
Lesson 3-2:
Finite and Infinite Streams

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Dealing With The Indeterminate

 How to continue processing when we can't predict for how long?

Imperative Java

while (true) {
 doSomeProcessing();

 if (someCriteriaIsTrue())
 break;

 // Loop repeats indefinitely
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3

Using Infinite Streams

 Terminate the stream when an element is read from the input stream

– findFirst()

– findAny()

Making The Stream Finite

OptionalInt r = Random.ints()
 .filter(i -> i > 256)
 .findFirst();

Infinite stream of

random integers

stream terminates when a number

greater than 256 is encountered

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Using Infinite Streams

 Sometimes we need to continue to use a stream indefinitely

 What terminal operation should we use for this?

– Use forEach()

– This consumes the element from the stream

– But does not terminate it

Keeping It Infinite

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Using Infinite Streams

 Reading temperature from a serial sensor

– Converting from farenheit to celcius, removing F

– Notifying a listener of changes if registered

Infinite Example

thermalReader.lines()
 .mapToDouble(s ->
 Double.parseDouble(s.substring(0, s.length() - 1)))
 .map(t -> ((t – 32) * 5 / 9)
 .filter(t -> !currentTemperature.equals(t))
 .peek(t -> listener.ifPresent(l -> l.temperatureChanged(t)))
 .forEach(t -> currentTemperature.set(t));

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Section 2

 Streams can be infinite as well as finite

 There is no concept of 'breaking' out of a stream

 Use the appropriate terminal operation to stop processing

 Or use the infinite stream infinitely

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

