
Lesson 3-4:
Using Collectors

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Collector Basics

 A Collector performs a mutable reduction on a stream

– Accumulates input elements into a mutable result container

– Results container can be a List, Map, String, etc

 Use the collect() method to terminate the stream

 Collectors utility class has many methods that can create a Collector

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3

Composing Collectors

 Several Collectors methods have versions with a downstream

collector

 Allows a second collector to be used

– collectingAndThen()

– groupingBy()/groupingByConcurrent()

– mapping()

– partitioningBy()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Collecting Into A Collection

 toCollection(Supplier factory)

– Adds the elements of the stream to a Collection (created using factory)

– Uses encounter order

 toList()

– Adds the elements of the stream to a List

 toSet()

– Adds the elements of the stream to a Set

– Eliminates duplicates

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Collecting To A Map

 toMap(Function keyMapper, Function valueMapper)

– Creates a Map from the elements of the stream

– key and value produced using provided functions

– Use Functions.identity() to get the stream element

Map<Student, Double> studentToScore = students.stream()
 .collect(toMap(Functions.identity(),
 student -> getScore(student)));

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Collecting To Map

 The same process as first toMap() method

– But uses the BinaryOperator to merge values for duplicate keys

Handling Duplicate Keys

toMap(Function keyMapper, Function valueMapper,
 BinaryOperator merge)

Map<String, String> occupants = people.stream()
 .collect(toMap(Person::getAddress,
 Person::getName,
 (x, y) -> x + "," + y));

People at the same

address are merged into a

CSV string

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

Grouping Results

 groupingBy(Function)

– Groups stream elements using the Function into a Map

– Result is Map<K, List<V>>

 groupingBy(Function, Collector)

– Groups stream elements using the Function

– A reduction is performed on each group using the downstream Collector

Map m = words.stream()
 .collect(Collectors.groupingBy(String::length));

Map m = words.stream()
 .collect(Collectors.groupingBy(String::length, counting()));

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

Joining String Results

 joining()

– Collector concatenates input strings

 joining(delimiter)

– Collector concatenates stream strings using CharSequence delimiter

 joining(delimiter, prefix, suffix)

– Collector concatenates the prefix, stream strings separated by delimiter

and suffix

collect(Collectors.joining(",")); // Create CSV

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

Numeric Collectors

 averagingInt(ToIntFunction)

– Averages the results generated by the supplied function

 summarizingInt(ToIntFunction)

– Summarises (count, sum, min, max, average) results generated by

supplied function

 summingInt(ToIntFunction)

– equivalent to a map() then sum()

 maxBy(Comparator), minBy(Comparator)

– Maximum or minimum value based on Comparator

Also Available In Double And Long Forms

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

Other Collectors

 reducing(BinaryOperator)

– Equivalent Collector to reduce() terminal operation

– Only use for multi-level reductions, or downstream collectors

 partitioningBy(Predicate)

– Creates a Map<Boolean, List> containing two groups based on Predicate

 mapping(Function, Collector)

– Adapts a Collector to accept different type elements mapped by the Function

 Map<City, Set<String>> lastNamesByCity = people.stream()
 .collect(groupingBy(Person::getCity,
 mapping(Person::getLastName, toSet())));

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11

Section 4

 Collectors provide powerful ways to gather elements of an input stream

– Into collections

– In numerical ways like totals and averages

 Collectors can be composed to build more complex ones

 You can also create your own Collector

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 12

