
Lesson 2:
Introduction To The
Streams API

Simon Ritter

Java Technology Evangelist

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 2

Lesson Agenda

 Introduction to functional programming concepts

 Elements of a Stream

 Streams of objects and primitive types

 Stream sources in JDK 8

 The Stream interface: Intermediate operations

 The Stream interface: Terminal operations

 The Optional class

Lesson 2-1:
Introduction to Functional
Programming Concepts

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 4

Imperative Programming

 Use variables as an association between names and values

 Use sequences of commands

– Each command consists of an assignment

– Can change a variable’s value

– Form is <variable_name> = <expression>

– Expressions may refer to other variables

 Whose value may have been changed by preceding commands

– Values can therefore be passed from command to command

– Commands may be repeated through loops

Names And Values

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 5

Functional Programming

 Based on structured function calls

 Function call which calls other functions in turn (composition)

<function1>(<function2>(<function3> …) …)

 Each function receives values from, and passes values back the calling

function

 Names are only used as formal parameters

– Once value is assigned it can not be changed

 No concept of a command, as used in imperative code

– Therefore no concept of repetition

Names And Values

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 6

Names And Values

 Imperative

– The same name may be associated with different values

 Functional

– A name is only ever associated with one value

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 7

Execution Order

 Imperative

– Values associated with names can be changed

– The order of execution of commands forms a contract

 If it is changed, the behaviour of the application may change

 Functional

– Values associated with names cannot be changed

– The order of execution does not impact the results

– There is no fixed execution order

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 8

Repetition

 Imperative

– Values associated with names may be changed by commands

– Commands may be repeated leading to repeated changes

– New values may be associated with the same name through repetition (loops)

 Functional

– Values associated with names may not be changed

– Repeated changes are achieved by nested function calls

– New values may be associated with the same name through recursion

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 9

Functions As Values

 Functional programming allows functions to be treated as values

– This is why Lambda expressions were required in JDK 8

– To make this much simpler than anonymous inner classes

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 10

Section 1

 Imperative and functional approaches are very different

 Imperative

– Values associated with names can be changed

– Order of execution is defined as a contract

– Repetition is explicit and external

 Functional

– Values associated with names are set once and cannot be changed

– Order of execution is not defined

– Repetition is through the use of recursion

Summary

Copyright © 2015, Oracle and/or its affiliates. All rights reserved. 11

