
Lesson 3:
Advanced Lambda and
Stream Concepts

Simon Ritter

Java Technology Evangelist

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Lesson Agenda

 Understanding and using reductions

 Finite and infinite streams

 Avoiding the use of the forEach method

 Using collectors

 Parallel streams (and when not to use them)

 Debugging streams and lambdas

 Course conclusions

Lesson 3-1:
Understanding and Using
Reductions

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

A Simple Problem

 Find the length of the longest line in a file

Path input = Paths.get("lines.txt");

int longestLineLength = Files.lines(input)
 .mapToInt(String::length)
 .max()
 .getAsInt();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Another Simple Problem

 Find the length of the longest line in a file

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Naïve Stream Solution

 This solves the problem

 Not really. Big files will take a long time and a lot of resources

 Must be a better approach

String longest = Files.lines(input).
 sort((x, y) -> y.length() - x.length()).
 findFirst().
 get();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

External Iteration Solution

 Simple, but inherently serial

 Not thread safe due to mutable state

 Not functional

String longest = "";
String s;
while ((s = reader.readLine()) != null)
 if (s.length() > longest.length())
 longest = s;

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

Recursive Approach: The Method

String findLongestString(String s, int index, List<String> l) {
 if (index >= l.size())
 return s;

 if (index == l.size() - 1) {
 if (s.length() > l.get(index).length())
 return s;
 return l.get(index);
 }

 String s2 = findLongestString(l.get(index), index + 1, l);

 if (s.length() > s2.length())
 return s;
 return s2;
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

Recursive Approach: Solving The Problem

 No explicit loop, no mutable state, so we now have a functional solution

 Unfortunately not a usable one

– larger data sets will generate an OOM exception

List<String> lines = new ArrayList<>();
String s;
while ((s = reader.readLine()) != null)
 lines.add(s);

String longest = findLongestString("", 0, lines);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

A Better Stream Solution

 The stream API uses the well known filter-map-reduce pattern

 For this problem we do not need to filter() or map(), just reduce()

 Recall the reduce method definition

 Optional<T> reduce(BinaryOperator<T> accumulator)

 The key is to find the right accumulator

– Again, recall the accumulator takes a partial result and the next element,

and returns a new partial result

– In essence it does the same as our recursive solution

– Without all the stack frames

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11

A Better Stream Solution

 Use the recursive approach as an accumulator for a reduction

String longestLine = Files.lines(input)
 .reduce((x, y) -> {
 if (x.length() > y.length())
 return x;
 return y;
 })
 .get();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 12

A Better Stream Solution

 Use the recursive approach as an accumulator for a reduction

String longestLine = Files.lines(input)
 .reduce((x, y) -> {
 if (x.length() > y.length())
 return x;
 return y;
 })
 .get();

x in effect maintains state for
us, by always holding the
longest string found so far

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 13

The Simplest Stream Solution

 Use a specialised form of max()

 One that takes a Comparator as a parameter

 comparingInt() is a static method on Comparator

– Comparator<T> comparingInt(ToIntFunction<? extends T> keyExtractor)

Files.lines(input)
 .max(comparingInt(String::length))
 .get();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 14

Section 1

 Reduction take a stream and reduces it to a single value

 The way the reduction works is defined by the accumulator

– Which is a BinaryOperator

– The accumulator is applied successively to the stream elements

– The reduce() method maintains a partial result state

– Like a recursive approach, but without the resource overhead

 Requires you to think differently to an imperative, loop based approach

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 15

