
Lesson 3-3:
Avoiding The Use of forEach

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Using Streams Effectively

 Imperative programming uses loops for repetitive behaviour

 It also uses variables to hold state

 We can continue to do that in some ways with streams

 THIS IS WRONG

Stop Thinking Imperatively

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3

Stream Example
Still Thinking Imperatively

List<Transactions> transactions = ...

LongAdder transactionTotal = new LongAdder();

transactions.stream()
 .forEach(t -> transactionTotal.add(t.getValue()));

long total = transactionTotal.sum();

We are modifying state

which is wrong for a

functional approach

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Stream Example
Now Using Correct Functional Approach

List<Transactions> transactions = ...

long total = transactions.stream()
 .mapToLong(t -> t.getValue())
 .sum();

Create a stream of long values

that is passed to the next function

Use a reduction to create

a single result

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Legitimate Use of forEach

 Simplified iteration

 May be made parallel if order is not important

No State Being Modified

List<Transactions> transactions = ...

transactions.stream()
 .forEach(t -> t.printClientName());

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Section 3

 If you are thinking of using forEach(), stop

 Can it be replaced with a combination of mapping and reduction?

 If so, it is unlikely to be the right approach to be functional

 Certain situations are valid for using forEach()

– E.g. printing values from the stream

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

