
Lesson 2-5:
Stream Interface:
Intermediate Operations

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Stream Interface

 A stream provides a sequence of elements

– Supporting either sequential or parallel aggregate operations

 Most operations take a parameter that describes its behaviour

– Typically using a Lambda expression

– Must be non-interfering (does not modify the stream)

– Typically stateless

 Streams may be changed from sequential to parallel (and vice-versa)

– All processing is done either sequentially or in parallel

– Last call wins

Overview

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 3

Filtering And Mapping

 distinct()

– Returns a stream with no duplicate elements

 filter(Predicate p)

– Returns a stream with only those elements that return true for the Predicate

 map(Function f)

– Return a stream where the given Function is applied to each element on

the input stream

 mapToInt(), mapToDouble(), mapToLong()

– Like map(), but producing streams of primitives rather than objects

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Maps and FlatMaps
Map Values in a Stream

Map

FlatMap

Input Stream

Input Stream

1-to-1 mapping

1-to-many mapping

Output Stream

Output Stream

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

FlatMap Example
Words in a File

List<String> output = reader
 .lines()
 .flatMap(line -> Stream.of(line.split(REGEXP)))
 .filter(word -> word.length() > 0)
 .collect(Collectors.toList());

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Restricting The Size Of A Stream

 skip(long n)

– Returns a stream that skips the first n elements of the input stream

 limit(long n)

– Returns a stream that only contains the first n elements of the input stream

String output = bufferedReader
 .lines()
 .skip(2)
 .limit(2)
 .collect(Collectors.joining());

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

Sorting and Unsorting

 sorted(Comparator c)

– Returns a stream that is sorted with the order determined by the
Comparator

– sorted() with no arguments sorts by natural order

 unordered()

– Inherited from BaseStream

– Returns a stream that is unordered (used internally)

– Can improve efficiency of operations like distinct() and groupingBy()

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

Observing Stream Elements

 peek(Consumer c)

– Returns an output stream that is identical to the input stream

– Each element is passed to the accept() method of the Consumer

– The Consumer must not modify the elements of the stream

– Useful for debugging and doing more than one thing with a stream

As They Go Past

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

Section 5

 Stream interface represents aggregate operations on elements

 Most methods can use Lambda expressions to define behaviour

 Powerful range of intermediate operations allow streams to be

manipulated as required

– Build up complex processing from simple building blocks

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

