
Lesson 3-6:
Debugging Lambdas and
Streams

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Problems With Debugging Streams

 Streams provide a high level abstraction

– This is good for making code clear and easy to understand

– This is bad for debugging

 A lot happens internally in the library code

 Setting breakpoints is not simple

 Stream operations are merged to improve efficiency

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3

Simple Debugging

 Use peek()

– Like the use of print statements

Finding What Is Happening Between Methods

List<String> sortedWords = reader.lines()
 .flatMap(line -> Stream.of(line.split(REGEXP))
 .map(String::toLowerCase)
 .distinct()
 .sort((x, y) -> x.length() – y.length())
 .collect(Collectors.toList());

// Lines from file
// Words from file
// In lower case
// Remove duplicates
// Sort by length
// Collect to list

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Simple Debugging

 Use peek()

– Like the use of print statements

Finding What Is Happening Between Methods

List<String> sortedWords = reader.lines()
 .peek(System.out::println)
 .flatMap(line -> Stream.of(line.split(REGEXP))
 .map(String::toLowerCase)
 .distinct()
 .sort((x, y) -> x.length() – y.length())
 .collect(Collectors.toList());

// Lines from file
// Print lines from file
// Words from file
// In lower case
// Remove duplicates
// Sort by length
// Collect to list

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Simple Debugging

 Use peek()

– Like the use of print statements

Finding What Is Happening Between Methods

List<String> sortedWords = reader.lines()
 .flatMap(line -> Stream.of(line.split(REGEXP))
 .peek(System.out::println)
 .map(String::toLowerCase)
 .distinct()
 .sort((x, y) -> x.length() – y.length())
 .collect(Collectors.toList());

// Lines from file
// Words from file
// Print words
// In lower case
// Remove duplicates
// Sort by length
// Collect to list

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Setting A Breakpoint

 Add a peek() method call between stream operations

 Use a Consumer that does nothing if required

– Some debugging tools don’t like empty bodies

Using peek()

List<String> sortedWords = reader.lines()
 .flatMap(line -> Stream.of(line.split(REGEXP))
 .peek(s -> s)
 .map(String::toLowerCase)
 .distinct()
 .sort((x, y) -> x.length() – y.length())
 .collect(Collectors.toList());

Set

breakpoint

here

No-op Lambda

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

Setting A Breakpoint

 Lambda expressions do not compile to equivalent inner class

– Compiled to invokedynamic call

– Implementation decided at runtime

– Better chance of optimisation, makes debugging harder

 Solution:

– Extract the code from a Lambda expression into a separate method

– Replace the Lambda with a method reference for the new method

– Set breakpoints on the statements in the new method

– Examine program state using debugger

Using A Method Reference

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

Section 6

 Debugging is harder with Lambdas and streams

– Stream methods get merged

– Lambdas are converted to invokedynamic bytecodes and implementation

is decided at runtime

– Harder to set breakpoints

 peek() and method references can simplify things

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

