi.http.service.id"

	140.15. org.osgi.service.http.runtime.dto
	140.15.1. Summary
	140.15.2. public abstract class BaseServletDTO extends DTO
	140.15.2.1. public boolean asyncSupported
	140.15.2.2. public Map<String,String> initParams
	140.15.2.3. public String name
	140.15.2.4. public long serviceId
	140.15.2.5. public long servletContextId
	140.15.2.6. public String servletInfo
	140.15.2.7. public BaseServletDTO()

	140.15.3. public final class DTOConstants
	140.15.3.1. public static final int FAILURE_REASON_EXCEPTION_ON_INIT = 4
	140.15.3.2. public static final int FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING = 1
	140.15.3.3. public static final int FAILURE_REASON_SERVICE_IN_USE = 7
	140.15.3.4. public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 5
	140.15.3.5. public static final int FAILURE_REASON_SERVLET_CONTEXT_FAILURE = 2
	140.15.3.6. public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 3
	140.15.3.7. public static final int FAILURE_REASON_UNKNOWN = 0
	140.15.3.8. public static final int FAILURE_REASON_VALIDATION_FAILED = 6

	140.15.4. public class ErrorPageDTO extends BaseServletDTO
	140.15.4.1. public long[] errorCodes
	140.15.4.2. public String[] exceptions
	140.15.4.3. public ErrorPageDTO()

	140.15.5. public class FailedErrorPageDTO extends ErrorPageDTO
	140.15.5.1. public int failureReason
	140.15.5.2. public FailedErrorPageDTO()

	140.15.6. public class FailedFilterDTO extends FilterDTO
	140.15.6.1. public int failureReason
	140.15.6.2. public FailedFilterDTO()

	140.15.7. public class FailedListenerDTO extends ListenerDTO
	140.15.7.1. public int failureReason
	140.15.7.2. public FailedListenerDTO()

	140.15.8. public class FailedResourceDTO extends ResourceDTO
	140.15.8.1. public int failureReason
	140.15.8.2. public FailedResourceDTO()

	140.15.9. public class FailedServletContextDTO extends ServletContextDTO
	140.15.9.1. public int failureReason
	140.15.9.2. public FailedServletContextDTO()

	140.15.10. public class FailedServletDTO extends ServletDTO
	140.15.10.1. public int failureReason
	140.15.10.2. public FailedServletDTO()

	140.15.11. public class FilterDTO extends DTO
	140.15.11.1. public boolean asyncSupported
	140.15.11.2. public String[] dispatcher
	140.15.11.3. public Map<String,String> initParams
	140.15.11.4. public String name
	140.15.11.5. public String[] patterns
	140.15.11.6. public String[] regexs
	140.15.11.7. public long serviceId
	140.15.11.8. public long servletContextId
	140.15.11.9. public String[] servletNames
	140.15.11.10. public FilterDTO()

	140.15.12. public class ListenerDTO extends DTO
	140.15.12.1. public long serviceId
	140.15.12.2. public long servletContextId
	140.15.12.3. public String[] types
	140.15.12.4. public ListenerDTO()

	140.15.13. public class RequestInfoDTO extends DTO
	140.15.13.1. public FilterDTO[] filterDTOs
	140.15.13.2. public String path
	140.15.13.3. public ResourceDTO resourceDTO
	140.15.13.4. public long servletContextId
	140.15.13.5. public ServletDTO servletDTO
	140.15.13.6. public RequestInfoDTO()

	140.15.14. public class ResourceDTO extends DTO
	140.15.14.1. public String[] patterns
	140.15.14.2. public String prefix
	140.15.14.3. public long serviceId
	140.15.14.4. public long servletContextId
	140.15.14.5. public ResourceDTO()

	140.15.15. public class RuntimeDTO extends DTO
	140.15.15.1. public FailedErrorPageDTO[] failedErrorPageDTOs
	140.15.15.2. public FailedFilterDTO[] failedFilterDTOs
	140.15.15.3. public FailedListenerDTO[] failedListenerDTOs
	140.15.15.4. public FailedResourceDTO[] failedResourceDTOs
	140.15.15.5. public FailedServletContextDTO[] failedServletContextDTOs
	140.15.15.6. public FailedServletDTO[] failedServletDTOs
	140.15.15.7. public ServiceReferenceDTO serviceDTO
	140.15.15.8. public ServletContextDTO[] servletContextDTOs
	140.15.15.9. public RuntimeDTO()

	140.15.16. public class ServletContextDTO extends DTO
	140.15.16.1. public Map<String,Object> attributes
	140.15.16.2. public String contextPath
	140.15.16.3. public ErrorPageDTO[] errorPageDTOs
	140.15.16.4. public FilterDTO[] filterDTOs
	140.15.16.5. public Map<String,String> initParams
	140.15.16.6. public ListenerDTO[] listenerDTOs
	140.15.16.7. public String name
	140.15.16.8. public ResourceDTO[] resourceDTOs
	140.15.16.9. public long serviceId
	140.15.16.10. public ServletDTO[] servletDTOs
	140.15.16.11. public ServletContextDTO()

	140.15.17. public class ServletDTO extends BaseServletDTO
	140.15.17.1. public String[] patterns
	140.15.17.2. public ServletDTO()

	140.16. org.osgi.service.http.whiteboard
	140.16.1. Summary
	140.16.2. public final class HttpWhiteboardConstants
	140.16.2.1. public static final String DISPATCHER_ASYNC = "ASYNC"
	140.16.2.2. public static final String DISPATCHER_ERROR = "ERROR"
	140.16.2.3. public static final String DISPATCHER_FORWARD = "FORWARD"
	140.16.2.4. public static final String DISPATCHER_INCLUDE = "INCLUDE"
	140.16.2.5. public static final String DISPATCHER_REQUEST = "REQUEST"
	140.16.2.6. public static final String HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX = "context.init."
	140.16.2.7. public static final String HTTP_WHITEBOARD_CONTEXT_NAME = "osgi.http.whiteboard.context.name"
	140.16.2.8. public static final String HTTP_WHITEBOARD_CONTEXT_PATH = "osgi.http.whiteboard.context.path"
	140.16.2.9. public static final String HTTP_WHITEBOARD_CONTEXT_SELECT = "osgi.http.whiteboard.context.select"
	140.16.2.10. public static final String HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME = "default"
	140.16.2.11. public static final String HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED = "osgi.http.whiteboard.filter.asyncSupported"
	140.16.2.12. public static final String HTTP_WHITEBOARD_FILTER_DISPATCHER = "osgi.http.whiteboard.filter.dispatcher"
	140.16.2.13. public static final String HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX = "filter.init."
	140.16.2.14. public static final String HTTP_WHITEBOARD_FILTER_NAME = "osgi.http.whiteboard.filter.name"
	140.16.2.15. public static final String HTTP_WHITEBOARD_FILTER_PATTERN = "osgi.http.whiteboard.filter.pattern"
	140.16.2.16. public static final String HTTP_WHITEBOARD_FILTER_REGEX = "osgi.http.whiteboard.filter.regex"
	140.16.2.17. public static final String HTTP_WHITEBOARD_FILTER_SERVLET = "osgi.http.whiteboard.filter.servlet"
	140.16.2.18. public static final String HTTP_WHITEBOARD_LISTENER = "osgi.http.whiteboard.listener"
	140.16.2.19. public static final String HTTP_WHITEBOARD_RESOURCE_PATTERN = "osgi.http.whiteboard.resource.pattern"
	140.16.2.20. public static final String HTTP_WHITEBOARD_RESOURCE_PREFIX = "osgi.http.whiteboard.resource.prefix"
	140.16.2.21. public static final String HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED = "osgi.http.whiteboard.servlet.asyncSupported"
	140.16.2.22. public static final String HTTP_WHITEBOARD_SERVLET_ERROR_PAGE = "osgi.http.whiteboard.servlet.errorPage"
	140.16.2.23. public static final String HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX = "servlet.init."
	140.16.2.24. public static final String HTTP_WHITEBOARD_SERVLET_NAME = "osgi.http.whiteboard.servlet.name"
	140.16.2.25. public static final String HTTP_WHITEBOARD_SERVLET_PATTERN = "osgi.http.whiteboard.servlet.pattern"
	140.16.2.26. public static final String HTTP_WHITEBOARD_TARGET = "osgi.http.whiteboard.target"

	140.17. References

	Chapter 702. XML Parser Service Specification
	702.1. Introduction
	702.1.1. Essentials
	702.1.2. Entities
	702.1.3. Operations

	702.2. JAXP
	702.3. XML Parser service
	702.4. Properties
	702.5. Getting a Parser Factory
	702.6. Adapting a JAXP Parser to OSGi
	702.6.1. JAR Based Services
	702.6.2. XMLParserActivator
	702.6.3. Adapting an Existing JAXP Compatible Parser

	702.7. Usage of JAXP
	702.8. Security
	702.9. org.osgi.util.xml
	702.9.1. Summary
	702.9.2. public class XMLParserActivator implements BundleActivator, ServiceFactory
	702.9.2.1. public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.2. public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.3. public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"
	702.9.2.4. public static final String PARSER_VALIDATING = "parser.validating"
	702.9.2.5. public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"
	702.9.2.6. public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"
	702.9.2.7. public XMLParserActivator()
	702.9.2.8. public Object getService(Bundle bundle,ServiceRegistration registration)
	702.9.2.9. public void setDOMProperties(DocumentBuilderFactory factory,Hashtable props)
	702.9.2.10. public void setSAXProperties(SAXParserFactory factory,Hashtable properties)
	702.9.2.11. public void start(BundleContext context) throws Exception
	702.9.2.12. public void stop(BundleContext context) throws Exception
	702.9.2.13. public void ungetService(Bundle bundle,ServiceRegistration registration,Object service)

	702.10. References

	Chapter 703. Position Specification
	703.1. Introduction
	703.1.1. Essentials
	703.1.2. Entities

	703.2. Positioning
	703.3. Units
	703.4. Optimizations
	703.5. Errors
	703.6. Using Position With Wire Admin
	703.7. Related Standards
	703.7.1. JSR 179

	703.8. Security
	703.9. org.osgi.util.position
	703.9.1. Summary
	703.9.2. public class Position
	703.9.2.1. public Position(Measurement lat,Measurement lon,Measurement alt,Measurement speed,Measurement track)
	703.9.2.2. public Measurement getAltitude()
	703.9.2.3. public Measurement getLatitude()
	703.9.2.4. public Measurement getLongitude()
	703.9.2.5. public Measurement getSpeed()
	703.9.2.6. public Measurement getTrack()

	703.10. References

	Chapter 704. Measurement and State Specification
	704.1. Introduction
	704.1.1. Measurement Essentials
	704.1.2. Measurement Entities

	704.2. Measurement Object
	704.2.1. Value
	704.2.2. Error
	704.2.3. Time-stamp

	704.3. Error Calculations
	704.4. Constructing and Comparing Measurements
	704.4.1. Constructors
	704.4.2. Identity and Equality
	704.4.3. Comparing Measurement Objects

	704.5. Unit Object
	704.5.1. Quantitative Differences
	704.5.2. Why Use SI Units

	704.6. State Object
	704.7. Related Standards
	704.7.1. GNU Math Library in Kawa

	704.8. Security Considerations
	704.9. org.osgi.util.measurement
	704.9.1. Summary
	704.9.2. public class Measurement implements Comparable
	704.9.2.1. public Measurement(double value,double error,Unit unit,long time)
	704.9.2.2. public Measurement(double value,double error,Unit unit)
	704.9.2.3. public Measurement(double value,Unit unit)
	704.9.2.4. public Measurement(double value)
	704.9.2.5. public Measurement add(Measurement m)
	704.9.2.6. public Measurement add(double d,Unit u)
	704.9.2.7. public Measurement add(double d)
	704.9.2.8. public int compareTo(Object obj)
	704.9.2.9. public Measurement div(Measurement m)
	704.9.2.10. public Measurement div(double d,Unit u)
	704.9.2.11. public Measurement div(double d)
	704.9.2.12. public boolean equals(Object obj)
	704.9.2.13. public final double getError()
	704.9.2.14. public final long getTime()
	704.9.2.15. public final Unit getUnit()
	704.9.2.16. public final double getValue()
	704.9.2.17. public int hashCode()
	704.9.2.18. public Measurement mul(Measurement m)
	704.9.2.19. public Measurement mul(double d,Unit u)
	704.9.2.20. public Measurement mul(double d)
	704.9.2.21. public Measurement sub(Measurement m)
	704.9.2.22. public Measurement sub(double d,Unit u)
	704.9.2.23. public Measurement sub(double d)
	704.9.2.24. public String toString()

	704.9.3. public class State
	704.9.3.1. public State(int value,String name,long time)
	704.9.3.2. public State(int value,String name)
	704.9.3.3. public boolean equals(Object obj)
	704.9.3.4. public final String getName()
	704.9.3.5. public final long getTime()
	704.9.3.6. public final int getValue()
	704.9.3.7. public int hashCode()
	704.9.3.8. public String toString()

	704.9.4. public class Unit
	704.9.4.1. public static final Unit A
	704.9.4.2. public static final Unit C
	704.9.4.3. public static final Unit cd
	704.9.4.4. public static final Unit F
	704.9.4.5. public static final Unit Gy
	704.9.4.6. public static final Unit Hz
	704.9.4.7. public static final Unit J
	704.9.4.8. public static final Unit K
	704.9.4.9. public static final Unit kat
	704.9.4.10. public static final Unit kg
	704.9.4.11. public static final Unit lx
	704.9.4.12. public static final Unit m
	704.9.4.13. public static final Unit m2
	704.9.4.14. public static final Unit m3
	704.9.4.15. public static final Unit m_s
	704.9.4.16. public static final Unit m_s2
	704.9.4.17. public static final Unit mol
	704.9.4.18. public static final Unit N
	704.9.4.19. public static final Unit Ohm
	704.9.4.20. public static final Unit Pa
	704.9.4.21. public static final Unit rad
	704.9.4.22. public static final Unit s
	704.9.4.23. public static final Unit S
	704.9.4.24. public static final Unit T
	704.9.4.25. public static final Unit unity
	704.9.4.26. public static final Unit V
	704.9.4.27. public static final Unit W
	704.9.4.28. public static final Unit Wb
	704.9.4.29. public boolean equals(Object obj)
	704.9.4.30. public int hashCode()
	704.9.4.31. public String toString()

	704.10. References

	Chapter 705. Promises Specification
	705.1. Introduction
	705.1.1. Essentials
	705.1.2. Entities

	705.2. Promise
	705.3. Deferred
	705.4. Callbacks
	705.4.1. Runnable
	705.4.2. Success and Failure

	705.5. Chaining Promises
	705.6. Monad
	705.7. Functional Interfaces
	705.8. Promises Class
	705.9. Security
	705.10. org.osgi.util.promise
	705.10.1. Summary
	705.10.2. public class Deferred<T>
	705.10.2.1. public Deferred()
	705.10.2.2. public void fail(Throwable failure)
	705.10.2.3. public Promise<T> getPromise()
	705.10.2.4. public void resolve(T value)
	705.10.2.5. public Promise<Void> resolveWith(Promise<? extends T> with)

	705.10.3. public class FailedPromisesException extends RuntimeException
	705.10.3.1. public FailedPromisesException(Collection<Promise<?>> failed,Throwable cause)
	705.10.3.2. public Collection<Promise<?>> getFailedPromises()

	705.10.4. public interface Failure
	705.10.4.1. public void fail(Promise<?> resolved) throws Exception

	705.10.5. public interface Promise<T>
	705.10.5.1. public Promise<T> fallbackTo(Promise<? extends T> fallback)
	705.10.5.2. public Promise<T> filter(Predicate<?> predicate)
	705.10.5.3. public Promise<R> flatMap(Function<?,Promise<? extends R>> mapper)
	705.10.5.4. public Throwable getFailure() throws InterruptedException
	705.10.5.5. public T getValue() throws InvocationTargetException, InterruptedException
	705.10.5.6. public boolean isDone()
	705.10.5.7. public Promise<R> map(Function<?,? extends R> mapper)
	705.10.5.8. public Promise<T> onResolve(Runnable callback)
	705.10.5.9. public Promise<T> recover(Function<Promise<?>,? extends T> recovery)
	705.10.5.10. public Promise<T> recoverWith(Function<Promise<?>,Promise<? extends T>> recovery)
	705.10.5.11. public Promise<R> then(Success<?,? extends R> success,Failure failure)
	705.10.5.12. public Promise<R> then(Success<?,? extends R> success)

	705.10.6. public class Promises
	705.10.6.1. public static Promise<List<T>> all(Collection<Promise<S>> promises)
	705.10.6.2. public static Promise<List<T>> all(Promise<? extends T> ... promises)
	705.10.6.3. public static Promise<T> failed(Throwable failure)
	705.10.6.4. public static Promise<T> resolved(T value)

	705.10.7. public interface Success<T,R>
	705.10.7.1. public Promise<R> call(Promise<T> resolved) throws Exception

	705.11. org.osgi.util.function
	705.11.1. Summary
	705.11.2. public interface Function<T,R>
	705.11.2.1. public R apply(T t)

	705.11.3. public interface Predicate<T>
	705.11.3.1. public boolean test(T t)

	705.12. References

	Chapter 999. Execution Environment Specification
	999.1. Introduction
	999.1.1. Essentials
	999.1.2. Entities

	999.2. About Execution Environments
	999.2.1. Signatures
	999.2.2. Semantics

	999.3. OSGi Defined Execution Environments
	999.3.1. java.io
	999.3.2. java.lang
	999.3.3. java.lang.ref
	999.3.4. java.lang.reflect
	999.3.5. java.math
	999.3.6. java.net
	999.3.7. java.security
	999.3.8. java.security.acl
	999.3.9. java.security.cert
	999.3.10. java.security.interfaces
	999.3.11. java.security.spec
	999.3.12. java.text
	999.3.13. java.util
	999.3.14. java.util.jar
	999.3.15. java.util.zip
	999.3.16. javax.microedition.io
	999.3.17. javax.microedition.pki
	999.3.18. javax.security.auth.x500

	999.4. References

