
kubernetes Security
T I P S , T R I C K S & B E S T P R AC T I C E S

sponsored by

CONTENTS
Securing the Software Supply Chain...4

Use Secure, Trusted, and Minimalist Base Images..7

Implement Robust Vulnerability Scanning..9

Securing the Container Workload...10

Namespaces... 10

Role-based Access Control (RBAC)... 10

Network Segmentation... 12

Ingress Policies.. 12

Egress Policies... 12

Building Network Policies.. 12

Runtime Privileges.. 13

Hardening the Kubernetes Infrastructure..14

Kubernetes API Server..15

Kube-Scheduler..15

Kube-Controller-Manager.. 16

ETCD... 16

Configuration Files on the Master Node.. 16

Kubelet... 16

Worker Node Configuration Files... 16

Delivering on the Top Kubernetes Security Use Cases............................ 17

Kubernetes is Different.. 18

2

The drive toward digital transformation has introduced unprecedented
change in IT systems and processes, which is saying a lot in a field that
has been growing and changing non-stop since its inception. Today,
organizations are using DevOps and Agile practices, coding in containers
and microservices, and adopting Kubernetes at a record pace to help
manage all these components. Even five years ago, the level of agility,
speed, and flexibility the cloud-native stack enables was but a dream.
Since Google first introduced Kubernetes in June 2014, enterprise
adoption has been unparalleled — a staggering 78% of respondents to a
2020 survey conducted by the Cloud Native Computing Foundation cite
running Kubernetes in production.

Like any other advance in technology, though, adding multiple layers of
technology — with both containers and Kubernetes — adds a whole new
set of security and stability concerns that organization must address, and
few are comfortable they’ve met these concerns to date.

Organizations are on a steep learning curve — to understand both the
infrastructure and security ramifications of running Kubernetes. Microsoft
recently added to the conversation by developing an Attack Matrix for
Kubernetes that provides a helpful framework for understanding the risks.

The industry has also seen plenty of evidence of security incidents.
Tesla made headlines when its Kubernetes dashboard running in AWS
was hacked to enable cryptomining, and Shopify educated the world
on the risks of exposed Kubernetes metadata. If you count dangerous
misconfigurations, nearly everyone who responded to a recent StackRox
survey had experienced a security incident. And organizations are
clearly wary of this risk — in the same StackRox survey, nearly half of
respondents said their application deployment timelines were delayed due
to container or Kubernetes security concerns.

Protecting your software assets has never been more important, but
many companies are struggling to understand and mitigate the new
sources of risk the cloud-native stack introduces. This eBook offers a
guide to protecting containerized applications throughout their life cycle.
From securing your supply chain through to your workloads and even
your Kubernetes infrastructure, this eBook will help you understand and
apply the steps needed to protect your organization’s mission-critical
applications.

3

https://www.cncf.io/blog/2020/05/04/the-state-of-cloud-native-development-a-new-survey-report/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.stackrox.com/kubernetes-adoption-and-security-trends-and-market-share-for-containers/
https://www.stackrox.com/kubernetes-adoption-and-security-trends-and-market-share-for-containers/

32+19+8+2+39+H 56+44+H

Modern software systems are immensely complex. Much of this complexity exists
in underlying libraries and dependencies, and developers today are as much code
assemblers as they are code producers. Organizations must consider the source of
these software components as part of the overall security state of the applications
they’re building. It’s critical that DevOps teams stay up to date on the vulnerabilities
that exist in open source toolsets or in API services. Consider OpenSSH, which is
used in applications at nearly every organization. As a security-related project, it
is developed with processes designed to minimize vulnerabilities. Even so, the list
of bugs on the project page shows that occasionally something comes up that
impacts most organizations in the world.

Organizations need a process in place to catch these issues as soon as they are
known — whether these vulnerabilities appear in new images teams are building or
previously unknown vulnerabilities surface that affect running deployments. Teams
also need fast remediation once such issues become public — failing to protect
systems at this most basic level only invites attacks.

SECURING THE SOFTWARE
SUPPLY CHAIN

Faster application
development
and release

39%39% Yes

44%44%

Application
stability

32%32%
No

56%56%

19% 19%
Environmental

portability

Improved
Security

8% 8%
Other

2%2%

Of the following container and
Kubernetes benefits, which has
benefited your organization the
most?

Have you ever delayed or slowed
down application development
into production due to container or
Kubernetes concerns?

Source: State of Container and Kubernetes Report

4

https://www.openssh.com/security.html
https://www.openssh.com/security.html

The operational cost of not catching vulnerabilities until late in the life cycle is well-documented. The speed
of change in software systems and the increasing complexity of environments make the threat larger than it
has been historically. The StackRox survey found that 44% of respondents had delayed going to production
because of security concerns or issues. Failing to deploy to production, or fixing issues in a rush while in
production, have massive business impacts. What is needed is a proactive approach that can keep IT apprised
of vulnerabilities and even take steps to help protect against them.

5

6

The base images that applications are based on will be running in
several places across the infrastructure. Be they all internal, all cloud-
hosted or mixed, these images will run in the dozens of copies in a given
environment, and they must be trustworthy. A vulnerability or back door
in the base image can open the entirety of the organization’s environment
to attackers. Ensure you use registries known to be trustworthy to obtain
base images, and consider implementing a private registry.

One step you can take is to use the admission control capability in
Kubernetes to restrict access to image repositories as one step to
enforcing corporate image standards and ensuring the images running in a
given environment are approved.

Another best practice is to keep images as slim as possible. The less
unnecessary software in an image, the less that can go wrong and the
smaller the attack surface for malicious actors to exploit. Start with the
most stripped-down image possible, and then add only what is needed for
the application to function. Distro-less images are a good starting point,
as they are minimalist, containing only the application and its runtime
dependencies.

From the distro-less base image, adding what is needed by the application
— and only what is needed — is easy. This process will yield a final
container configuration that is functional but and has the smallest attack
surface possible. “Only what is needed” does not include debugging tools—
those packages are indispensable in development but should never make
their way into production. In general, if an application requires debugging
tools in production, something is wrong with the application or the process
that created it.

Use secure, trusted,
and minimalist base
images

7

8

While starting with trusted image sources and limiting software installed to a
given container are good starting points, the world of security is not static, and
new threats evolve over time. To counter this changing threat environment, final
images should be scanned as a part of the CI/CD process. Scanning against the
organization’s security policy and failing any image that does not pass the scan
cleanly enables a stronger and more dynamic security posture. As corporate
security policy changes, scans will be updated also.

At a minimum, image scanning needs to look for vulnerabilities in the OS, along with
any loadable modules used by applications running on the image. This approach
gives a more complete picture of the security posture of the overall container image
than scanning just the OS alone. While an OS vulnerability generally threatens
a larger number of organizations, runtime libraries generally introduce more
vulnerabilities.

Any external images brought into the organization to serve specific purposes
should be scanned as well — even those from a trusted source. Image repositories
are prime targets for attack, precisely because so many organizations download
images from them for application development. By scanning them each time CI/CD
is run, the risk that a recent compromise will result in attack vectors being installed
on an organization’s network is minimized.

To enable effective security operations, image scanning needs to be integrated
with CI/CD tooling and processes. Image build policies will likely reside in a security
policy engine, and failing one of the policies should trigger a failed build directly
within the CI/CD system and should provide context and remediation steps. That
way, developers learn immediately about a failure, in the pane of glass they’re
already in, and they should at the same time get an explanation of the rationale for
the failure as well as the steps they must take to successfully complete the build.
Such steps might include checking to see if an updated version of the image or
library is available or changing a configuration such as not running as root.

Implement robust
vulnerability scanning

9

Starting with known-good images and libraries is a solid step toward application security in a modern
container environment, but it is just the first step. The next attack surfaces that need to be covered before
the application can be considered secure are the configuration of Kubernetes deployment itself and having
runtime policy enforcement enabled. Securing the deployment and management services of Kubernetes
clusters is critical to security posture. Just as repositories are tempting targets for attackers because
they provide a central location to plant attacks into many organizations, Kubernetes itself provides a
central point for launching attacks into many containers, microservices, and applications. Once this portion
of your infrastructure is hardened, you’ll then need to configure runtime protections so that if someone is
still able to penetrate your systems, the malicious activity will become immediately apparent and software
can take automated actions to stop the breach.

The following sections will walk you through the highlights of hardening your Kubernetes environment
directly — a game plan for Kubernetes security posture management, if you will.

SECURING THE
CONTAINER WORKLOAD

NAMESPACES
Namespaces in Kubernetes are much the same as namespaces in other IT contexts. With
Kubernetes, the compelling reason to use them is that they help you separate logically
distinct work. Many organizations use namespaces to allow the same cluster(s) to support
dev, test and production, which means the only real difference in the three environments
is which namespace is used. Applying Kubernetes role-based access control (RBAC) on a
per-namespace level lets you restrict access to each environment to just those who need
access to a given Kubernetes service. Kubernetes network policies are also namespace-
scoped, so proper network segmentation will require you to use namespaces diligently.

ROLE-BASED ACCESS CONTROL (RBAC)
Speaking of RBAC, a solid configuration of RBAC is critical to the security posture of an
organization. Cluster-level access (via the use of cluster-admin role) should be limited only
to those who need it and proper namespace usage will minimize which accounts need
cluster-level access. Another area to look at is role aggregation. In Kubernetes, you can
simplify privilege grants by combining new privileges into an existing role. Pay attention
to how the new aggregated role impacts your security posture to make sure you’re not
creating overly privileged roles. Lastly, in order to streamline RBAC management, remove
unused or inactive roles, and whenever possible, minimize duplicated role grants.

10

11

Network segmentation is certainly not new, and Kubernetes implements the same types of
segmentation over its internal network as is done in any other network. The key is that Kubernetes
introduces a layer of complexity in the form of pods, so policies must be written with pods and
namespaces in mind. That being said, most of what is needed to create network segmentation within
Kubernetes should be familiar to networking and security staff.

The most crucial risk to understand about Kubernetes networking is that, by default, Kubernetes has no
networking policies enabled — all resources can talk to all other resources. This approach suits the needs
of developers, enabling them to get their services interworking as quickly as possible. However, it’s easy
for developers to forget to enable network segmentation when applications move into production.

INGRESS POLICIES
Ingress policies control access to services on a container or containers. Ingress controllers process
requests coming in and route them to the correct server/port/path. You can choose from a number

of third-party ingress controllers to perform functions such as load balancing and security gateways.

An ingress policy tells the ingress controller what to do with traffic. Traffic aimed for a specific URL can be
redirected to a server/port/path combination on the back end to service requests.

EGRESS POLICIES
Egress policies control what connections going out to the Internet—more specifically, outside
the pod—are allowed for a given container, pod, or group of containers. They reduce the chance

of malware initiating connections from within a corporate network and granting unauthorized access.
Egress controllers are typically used to block IP ranges, white-list acceptable servers for systems to open
connections to, and control access to other services.

BUILDING NETWORK POLICIES
Developing network policies can be as simple or as complex as your organization desires—it can

be fine-grained and lock down exactly which servers can talk to specific locales outside the pod, or it can be
coarse and allow general access from inside the network/VPN and be more restrictive outside the network.

While learning and developing network policies, reference a couple technical guides — the StackRox Guide
to Network Policies and the Example Kubernetes Network Policies doc on GitHub.

NETWORK
SEGMENTATION

12

https://kubernetes.io/docs/concepts/services-networking/ingress/#what-is-ingress
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://www.stackrox.com/post/2019/04/setting-up-kubernetes-network-policies-a-detailed-guide/
https://www.stackrox.com/post/2019/04/setting-up-kubernetes-network-policies-a-detailed-guide/
https://github.com/ahmetb/kubernetes-network-policy-recipes

RUNTIME PRIVILEGES
Privilege escalation has been a concern since the early days of multi-user OSes. Any process that
can run as root creates an attractive target for attackers. Containers increase concerns in this area

because they share resources with the host OS, making a given container a possible gateway to the host.

In addition to other detailed advice that follows, adhere to this short list of simple best practices to move
your organization toward an increased security posture:

Use pod security policies to enforce security requirements on an entire Kubernetes instance. The ability to
control configurations such as privilege escalation for an entire pod makes the environment more secure and
reduces management overhead. Pod security policy enforcement is managed through the PodSecurityPolicy
Admission Controller, which allows infrastructure-wide enforcement of best practices by enabling the controller.

Anomaly detection and alerting at runtime are critical to a proactive security posture. Securing cloud-
native technology depends in large part on shifting left with security and applying controls throughout
the build and deploy phases of the container life cycle. But ultimately, organizations will also need runtime
controls. To deliver safe, reliable uptime and protection against both malicious and accidental management
issues, look for threat detection capabilities that include:

•	 RUNTIME VISIBILITY: Activity occurring within the running application such as process execution,
network connections, privilege escalation and storage activity within each container.

•	 ANOMALY DETECTION AND PREVENTION: Whitelisting of activities combined with ML-based behavioral
modeling to monitor for and alert on anomalous activity.

•	 MANAGEMENT MONITORING: Use Kubernetes-native capabilities to detect and respond to runtime
issues such as using kubectl scale to set instances to zero or killing a running pod from the host OS.

•	 Do not run application processes as root.
•	 Use a read-only root filesystem.
•	 Use the default (masked) /proc filesystem mount.
•	 Do not use the host network or process space.
•	 Use SELinux options for more fine-grained

process controls.

•	 Give each application its own Kubernetes service
account.

•	 Do not mount the service account credentials
in a container if it does not need to access the
Kubernetes API.

13

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/

In addition to securing the software supply chain
and your container workloads, you must also
harden the Kubernetes infrastructure. A single
misconfigured component can expose you to
myriad threat vectors.

As with any software, keeping Kubernetes up
to date is critical. As bugs and vulnerabilities
are discovered, they are resolved in subsequent
releases. Kubernetes is both more complex and
more mission-critical than most software in the
data center.

As a control point for dozens or hundreds of
servers, Kubernetes is a tempting target to
attackers. As such, it needs to be a priority for
updates and maintenance. Consider some of the
more severe vulnerabilities uncovered and fixed
in subsequent releases.

The runC vulnerability, for example, hit just
about every container management platform
on the market, because runC, itself a “low level”
container runtime, is used by container runtimes
such as Docker to spawn and run containers.

HARDENING THE
KUBERNETES

INFRASTRUCTURE

14

KUBERNETES
API SERVER
As one of the components of
the Kubernetes control plane,

Kubernetes API server (kube-apiserver) has a
bewildering number of Configuration options. In
most environments, those options will not be
considered individually unless there is a specific
need, which doesn’t yield the most secure setup.
As a first step, you must limit which users and
service accounts have access to the API server by
enabling and configuring Kubernetes RBAC. You
must also make sure that:

•	 All traffic between the API server and other
infrastructure components (etcd, kubelet, etc.)
are served over https (TLS).

•	 The API server is not serving requests on an
insecure port.

•	 You are collecting and retaining API server audit
logs.

KUBE-SCHEDULER
The Kubernetes scheduler (kube-
scheduler) is another Kubernetes
component within the control plan.

kube-scheduler is responsible for selecting the
node that a pod should run on, and carries its own
deep configuration options. Thankfully, being part
of the control plane means that if you’re using
a managed Kubernetes service provider such
as GKE, EKS, or AKS, ensuring the scheduler is
configured properly falls on the service provider,
not the user. If you’re self-managing your clusters,
make sure you’re scanning your environment
against the Center for Internet Security (CIS)
benchmarks for Kubernetes which contains
several configuration checks for kube-scheduler.

This particular vulnerability in runC allowed an
attacker to gain host-level code execution by
breaking out of a running container, making it
highly risky. Kubernetes code was not vulnerable,
but it “inherited” the vulnerability since most
Kubernetes installations make extensive use of
runC. Kubernetes also inherited the fix: if you
were using a managed Kubernetes service such
as EKS, GKE, or AKS, patches were released to fix
the vulnerability.

Other significant Kubernetes vulnerabilities have
been publicized, including risks to the API Server
and exposure of the dashboard and metadata
— the runC vulnerability is but one to illustrate
the criticality of protecting the Kubernetes
infrastructure.

That said, simply updating Kubernetes is
sometimes not enough. The billion laughs attack
has been around since XML first became popular,
and yet we seem to need to be reminded of its
existence with each new self-referential file
format. A billion laughs variant was found in
the Kubernetes API Server that would result
in a denial of service. Kubernetes patched the
system and provided users with upgrades. At
the time that the patch was released, if you
created a new cluster with the patched upgrade,
your system would be patched. However, if you
upgraded a vulnerable cluster to the patched
version, you still needed to modify your RBAC
policy to adequately protect your systems.
The moral of this story is to always check to
make certain an upgrade actually resolves the
issue and to take the recommended steps after
upgrade to make your systems safe.

In addition, follow these best practices to keep
key components of Kubernetes control plane and
the worker nodes safe:

15

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://www.cisecurity.org/benchmark/kubernetes/
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://nvd.nist.gov/vuln/detail/CVE-2019-11253

KUBE-CONTROLLER-
MANAGER
The Kubernetes controller
manager runs controller processes.
Controllers monitor the state of
a cluster via the apiserver to help

ensure clusters remain in the desired state.
Tasks such as detecting and responding to
downed nodes are managed by controllers. The
long list of kube-controller-manager options is
also tough to weed through individually. If you’re
using a managed Kubernetes service, you will
likely not have to worry about the configuration
of kube-controller-manager as it falls under
the responsibility of the service provider. If
you’re managing your own clusters, scan your
environment against the CIS benchmarks to make
sure you are passing the checks specific to kube-
controller-manager.

ETCD
As another control plane
component, etcd stores key cluster
information and locking it down

is critical. Etcd is used internally by Kubernetes
for data storage and exchange. As a result,
any weakness in etcd configuration could leak
information about the entirety of a Kubernetes
installation. You must securely configure etcd
and ensure all communication to it are protected
using TLS encryption. As with the other control
plane components, you will likely worry about
Etcd configuration if you’re managing your own
clusters, in which case we advise you scan your
environment against CIS checks specific to Etcd.

CONFIGURATION FILES
ON THE MASTER NODE
Should an attack obtain access to
the local network, the goal must

be to limit the damage. Locking down all critical
configuration and PKI files on the master node
is a critical step in protecting the system from
attackers and is not a bad safety block against
destructive accidental changes. You need to make
sure that you have locked down the ownership
and permission of these files, including the API
pod spec file, controller manager pod spec file,
scheduler pod spec file, etcd pod spec file, etc.

KUBELET
Kubelets are referred to as the
“node agents” in the Kubernetes
documentation, but “node manager”

is closer to the truth. As middle management,
Kubelet is given a set of pods that are supposed
to be running on its node (PodSpecs), and its
job is to make certain the containers in those
PodSpecs are “running and healthy.” Make sure
you’ve configured the kubelet config file such
that it doesn’t allow anonymous/unauthenticated
requests to be served by the kubelet server.
The default kubelet setting is to accept
unauthenticated API requests.

WORKER NODE
CONFIGURATION FILES
Worker nodes get the job done.
They are the equivalent of the

“payload” in IT systems. That makes them
dangerous for two reasons: A node with several
containers on it is more tempting than a single
asset, and organizations typically have dozens of
them, perhaps spread across architectures. You
must lock down the ownership and permission
of your worker node configuration files including
kubelet service file, kubelet.conf file, proxy
kubeconfig file, etc.

16

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

In the end, every organization desires a secure
environment. The amount of time and effort
dedicated to pursuing security varies from
organization to organization, but the desire to be
safe is ubiquitous. The fast pace, new technology,
and complicated stack involved in cloud-native
applications compounds the challenge.

Follow the steps outlined previously to protect
organization’s Kubernetes installation from
attacks — and mistakes. They will help you lock
down the most important resources in your
deployments. They’ll also help you protect against
one of the greatest weaknesses of complex
systems — human error.

As you move through your Kubernetes journey,
your security needs will change, so look for tooling
that can grow with you. The top Kubernetes
security use cases have parallels in previous
waves of infrastructure, but Kubernetes has
unique needs to be met. To address the challenge,
you should:

•	 Look for deep, multi-faceted visibility into
the Kubernetes system and issues, including
logging, alerting, and dashboards.

•	 Focus on solutions that offer the ability to
manage vulnerabilities proactively. In a DevOps
world, feedback on vulnerabilities must come
into the systems teams are already using, with
appropriate rationale and remediation info so
they can react quickly and intelligently.

•	 Network segmentation is different inside

Kubernetes than in almost any other
environment. Choose security tooling that
automatically constructs policies that allow just
the needed communications and generates the
correlating YAML files to make setting policy
easier.

•	 Configuration management in a highly complex,
highly distributed system is not only difficult
but also error-prone. Choose a tool that
automatically identifies incorrect settings,
prevents drift from initial configurations,
and will highlight risks such as dangerous
configuration changes.

•	 Risk-profiling can help alert an organization to
issues before they become incidents. A tool
that can offer a quick view on how important a
given threat is and how the security posture of
a given environment rates is necessary.

•	 Compliance has become a standard
requirement in almost every industry. Choose
a tool that can help meet the compliance
requirements the organization must fulfill, with
both visual insights about status and detailed
logs auditors need.

•	 Catching threats as they develop has long been
recognized as more effective than trying to
clean up after a breach. Catching them can be
difficult in simple environments. The distributed
systems in play with Kubernetes installations
are not simple, increasing the challenge. You’ll
need a tool to assist with runtime monitoring
and threat detection.

DELIVERING ON THE TOP KUBERNETES
SECURITY USE CASES

17

In case you missed it, Kubernetes introduces layers of complexity into an already complex
environment. A security tool for a cloud-native environment must be Kubernetes-native and offer
Kubernetes-specific tooling.

Kubernetes-native security refers to leveraging the context of and native controls in Kubernetes
to protect the infrastructure. The rich context of Kubernetes’ declarative data will yield meaningful
insights into your environment that will help assess risk, speed troubleshooting, and enable
faster analysis. Leveraging the native controls means security policies are embedded directly in
your infrastructure, enabling security that’s built in, not bolted on. Plus, that approach ensures
developers, operations teams, and security staff — no matter where they sit in the organization — all
share a common source of truth, speak the same language, and leverage the same set of policies.

Specifically, an ideal Kubernetes security tool should:

Build for success, maximizing both security and configuration stability, then move toward
automation. In the end, securing Kubernetes infrastructure will enable more fundamental business
protection securing any given application. Thankfully, StackRox has you covered.

KUBERNETES IS DIFFERENT

•	 Reduce time and cost for teams via a reduced learning curve,
familiar framework and a “configure once, run everywhere” model.
Overworked teams are doing more all of the time; making it easy
for them to leverage systems they’re already using as part of their
security solution is imperative.

•	 Offer better visibility into configuration, compliance, and workload
isolation so that teams can see all of the important aspects of
Kubernetes.

•	 Discover critical vulnerabilities and threat vectors such as Kube-
specific configuration issues, vulnerabilities and ingress/egress
communications configuration and monitoring.

•	 Minimize operational risk by eliminating operational conflict, such
as where security tooling takes actions not reflected in Kubernetes,
and enabling scalable enforcement. Rapid development/deployment
and security can be at odds, which can create insecure situations
and increase risk. While a Kubernetes security and configuration
tool cannot resolve all such stresses, it can get all the teams using
common infrastructure and policies, reducing that conflict.

18

19

 	 http://www.devops.com
 	https://twitter.com/devopsdotcom
 	https://www.facebook.com/devopscom

T H A N K S T O O U R S P O N S O R

http://www.devops.com
https://twitter.com/devopsdotcom
https://www.facebook.com/devopscom

	Securing the software supply chain
	Use secure, trusted, and minimalist base images
	Implement robust vulnerability scanning
	Securing the container workload
	Namespaces
	Role-based access control (RBAC)

	Network segmentation
	Ingress policies
	Egress policies
	Building network policies
	Runtime privileges

	Hardening the Kubernetes infrastructure
	Kubernetes API Server
	Kube-scheduler
	Kube-controller-manager
	Etcd
	Configuration files on the master node
	Kubelet
	Worker node configuration files

	Delivering on the top Kubernetes security use cases
	Kubernetes is different

	TofC_GoToPage5:
	TofC_GoToPage8:
	TofC_GoToPage10:
	TofC_GoToPage11:
	TofC_GoToPage13:
	TofC_GoToPage15:
	TofC_GoToPage19:
	TofC_GoToPage18:
	TofC_GoToNameSpaces 2:
	TofC_GoToIngressPolicies 2:
	TofC_GoToEgressPolicies 2:
	TofC_GoToNetworkPolicies 2:
	TofC_GoToRuntimePrivileges 2:
	TofC_GoToKubernetesAPIServer 2:
	TofC_GoToKube-Scheduler 2:
	TofC_GoToKube-Controller-Manager 2:
	TofC_GoToKubelet 2:
	TofC_GoToWorkerNode 2:
	TofC_GoToETCD 2:
	TofC_GoToConfigFiles 2:
	TofC_GoToRBAC 2:

