
Lesson 3:
Advanced Lambda and
Stream Concepts

Simon Ritter

Java Technology Evangelist

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Lesson Agenda

 Understanding and using reductions

 Finite and infinite streams

 Avoiding the use of the forEach method

 Using collectors

 Parallel streams (and when not to use them)

 Debugging streams and lambdas

 Course conclusions

Lesson 3-1:
Understanding and Using
Reductions

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

A Simple Problem

 Find the length of the longest line in a file

Path input = Paths.get("lines.txt");

int longestLineLength = Files.lines(input)
 .mapToInt(String::length)
 .max()
 .getAsInt();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Another Simple Problem

 Find the length of the longest line in a file

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Naïve Stream Solution

 This solves the problem

 Not really. Big files will take a long time and a lot of resources

 Must be a better approach

String longest = Files.lines(input).
 sort((x, y) -> y.length() - x.length()).
 findFirst().
 get();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

External Iteration Solution

 Simple, but inherently serial

 Not thread safe due to mutable state

 Not functional

String longest = "";
String s;
while ((s = reader.readLine()) != null)
 if (s.length() > longest.length())
 longest = s;

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

Recursive Approach: The Method

String findLongestString(String s, int index, List<String> l) {
 if (index >= l.size())
 return s;

 if (index == l.size() - 1) {
 if (s.length() > l.get(index).length())
 return s;
 return l.get(index);
 }

 String s2 = findLongestString(l.get(index), index + 1, l);

 if (s.length() > s2.length())
 return s;
 return s2;
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

Recursive Approach: Solving The Problem

 No explicit loop, no mutable state, so we now have a functional solution

 Unfortunately not a usable one

– larger data sets will generate an OOM exception

List<String> lines = new ArrayList<>();
String s;
while ((s = reader.readLine()) != null)
 lines.add(s);

String longest = findLongestString("", 0, lines);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

A Better Stream Solution

 The stream API uses the well known filter-map-reduce pattern

 For this problem we do not need to filter() or map(), just reduce()

 Recall the reduce method definition

 Optional<T> reduce(BinaryOperator<T> accumulator)

 The key is to find the right accumulator

– Again, recall the accumulator takes a partial result and the next element,

and returns a new partial result

– In essence it does the same as our recursive solution

– Without all the stack frames

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11

A Better Stream Solution

 Use the recursive approach as an accumulator for a reduction

String longestLine = Files.lines(input)
 .reduce((x, y) -> {
 if (x.length() > y.length())
 return x;
 return y;
 })
 .get();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 12

A Better Stream Solution

 Use the recursive approach as an accumulator for a reduction

String longestLine = Files.lines(input)
 .reduce((x, y) -> {
 if (x.length() > y.length())
 return x;
 return y;
 })
 .get();

x in effect maintains state for
us, by always holding the
longest string found so far

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 13

The Simplest Stream Solution

 Use a specialised form of max()

 One that takes a Comparator as a parameter

 comparingInt() is a static method on Comparator

– Comparator<T> comparingInt(ToIntFunction<? extends T> keyExtractor)

Files.lines(input)
 .max(comparingInt(String::length))
 .get();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 14

Section 1

 Reduction take a stream and reduces it to a single value

 The way the reduction works is defined by the accumulator

– Which is a BinaryOperator

– The accumulator is applied successively to the stream elements

– The reduce() method maintains a partial result state

– Like a recursive approach, but without the resource overhead

 Requires you to think differently to an imperative, loop based approach

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 15

