
Lesson 3-3:
Avoiding The Use of forEach

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Using Streams Effectively

 Imperative programming uses loops for repetitive behaviour

 It also uses variables to hold state

 We can continue to do that in some ways with streams

 THIS IS WRONG

Stop Thinking Imperatively

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3

Stream Example
Still Thinking Imperatively

List<Transactions> transactions = ...

LongAdder transactionTotal = new LongAdder();

transactions.stream()
 .forEach(t -> transactionTotal.add(t.getValue()));

long total = transactionTotal.sum();

We are modifying state

which is wrong for a

functional approach

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Stream Example
Now Using Correct Functional Approach

List<Transactions> transactions = ...

long total = transactions.stream()
 .mapToLong(t -> t.getValue())
 .sum();

Create a stream of long values

that is passed to the next function

Use a reduction to create

a single result

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Legitimate Use of forEach

 Simplified iteration

 May be made parallel if order is not important

No State Being Modified

List<Transactions> transactions = ...

transactions.stream()
 .forEach(t -> t.printClientName());

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Section 3

 If you are thinking of using forEach(), stop

 Can it be replaced with a combination of mapping and reduction?

 If so, it is unlikely to be the right approach to be functional

 Certain situations are valid for using forEach()

– E.g. printing values from the stream

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

